模糊神经网络的优点十篇

时间:2024-04-01 18:17:16

模糊神经网络的优点

模糊神经网络的优点篇1

关键词:小波分析;模糊神经网络;递阶遗传算法

中图分类号:TP18 文献标识码:A 文章编号:1674-7712 (2014) 02-0000-02

智能交通系统(ITS)是近年来研究的热门课题之一。其中,交通控制与诱导系统是ITS研究的核心课题。而实现交通流诱导系统的关键是实时准确的短时交通流预测,即利用实时交通数据信息,及时、准确地预测未来短时间内交通流状况。

小波分析(Wavelet Analysis)是近年来发展起来的前沿数学方法,具有良好的时-频局部特性,在刻画非线性、非平稳信号方面具有明显的优越性[2]。模糊控制是无模型控制方法,具有很强的鲁棒性。但其量化因子是固定不变的,难以保证控制精度。而神经网络具有良好的学习和自适应能力,可以克服模糊控制的缺点。

本文采用小波基函数作为模糊隶属函数,构造模糊神经网络预测模型,利用神经网络的自学习能力和小波基函数的紧支性,增强模糊控制的自适应能力。同时采用递阶遗传算法实现网络结构和参数的优化。

一、交通流预测模型

(一)交通流时间序列。根据对城市某路口主干道相位的关键车流分析可知,某时刻的交通流量与本路段前几个时段的交通流量有关,并且上下游路段交通流状况对其也有一定的影响。

由于不同道路的交通状况存在差异,在交通流预测中,需要对不同路段、不同时段的交通流数据进行相关性分析。选择与预测路段相关性强的不同路段、不同时段的交通流信息作为模糊小波神经网络的输入值[3]。

按照以上的分析,可得到某路段在 时段的预测流量可表示为:

式中: 表示一种非线性函数关系;τ为一个计时时段;Qu、Qd分别为上、下游路段的交通流量;k1、k2、k3取不小于零的整数,通过相关性确定。

(二)基于模糊小波神经网络的预测模型。针对路况的实际情况,本文利用模糊小波神经网络预测模型实现对交通流实时预测。选取墨西哥帽状小波函数作为模糊隶属函数,即

模糊小波神经网络共分为四层,网络的输入端为(1)式右侧的历史交通流数据,即Q(t-k1τ)、Qd(t-k2τ)、Qu(t-k3τ),输出端为t+τ时刻的预测流量Q(t+τ)。

第Ⅰ层为输入层,输入输出关系[4]:

第Ⅱ层为模糊化层,对输入向量进行模糊化处理。将每个输入量划分为5个模糊词集。模糊隶属函数为小波基函数,输入xi对应第j个模糊语言变量的隶属关系为:

式中:i=1,2,3;j=1,2,3,4,5; , 分别代表相应的伸缩因子和平移因子。本层的输入输出关系:

第Ⅲ层为模糊推理层,完成模糊规则的模糊操作。本层的输入输出关系:

第Ⅳ层为输出层,实现去模糊化功能。本层的输入输出关系:

式中: 是网络的连接权值;Q(t+τ)是网络的输出,即预测的交通流量。

二、基于递阶遗传算法的结构和参数优化

网络的结构优化包括预测模型的第三层节点数和网络的连接权值。网络的参数优化包括模糊隶属函数中的伸缩因子aij和平移因子bij。

(一)染色体编码。递阶遗传结构中的染色体由控制基因和参数基因构成,控制基因是二进制数,每一位对应一个隐含层神经元,控制与此相关的参数基因。当该位对应1则该位对应的神经元激活,其参数起作用。反之,该位对应的神经元休眠,其参数不起作用。这种层次结构的染色体编码方式能够同时表示神经网络的结构和参数,从而使递阶遗传算法在遗传寻优改变网络结构的同时,完成参数优化。

(二)选择初始种群。一个染色体对应一种模糊神经网络结构及其参数。初始种群中包含着对应于最大完全规则集及输入变量和输出变量在其变化范围内均匀划分模糊概念的个体,其余个体随机产生。如果对建模系统有一定的认识,可以将根据经验得到的规则集及输入输出模糊划分对应的向量选入初始种群,这样既充分地利用了先验知识,又保证了最终的系统至少不比经验式系统差。

(三)适应度函数。适应度是衡量种群中个体优劣的标志。由于递阶遗传算法要同时对神经网络的结构和参数进行优化,所以要使网络的误差函数和复杂度函数都达到最小,这是一个双目标优化问题。定义网络的适应度函数形式:

式中:f(i,t)表示第 代的第i个网络个体的适应度;E(i,t)表示第t代的第i个网络个体的网络误差;H(i,t)表示第t代的第i个网络个体的网络复杂度;0

(四)交叉和变异。在递阶遗传算法中,要同时对控制基因和参数基因进行交叉操作和变异操作。

交叉操作:层控制基因和神经元控制基因采用的是单点交叉的方式;参数基因由于采用的是实数编码的方式,交叉操作采用线性组合方式,将2个基因串对应交叉位的值,组合生成新的基因串。

变异操作:控制基因采用位变异,进行简单的逻辑取反操作;参数基因采用非均匀变异。

在遗传算法中,交叉率Pc和变异率Pm的取值应随着适应度的变化而改变。对应适应度高的解,取低的Pc和Pm,使其进入下一代的机会增大;对应适应度低的解,应取较高的Pc和Pm,使其被淘汰;当成熟收敛发生时,应加大Pc和Pm,以加快新个体的产生。

基于递阶遗传算法的特点,本文采用自适应交叉率Pc和自适应变异率Pm,表达式为[7]:

式中:0

(五)训练过程。利用递阶遗传算法优化网络结构和参数,可以实现网络权值训练和结构优化的同步进行。终止迭代条件是进化代数t等于进化终止代数T。算法实现步骤:Step1当t=0产生初始种群,决策变量的编码方案;Step2对控制基因进行解码,生成相应的神经网络;Step3计算种群中的个体适应度f(i,t),i=1,2,n根据个体的适应度选择n个个体作为父代;Step3对选中的n个父代中的控制基因和参数基因进行交叉和变异;Step4若t=T,输出进化结果,否则转步骤2。

三、实例分析

本文对某市解放路到胜利路路段进行交通流数据采集,采集的时间为7:00~18:00,采样周期为10min,递阶遗传算法的参数取值:种群规模取60,适应度中参数α=0.5,β=0.5,交叉概率中参数k1=k2=1,变异概率中参数k3=k4=0.5,进化终止代数取T=100。表1给出的是8:00-10:00的12个时段的交通流预测结果。

四、结束语

针对城市短时交通流的特点,本文以模糊神经网络为基础,将小波基函数作为模糊隶属函数,实现短时交通流的预测;采用递阶遗传算法实现网络结构和参数的同时优化。经实测数据验证,该网络在收敛性和对交通流预测精度等方面明显优于常规BP网络,具有适应性和鲁棒性强等特点,对实时交通流预测有良好的应用前景。

表1 交通流预测结果

参考文献:

[1]刘静,关伟.交通流预测方法综述[J].公路交通科技,2004(21):82-85,

模糊神经网络的优点篇2

介绍了基于神经网络的故障针诊断方法和结合模糊理论应用的故障诊断。分析了小波变换的现代模拟电路软故障诊断的研究现状。

关键词:

模拟电路;软故障诊断;神经网络;模糊理论;小波变换

在最近几年,现代模拟电路故障诊断方法的研究成为了新的热点。其中有基于神经网络。并结合专家系统、小波变换、模糊理论和遗传算法。“小波神经网络”和“模糊神经网络”成为主流的模拟电路软故障诊断方法。

1基于神经网络的故障诊断方法

神经网络有自组织性、自学性、并行性、联想记忆和分类功能,这些信息处理特点使其能够解决一些传统模式难以解决的问题。其中模拟电路故障诊断中的非线性和容差问题就是运用神经网络的非线性映射能力和泛化能力来解决的,同时这也是专家门的较为感兴趣的研究热点。基于神经网络的模拟电路故障诊断方法有一些,其中包括测试节点的选择、确定被测故障集、故障特征的提取等步骤,这种方法与基于测前仿真的故障字典法雷同。前者用制作神经网络和样本集来储存特征信息,而且在测试完毕后定位故障是通过神经网络来处理。所以可以把基于神经网络的方法当作是基于测后仿真和测前仿真的延伸与综合。在故障诊断领域,误差反传神经网络(backpropagationneuralnetwork,BPNN)拥有较好的模式分类特性。然而仅仅以节点电压视作故障特征训练的BPNN只能适用于诊断模拟电路的硬故障。在软故障方面,一般需要基于神经网络和多种特征提取方法的综合应用来诊断。

2基于模糊理论应用的模拟电路软故障诊断

在一些故障诊断问题中,模糊规则适合描述故障诊断的机理。模糊理论中的模糊运算、模糊逻辑系统、模糊集合拥有对模糊信息的准确应付能力,这使得模糊理论成为故障诊断的一种有力工具。神经网络与模糊理论相结合,充分发挥了模糊理论和神经网络各自的优点,并以此来弥补各自的不足,这就是所谓的“模糊神经网络”。这种方法的基本思想是在BPNN的输出层和输入层中间增加一到两层模糊层构造模糊神经网络,分别利用神经网络和模糊逻辑处理低层感知数据与描述高层的逻辑框架,这样一来跟神经网络分类器相比,“模糊神经网络”对模拟电路软故障诊断效果的优势就非常明显。通过一个无监督的聚类算法自组织地确定模糊规则的数目并生成一个初始的故障诊断模糊规则库,构造了一类模糊神经网络,通过训练调整网络权值,使故障诊断模糊规则库的分类更加精确,实现了电路元件的软故障诊断。

3基于小波变换的模拟电路软故障诊断

小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。若满足时,则由经过伸缩和平移得到的函数成为小波函数族。小波变换具有时域局部特征,而神经网络具有鲁棒性、自学习、自适性和容错性。如何把二者的优势结合起来一直是人们所关注的问题。一种方法是用小波变换对信号进行预处理,即以小波空间作为模式识别的特征空间,通过小波分析来实现信号的特征提取,然后将提取的特征向量送入神经网络处理;另一种即所谓的小波神经网络或小波网络。小波神经网络是神经网络与小波理论相结合的产物,最早是由法国著名的信息科学研究机构IRLSA的ZhangQinghu等人1992年提出来的。小波神经用络是基于小波变换而构成的神经网络模型,即用非线性小波基取代通常的神经元非线性激励函数(如Sigmoid函数),把小波变换与神经网络有机地结合起来,充分继承了两者的优点。近几年来,国内外有关小波网络的研究报告层出不穷。小波与前馈神经网络是小波网络的主要研究方向。小波还可以与其他类型的神经网络结合,例如Kohonen网络对信号做自适应小波分解。

由于神经网络、小波变换、模糊理论在当今的发展上还不是很完善,例如在诊断中,模糊度该如何准确地定量化,对小波变换之后故障信号进行怎样构造能体现故障类别的特征等,因此这些基于神经网络的诊断方法或多或少地存在一些局限性。一般来说,神经网络方法的长处并不是提高诊断精度,而且无论运用什么方法,在选取状态特征参量和确定电路故障集方面,传统的故障诊断方法仍然具有理论上的指导意义。所以,抽取合理的故障特征比构造合适的神经网络更为重要。

参考文献:

[1]梁戈超,何怡刚,朱彦卿.基于模糊神经网络融合遗传算法的模拟电路故障诊断法[J].电路与系统学报,2004,9(2):54-57.

[2]谭阳红,何怡刚.模拟电路故障诊断的小波方法[J].电工技术学报,2005,20(8):89-93.

模糊神经网络的优点篇3

关键词:中厚板;智能控制;神经网络;模糊控制

由于中厚板层流冷却控制系统本身所具有的多变量、强耦合、大滞后以及非线性时变等特点,对于这样的控制问题,智能控制是一种解决途径,于是,研究人员把目光转向了智能控制。智能控制的主要特点是不依赖被控对象的精确模型,根据事实和数据来实现优化控制。智能控制这种特性使得那些缺乏精确模型的复杂控制问题变得简单了,因此,将智能控制方法应用于中厚板控制冷却中成为了研究的热点和方向,同时研究也表明这种方法很有潜力。

1 智能控制技术

智能控制是控制科学发展的高级阶段,是一门新兴的交叉前沿学科。智能控制把人工智能融入了控制理论,改变控制策略以适应被动对象模型的复杂性和不确定性,不完全依赖系统模型实现控制。智能控制在诸多领域拥有极为广泛的应用前景。

2 常用的神经网络

从连接方式上看,神经网络主要分为两种,即前馈型神经网络(BP网络、径向基函数网络等)和反馈型神经网络(Hopfield网络等)。神经网络应用于控制领域初期,BP神经网络以它独有的算法和优点很快便成为了学者们研究应用的重点。但BP神经网络同时也存在训练速度慢、易陷入局部极值等缺陷,因此,近年来,越来越多的研究人员开始对模糊神经网络、RBF神经网络、小脑模型神经网络(CMAC)等神经网络进行研究,并积极应用于实际中。

模糊神经网络综合了神经网络和模糊推理的优点,既可以利用已有专家经验知识进行模糊推理,又拥有自学习、自适应的能力,同时可以通过不断的学习来调整已有的控制规则。模糊神经网络的出现为控制领域再添了一个优秀的工具。

BP神经网络算法及改进

BP神经网络(Back Propagation Neural Network)是一种单向传播的多层前馈神经网络,每个神经元用一个节点表示,整个网络通常由输入层、隐含层、输出层节点组成,如图所示。

BP神经网络算法主要由两个传播过程组成,即正向传播过程和反向传播 过程。网络首先由输入层经过隐层向输出层进行正向传播,计算出相应的网络权值和阈值,如果输出层的输出达到期望,则学习算法终止;如果输出存在误差,则由输出层开始将误差传向输入层,即反向传播误差,并调整网络各层的权值和阈值,使得输出误差减小。

3 模糊控制系统及原理

模糊控制系统是一种自动控制系统,同时也是一种智能控制系统。它是以模糊数学、模糊逻辑推理和模糊语言为基础,采用计算机控制技术构成的闭环结构控制系统。模糊逻辑控制系统主要由模糊化过程、知识库、推理决策和精确化计算组成。

4 结束语

本文采用模糊控制建立模型对冷却区冷却段开启数进行调整,模糊控制作为一种智能控制,模仿人的思维,运用专家或熟练操作工的经验,对许多没有复杂且精确模型的问题给出了较为理想的控制方案,并得到了良好的控制效果。因此,采用模糊控制方法来解决这一复杂的问题,从而实现对冷却区冷却段数的调整是可行的。通过仿真对比,理论上,在中厚板控制冷却系统中,模糊控制方法的控制精度高于传统PID控制方法的控制精度,模糊控制的效果更为理想。

因此,采用模糊控制方法对中厚板终冷温度进行控制,方法适合,调整后控制效果良好,实测终冷温度控制在误差允许的范围内,提高了终冷温度的控制精度。

本文设计了一套较完善的控制规则,通过这些模仿人思维的控制规则,模糊控制器便可以由这些复杂的输入量得出相应的控制输出量,而这个实际的 控制输出量就是水冷区冷却段数的调整量。通过冷却段数的调整,预设定冷却段数与调整量叠加后,得到了最终动态调节的水冷区冷却段数,从而达到 了控制终冷温度的目的。

模糊控制系统输出控制量(即冷却段数调整量)和调整后的水冷区冷却 段开启数仿真曲线如图1-1所示。图中,上半部为模糊控制器输出控制量曲线,下半部为调整后的冷却段数。

分析最终控制效果,如图1-1所示,加入模糊控制器之后q

的冷却系统,终冷温度目标值与实际值的误差基本控制在±30℃以内,绝大多数点能控制到±20℃以内,比例高达90%以上,误差率控制在±3%以内。而传统的PID控制方法,由图4.7可以看出,终冷温度控制的误差范围在±40℃左右,误差百分率在6%以内,误差较大。通过仿真对比,可以得出以下结论,理论上,在中厚板控制冷却系统中,模糊控制方法的控制精度高于传统 PID控制方法的控制精度,模糊控制的效果更为理想。

[参考文献]

[1]魏士政,等.中厚板控制冷却技术[J].钢铁研究学报,2002(5):67-72.

[2]李士勇.模糊控制、神经控制和智能控制[M].哈尔滨:哈尔滨工业大 学出版社,2004.

[3]权太范.模糊控制技术在控制工程中的应用现状及前景[J].控制与决策,1988(1):59-62.

模糊神经网络的优点篇4

80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。近年来,美国等先进国家又相继投入巨额资金,制定出强化研究计划,开展对脑功能和新型智能计算机的研究。

人脑是自生命诞生以来,生物经过数十亿年漫长岁月进化的结果,是具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息,善于理解语言、图象并具有直觉感知等功能。

人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高(毫秒级),但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。

因此,从信息处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能信息处理方法,一直是人工智能追求的目标。

神经网络就是通过对人脑的基本单元---神经元的建模和联结,来探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。本文介绍神经网络的特点以及近年来有关神经网络与混沌理论、模糊计算和遗传算法等相结合的混合神经网络研究的动态。

一.神经网络和联结主义

回顾认知科学的发展,有所谓符号主义和联结主义两大流派。符号主义从宏观层次上,撇开人脑的内部结构和机制,仅从人脑外在表现出来的智能现象出发进行研究。例如,将记忆、判断、推理、学习等心理活动总结成规律、甚至编制成规则,然后用计算机进行模拟,使计算机表现出各种智能。

符号主义认为,认识的基本元素是符号,认知过程是对符号表示的运算。人类的语言,文字的思维均可用符号来描述,而且思维过程只不过是这些符号的存储、变换和输入、输出而已。以这种方法实现的系统具有串行、线性、准确、简洁、易于表达的特点,体现了逻辑思维的基本特性。七十年代的专家系统和八十年代日本的第五代计算机研究计划就是其主要代表。

联接主义则与其不同,其特点是从微观出发。联接主义认为符号是不存在的,认知的基本元素就是神经细胞(神经元),认知过程是大量神经元的联接,以及这种联接所引起的神经元的不同兴奋状态和系统所表现出的总体行为。八十年代再度兴起的神经网络和神经计算机就是这种联接主义的代表。

神经网络的主要特征是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。主要表现如下:

神经网络能够处理连续的模拟信号。例如连续灰度变化的图象信号。

能够处理混沌的、不完全的、模糊的信息。

传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答。

神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。

神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。

传统计算机要求有准确的输入条件,才能给出精确解。神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。

符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向认识的理性和感性两个方面,两者的关系应该是互补而非互相代替。理想的智能系统及其表现的智能行为应是两者相互结合的结果。

接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:

1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介(例如数据文件)进行通讯。

2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。其主要类型有嵌入式系统和黑板结构等。

3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。如果源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。有待进一步研究。

4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。例如联接主义的专家系统等。

近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。下面分别介绍。

二.混沌理论与智能信息处理

混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证明混沌也是神经系统的正常特性。

九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。

现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。例如:

对混沌的随机不规则现象,可利用混沌理论进行非线性预测和决策。

对被噪声所掩盖的微弱信号,如果噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。

利用混沌现象对初始值的敏锐依赖性,构成模式识别系统。

研究基于混沌---神经网络自适应存储检索算法。该算法主要包括三个步骤,即:特征提取、自适应学习和检索。

模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。自适应学习采用神经网络的误差反传学习法。检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子(输出)之间的存在直接对应关系的方法进行检索。利用这种方法可应用于模式识别。例如黑白图象的人脸识别。

三.模糊集理论与模糊工程

八十年代以来在模糊集理论和应用方面,也有很大进展。1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS---5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL等。除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。

模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。而模糊集理论则着眼于可用语言和概念作为代表的脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。

神经网络和模糊集理论目标相近而方法各异。因此如果两者相互结合,必能达到取长补短的作用。将模糊和神经网络相结合的研究,约在15年前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。

与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,特别近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。

四.遗传算法

遗传算法(Genetic Algorithm :GA)是模拟生物的进化现象(自然、淘汰、交叉、突然变异)的一种概率搜索和最优化方法。是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:

1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。1989年美国Goldberg博士发表一本专著:“Genetic Algorithms in Search,Optimization and Machine Learning”。出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。以后每隔两年召开一次。近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:

智能控制:机器人控制。机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

图象处理:图象恢复、图象识别、特征抽取。

调度规划:生产规划、调度问题、并行机任务分配。

优化理论:TSP问题、背包问题、图划分问题。

人工生命:生命的遗传进化以及自增殖、自适应;免疫系统、生态系统等方面的研究。

神经网络、模糊集理论和以遗传算法为代表的进化算法都是仿效生物信息处理模式以获得智能信息处理功能的理论。三者目标相近而方法各异;将它们相互结合,必能达到取长补短、各显优势的效果。例如,遗传算法与神经网络和模糊计算相结合方面就有:

神经网络连续权的进化。

传统神经网络如BP网络是通过学习,并按一定规则来改变数值分布。这种方法有训练时间过长和容易陷入局部优化的问题。采用遗传算法优化神经网络可以克服这个缺点。

神经网络结构的进化。

目前神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构,采用遗传算法可用来优化神经网络结构。

神经网络学习规则的进化。

采用遗传算法可使神经网络的学习过程能够适应不同问题和环境的要求。

基于遗传算法的模糊推理规则的优化,以及隶属度函数的自适应调整也都取得很好效果。

上述神经网络、模糊计算、遗传算法和混沌理论等都是智能信息处理的基本理论和方法。近年来学术界将它们统称为“计算智能”。有关这方面更详细的内容,可参阅我们编著的下列著作:

“神经网络与神经计算机”(1992年科学出版社出版)

模糊神经网络的优点篇5

1模糊系统的Takagi?Sugeno模型

模糊系统理论[11]是沟通经典数学的精确性与现实世界中大量存在的不精确性之间的桥梁。它是以模糊集合的形式表示系统所含的模糊性并能处理这些模糊性的系统理论,能够有效地处理系统的不确定性、测量的不精确性等模糊性。Takagi-Sugeno模糊系统(T-S模糊系统)作为函数模糊系统的一种特例,由于构成的各条规则采用线性方程式作为结论,使得模型的全局输出具有良好的数学表达特性,这在处理多变量系统时能有效地减少模糊规则个数,具有很大的优越性[12]。其规则表达如下[13]:式中:Rj为第j条模糊规则;xi为模糊语言变量;Aij(xi)为xi的第j个语言变量值,它是定义在xi论域上的一个模糊集合,相应的隶属度函数为μjAi(xi);pkji为模糊系统参数;yj为根据模糊规则得到的输出;If部分是前提或前件,then部分是结论或后件。

2T?S模糊神经网络

模糊系统在模糊建模的过程中常存在学习能力缺乏,辨识过程复杂,模型参数优化困难等问题。而人工神经网络具有自学习、自组织和自适应的能力,具有强大的非线性处理能力。二者的结合构成模糊神经网络,可以有效地发挥模糊逻辑与神经网络的各自优势,弥补各自的不足[14]。

2.1T?S模糊神经网络的结构基于标准型的T-S模糊神经网络结构如图1所示。第5层是输出层,它所实现的是清晰化计算。T-S模糊神经网络由前件网络和后件网络两部分组成。前件网络用来匹配模糊规则的前件,其结构与图1的前4层结构完全相同;后件网络用来产生模糊规则的后件,由N个结构相同的并列子网络组成[15]。

2.2T?S模糊神经网络的学习算法T-S模糊神经网络需要学习的参数主要有后件网络的连接权pkki以及前件网络第二层各结点隶属函数的中心值ckj及宽度σkj。令上述T-S模型的参数pkji固定,则T-S模糊神经网络结构可简化为图1。简化结构本质上也是一种多层前馈网络,所以可仿照BP网络用误差反传的方法来设计调整参数的学习算法[15]。

3应用研究

以下通过实例介绍T-S模糊神经网络在地下水水质评价中的应用。

3.1研究区概况吉林省西部地区位于松嫩平原的西南部,地理坐标为东经123°09′~124°22′,北纬44°57′~45°46′。研究区东接吉林省长春市,南接四平市及辽宁省,西邻内蒙古自治区,北接黑龙江省,东北以嫩江、松花江和拉林河与黑龙江省为界。吉林省西部属半干旱半湿润的大陆性季风气候区,四季变化明显。该区多年平均气温3~6℃,多年平均降雨量为400~500mm。研究区大部分属于松嫩盆地,该盆地为一个巨大的含水层系统,埋藏有多层含水层,包括孔隙潜水含水层和承压水含水层(分别为浅层、中深层)、上第三系大安组、泰康组孔隙-裂隙含水层(深层)和白垩系下统及上统裂隙孔隙含水层(深层)。研究区的地下水补给来源主要为降水入渗,排泄以潜水蒸发和人工开采为主。

3.2原始数据原始数据取自于吉林西部2005年50个地下水水化学监测点的水质监测数据,结合研究区地下水水质状况,有针对性地选择了铁、氨氮、硝酸盐、亚硝酸盐、硫酸盐、氯化物、溶解性总固体、氟化物和总硬度共9项指标作为评价因子。地下水水

3.3神经网络的准备工作(1)训练样本、检验样本及其期望目标的生成。采用Mat-lab7.0的linspace函数在各级评价标准之间按随机均匀分布方式内插生成训练样本。各级评价标准之间生成500个,共2000个训练样本,以解决仅利用各级评价标准作为训练样本,导致训练样本数过少的问题[16]。检验样本用生成训练样本同理的方法生成400个样本。小于一级标准的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的0~1.5之间的数值;一、二级标准之间的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的1.5~2.5之间的数值;同理,二、三级和三、四级标准之间的训练样本和检验样本的期望目标为2.5~3.5、3.5~4.5之间的数值。(2)水质评价等级的划分界限。据上述生成训练样本与检验样本目标输出的思路可以确定一、二、三、四、五各级水的网络输出范围分别为:<1.5、1.5~2.5、2.5~3.5、3.5~4.5、>4.5。(3)原始数据的预处理。利用Matlab7.0中的mapminmax函数将原始数据归一化到0与1之间。

3.4T?S模糊神经网络的建立、训练、检验及水质评价

3.4.1T?S模糊神经网络的建立模糊神经网络的构建根据训练样本维数确定模糊神经网络输入/输出结点数、模糊隶属度函数个数。由于输入数据为9维,输出数据为1维,通过试错法确定模糊神经网络结构为9-18-1,即有18个隶属度函数。选择10组系数p0-p9,模糊隶属度函数中心和宽度c和σ随机得到,通过动态BP算法对网络的权值在线调整。隶属度函数采用高斯函数,模糊推理采用sum-product[14],解模糊采用加权平均法。网络模型的概化如图1所示。T-S模糊神经网络的第3层输出为输入数据的隶属度函数;第4层输出为第条规则的平均激活度;后件网络实现了T-S模型模糊规则空间到输出空间的映射,输出为yj=pkj0+pjk1x1+…+pjkmxm和y=∑αk×yj。

模糊神经网络的优点篇6

【关键词】 RBF 混沌 模糊 指纹识别 模式识别

指纹识别技术,可称为人体密码,是模式识别领域中使用最早的,也是最为成熟的生物鉴定技术,它是集传感器技术、生物技术、电子技术、数字图像处理、模式识别于一体的高新技术[1]微软公司在新一代操作系统Windows Vista中,把指纹识别作为身份验证方式之一。指纹识别技术的核心是指纹识别算法,可以把识别算法大致分为3个步骤:图像预处理、指纹特征提取和指纹特征比对[2](包括验证和辨识[3])。目前不少研究将神经网络用于指纹识别,提高了指纹识别性能。文献[4]提出了一种基于LVQ神经网络指纹识别方法,由于LVQ神经网络自身的自组织和聚类特性,可以很好地给出模式在多维空间的概率分布估计,从而可较好地完成指纹的识别。文献[5]介绍了一种基于DHNN(离散型Hopfield 神经网络)的识别技术,运用DHNN的联想记忆功能来识别指纹特征。不少研究将神经网络与模糊理论相结合[6,8],提高了神经网络在指纹识别领域的研究水平。本文提出一种基于混沌模糊RBF神经网络的算法,并应用到指纹识别中。将混沌理论引入神经网络的构造,利用混沌对初值的极端敏感依赖性,从而可能对仅有微小差别的模式进行识别,由于引入了混沌噪声,可使网络具有很强的抗干扰能力,有效避免了复杂的特征提取工作。将模糊理论应用于RBF神经网络设计,提高了神经网络的学习泛化能力,能较好地逼近实际模型。应用混沌模糊RBF网络进行指纹识别,结合了模糊函数、混沌和神经网络的各自优点,得到了较满意的识别效果。仿真实验表明,该算法精度高、迭代步骤少、收敛快,混沌模糊RBF神经网络应用于指纹识别是有效的,能提高识别率。该算法不仅可以保证对指纹样本的正确分析,同时可以保证识别速度。将算法应用于电力企业集成管理,保证了安全生产和优化管理的目标,获得了良好的应用价值。

1 RBF神经网络

径向基网络是前馈网络中完成映射功能最优的网络,具有很好的模式分类和函数逼近能力。典型结构为两层网络。

模糊神经网络的优点篇7

关键词:模拟电路;故障诊断;模糊数学;BP网络;模糊BP网络

0引言

电路故障是指在规定的条件下,电路工作时它的一个或几个性能参数不能保持在要求的上、下限之间,其结构、组件、元器件等出现性能减退、老化、破损、断裂、击穿等现象,丧失了在规定条件和环境下完成所需功能的能力。

长期以来,学界对模拟电路工作特点的研究已相当深入,但对于故障诊断方法的研究却困难较大,这是由于模拟电路本身的特性决定的:1)输入激励和输出响应都是连续量,模拟电路中的故障模型复杂,量化难度大;2)模拟电路信号量程宽,不管电压、电流的量程还是频率都可达十几个数量级,测量难度大;3)模拟电路中的元器件参数具有容差,导致电路的故障状态的模糊性,而无法准确定位;4)模拟电路中存在广泛的反馈回路和非线性问题,使计算的难度更加复杂。因此,学界提出了许多模型和方法来完成对某些符合特定条件的模拟电路的故障诊断。其中神经网络法的使用就相当普遍,在硬和软故障诊断中都有应用,因为神经网络的技术优势针对模拟电路故障诊断有较好的适用性,这主要体现在:1)神经网络的大规模并行处理特点,大大提高了诊断效率;2)自适应与自组织能力使神经网络在学习和训练中改变权重值,发展出新的功能。同时,模糊数学也与神经网络相结合,这是利用了模糊数学对待诊断模拟元器件的故障不确定性进行量化处理,能够有效克服模拟电路元器件因为容差、非线性及噪声造成的电路参数模糊性。

本文的研究目的就是分别利用单纯BP神经网络和模糊BP神经网络的方法建立模拟电路故障诊断模型,利用电路仿真收集电路不同工作状态下的关键点电压,代入诊断模型并得到诊断结果。根据各网络的结果分析比较各诊断模型的优缺点,找出模糊数学对改进模拟电路故障诊断模型的具体表现。

1模糊神经网络的故障诊断模型

1.1典型模糊神经网络诊断模型介绍

图1显示的是一个典型的模糊神经网络模型,该模型由原始知识获取(Fundamental Knowledge Acquire,FKA)、特征参数处理(Characteristic Parameter Produce,CDP)、知识提取(Knowledge Extracted,KE)、经验知识库(Experience Knowledge Base,EKB)、学习样本集(Learning Sample Set,LSS)和模糊神经网络(Fuzzy Neural Networks,FNN)共6个模块共同组成,其工作流程是:

图1 典型模糊神经网络诊断模型

1)原始知识获取模块通过对电路工作原理进行分析,模拟或仿真各类故障发生时输入和输出参数,从而获取原始知识(X,Y),将其传入知识提取模块中供系统学习,所得经验集存入经验知识库中;

2)将原始知识和已经存放在经验知识库中的经验知识(初始库可为空)一起输入学习样本组织模块中,进行学习样本的构建,合成训练样本集为(X1,Y1);

3)将(X1,Y1)输入到模糊神经网络模块,学习训练,并在达到指定精度后停止;

4)将从模拟电路中获得的实测参数Xc输入至特征参数提取模块中,完成数据分析和处理,输出特征参数数据Xc‘;

5)将特征参数数据输入到学习收敛后的模糊神经网络中,进行诊断推理,得出诊断结果Yc‘;

6)将得到的实测数据集(Xc‘,Yc‘)输入学习样本组织模块,动态增强模糊神经网络的自适应能力;

7)将得到的实测数据集(Xc‘,Yc‘)输入知识提取模块,进行分析和处理,如能提取出经验知识,则归入经验知识库中[1]。

1.2模糊神经网络结构

模糊神经网络的结构应该包括4层,如图2所示。

模糊层的作用是将输入量进行模糊化。每一个模糊层节点对应一个该论域中的模糊子集和隶属函数。该层接收精确数值输入,经过模糊化计算得出对应的隶属度并输出。

图2 模糊神经网络结构图

输入层、隐含层和输出层共同构成一个完整的神经网络。输入层不具有运算功能,它只是将所感知的输入值精确传递到神经网络中;隐含层的作用相当于特征检测器,提取输入模式中包含的有效特征信息,使输出层所处理的模式是线性可分的,该层节点是模糊神经元,与输入层间的连接权值是随机设定的固定值;输出层节点也是模糊神经元,与隐含层之间采用全连接方式,其连接权值是可调的,作用是输出用模糊量表示的结果。

1.3输入层、输出层和隐含层节点数确定

输入层的个数代表了电路故障诊断的关键测试点的个数N1,输出点为电路所具有的潜在故障模式种类数N3。

根据输入层和输出层的个数,隐含层节点数N2的确定有以下4种经验公式:

(1)

(为0~10之间的常数)(2)

(为0~10之间的常数)(3)

(4)

2模糊数学和神经网络的算法介绍

2.1模糊数学和隶属度函数

模糊数学的作用是对测试点测得的电压信号进行特征提取——模糊化处理。因为在模拟电路测试中,参数值会随着故障原因的不同和故障阶段不同而发生变化,所以在进行数据处理时常用方法是使用精确事实规则。即用正态分布函数作为隶属度函数表示“大约为a”的模糊概念,此外还有如三角分布和梯形分布等。在使用中,正态分布使用较多,其中的a是该测试点的理想状态工作点,b为该测试点在各种可能状态下的工作电压均方差。

2.2BP神经网络与算法

图3BP神经网络模型结构图

反向传播网络(Back-Propagation Network,简称BP网络),是一种有隐含层的多层前馈网络。每一层均有一个或多个神经元节点,信息从输入层依次经各隐含层向输出层传递,层间的连接关系强弱由连接权值W来表征。BP算法是一种监督的学习,基本原理是梯度最速下降法,中心思想是调整权值使网络总误差最小。通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差值的变化而逐渐逼近目标的。每一次权值和偏差的变化都与网络的误差的影响成正比,并以反向传播的方式传递到每一层。BP网络模型结构如图3所示。 转贴于

以BP神经网络模型结构图为例进行BP算法推导,其输入为P,输入神经元有r个,隐含层内有s1个神经元,激活函数为F1,输入层内有s2个神经元,对应的激活函数为F2,输出为A,目标矢量为T。

1)隐含层输出:(i=1,2,…,s1)(5)

2)输出层输出: (k=1,2,…,s2) (6)

3)定义误差函数:(7)

4)输入层的权值变化量:(8)

其中:

同理可得:(9)

5)隐含层权值变化有: (10)

其中:

同理: (11)

BP网络经常使用的是S型的对数、正切激活函数或线性函数。

3电路故障诊断算法验证

图4 共集-共射电路的直流通路图

例:如图4所示的直流通路图,电阻的标称值如图中所注。利用Multism软件在直流状态下进行多次Monte Carlo分析仿真该电路,并考虑电阻的容差影响,取40个样本作为模糊神经网络的训练样本,另取5个样本为测试样本。设电阻R1~R5的容差值为-5%~5%。测试点选为A、B、C、D和E五点,所测电压值为VA、VB、VC、VD和VE。

表1 部分电路实验样本原始数据

表2 测试样本原始数据

表1列举了40组电路实验样本原始数据的11组,包含了该电路在11种工作状态下的五个关键点电压值,所以N1=5,N2=11,隐含层的节点数可以依据公式2.3确定为12个,其中a为5。

表2则列举了5组测试样本的原始数据。

步骤一:数据模糊化

根据用正态分布函数作为隶属度函数表示“大约为a”模糊概念的思路,可以分别得到各测试点上电压隶属度函数的参数值。

a1=5.57、a2=4.97、a3=4.9、a4=5.7和a5=5.69以及b1=4.3729、b2=4.4817、b3=3.9091、b4=4.2870和b5=3.7944。

由各测试点的隶属度函数可得到网络的训练样本见表3。

表3 神经网络部分输入、输出训练样本

步骤二:将训练样本输入神经网络进行训练

将全部40个原始值和模糊化值的输入样本和对应的输出样本分别输入BP神经网络中进行训练。

步骤三:将测试样本输入神经网络进行检测

将全部5个原始值和模糊化值的输入样本和对应的输出样本分别输入已经训练好的BP神经网络中,输出诊断结果见表4。

表4 输出诊断结果

表4中的数据是经过故障诊断后得到的结果,在此只是各随机选用了一组数据加以比较说明。通过对故障诊断的试验观察和结果的比较可以作出以下分析。

1)模糊化数据能够有效减少神经网络的收敛次数。如在BP网络诊断中,使用模糊化数据的迭代次数由886减少到263次,收敛速度明显加快;

2)模糊化数据能够有效提高神经网络训练的效果。通过表4中数据的对比可以发现对于相同的神经网络,经过模糊化数据的训练,其准确性更高。这主要表现在电路所对应的状态结果普遍高于未经模糊化数据训练的网络得出的结果;同时,其他状态对应的机率更低,皆低于0.1,且更多值为0,说明数据模糊化能使神经网络的诊断结果更集中,正确率更高,有效性更加明显。

4结论

通过分别采用BP网络和模糊BP网络建立了电路故障诊断模型,对电路相同工作状态参数的诊断结果进行比较,得出了模糊数学对提高电路故障诊断模型精度和有效性效果明显的结论。模糊数学和神经网路理论的组合有效地提高了模拟电路故障诊断模型的收敛速度,提高了故障诊断的工作效率,还提高了诊断的准确性,有效性得到了充分显示。

参考文献

[1] 吕律,魏蛟龙.基于模糊神经网络的板级电路故障诊断研究[J].计算机与数字工程,2003(3):21-23.

李国勇.智能预测控制及其MATLAB实现[M].北京:电子工业出版社,2010.

MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.

朱大奇.电子设备故障诊断原理与实践[M].北京:电子工业出版社,2004.

模糊神经网络的优点篇8

[论文摘要]简单回顾模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等典型智能技术在电力系统自动化中的运用。 

 

电力系统是一个巨维数的典型动态大系统,它具有强非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广阔,大部分元件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效控制是极为困难的。另一方面,由于公众对新建高压线路的不满情绪日益增加,线路造价,特别是走廊使用权的费用日益昂贵等客观条件的限制,以及电力网的不断增大,使得人们对电力系统的控制提出了越来越高的要求。正是由于电力系统具有这样的特征,一些先进的控制手段不断地引入电力系统。本文回顾了模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等五种典型智能技术在电力系统中的运用。 

 

一、模糊控制 

 

模糊方法使控制十分简单而易于掌握,所以在家用电器中也显示出优越性。建立模型来实现控制是现代比较先进的方法,但建立常规的数学模型,有时十分困难,而建立模糊关系模型十分简易,实践证明它有巨大的优越性。模糊控制理论的应用非常广泛。例如我们日常所用的电热炉、电风扇等电器。这里介绍斯洛文尼亚学者用模糊逻辑控制器改进常规恒温器的例子。电热炉一般用恒温器(thermostat)来保持几挡温度,以供烹饪者选用,如60,80,100,140℃。斯洛文尼亚现有的恒温器在100℃以下的灵敏度为±7℃,即控制器对±7℃以内的温度变化不反应;在100℃以上,灵敏度为±15℃。因此在实际应用中,有两个问题:①冷态启动时有一个越过恒温值的跃升现象;②在恒温应用中有围绕恒温摆动振荡的问题。改用模糊控制器后,这些现象基本上都没有了。模糊控制的方法很简单,输入量为温度及温度变化两个语言变量。每个语言的论域用5组语言变量互相跨接来描述。因此输出量可以用一张二维的查询表来表示,即5×5=25条规则,每条规则为一个输出量,即控制量。应用这样一个简单的模糊控制器后,冷态加热时跃升超过恒温值的现象消失了,热态中围绕恒温值的摆动也没有了,还得到了节电的效果。在热态控制保持100℃的情况下,33min内,若用恒温器则耗电0.1530kw·h,若用模糊逻辑控制,则耗电0.1285kw·h,节电约16.3%,是一个不小的数目。在冷态加热情况下,若用恒温器加热,则能很快到达100℃,只耗电0.2144kw·h,若用模糊逻辑控制,达到100℃时需耗电0.2425kw·h。但恒温器振荡稳定到100℃的过程,耗电0.1719kw·h,而模糊逻辑控制略有微小的摆动,达到稳定值只耗电0.083kw·h。总计达100℃恒温的耗电量,恒温器需用0.3863kw·h,模糊逻辑控制需用0.3555kw·h,节电约15.7%。 

 

二、神经网络控制 

 

人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。

三、专家系统控制 

 

专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性;只采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对付新情况的能力有限;知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。 

四、线性最优控制 

 

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。目前最优励磁控制的控制效果。另外,最优控制理论在水轮发电机制动电阻的最优时间控制方面也获得了成功的应用。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。但应当指出,由于这种控制器是针对电力系统的局部线性化模型来设计的,在强非线性的电力系统中对大干扰的控制效果不理想。 

 

五、综合智能系统 

 

综合智能控制一方面包含了智能控制与现代控制方法的结合, 

模糊神经网络的优点篇9

电路故障是指在规定的条件下,电路工作时它的一个或几个性能参数不能保持在要求的上、下限之间,其结构、组件、元器件等出现性能减退、老化、破损、断裂、击穿等现象,丧失了在规定条件和环境下完成所需功能的能力。

长期以来,学界对模拟电路工作特点的研究已相当深入,但对于故障诊断方法的研究却困难较大,这是由于模拟电路本身的特性决定的:1)输入激励和输出响应都是连续量,模拟电路中的故障模型复杂,量化难度大;2)模拟电路信号量程宽,不管电压、电流的量程还是频率都可达十几个数量级,测量难度大;3)模拟电路中的元器件参数具有容差,导致电路的故障状态的模糊性,而无法准确定位;4)模拟电路中存在广泛的反馈回路和非线性问题,使计算的难度更加复杂。因此,学界提出了许多模型和方法来完成对某些符合特定条件的模拟电路的故障诊断。其中神经网络法的使用就相当普遍,在硬和软故障诊断中都有应用,因为神经网络的技术优势针对模拟电路故障诊断有较好的适用性,这主要体现在:1)神经网络的大规模并行处理特点,大大提高了诊断效率;2)自适应与自组织能力使神经网络在学习和训练中改变权重值,发展出新的功能。同时,模糊数学也与神经网络相结合,这是利用了模糊数学对待诊断模拟元器件的故障不确定性进行量化处理,能够有效克服模拟电路元器件因为容差、非线性及噪声造成的电路参数模糊性。

本文的研究目的就是分别利用单纯BP神经网络和模糊BP神经网络的方法建立模拟电路故障诊断模型,利用电路仿真收集电路不同工作状态下的关键点电压,代入诊断模型并得到诊断结果。根据各网络的结果分析比较各诊断模型的优缺点,找出模糊数学对改进模拟电路故障诊断模型的具体表现。

1模糊神经网络的故障诊断模型

1.1典型模糊神经网络诊断模型介绍

图1显示的是一个典型的模糊神经网络模型,该模型由原始知识获取(Fundamental Knowledge Acquire,FKA)、特征参数处理(Characteristic Parameter Produce,CDP)、知识提取(Knowledge Extracted,KE)、经验知识库(Experience Knowledge Base,EKB)、学习样本集(Learning Sample Set,LSS)和模糊神经网络(Fuzzy Neural Networks,FNN)共6个模块共同组成,其工作流程是:

图1 典型模糊神经网络诊断模型

1)原始知识获取模块通过对电路工作原理进行分析,模拟或仿真各类故障发生时输入和输出参数,从而获取原始知识(X,Y),将其传入知识提取模块中供系统学习,所得经验集存入经验知识库中;

2)将原始知识和已经存放在经验知识库中的经验知识(初始库可为空)一起输入学习样本组织模块中,进行学习样本的构建,合成训练样本集为(X1,Y1);

3)将(X1,Y1)输入到模糊神经网络模块,学习训练,并在达到指定精度后停止;

4)将从模拟电路中获得的实测参数Xc输入至特征参数提取模块中,完成数据分析和处理,输出特征参数数据Xc';

5)将特征参数数据输入到学习收敛后的模糊神经网络中,进行诊断推理,得出诊断结果Yc';

6)将得到的实测数据集(Xc',Yc')输入学习样本组织模块,动态增强模糊神经网络的自适应能力;

7)将得到的实测数据集(Xc',Yc')输入知识提取模块,进行分析和处理,如能提取出经验知识,则归入经验知识库中[1]。

1.2模糊神经网络结构

模糊神经网络的结构应该包括4层,如图2所示。

模糊层的作用是将输入量进行模糊化。每一个模糊层节点对应一个该论域中的模糊子集和隶属函数。该层接收精确数值输入,经过模糊化计算得出对应的隶属度并输出。

图2 模糊神经网络结构图

输入层、隐含层和输出层共同构成一个完整的神经网络。输入层不具有运算功能,它只是将所感知的输入值精确传递到神经网络中;隐含层的作用相当于特征检测器,提取输入模式中包含的有效特征信息,使输出层所处理的模式是线性可分的,该层节点是模糊神经元,与输入层间的连接权值是随机设定的固定值;输出层节点也是模糊神经元,与隐含层之间采用全连接方式,其连接权值是可调的,作用是输出用模糊量表示的结果[2]。

1.3输入层、输出层和隐含层节点数确定

输入层的个数代表了电路故障诊断的关键测试点的个数N1,输出点为电路所具有的潜在故障模式种类数N3。

根据输入层和输出层的个数,隐含层节点数N2的确定有以下4种经验公式[3]:

(1)

(为0~10之间的常数)(2)

(为0~10之间的常数)(3)

(4)

2模糊数学和神经网络的算法介绍

2.1模糊数学和隶属度函数

模糊数学的作用是对测试点测得的电压信号进行特征提取――模糊化处理。因为在模拟电路测试中,参数值会随着故障原因的不同和故障阶段不同而发生变化,所以在进行数据处理时常用方法是使用精确事实规则。即用正态分布函数作为隶属度函数表示“大约为a”的模糊概念,此外还有如三角分布和梯形分布等[4]。在使用中,正态分布使用较多,其中的a是该测试点的理想状态工作点,b为该测试点在各种可能状态下的工作电压均方差。

2.2BP神经网络与算法

图3BP神经网络模型结构图

反向传播网络(Back-Propagation Network,简称BP网络),是一种有隐含层的多层前馈网络。每一层均有一个或多个神经元节点,信息从输入层依次经各隐含层向输出层传递,层间的连接关系强弱由连接权值W来表征。BP算法是一种监督的学习,基本原理是梯度最速下降法,中心思想是调整权值使网络总误差最小。通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差值的变化而逐渐逼近目标的。每一次权值和偏差的变化都与网络的误差的影响成正比,并以反向传播的方式传递到每一层。BP网络模型结构如图3所示。

以BP神经网络模型结构图为例进行BP算法推导,其输入为P,输入神经元有r个,隐含层内有s1个神经元,激活函数为F1,输入层内有s2个神经元,对应的激活函数为F2,输出为A,目标矢量为T。

1)隐含层输出:(i=1,2,…,s1)(5)

2)输出层输出: (k=1,2,…,s2) (6)

3)定义误差函数:(7)

4)输入层的权值变化量:(8)

其中:

同理可得:(9)

5)隐含层权值变化有: (10)

其中:

同理: (11)

BP网络经常使用的是S型的对数、正切激活函数或线性函数[5]。

3电路故障诊断算法验证

图4 共集-共射电路的直流通路图

例:如图4所示的直流通路图,电阻的标称值如图中所注。利用Multism软件在直流状态下进行多次Monte Carlo分析仿真该电路[6],并考虑电阻的容差影响,取40个样本作为模糊神经网络的训练样本,另取5个样本为测试样本。设电阻R1~R5的容差值为-5%~5%。测试点选为A、B、C、D和E五点,所测电压值为VA、VB、VC、VD和VE。

表1 部分电路实验样本原始数据

表2 测试样本原始数据

表1列举了40组电路实验样本原始数据的11组,包含了该电路在11种工作状态下的五个关键点电压值,所以N1=5,N2=11,隐含层的节点数可以依据公式2.3确定为12个,其中a为5。

表2则列举了5组测试样本的原始数据。

步骤一:数据模糊化

根据用正态分布函数作为隶属度函数表示“大约为a”模糊概念的思路,可以分别得到各测试点上电压隶属度函数的参数值。

a1=5.57、a2=4.97、a3=4.9、a4=5.7和a5=5.69以及b1=4.3729、b2=4.4817、b3=3.9091、b4=4.2870和b5=3.7944。

由各测试点的隶属度函数可得到网络的训练样本见表3。

表3 神经网络部分输入、输出训练样本

步骤二:将训练样本输入神经网络进行训练

将全部40个原始值和模糊化值的输入样本和对应的输出样本分别输入BP神经网络中进行训练。

步骤三:将测试样本输入神经网络进行检测

将全部5个原始值和模糊化值的输入样本和对应的输出样本分别输入已经训练好的BP神经网络中,输出诊断结果见表4。

表4 输出诊断结果

表4中的数据是经过故障诊断后得到的结果,在此只是各随机选用了一组数据加以比较说明。通过对故障诊断的试验观察和结果的比较可以作出以下分析。

1)模糊化数据能够有效减少神经网络的收敛次数。如在BP网络诊断中,使用模糊化数据的迭代次数由886减少到263次,收敛速度明显加快;

2)模糊化数据能够有效提高神经网络训练的效果。通过表4中数据的对比可以发现对于相同的神经网络,经过模糊化数据的训练,其准确性更高。这主要表现在电路所对应的状态结果普遍高于未经模糊化数据训练的网络得出的结果;同时,其他状态对应的机率更低,皆低于0.1,且更多值为0,说明数据模糊化能使神经网络的诊断结果更集中,正确率更高,有效性更加明显。

模糊神经网络的优点篇10

【关键词】输电网络;故障;人工智能;应用

电能的正常供应影响着人们的诸多方面,工作、学习、生活、娱乐等,电能供应的最基本要求就是稳定性和连续性,但是,输电网络越来越复杂,偶尔出现故障也会难免的,为了能够在输电网络出现故障时快速的诊断故障找出故障原因,减小相关损失,必须要找到一种合适的技术手段来解决这个问题,相关的研究人员也一直在致力于该方面的研究。人工智能技术就是研究人员在这方面的一个突破,人工智能技术能够模拟人类处理问题的思维方式,且具备一定的学习能力,本文将围绕这些方面进行一些探讨。

1 专家系统在输电网络故障诊断中的应用

专家系统在人工智能技术中开发的比较早,技术上也有了一定的厚度积累,从应用的角度来说,专家系统就是一个集合了大量程序的系统,它里面存储了相关专家在相应问题方面的见解,根据这些见解对问题进行推断,类似于专家解决问题的过程,节省了时间,目前,专家系统在人工智能中应用的已经非常广泛。专家系统在输电网络故障诊断中最典型的应用就是基于产生式规则的系统,把相关电路保护措施的信息和相关技术人员的诊断经验用程序表示出来,从而形成一个比较完备的专家知识库,一旦输电网络发生故障,则可以根据这个专辑知识库,快速的对故障进行诊断,迅速的找出解决方案。专家系统之所以在输电网络故障诊断中得到广泛的应用,主要有这么几个方面的原因:第一,输电网络中相关保护功能的信息能够有效、明了的表达出来;第二,基于产生式规则的专家系统允许根据实际情况的变化,对专家知识库进行合理的变更,跟上技术不断进步的脚步;第三,由于专家系统的智能功能,使其能够解决一些不确定的故障;第四,初步具备人类的思维,得出的结论能够被相关技术人员看懂。从上面的理论分析可以看出,专家系统在输电网络故障诊断中很有应用的前景和应用的必要,但是它也存在着一些问题:上面的分析可以看出,专家系统对故障的诊断基于专家知识库里的知识容量多少,因此,专家系统是否具有详细、准确的专家知识库能够影响整个故障诊断的效果,如果专家知识库达不到使用的实际标准,那么在进行故障推理低调时候,很有可能导致错误的结论,将相关技术人员引导到错误的道路上;专家系统在诊断大型输电系统故障的时候,需要从专家知识库进行知识的匹配,这个过程可能会比较慢;大部分专家系统不具备学习的能力,一旦诊断的故障超出了专家知识库中的内容, 那么专家系统很容易得出错误的结论。

2 人工神经网络在输电网络故障诊断中的应用

人工神经网络技术在输电网络故障诊断中应用的也越来越广泛,人工神经网络技术(ANN)就是模拟人体大脑的结构和处理问题方式的一种人工智能技术,它是人工智能技术重要的一个分支,它具有很多优点,例如能够实现并行式处理、自适应等,这些优点与输电网络故障诊断相结合,显示出了巨大的潜力,是一个比较热门的研究方向。基于人工神经网络的输电网络故障诊断,其总的诊断网络比较复杂,为了方便实时的侦测,一般将总的网络进行分区处理,然后在各个区创建基于BP算法的故障诊断模块,要得到诊断结果的时候,将各个分区的诊断结果进行综合后即可得出。例如,将总的故障诊断按照分工的不能区划成几个功能不同的诊断网络,比如一个子网络用来诊断故障的发生位置;一个子网络用来诊断故障的性质;一个子网络用来诊断故障对整个系统的危害程度等等,最后将这些子网络的结论按照一定的规则进行组合分析,即可得到需要的结论。人工神经网络的方法虽然相对于专家系统来说取得了一些突破,例如能够突破专家系统知识库知识获取难、诊断网络更加便于维护等,但是也具有一些缺点:人工神经网络不能够对启发性的知识进行分析和判断,且人工神经网络技术不够成熟,涵盖的范围大,学习困难,这些都在一定程度上影响了人工神经网络技术在输电网络故障诊断中的应用,并且,人工神经网络如何在大的输电网络故障诊断中应用一直是一个难点,还有待于相关人员取得新的突破。总体而言,人工神经网络方法在输电网络中还是很有应用前景的,可以加大的相关难题的科技攻关力度,进一步提高其有效性。

3 模糊理论在输电网络故障诊断中的应用

随着模糊理论的不断成熟,它在输电网络诊断中应用的也越来越广泛。在输电网络的故障中,其发生的故障和故障发生前的征兆之间联系是具有模糊性质的,这种模糊既具有不确定性又具有不准确定,因而,得出恰当的诊断结果也是比较困难的,必须要采用模糊判断的额方法,一般情况下是建立相关的模糊关系矩阵。随着模糊理论的不断完善,其受重视的程度越来越高,特别是在解决具有不确定性问题的情况中;模糊理论能够借助相关的数据库对问题进行分析,并得出一些列解决结论,且把这些结论按照模糊的程度进行排列;模糊知识库所使用的描述语言更容易为相关技术人员所接受。模糊故障诊断系统在结构上和专家系统有点相像,因此也具有一定的缺点:对大的输电网络系统故障诊断时速度比较慢;其可维护性比较差;不具备自主学习的能力。总体而言,模糊理论一般都是与其它人工智能技术结合使用,在一定程度上能够提高故障诊断的结果准确度,但是相关研究人员也必须要在它存在的缺点上有进一步的突破。

4 遗传算法在输电网络故障诊断中的应用

遗传算法目前在很多工业控制领域得到了推广和应用,在输电网络诊断中应用的也越来越多,遗传算法在基于生物进化的基础上推算出的一种自适应算法。遗传算法能够从错综负责的网络中,自动匹配出解决问题的最优算法,求出最优解,且比较简单,且可解决问题的范围比较大,一般应用于解决中小型规模的问题。目前,在遗传算法应用到输电网络故障诊断的过程中,如何建立正确数学模型至关重要,它是制约整个求解过程的关键,如果能够采用适当的方法对输电网络建立合理的数学模型,那么将有助于提高输电网络故障诊断的精确性。

5 结论

目前,人工智能技术已经在很多领域得到了应用,例如设备状态监测、设备自动化控制等,在现代输电网络越来越复杂的情况下,其应用于故障诊断中也显得越来越重要,本文分别介绍了专家系统、人工神经网络、遗传算法、模糊理论在输电网络故障诊断中的应用,指出了优点和缺点,希望本文能够对相关的工作人员产生一定的指导意义。

参考文献:

[1]毕天株,霓以信.人工智能技术在输电网络故障诊断中的应用述评[J].电力系统自动化,2012(11).

[2]曾素琼.人工智能及其在输配电网络故障诊断中的应用[J].海南大学学报(自然科学版),2012(6).