模糊神经网络优缺点十篇

时间:2024-03-28 18:12:28

模糊神经网络优缺点

模糊神经网络优缺点篇1

关键词:神经网络模糊控制PID控制

0 引言

随着我国市场经济的迅速发展,水对人民生活与工业生产的影响日益加强,与此同时用户对供水系统可靠性和供水质量的要求也越来越高;另外,资源的紧缺和人们环保意识的增加,如何把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求,因此无论是在性能方面考虑还是在节能方面考虑,供水系统都需要巨大的变革。

1 传统控制策略

由于变频调速恒压供水系统具有典型的大延迟性、非线性,而且城市用水具有季节性、时间性、水压扰动量大等特点。因此,虽然统治工业控制领域多年的传统PID控制有很多优点并且长期应用于供水系统,但是其固定参数模式致使其不适宜应用于恒压供水系统。由于PID控制拥有很多较好的优点,诸如:原理简单,使用方便,适应强,鲁棒性强等优点。因此在工业控制中人们往往还是会想到PID控制。根据被控对象的不同制定合适的KP、KI、KD参数,可以获得满意的控制效果。然而,PID控制并非尽如人意,因为PID控制适合系统模型非时变的情况。对于一个时变系统,由于PID的参数不会随系统变化而动态的调整KP、KI、KD参数,这样会使控制作用变差,甚至造成系统不稳定。

与传统PID控制相比,模糊控制具有很多优点。模糊控制是建立在模糊数学基础上的一种智能控制技术,可以达到传统控制策略无法达到的效果。模糊控制能较好得跟随系统状态的变化动态调整自身控制参数,不需要建立精确的控制对象模型,因而在实际上的应用越来越广泛。

但是作为一门较为新型的控制科学,还没有系统的方法来指导设计参数精良的模糊控制器。模糊控制器控制规则的确定以及其可调节性是对其控制效果影响最大的一方面。尤其是控制规则的合理制定是模糊控制中的重要部分。目前存在的主要问题是在建立模糊控制规则时要考虑若干参数的选择是否合适,恰当的选择参数是非常重要的。如在供水系统的水压控制中,系统误差和误差变化率的动态范围需要反复多次整定以满足控制需要。

尽管模糊推理系统的设计(隶属度函数及模糊规则的建立)不主要依靠对象的模型,但是它却相当依靠专家或操作人员的经验和知识。若缺乏这样的经验和知识,则很难期望它能够得到满意的控制效果。神经网络的出现很好的弥补了这一缺陷。神经网络系统的一大特点就是其自学习功能,将这种自学习的方法应用于对模糊特征的分析与建模上,产生了自适应的神经网络技术。这种自适应的神经网络技术对于模糊系统的模型建立是非常有效的工具。而自适应神经模糊系统就是基于数据的建模方法,该系统中的模糊隶属度函数及模糊规则是通过对大量已知数据的学习得到的,而不是基于经验或直觉任意给定的,这对于那些特性还不被人们所完全了解或者特性非常复杂的系统尤为重要。

神经网络可以与模糊控制相结合组成神经网络模糊控制,两者各有所长,神经网络能够通过给定的经验集学习并生成映射规则,但其规则不可见;模糊控制制定的规则虽然可见,但是其自学习能力欠缺,导致其规则的动态调整不足。因此有必要将上述两点结合。

2 新型控制策略

由于供水系统的非线性、大惯性及纯滞后性等特点,很显然单纯依靠PID、模糊控制和神经网络控制都不能实现很好的控制效果。因此可以考虑应用一种综合的控制策略以实现对供水系统的良好控制。基于此本文提出了一种新型控制策略――神经模糊PID控制算法,该算法可以综合以上各算法的优点,它不仅具有神经网络控制的自学习自组织能力,还具有模糊控制的鲁棒性强、适应性强的优点,另外还拥有PID控制的实现简单方便等优点,优于以往的算法。

如图显示了神经网络模糊PID控制器的结构框图,该控制器是由三部分组成:

①神经网络控制器:控制模糊规则的动态调整,通过神经网络的自学习,使模糊规则的生成转变为加权系数的确定和调节。根据供水系统的运行状态,调节PID控制器参数,使供水系统最终达到最优控制。

②模糊控制器:对系统的输入输出变量进行模糊化和归一化运算。这些运算的意义是鉴于模糊控制的强鲁棒性和非线性控制作用,对输入到神经网络的模糊规则进行预处理,避免了神经网络采用sigmoid激活函数时,由于输入过大而导致输出饱和。

③传统PID控制器:直接对供水系统的控制过程进行闭环控制,并且三个参数KP、KI、KD实行在线调节,使控制作用时刻跟踪系统的变化。

以上过程简要说来就是使输出层神经元的输出状态与PID控制器的KP、KI、KD参数相对应,这样可以通过神经网络的自学习能力实现加权系数调整,进而使其稳定状态与PID的最优控制相对应,最终利用PID控制器的输出u来实现对供水系统的水压的控制。

参考文献:

[1]刘萍丽.交流变频恒压供水控制器的设计.大连海事大学硕士学位论文.2005.

[2]谢静,韦力.新型恒压供水系统[J].应用能源技术,11,2010:42-45.

作者简介:

谢静(1968-),女,陕西省咸阳市人,讲师,硕士,研究方向:电工电子、控制工程理论及应用

模糊神经网络优缺点篇2

【关键词】电力系统;变革性;智能控制;发展趋势

目前,大量应用实例及工程实际研究进一步表明应用控制理论在电力系统的安全稳定控制的巨大效益以及现实可用性和广阔前景。现代控制理论在中国电力系统中的应用,碧口水电站100Mw机组上最优励磁控制得到最好的证明。如今,现代控制理论在电力系统中的应用已发展成电力系统学科中一个引人注目的活跃的分支。近年来,模糊技术、神经网络、专家系统等技术的发展又开拓了智能控制技术的新道路。

1、电力系统中智能控制的应用领域

人工智能控制作为一门新的技术学科,涉及到多方面知识,如数学、哲学、心理学、计算机科学、控制论、不定性论,人工智能控制技术运用于多个层次,在智能控制,机器人学,语言和图像理解,遗传编程上相当于催化剂,使工作更有效地进行着。在现代科学技术不断进步的社会,效率的提高是最重要的,无论在生产还是生活方面。计算机技术的广泛运用是当今社会发展的强有力保障,自动化生产、运输、传播离不开计算机编程技术。

2、智能控制的优势

把人工智能控制的方法引入电力控制系统,将控制理论的分析和理论的洞察力与人工智能控制的灵活框架结合起来,才有可能得到新的认识上的突破。人工智能控制主要表现在智能决策上,能够有效地解决复杂性和不确定性的控制问题。模糊控制就是在研究人的控制行为特点的基础上发展起来的。对于无法构造数学模型的被控制对象,让计算机模仿人的思维方式,进行控制决策。人的控制可以用语言加以描述,总结成一系列的条件语句,即控制规则。运用微机的程序来实现这些控制规则,这样就很像是人的思考行为了。因此,人工智能控制可以有效地解决现代工业生产中许多无法用数学模型精确描述的工艺工程,以及利用传统数字计算机难以获得令人满意效果的诸多问题,在电力系统应用中表现了很大的优势。

3、智能控制的主要应用方法

3.1模糊技术在电力系统中的自动化控制中的应用

“模糊理论”(FT)是将经典集合理论模糊化,它是一个经典集合论。模糊语言变量,模糊逻辑和模糊推理,是有完整的推理系统的智能技术。模糊控制是一种切实可行的方法,控制的模拟模糊推理和决策过程。它的原理是根据已知规则的控制和数据,由模糊输入量推导出模糊控制输出主要包括模糊化、模糊推理与模糊判决三部分。根据这三个部分的分析,做出正确的决策。

随着科学技术的进步和社会的不断发展,模糊控制理论也在随之改进,模糊控制的优点逐渐得到体现,并且已被广泛应用与推广。模糊理论在电力系统中的应用越来越多,显示了模糊理论在解决电力系统问题上未来的发展潜能。在国外的成功案例中也不断在使用这一控制技术。例如,在欧洲某些国家调度中心,研究用模糊控制的方法描述调度员的负荷预测方法,已取得了令人满意的效果。

在应用控制中,大多依据模型来进行,并且这一方法已经渐渐的被广泛接受。模型有简单的也有复杂的。一般线性模型为简单模型,但是实际应用中大多为复杂的非线性系统。在模拟非线性过程中,模糊关系模型(FRM)是一个简单而有效的方法,仍然只是“次优”方法。模糊关系模型来直接描述的输入和输出之间的关系,单输出系统是容易实现的,但实现多输出系统仍然是困难的。如果要为了克服这些缺点,要与其他人工智能技术和模糊理论相结合,并且在实际应用中取得良好的效果。

3.2专家系统在电力系统自动化控制中的应用

专家系统(ES)是发展较早、也是比较成熟的一类人工智能控制技术。专家系统主要由知识库和推理机构成,它根据某个领域的专家提供的特殊领域知识进行推理,模拟人类专家作出决策的过程,提供具有专家水平的解答。目前,电力系统运行和控制由有经验的调度人员借助自动化技术完成。这是由于一方面传统数值分析方法缺乏启发性推理的能力,同时也无法进行知识积累,另一方面电力系统自身的复杂性使一些必要的数学模型及状态量很难获取,单纯的数值方法难以满足电力系统的要求。因此,在电力自动化系统中引入电力专家的经验知识是十分必要的。

目前,全球都有不少与电力系统控制相关的专家系统投入试运行或进入实用化推广阶段,并取得了不错的效果,但是仍然存在着一些问题值得研究和探索:①当系统规模较大、规则较多时,完成推理的速度受到限制,因此目前已有的专家系统大多是用于离线,或者在线解决属于系统分析方面的问题,而在实时控制方面的应用还刚刚起步,有待进一步的研究;②现有的专家系统缺乏有效的学习机制,对付新情况的能力有限,而且容错能力较差,当系统发生故障或网络结构、系统参数、设备控制器配置等发生变化的情况下,将有可能得不到结果或给出错误的结果。如何与ANN、模糊推理等其它人工智能控制方法结合以提高专家系统的自学习能力和容错能力是值得研究的课题;③大型专家系统的建造周期长,知识的获取和校核比较困难,要建立完备的知识库,维护难度比较大,在建造专家系统之前必须充分考虑这些问题。

3.3人工神经网络在电力系统自动化控制中的应用

人工神经网络出现在上世纪40年代,(ANN)它是一个模拟的传输和处理,由人工只能模仿简单的控制,以神经元信息的人的基本特征连接而成。经历了七十多年的研究发展,在模型结构、学习算法等方面取得了许多重大的研究成果。与ES相比有三点优势,ANN的特点是用神经元和它们之间的有向权重来隐含处理问题的知识:首先,人工神经网络可以把信息分布存储,而且容错能力强;其次,人工神经网络有很强的学习能力,可以把知识实现自我组织,以适应不同的信息处理的需求;还有就是,人工神经网络计算神经元之间是相对独立性的,以方便的并行处理,执行速度更快。

人工神经网络的应用目前还存在一些问题,如果想更好的运用人工神经网络就要找到它的弱点。人工神经网络的应用研究方向重心就要去处理如何利用人工神经网络的优点,克服其缺点,以达到更好的效果。如果人工神经网络理论想在电力系统自动化及控制领域的应用发展的更加广阔,就加大对技术研究。

模糊神经网络优缺点篇3

关键词:系统自动化 智能技术的应用

引言:电力系统是一个巨维数的典型动态大系统,它具有强非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广阔,大部分元件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效控制是极为困难的。另一方面,由于公众对新建高压线路的不满情绪日益增加,线路造价,特别是走廊使用权的费用日益昂贵等客观条件的限制,以及电力网的不断增大,使得人们对电力系统的控制提出了越来越高的要求。正是由于电力系统具有这样的特征,一些先进的控制手段不断地引入电力系统。本文回顾了模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等五种典型智能技术在电力系统中的运用。

一、模糊控制

模糊方法使控制十分简单而易于掌握,所以在家用电器中也显示出优越性。建立模型来实现控制是现代比较先进的方法,但建立常规的数学模型,有时十分困难,而建立模糊关系模型十分简易,实践证明它有巨大的优越性。模糊控制理论的应用非常广泛。例如我们日常所用的电热炉、电风扇等电器。这里介绍斯洛文尼亚学者用模糊逻辑控制器改进常规恒温器的例子。电热炉一般用恒温器(thermostat)来保持几挡温度,以供烹饪者选用,如60,80,100,140℃。斯洛文尼亚现有的恒温器在100℃以下的灵敏度为±7℃,即控制器对±7℃以内的温度变化不反应;在100℃以上,灵敏度为±15℃。因此在实际应用中,有两个问题:①冷态启动时有一个越过恒温值的跃升现象;②在恒温应用中有围绕恒温摆动振荡的问题。改用模糊控制器后,这些现象基本上都没有了。模糊控制的方法很简单,输入量为温度及温度变化两个语言变量。每个语言的论域用5组语言变量互相跨接来描述。因此输出量可以用一张二维的查询表来表示,即5×5=25条规则,每条规则为一个输出量,即控制量。应用这样一个简单的模糊控制器后,冷态加热时跃升超过恒温值的现象消失了,热态中围绕恒温值的摆动也没有了,还得到了节电的效果。在热态控制保持100℃的情况下,33min内,若用恒温器则耗电0.1530kW•h,若用模糊逻辑控制,则耗电0.1285kW•h,节电约16.3%,是一个不小的数目。在冷态加热情况下,若用恒温器加热,则能很快到达100℃,只耗电0.2144kW•h,若用模糊逻辑控制,达到100℃时需耗电0.2425kW•h。但恒温器振荡稳定到100℃的过程,耗电0.1719kW•h,而模糊逻辑控制略有微小的摆动,达到稳定值只耗电0.083kW•h。总计达100℃恒温的耗电量,恒温器需用0.3863kW•h,模糊逻辑控制需用0.3555kW•h,节电约15.7%。

二、神经网络控制

人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。

三、专家系统控制

家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性;只采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对付新情况的能力有限;知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。

四、线性最优控制

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。目前最优励磁控制的控制效果。另外,最优控制理论在水轮发电机制动电阻的最优时间控制方面也获得了成功的应用。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。但应当指出,由于这种控制器是针对电力系统的局部线性化模型来设计的,在强非线性的电力系统中对大干扰的控制效果不理想。

五、综合智能系统

综合智能控制一方面包含了智能控制与现代控制方法的结合,如模糊变结构控制,自适应或自组织模糊控制,自适应神经网络控制,神经网络变结构控制等。另一方面包含了各种智能控制方法之间的交叉结合,对电力系统这样一个复杂的大系统来讲,综合智能控制更有巨大的应用潜力。现在,在电力系统中研究得较多的有神经网络与专家系统的结合,专家系统与模糊控制的结合,神经网络与模糊控制的结合,神经网络、模糊控制与自适应控制的结合等方面。神经网络适合于处理非结构化信息,而模糊系统对处理结构化的知识更有效。因此,模糊逻辑和人工神经网络的结合有良好的技术基础。这两种技术从不同角度服务于智能系统,人工神经网络主要应用在低层的计算方法上,模糊逻辑则用以处理非统计性的不确定性问题,是高层次(语义层或语言层)的推理,这两种技术正好起互补作用。神经网络把感知器送来的大量数据进行安排和解释,而模糊逻辑则提供应用和挖掘潜力的框架。因此将二者结合起来的研究成果较多。

模糊神经网络优缺点篇4

关键词 自动化;智能技术;电力系统

中图分类号:TM76 文献标识码:A 文章编号:1671-7597(2013)16-0005-01

20世纪50年代,在科学领域中,dartmouth提出了“人工智能”。“人工智能”是一项综合学科,即:各类机械器具、设备模拟作业、相关操作系统程序以及完善原有的人工职能技术等。随着世界日益减少的煤炭和石油储量以及世界能源结构的调整,电力的使用数量已经成为我国主要的能源。在电气设备的研发带动下,人们的生活和生产各个方面逐渐的深入到了电力能源的应用。电力系统的自身管理和技术研发也得到了提高。但是原有的技术在日益提高的电力使用压力下,受到了制约,为了促进有效利用电力能源,需要进行改革和拓展原有的技术,以便使电力系统的信用形象和经济效益得到提高。

1 模糊控制理论的运用

在家用电器的使用中,模糊方法由于控制非常简单容易掌握,显示出它的优越性。在自动化系统的控制过程中,模糊方法通过建立模型来控制电器。这种方法在运用的范围和效果上具有很强的优越性。如:电冰箱、电风扇、电磁炉等日常生活用品中,实现操作和控制的方法就是迷糊控制。而在国外,学者扩大了其应用的范围,采用了模糊方法改造和完善了常规恒温器,通过几个档的选择区别温度,但是并不具备很高的灵敏度。如:斯洛文尼亚学者改进的常规恒温器。一般情况下,电热炉用恒温器保持60、80、100、140档温度,以备烹饪者选用,在100℃以下,其原有的恒温器灵敏度为±70℃。在超过100℃时,灵敏度误差控制在±15℃。所以,在现实应用中,要考虑两方面问题:首先是在电器设备实行冷态启动时,就会越过恒温值。其次,电器如果在恒温状态下,会发生轻微摆动震荡。在一定的程度上,这些现象无疑都会影响电器的争产使用。而如果对其改造采用了模糊方法,这些问题会很容易被解决。从原理上看,模糊控制的方法通过输入量定义了温度和其变化,在每一个定义语言的论域中,描述采用了五种不同的变量方式。因此,它是一个运用范围广泛,操作简单的智能化系统技术。

2 神经网络控制的运用

1934年,世界上开始出现了人工神经网络,在模型结构和学习算法上研究低潮经历了6-70年到现在,也取得了大量的研究成果。强鲁棒性、非线性特性、自组织自学习的能力和并行处理能力是人工神经网络基本特性,受到了人们的普遍关注。在20世纪的中期,人工神经网络技术逐渐的被运用到电力系统的操作和管理方面上。神经网络是大量简单的神经元,按照一定的连接方式组成的网络系统。在连接权值上,大量的信息隐含在神经网络系统中。神经网络通过学习不同的算法和调节权值,从m维空间到n维空间的非线性映射得以实现。目前在人工神经网络结构和模型的研究、神经网络硬件实现以及神经网络学习的算法研究等问题上,集中表现了神经网络理论的研究。

3 专家系统的运用

专家系统控制应用到电力系统中也很广泛。顾名思义,该系统是具有专家级别的管理效用和能力,通过计算机技术,在电力系统运行过程中,专家系统控制对异常状况能够及时准确的进行分析,并且根据自身的编制程序,自行处理轻微的故障,减少了系统故障对电力输送安全很大的影响。同时,还能够及时的报告重大的故障,争取时间处理故障,使危害带来的经济负担得到缩减。这种技术具有特殊的安全防护功能以及广泛涵盖范围,如:辨识紧急状态和警告状态、系统恢复控制、紧急处理、系统规划、电压无功控制、故障点的隔离、配电系统自动化以及调度员培训等等。但是,专家系统子啊一定程度上也存在着局限性,如:缺乏有效地学习机构;缺乏功能理解的深层适应,只采用了浅层的知识;知识库验证困难,应对突况能力有限,缺少分析问题的能力和解决复杂问题的工具等等。因此,在专家系统开发过程中要充分考虑专家系统效益问题,获取知识的问题,专家系统软、硬件的实现和有效性问题,以及他常规计算工具和专家系统是否兼容的问题,都值得高度思考。

4 线性的最优控制的运用

最优控制是近、现代自动控制理论中一个重要的组成部分,在现代控制问题上,最优化理论是一种集中的体现。线性最优控制是目前近、现代控制理论中运用最成熟,最广泛的一个分支。在改善动态品质和提高远距离输电线路能力的问题上,卢强等人提出了利用最优励磁控制手段,研究成果指出:利用最优励磁控制方式,可以使大型机组取代古典励磁方式。另外,在水轮发电机制动电阻的最优实践控制方面,最优控制理论也发挥着重要的作用,也获得了成功的运用。但是也应该注意,该技术融合了电力系统的独特特点,是针对电力系统设计而成的。所以,只能在电力系统内部的运行中,最优控制才能发挥独特的优势,而在电力系统之外不具备卓越的优势,成效不大。

5 综合智能系统的运用

综合智能控制是智能控制和现代控制方法结合应用的一个主要方面,如:模糊变结构控制、自适应神经网络控制、自适应或者自组织模糊控制、神经网络变结构控制等等。另外各种智能控制方法之间的交叉结合也在其范围之内。综合智能控制系统对复杂的电力大系统来说,具有很大的运用潜力。目前在电力系统中,主要有:专家系统结合模糊控制、神经网络结合专家系统、神经网络、模糊控制结合自适应控制以及神经网络结合模糊控制等方面上的研究。神经网络在处理非结构化信息方面更有效,更适合。结构化的知识更适合模糊系统来处理。因此,人工神经网络结合模糊逻辑控制理论具有很好的技术基础。在底层的计算方法上,主要运用了人工神经网络,这两种技术从不同的角度上服务于智能系统,在非统计性理论上,模糊逻辑则用以处理不确定性的问题,是语义层和语言层高层次的推理,正好这两种技术起到了互补的作用。神经网络安排和解释,感知器送来的大量数据,而提供运用和挖掘潜力框架的则是模糊逻辑。

6 总结

在电力系统自动化智能技术方面中,上述的理论分析和研究成果的运用只是一个方面。自适应控制、鲁棒控制、变结构控制、微分几何控制等也包括在电力系统自动化智能控制技术中。随着人们日益加强的对电力能源的依赖,以及电力系统管理人员高度重视技术,在自动化系统管理中,自动化系统已经深入到各个环节中,并且其特殊的优势影响到未来更广泛的运用,对电力系统起到了更加重要的作用。

参考文献

[1]李妍.浅论电力系统自动化中智能技术的应用[J].中国科技信息,2010(08).

[2]贾斌,吴东华,胡伟.智能技术在电力系统自动化中的应用探讨[J].科技资讯,2010(33).

[3]钟建斌.智能技术在电能计量领域的展望[J].硅谷,2011(13).

模糊神经网络优缺点篇5

e.高曼等著

人工神经网络(anns)作为强大的计算工具,应用于分类、模式识别、函数逼近和生物神经网络建模等领域。人工神经网络具有从实例中学习的程序,它们可以解决那些还不知道算法解的难题。但是,人工神经网络的缺点之一就是它学习的知识是通过一种非常不透明的形式来表示,这就是人工网络的“黑箱”特性。在本专著中,作者介绍了一种新型的模糊规制库(frb),称为模糊全排列规制库(farb)。作者证明了模糊全排列规制库和人工神经网络具有等价性,这种等价性把符号范式模糊规制库和亚符号范式人工神经网络的优点融为一体。基于这一点,作者使用模糊全排列规制库设计了一种新的基于知识的神经计算方法。

本书共7章。1. 引言,介绍了人工神经网络(anns)、模糊规制库(frbs)、人工神经网络与模糊规制库的协同、基于知识的神经计算、模糊全排列规制库;2. 模糊全排列规制库,引入定义、输入输出映射;3. 模糊全排列规制库和人工神经网络的等价性,介绍模糊全排列规制库和前馈的人工神经网络、模糊全排列规制库和一阶递归神经网络(rnns)、模糊全排列规制库和二阶递归神经网络、总结;4. 规制简化,介绍灵敏度分析、一种简化模糊全排列规制库的方法;5. 采用模糊全排列规制库的知识提取,主要包括艾里斯分类问题、发光二极管显示屏识别问题、l4语言识别问题;6. 人工神经网络基于知识的设计,包括直接法、模块法;7. 结论和后续工作,后续工作包括规则化的网络训练、在训练过程中进行知识提取、从支持向量机中做知识提取、从网络训练中做知识提取。

本书简明扼要,内容新颖,适合模糊集、粗糙集、神经网络、演化式计算、概率和论据推理、多值逻辑等相关领域研究生和研究人员参考学习。

陈涛,硕士

模糊神经网络优缺点篇6

关键词:模糊聚类;神经网络;选址决策

中图分类号:TP18文献标识码:A 文章编号:1009-3044(2009)33-9328-04

Multiple Logistic Distribution Center Allocation Strategy Based on Fuzzy Clustering Neural Network

CAO Xue-hua

(Jiangyin Polytechnic College,Jiangyin 214405, China)

Abstract: In this paper a novel multiple logistic distribution center allocation strategy is proposed. Via constructing an effective fuzzy clustering neural network algorithm, the new strategy could achieve multiple candidate distribution center's estimated fitness value, as well as the standard distribution center's reference guideline system, and multiple candidate distribution center's subjection degree to the standard center. The application of the algorithm shows that the new algorithm has better performance in stable convergence rate, convergence speed, and threshold sensitivity. The result illuminates that the proposed algorithm provides more efficient and more stable application worthiness.

Key words: fuzzy clustering; neural network; allocation strategy

1 概述

随着我国经济的快速增长和市场经济体系的建立,各类经济实体之间的经济交往日益频繁,消费需求特性发生了很大的变化,多品种、多批次、小批量的个性化需求成为主流,对相应的物流活动提出很高的要求。为了满足消费者的多样化需求,降低成本、提高效率和敏捷化程度,产品的物流过程已逐步从传统的资源供应点直接到需求点,演变为资源供应点到公共物流中心再到需求点。物流配送中心在物流网络中处于重要的枢纽地位,是实现物流活动集约化、现代化和低成本化的战略据点。由于物流配送中心建设投资大、涉及因素多、服务周期长、效应长且风险大,中心选址是否合理直接影响到物流系统的顺畅性、运营效率。

长期以来,科研人员对此问题从不同的角度进行了研究,建立了许多的模型和算法。如模糊综合评判法、层次分析法以及结合层次法的模糊排序方法等。但这些方法也有一些缺点。利用模糊综合评判法,其指标权重难以确定;专家打分法确定权重,人为因素又过重;利用层次分析法确定权重可以弱化人为因素,但是层次分析法要求指标的层次结构系统中的要素互相独立,但这些指标之间却往往存在依赖关系,如地价和运输条件、政府政策和经营环境等。而且以上方法只能对单一的配送中心进行辅助选址决策,对于多个物流中心同时进行选址规划的情况,是无能为力的。

本文利用模糊聚类神经网络的方法,既可以同时得到现有侯选中心的优劣评价值,标准物流配送中心的参考指标体系,和现有多个侯选配送中心相对于标准中心的权重。从而对多物流配送中心选址决策进行有效辅助决策。

后绪章节是这样组织的,第2部分讲述了模糊聚类的原理,第3部分讲述了利用模糊聚类神经网络实现配送中心选址决策的算法,然后是物流配送中心选址决策的设计和结果,最后是总结。

2 模糊聚类

模糊聚类能确定样本属于各个类别的不确定性程度,表达了样本类别的概率偏向,更客观地反映现实世界的聚类规则,因而目前广泛应用于辅助决策、模式识别、图象处理、系统建模等领域。

目前,针对不同的应用领域,根据不同的理论已经提出了许多模糊聚类算法和实现途径。基于无监督学习的模糊聚类算法被广泛应用于对未知样本进行自适应的学习,其中最著名的是FCM算法[1],算法的实现是采用基于目标函数的方法,该方法设计简单、解决问题的范围广,最终可以转化为优化问题求解,易于计算机实现。

基于目标函数的模糊聚类主要是利用模式集O的观测值X={x1,x2,…,xN}与聚类原型特征值V={vi, 1≤i≤c}之间的距离构造一个目标函数,然后通过优化这一带约束的非线性规划问题获得最佳的模糊c-划分。算法的实现途径主要有基于交替优化(AO)、神经网络(NN)和进化计算(EC)等方法。

模糊聚类问题用数学语言描述:把一组给定的模式X={x1,x2,…,xN}划分为c个模糊子集(聚类)S1,S2,…,Sc。如果用μik(1≤i≤C, 1≤k≤N)表示模式xk隶属于模糊子集Si的程度,那么就得到了这组模式的模糊c-划分U={μik|1≤i≤c, 1≤k≤n }。假定每个模糊子集Si(1≤i≤c)都有一个典型模式vi,又称聚类原型或聚类中心,这样任一模式xk与模糊子集Si的相似性可以通过模式ok与聚类原型vi间的失真度dik=D(xk, vi)来度量。

模糊C-均值聚类算法的目标函数为原始输入空间类内加权平方误差,公式如下:

(1)

约束条件为:

(2)

m为模糊加权参数,又称为平滑因子,控制着模式在模糊类间的分享程度,目前一般根据应用领域的经验在[1,5]之间取值。

应用拉格朗日乘子法求解min(Jm(U,V)),可得模糊聚类结果公式:

(3)

(4)

可见,利用模糊聚类,可以同时得到聚类中心及输入空间各原始向量对聚类中心的隶属程度。

3 多物流配送中心选址决策算法

物流配送中心的选址通常是在一定的原则,如降低成本原则、经济效益原则、提高客户服务水平等原则的指导下,预先选择一些方案,然后再通过各种方法对这些方案进行比较,最终从中选出满意的一个或几个方案作为新的中心的地址。配送中心选址的影响因素很多,一般应根据物流学的原理,结合自身的实际情况,选择其中较重要的一些因素,作为指导决策的指标。这样,一组因素的组合,就是一个待选方案。

本文采用模糊聚类神经网络的方法对方案进行比较,得到理想方案。首先,根据已有配送中心选址方案和专家经验得到一个模糊评价矩阵,然后,用模糊评价矩阵训练神经网络,一旦神经网络的结果达到了专家评价一样的效果,则说明此神经网络经过有指导的机器学习,已具备了对方案优劣进行正确判断的能力,则此神经网络就可用来对侯选的配送中心地址方案进行判断,辅助选址决策。

具体思路是,根据FCM算法,用已有配送中心方案做为原始训练用输入向量,用专家经验设置聚类中心的初始值,用已建立的模糊评价矩阵中的专家评价值和当前系统实际输出评价值之间的误差作为网络误差不断训练直至误差小于特定阈值,可以得到使网络误差最小的若干聚类中心和相应隶属度矩阵和方案评价值。也就是说,此时的神经网络已具备了专家一样的评价能力,不但能对方案进行评价,同时还得到了若干标准配送中心的参考标准指标体系,和现有配送中心相对于标准中心的权重。

由于客观环境的限制,以上标准指标体系只是一种参考,但由于同时得到了方案评价值和方案相对于标准中心的权重,使本文提出的多中心选址决策相对于现有的决策算法有更高效、实用、简便的特性。

神经网络训练好以后,用侯选配送中心方案做为测试用输入向量,用已训练好的聚类中心计算相应隶属度矩阵,就实现了对侯选方案进行评价,同时还得到多个侯选方案相对于标准中心的权重。从而实现了多物流配送中心的选址决策。

3.1 建立模糊评价矩阵

设配送中心选址考虑八个因素:地质条件,水文条件. 交通运输,候选地地价,候选地面积. 经营环境. 通讯条件. 道路设施。搜集已有的正在运营的配送中心的关于此8个关键指标的详细历史数据资料,根据专家经验对这些已有方案进行优劣打分,就可以得到训练用的模糊评价矩阵,见表1。

3.2 建立模糊聚类神经网络

根据神经网络的有教师指导的机器学习原理和模糊聚类的原则,设计了如下模糊聚类神经网络实现之。整个神经网络系统由2部分组成,第1部分是神经网络模糊聚类器,第2部分是系统输出合成。

3.2.1 神经网络模糊聚类器

神经网络模糊聚类器是1个3层BP神经网络,其结构如图1。输入层由P个节点组成,表示输入向量的P个分量。隐含层和输出层都由C个节点组成。

输入层到隐含层的传递函数由Dik=xk-vi 2实现,表示输入向量与第i个聚类中心的偏差距离,输入层到隐含层1的连接权定义为该隐含节点所代表的vi。

隐含层的输出直接无权连接到输出层,输出层的输出U代表输入向量对某类别的隶属度,传递函数由公式3实现。

3.2.2 系统输出合成

由模糊聚类器得到了输入向量对各聚类模式的隶属度矩阵后,系统的整体输出为下式:

(5)

将其代入公式6,用于神经网络训练时的误差控制。

总结模糊聚类神经网络(FCNN)的整体结构如图2。

3.3模糊聚类神经网络训练算法实现模糊评价体系的机器学习

根据以上的构建,算法中需要优化的参数包括聚类中心,结合神经网络训练特点,得到模糊聚类神经网络算法如下:

1)根据专家经验,初始化聚类中心vi。

2)利用带冲量项的神经网络梯度下降训练算法迭代更新vi。

3)根据vi,利用公式3,计算uik。

4)重复2,3直至神经网络误差函数小于特定阈值,误差函数定义如下:

(6)

其中tk即表1中的专家评价值。

4 算法在物流中心选址决策中的应用设计及分析

本文采用的数据是物流配送中心选址的一个标准数据集,见表1。数据集包含10组不同的方案,每组方案包含8个决定配送中心选址的关键因素和专家对此方案的打分。根据专家经验将方案归为3个不同的聚类模式。

将此数据集分别作为训练数据集应用在模糊聚类神经网络进行计算,采用上面的神经网络构造和训练算法。

表2对比给出了网络合理收敛时对方案的评价值和表1中专家的评价值。

可见,神经网络通过学习达到了与专家几乎相同的评价能力。

表3给出了模糊聚类神经网络得到的3个聚类中心,作为标准中心的参考指标体系。

图3,4是FCNN算法合理收敛的典型误差变化曲线。

表4总结了算法合理收敛时的性能参数。

表4

可以看出,FCNN算法一般迭代100次就可以达到较好的收敛和逼近,而且适应于较大的初始误差范围,也就是说,算法对不同的初始误差不敏感,算法对初值不敏感。由此可见,FCNN算法在收敛稳定性,收敛速度,初值敏感性方面都有较好的表现。

因此,将表5所示的侯选物流配送地址方案作为神经网络的输入向量,应用已得到的聚类中心vi, 利用公式3,计算得输出评价和各侯选方案对标准中心的权重如表6,7。

经过已训练好的神经网络计算,得到评价值如表6。

综合应用表6,7,可以实现对多哥侯选物流配送中心地址的判别,辅助选址决策。

5 结束语

本文针对传统选址决策的局限,提出了利用模糊聚类神经网络实现多物流配送中心的选址决策,算法同时得到现有侯选中心的优劣评价值,标准物流配送中心的参考指标体系、现有多个侯选配送中心相对于标准中心的权重。并构造了一种有效的模糊聚类神经网络实现算法。将算法应用在物流配送中心选址决策的结果表明,算法在有效收敛稳定性、收敛速度、初值敏感性等方面都有良好效果。说明本文提出的决策算法高效、实用、简洁的应用特性,具备先进稳定的实用效果。

参考文献:

[1] Witold Pedrycz,George Vukovich.Logic-oriented Fuzzy Clustering[J].Pattern Recognition Letters,2002,vol,23,pp.1515-1527.

[2] 何丕廉,侯越先.模糊聚类神经网络的非对称学习[J].计算机应用与发展,2001,38(3):296-301.

[3] 邓赵红,王士同.鲁棒性的模糊聚类神经网络[J].软件学报,2005,16(8):1415-1422.

[4] 韩庆兰,梅运先.基于BP人工神经网络的物流配送中心选址决策[J].中国软科学,2006,6:140-143.

[5] Bart Kosko.Fuzzy Engineering[M].黄崇福,译.西安:西安交通大学出版社,1996,118-126,60-72.

[6] A.Staiano, R.Tagliaferri, W.Pedrycz.Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering[J]. Neurocomputing,2006, vol.69, pp. 1570-1581.

模糊神经网络优缺点篇7

关键词:模糊神经网络;PID;控制系统;非线性

中图分类号:TP183 文献标识码:A文章编号:1007-9599 (2011) 20-0000-02

Design of Control System Based on FNN PID

Duan Zhengjun1,Zhao Ran1,Tian Wenxue2

(1.TISCO Stainless Steel Pipe company,Taiyuan030000,China;2. China Chemical Engineering Second Construction Corporation,Taiyuan030000,China)

Abstract:At present,many of intelligent algorithm apply to the non-linear control system,it is intelligent control systems,for example,neural network,fuzzy control.According to the neural networks and fuzzy control in this article,introduced design principles and implementation based on neural nerwork and PID algorithm.

Keywords:Fuzzy neural network;PID;Control System;Nonlinear

一、引言

模糊神经网络(FNN)是模糊逻辑控制和神经网络两者结合的产物。模糊逻辑控制和神经网络两者单独使用时候,都会有一定的缺陷。模糊逻辑在一定的论域上面有很好的收敛性,在进行模糊量的运算上有优势;而神经网络具有强的自学习、自适应、并行运算和精确计算的能力。因此,两者结合可以优势互补,从而很大提高综合能力。FNN-PID是将模糊神经网络融进PID算法中,实现二者结合。FNN-PID算法具有PID控制器优点、模糊控制的良好收敛性和对模糊量的运算优势,也有神经网络自学习、自适应的特性。

二、FNN系统结构

FNN具有很多种结构和算法,对于不同的控制对象,在综合考虑运算速度和精度的情况下,可以使模糊神经网络结构有所不同。本文模糊神经网络采用如图1的结构,两个输入变量是有 、 ,为误差E与误差变化量EC。输出变量为Y,为PID三要素中的一个。根据专家经验知识把每个输入因子分为(NM,NS,ZO,PS,PM)五个模糊状态记为T[ ]。

图1.模糊神经网络的结构

第一层至第三层是实现模糊控制规则,第四层去除模糊化并实现输出实际控制对象的值,每层的作用如下:

第一层为输入层,该层的节点直接与输入层相连,起着将输入向量X传送到下一层的作用,其节点个数等于输入变量个数。输入输出关系可表示为:

, i=1,2(1)

第二层为隶属函数层,其作用是计算输入量属于各语言变量值模糊集合的隶属函数值,节点个数 ,每个节点代表一个模糊集合,可表示为:

, j=1,2,3(2)

式中j―― 的模糊分割数, 、 ――高斯函数中第j个输入对第i个结点的中心和宽度。

第三层为模糊规则层,每个节点代表一条模糊规则。采用IF-THEN模糊规则,可表示为:

:If is and is and…is THEN Yis(3)

式中,1≤n≤2,1≤i≤3: (4)

第四层为输出层: (5)

三、FNN的学习算法及步骤

在学习方法上,我们选择在线学习,在线学习就是针对整个训练集的每一个输入和对应的输出要求,每学习一条规则,就进行一次连接权的调整;这样一轮一轮不断的自动的调整网络连接权,知道整个网络达到所有的要求的响应为止。学习目的是对产生样本规律的统计特性进行建模,从具体观测推测隐含的规律,输出结果与样本接近。为了提高测量的精度,要求 、 和 三个参数能够适应环境的变化,即可实时调节高斯隶属函数和连接第三、第四层的权重比。具体算法如下:

式(5)可以按下式表示:(6)

设 , , ,从而得到式(6)的简化形式为: ,由式子(6)和式子(7)得到(8)式:

(9)

(10)

定义输出误差为: (11),其中 ――k时刻的输出值, ――k时刻的输出期望值。

定义系统的性能指标为:(12)

采用反方向传播方法进行监督学习,使性能指标E值最小化。根据梯度下降方法有:

以上式子分别为(13),(14),(15)。其中 为学习速度,由于采用在线学习,那么 为一个定值。根据性能指标选取规则和专家经验知识,取终止条件为E≤0.005,具体的学习步骤如下:

步骤1: 、 、 及 的初始值在[0,1]之间随机选取, 的值为恒定值,根据经验决定。

步骤2:根据式子(11),(13),(14),(15)计算得出比较理想的 , , 值。

步骤3:根据式子(12)计算E,若E≤0.002,迭代结束。否则,令 , , 为初始值并返回步骤2。

四、PID-FNN系统的设计及实现

根据FNN结构可知,输入是误差和误差变化量,输出是PID控制参数中的一个,故我们设计PID-FNN系统时要使用3个FNN,选择这样的FNN结构是为了更加精确的得到PID所需要的修正值。当然,这里所用的FNN是已经结束学习过程的。PID-FNN控制系统的具体结构如图2所示。

PID-FNN系统具体实现过程如下:①根据FNN的学习算法,通过提供的样本对FNN-Kp、FNN-Ki和FNN-Kd进行训练,使其得到合适的权值,满足性能指标为止。②误差和误差变化量做归一化处理,作为FNN-Kp、FNN-Ki和FNN-Kd的输入。③根据式子(1)(2)(4)(5)计算FNN的各层的输出,FNN-Kp、FNN-Ki和FNN-Kd最后一层的输出就是PID控制参数Kp、Ki和Kd的修正值。④利用③中得到的修正值,对经典PID控制器所得出的Kp、Ki和Kd的值进行修正。⑤Kp、Ki和Kd的修正后的值传送给控制对象,并由图2中所示,控制结果反馈回到计算误差处进行误差计算。由此跳转到②步。

图2.FNN-PID系统结构

五、结束语

FNN融合了模糊控制和神经网络的特点,本文利用这一点设计了PID-FNN控制系统并予以实现。文章中介绍了FNN的系统结构和学习过程的算法以及步骤,然后设计了PID-FNN的系统结构,并且描述了具体的实现过程。

本文作者创新点:模糊神经网络(FNN)是模糊逻辑控制和神经网络两者结合的产物。两者结合可以优势互补,从而很大提高综合能力。从而能够更迅速、更精确的对PID参数进行修正,已达到最佳的控制状态。

参考文献:

[1]李士勇.模糊控制,神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996

[2]曾黄麟.智能计算[M].重庆:重庆大学出版社,2004

[3]晁勤,傅成华.自动控制原理[M].重庆:重庆大学出版社,2005

[4]武嘉.辅助控制系统设计与仿真[M].北京:电子工业出版社,2005

模糊神经网络优缺点篇8

关键词 建设项目 评价方法 对比

中图分类号:C812 文献标识码:A

1人工神经网络

人工神经网络是一类基于工程技术手段模仿生物神经系统结构和功能而构建的信息处理系统。它是由大量简单处理单元并行连接形成网络,并按某种规则执行并行处理,具有学习、记忆、计算及智能处理功能,在不同程度和层次上可模仿大脑的信息处理机能。人工神经网络的优点在于可以通过其自主学习能力建立权重的学习机制,较为客观地对多指标进行综合评价,它有利于弱化权重确定中的人为因素,确保权值的客观性。而人工神经网络也有一定的缺点,如神经网络的并行处理和信息分布存储的机制还不十分清楚,如何选择合理的网络结构还没有充分的理论依据,学习算法的设计优化(提高训练速度和降低误差率等)以及稳定性等问题还未能充分解决。另外,要获取评价专家的知识和经验来对构造的网络模型进行训练和学习,需要大量的训练样本,而要选取与被评价项目有相同条件和背景的样本则比较困难,这样极大地限制了其应用范围。

2模糊综合评价法

模糊综合评价法的原理是应用模糊变换原理和最大隶属度原则,考虑评价系统的各个相关因素,然后再对其进行综合评价。其过程就是在考虑多种因素的影响下,先从定性的模糊选择入手,然后通过模糊变换原理进行运算取得结果。设 U={u1,u2……,um}为描述评价对象的m种因素, V={v1,v2……,vn}为描述U中各因素状态在评价者心目中的n种评语,即可得到相应的模糊集,再对模糊集进行模糊运算,便得到V上的一个模糊子集B={b1,b2……,bn}。换言之,模糊综合评价法的计算过程就是寻找模糊权重向量W={w1,w2……,wm}∈F(U),以及一个从U到V的模糊变换f,即对每一因素单独作出一个判断F(Ui)=(ril,ri2,…,rin)∈F(V),i=1,2,…m,据此构造模糊矩阵R=[rij]∈F(UV)。其中rij代表因素ui具有评语vi的程度。从而求出模糊综合评价向量B=(b1,b2…,bn)∈F(V),其中bj表示评估对象具有评语vj的程度,即vj对模糊集B的隶属度。模糊综合评价法的优点在于以下几点:第一,模糊综合评价法提供了一个有效的工具,使得人们能够较为明晰简便地认识多因素影响的模糊事物,将多类多层次的模糊性对象进行定量化;第二,模糊综合评价法所构建的模型相对简单,算法也较为容易掌握,对多因素多层次的复杂对象评价效果较好。当然,模糊评价法也存在一定的缺点,例如其权重的取值带有一定的随意性和主观性,需要综合运用多种技术方法予以解决。

3灰色综合评价法

灰色综合评价是研究和解决灰色系统的分析、建模、预测和评估的理论。灰色综合评价可以在缺少数据且不明确的条件下,利用评价者现有信息所蕴含的潜在内容来进行白化处理。灰色综合评价法的优点体现在可以将评价者给出的分散信息处理为描述不同灰色程度的权向量,为下一步评价对象的比较和打分奠定基础,该方法具有较好的科学性和精确性。灰色评价法的缺点在于评价指标的取值仍具有一定的主观性,同时灰色综合评价中白化权函数的合理性存在一定争议。

4评价方法的确定

通过以上分析可知,对综合评价方法的选取,应具体情况具体分析,要根据特定研究对象、研究目的以及实际条件选择与之相适应的评价方法。合适的评价方法应具备三个特点:一是评价结果能较好反映评价对象的实际情况;二是简便可行,易于理解和接受;三是能够编制成评价程序实现自动评价。

由于建设项目绩效审计评价关键指标体系既有定性指标、也有定量指标,其中绝大多数指标具有很强的模糊性。模糊综合评价法能够将一些边界不清、不易定量的因素定量化,较好地解决了建设项目绩效审计评价关键指标体系的模糊性问题,其适用性具体体现在以下几个方面:一是模糊综合评判结果以向量的形式出现,与其它评价方法相比,其提供的评判信息更为详尽,较为准确地描述了建设项目关键绩效表现的模糊状况;二是模糊综合评价可以满足评价的多层次需求;三是模糊综合法中的权重是可以根据实际需求的不同来进行调整的,同时,模糊综合评价法具有相对简单的运算过程,实际操作中适用性更强,具备编制自动评价程序的基本条件,更适合当前建设项目绩效审计的发展要求和趋势。

参考文献

[1] 谢季坚,刘承平.模糊数学方法及其应用[M].华中科技大学出版社,2005.

[2] 邓聚龙.灰色系统基本方法[M].华中理工大学出版社,1996.

模糊神经网络优缺点篇9

关键词:电力系统自动化;智能技术;分析

中图分类号: F406 文献标识码: A

1 电力系统自动化与智能技术的含义

电力系统自动化,从含义上是对电能生产、传输和管理实现自动化、自动调度和自动化管理;从种类上,它的分类较多,例如:电网调度自动化等。智能技术是智能计算机技术的简称,从含义上它包含体系结构和人机接口;从种类上,它的种类也较多,例如:模糊控制等。

智能技术是具备学习、适应及组织功能的行为,能够对产品问题进行合适求解,解决传统鲁棒性控制和自适应控制无法解决出令人满意结果的,非线性、时变性和不确定性的控制问题。目前,智能技术尚处于发展阶段,但它已受到人们的普遍重视,广泛应用于电力系统各个领域中,并取得了一定的实效。

专家系统在电力系统中的应用范围很广,它是一种基于知识的系统,用于智能协调、组织和决策,激励相应的基本级控制器完成控制规律的实现。主要针对各种非结构化问题,处理定性的、启发式或不确定的知识信息。如:电力系统恢复控制、故障点的隔离、调度员培训、处于警告或紧急状态的辨识、配电系统自动化等。以智能的方式求得受控系统尽可能地优化和实用化,并经过各种推理过程达到系统的任务目标。虽然取得广泛应用,但存在如难以模仿电力专家的创造等局限性。一般而言,专家控制系统应用较大的原因是由于该方法可适用范围广,且能为电力系统处于各种状态提出辨识,根据这种具体情况给出警告或提示,同时还能进行控制和恢复。虽然专家系统得到一定的应用,但是仍存在一定的局限性,这种局限包括对创造性的难以模仿,而只限于浅层知识的应用,缺乏极有效的深层模仿和设计,难以适应复杂状态。因此,在开发专家系统方面应注意专家系统的代价/ 效益分析方法、专家系统软件的有效性和试验、知识获取、专家系统与其他常规计算工具相结合等问题。

模糊方法是一种对系统宏观的控制,十分简单而易于掌握,为随机、非线性和不确定性系统的控制,提供了良好的途径。将人的操作经验用模糊关系来表示,通过模糊推理和决策方法,对复杂过程对象进行有效控制。通常用“如果……,则……”的方式来表达,在实际控制中的专家知识和经验不依赖被控对象模型,鲁棒性较强。模糊控制技术的应用非常广泛,与常规控制相比,其在提高模糊控制的控制品质,如:稳态误差、超调等问题,自身的学习能力还不完善,因此要求系统具有完备的知识,对工业智能系统的设计而言是困难的,如模糊变结构控制、自适应或自组织模糊控制、自适应神经网络控制、神经网络变结构控制等。另一方面包含了各种智能控制方法之间的交叉结合,对电力系统这样一个复杂的大系统来讲,综合智能控制更具备巨大的应用潜力。现在,在电力系统中研究较多的有神经网络与专家系统的结合,专家系统与模糊控制的结合,神经网络与模糊控制的结合,神经网络、模糊控制与自适应控制的结合等方面。这些模糊方法的运用因其可使用范围广,目前已在自动化控制中被广泛应用。智能集成化是综合智能控制重要的技术发展方向,其可将多项智能技术相互结合于一体,不再单独运用,各取优势。如模糊技术和神经网络的结合、神经网络与模糊控制的结合、神经网络与专家系统的结合等,这些都在电力系统自动化控制中有较多研究。

2 智能技术与电力系统自动化的结合

智能技术被应用在电力系统自动化中,进一步完善和发展了电力系统自动化。智能系统在电力系统中的有效应用,不仅协调了电力系统发展的不成熟性和该系统本身的不稳定性,还满足了公众对于相对廉价、便利的电力网络的需求。所以,智能技术作为一种技术被应用于电力系统自动化中。

众所周知,智能技术从分类上可分为以下几个部分:模糊控制和神经网络控制、专家系统控制、线性最优控制和综合智能控制。如今,电力系统自动化还未发展成熟,还存在一些缺点以待改进,如:强非线性,时变性且参数不确切可知,含有大量未建模动态部分和电力覆盖范围大但却具有网络阻滞、延迟等。下面,我们将具体分析如何通过应用智能系统改变电子系统智能化的缺点。

3 将智能技术应用到电力系统自动化中的具体做法

3.1 模糊控制在电力系统自动化中的应用

模糊控制使得建立模型来进行控制变得十分简单和易于掌握。通过建立模型进行控制是一种比较现代的方法,与建立常规的模式相比,更具优越性、相对简单。例如,交通信号灯的转换是由前面的主列队与后面的主列队决定,并使用一定的工具实现二维模糊控制器。洗衣机可根据清洗过程中水质的变化对衣物进行不同程度的清洗,以保证衣物的干净。模糊控制主要是在汽车的自动变速器上起作用,是通过自动变速器检测驾驶员的速度得出驾驶员的驾驶意图,判断路况和汽车受到的阻力、监测发动机的情况。通过以上举例,我们可以得出模糊控制适用于电力系统自动化,并且具有广泛性和通用性,能够适用于其他不同的领域。

3.2 神经网络系统在电力系统自动化中的应用

神经网络控制技术具有与电力系统自动化相适应的性质“非线性特性”,同时,其还具有自我学习与自我组织的能力,以及具有强壮的网络系统和处理的能力。因此,大量的、简单的神经元构成了神经网络控制技术,有了神经网络控制方式。神经网络利用一定的学习算法,将隐藏在其连接权值上的大量信息进行了调节权值,从而实现了非线性的复杂映射,从m 维空间到 n 维空间。这个概念被应用于许多领域,如:自动控制领域;处理组合优化问题;模式识别;图像处理;传感信号处理和医学领域等。因为人体与疾病之间的关链非常复杂,因此神经网络控制技术也被广泛应用到医学上的多个领域,例如:医学专家系统中的麻醉和危重医学相关领域的研究等。由上述举例,我们可以知道神经网络控制技术适用于电力系统自动化,具有广泛性和通用性,能够适应于其他不同的领域。

3.3 专家系统控制在电力系统自动化中的应用

专家系统控制能及时处理和辨识发生故障的电力系统,最大限度地降低网络阻滞或延迟给人们带来的危险和不便。专家系统在电力系统中有较为广泛的应用范围,例如能够辨识电力系统所处的状态:警告状态或紧急状态、紧急的处理、系统恢复控制、系统规划、切负荷和电压无功控制、故障点距离的测量、做出短期负荷预报、所处状态的安全分析以及先进的人机接口等方面。在电梯控制中的应用,随着科技的日新月异,电梯的制作技术也在不断地发展与更新,由简单逐渐趋向于复杂化,现在,在电梯即将出厂时,会有专门的工作人员进行调试,但当安装好后,电梯一旦出现故障时,为本单位所配备的维修人员,却不能快速找到问题,解除故障,这是由于电梯构造复杂化了,因此我们需要在安装电梯之前,安装专家控制器以确保电梯的可用性和保障性。由此可见,专家系统控制适用于电力系统自动化。

3.4 综合智能系统在电力系统自动化中的应用

综合智能系统根据模糊控制结构有效、合理地将这些控制方法结合起来,以完善电力系统自动化,使其能够具备稳定性、协调性和简易性。由于智能控制方法之间的交叉结合,一般人们会将其进行如下组合进行分析,例如:神经系统与专家系统的结合;专家系统和模糊控制的结合;神经网络与模糊控制的结合;神经网络、模糊控制与自适应控制的结合等方面。

4 结语

综上所述,我们了解到智能化在电力系统自动化中所占据的重要地位及其产生的不可忽视的重要影响,目前虽然我国的电力系统自动化还不够完善,但是我们坚信,只要在我们的共同努力下,随着人们对智能技术研究的愈加深入化,我国的智能化技术一定会有更好的明天。

[参考文献]

模糊神经网络优缺点篇10

【关键词】人工智能;电力系统;应用

人工智能技术简称AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,与基因工程、纳米技术并称为21世纪三大尖端技术。由于它是利用计算机来模拟人类的智能活动,因此完全摆脱了传统方法的束缚,能解决传统方法难以解决甚至根本无法解决的问题,当前,随着国家电网建设“坚强的智能电网”进程的不断深入,电力系统规模不断增加,数据量增多,管理上越发复杂,因此,将人工智能应用于电力自动化控制系统,能有效减少运行成本,提高工作效率,现就该问题进行粗浅探讨,以供参考。

一、人工智能技术概述

人工智能技术自上世纪50年展至今,在理论研究方面已取得突破性进展,在具体应用方面,主要如下:(1)专家系统(ES)。所谓专家系统,即一个计算机程序集,该程序利用当前的输入信息、知识库及一系列推理规则来完成由某一领域专家才能完成的工作。专家系统的特点在于其符号表达、逻辑推理及渐进式搜索能力。家系统在电力系统运行控制中的应用领域包括报警信号处理、电压控制、故障诊断、恢复控制、运行规划等。(2)人工神经网络(ANN)。人工神经网络是模拟的生物激励系统,由大量的神经元以一定的方式连接而成的,单个神经元的作用是实现输入到输出的一个非线性函数关系,它们之间广泛的连接组合就使得整个神经网络有了复杂的非线性特性,神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。神经网络具有良好的快速并行处理能力及分类能力,因此被广泛地应用于电力系统的实时控制、检测与诊断、短期和长期负荷预测、状态评估等诸多领域。(3)模糊集理论(FL)。FL发展于上世纪60年代中期,它是多值逻辑的扩展,能够完成传统数学方法难以做到的近似推理。其具体应用为:应用多目标模糊决策方法,进行故障测距和故障类型识别;给出模糊集理论的配电系统潮流与状态估计方法;采用模糊推理估计配电系统负荷水平,归纳各类用户随不同因素的变化;用模糊集方法构造变压器保护原理,区别内部故障、涌流、过激以及电流互感器饱和情况下的外部故障;寻求维持电力系统安全运行和充分利用输电容量之间的折衷解;运用于配电系统损耗模糊计算模型,提高计算精确度等。(4)启发式搜索(HS)。启发式搜索主要有遗传算法(GA)和模拟退火(SA)算法两种,启发式搜索通过随机产生新的解并保留其中较好的结果,并避免陷入局部最小,以求得全局最优解或近似最优解。以上两种方法,都可用来求解任意目标函数和约束的优化问题。

二、人工智能技术的在电力自动化的应用

(1)在电源规划中的应用。电源规划是电力系统中电源布局的战略规划,当前,人们对高质量电能的需求越发突出,因此,加强电力建设,扩充新电源势在必行。电源规划问题之所以复杂,其中一个重要原因即是每个规划时期备选机组状态的数目庞大,而对于每个具体的规划项目,这些状态大多是不可行的,而利用专家系统,可以根据实际规划工作时的具体约束条件对方案进行裁减,尽早删除大量不可行的方案,从而减少优化计算的工作量,提高规划效率。同时,利用遗传算法,可以实现站址和站容的优化。(2)在电能质量分析中的应用。20世纪80年代末以来,随着微电子技术和电力电子技术的发展,基电能质量越来越被人们所关注。为提高电能质量,建立电能质量检测和分析识别系统,对其进行正确的检测、评估和分类就显得十分必要。传统的电能质量检测手段主要是以人工方式和便携式电能质量测量仪器为主,对线路和变电站进行现场数据采集,工作量大,采集的数据不系统也不全面,时间延续性短,误差较大,效率低。而采用人工智能技术能有效克服传统方法的缺陷。如电力系统中谐波诊断的任务是对一组电流或电压的采样信号确定出各次谐波的含量或感兴趣的谐波成分含量,采用人工神经网络,可以在避免噪声和间谐波的情况下分析谐波问题。又如,电力系统电源侧电压及负荷变化将引起用户侧电压波动,长时间的电压偏移将使得供电电压质量得不到保证,因此,保持电压偏移在允许范围内是衡量电能质量标准的一项重要内容。而基于专家系统而设计的变电站无功控制装置,能将已有的无功电压控制经验或知识用规则表示出来,形成专家系统的知识库。并能像有经验的调度员那样,在面临不同运行工况时,根据上述的规则由无功电压实时变化值有效地作出合理的电压调节决策。此外,人工智能技术在电能质量分析中的应用,还包括电能质量的扰动分析、电能质量的数据管理和数据挖掘,等等。(3)在故障诊断中的应用。电力系统可能出现的故障种类繁多,具有复杂性、不确定性及非线性等特点,从一次系统的故障看,可分为线路和元件故障两大类;从二次系统的故障看,则可粗略地分为保护系统、信号系统、测量系统、控制系统及电源系统五类故障,若采用传统的方法诊断效率低,准确率不高,而采用人工智能技术,能大大提高故障诊断的准确率。专家系统、神经网络、模糊逻辑是人工智能技术用于故障诊断的方法,例如人工智能故障诊断技术运用于发电机及电动机进行的故障诊断时,将模糊理论与神经网络相结合,不仅保留了故障诊断知识的模糊性,还结合了神经网络学习能力强的优点,共同实现对电机故障的诊断,大大提高了故障诊断的准确率。(4)在电力系统无功优化中的应用。谓电力系统无功优化,就是指当电力系统的结构参数及负荷情况给定时,通过对某些控制变量的优化,在满足所有指定约束条件的前提下,使系统的一个或多个性能指标达到最优的无功调节手段,它是保证电力系统安全,提高运行经济性的手段之一。将人工智能技术应用于电力系统无功优化中,主要有如下几方面:如,针对传统方法在处理配电网无功优化时不能处理多元约束问题的缺陷,模糊优化法通过引入模糊集理论,能使一些不确定的问题得到解决,使用模糊优化法,可优化配电网的电容器投切,减少了配电网的网损并提高了其电压质量。使用禁忌算法,能有效地处理不可微的目标函数,解决配电网补偿电容器优化投切0-1组合优化问题,并可以处理补偿电容器分档投切的组合优化问题。而使用人工神经网络,可以将网损最小作为优化目标,用人工神经网络模型对多抽头的配电网电容器进行实时控制,等等。(5)在电力系统继电保护中的应用。通过专家系统,能把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,进而根据报警信息对知识库进行推理,获得故障诊断的结论。输电网络中保护的动作逻辑一级保护与断路器之间的关系易于用直观的、模块化的规则表示出来能够在一定程度上解决不确定性问题,能够给出符合人类语言习惯的结论并具有相应的解释能力等。此外框架法专家系统善于表达具有分类结构的知识,能够比较清楚的表达事物之间的相关性,可以简化继承性知识的表述和存储,在输电网络报警信息处理和故障诊断中也有少量应用。(6)在抑制电力系统低频振荡中的应用。大规模电网互联易产生低频振荡,对电力系统的安全造成严重威胁。低频振荡产生的原因,源于系统缺乏阻尼,目前,低频振荡抑制措施中研究较多的是电力系统稳定器FACTS和PSS阻尼控制器,以上两种办法均存在一定缺陷,即存在鲁棒性差的问题,而人工智能技术能模拟人类处理问题的过程、容易计及人的经验和具有一定的学习能力,将神经网络、模糊理论、GA等人工智能技术应用于FACTS控制器和自适PSS的研究,能解决阻尼控制器参数的鲁棒最优整定,有效抑制电力系统低频振荡问题。

总之,随着人工智能技术的不断进步,新的方法将不断涌现,其在电力系统中的应用也将越来越广,如何综合已有技术,扬长避短,并探索新的技术和理论方法,将其应用于解决未来电力系统的各种问题,是我们今后探索研究的主要方向。

参 考 文 献

[1]蔡自兴,徐光祐.人工智能技术及应用[M].北京:清华大学出版社,2000