数学建模的重要性十篇

时间:2023-12-20 17:33:14

数学建模的重要性

数学建模的重要性篇1

【关键词】数学建模;重要性;中学生;应用

前言

科学技术的不断发展,为数学的广泛应用提供了广阔的前景。应用数学的上升趋势也日益明显,引导中学生在日常数学学习过程中如何进行数学建模,就成了当前数学和科学工作者所面临的重要课题。数学建模通常是运用数学思想、方法和知识解决实际问题的过程。在日常数学课堂教学中,数学教师结合数学课本知识,将未经简化抽象的现实问题带到课堂上,使中学生能运用理解、观察、比较、分析、综合、归纳、抽象、概括等基本的数学思维方法,最大限度地调动已获得的数学概念、公式、图形、基本关系,把实际问题中的非数学信息转换成抽象的数学信息,或把现实数学对象中赋予的信息转化成另一种数学对象的信息,建立相应的数学模型,然后中学生通过数学模型的建立和求解,来解决生活中的实际问题。

新一轮数学课程改革强调数学应贴近生活,注重加强数学教学的实用性性,重视数学与实际生活的联系,并能学以致用,用来解决生活中的实际问题。可见,合理引导中学生在数学学习过程中,学会建模,就成为当今数学教育基础改革的重点之一。由于基础等原因,中学生的数学建模能力很差,如何正确、有效地实施数学建模教学,已成为当前中学数学教师所面临的一大教改难题。为此,有必要先从理论上研究引导中学生进行数学建模的重要性。

1.利于激发中学生的学习兴趣

传统的数学教学模式,理论性比较强,知识的系统性比较严谨,再加上中学生的自身基础情况,数学对他们来说比较困难,一旦学生对数学失去情趣,就会产生厌学心理。通过组织数学建模活动,有利于激发学生学习方程的兴趣。中学生一旦对某一内容产生兴趣,就会持续地专心地研究它,进而提高数学学习的效率。因为学习兴趣既是学习的动力,又是学习的结果,心理研究也表明,人的一切活动都是由需要、动机、兴趣所支配的,中学生的学习活动亦是如此。因而,根据学生的心理特点及具体的教学内容,组织数学建模活动,激发中学生的学习兴趣是她们学好数学最关键的第一步。

2.提高元认知能力

通过数学建模,以加深中学生对学习过程的认识,激发学习动机、提高求知欲,从而提高元认知能力。专家指出,数学建模活动是一项指向性很强的思维训练活动,他面对的生活中实际问题,运用简洁、明晰的生活语言进行描述的,并不是单纯意义上数学计算问题。这些现实问题容易刺激读者的求知欲与探索欲,使中学生能主动对其产生兴趣,对问题容易形成积极的态度。建模的目标激励着中学生去研究问题背景,查阅资料获取新知识,获取对问题的深入了解,分析、处理问题自身所提供的关于已知要求与求解等参数信息。另一方面,数学建模处理的形成,往往也如其他学科具有交集,也可以说是一种学科的分野与跨学科的融合,建模活动本身是对中学生知识水平、能力等的一种评测,建模者在此过程中可以逐渐认识到个体的认知水平,发现认知上的差距,有利于自觉提高个人的学习积极性和自觉性。通过数学建模活动,可以帮助中学生建立起一种学习数学的良好心态;中学生通过学习一定的数学理论知识后,能发现在生活中具实用性,甚至可以解决身边的实际问题,“知是行之始”、“学而后知不足”。从而心中产生了学好数学的强大动力。

3.有利于激发中学生的创新思维

调研发现,日常数学教学实践中,少数数学教师依然还在采用传统的教学方法,注重理论的灌输,然后采用大量的题海战术,部分中学生学的苦,题做的累,不利于中学生数学素养的形成,同时也不利于数学教师的课堂教学效率的提高。众所周知,普通班中学生数学基础参差不齐,少数中学生数学基础相当薄弱,被动地学习,也非常吃力,长期下去这些中学生的学习思维会僵硬化、固定化。而运用数学建模进行学习数学,中学生可以发散思维,驰骋想象,不同的数学问题可以建立不同的模型,同一数学问题也可以建立不同的模型。针对不同的模型,可以运用不同的解题方案解同一问题,不仅够激发中学生的探究意识,同时也有利于摆脱传统思维束缚,提高中学生的创新思维能力。

4.提高分析和解决问题的能力

培养中学生运用数学建模的目的就是为提高他们解决实际问题的能力。引导把实际问题抽象为数学问题,就必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求中学生有一定的抽象能力,而且要有相当的观察、分析、综合、概括与类比的能力。中学生上述能力的获得,不是一朝一夕的就能完成的,数学教师需要把数学建模意识贯穿在教学的始终,不断地引导中学生用数学思维去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中,抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题的目的,使数学建模意识成为学生考量问题的思路与方法。

5.有利于对学生数学学习过程的评价

数学学习应该是一个过程,而不仅仅是一个结果,数学评价既要关注学生数学学习的结果,更要关注他们在学习过程中思维的变化和发展,过程评价与结果评价相结合,因为数学模块的应用实际上是中学生解决问题时思维过程的一个暴露,它为教师的过程性评价提供了可高的大量信息与参数,有利于帮助数学教师了解中学生对抽象的数学概念的理解程度,在一定程度上促进了数学教师改进教学方法,采用具体直观的数学模块解释抽象的数学概念,然后把具体直观的数学模块上升为抽象的数学概念,引导学生数学模块有条理地、清楚地表达所解决问题的过程,并运用数学模块解释推论的合理性,从而有利于数学教师下一步进行调整和改变教学思路,提高课堂教学的有效性。

【参考文献】

[1]刘春英.数学建模在中职数学课堂教学中的应用[J].探析长春教育学院学报,2015.5

数学建模的重要性篇2

关键词:数学建模;数学模型;建模思想;数学建模方法

一.数学建模在教学中的应用

数学建模能力的培养,让学生体验、理解和应用探究问题的方法。教师在教学中,应根据他们的年龄特征和认知规律设计出适应他们探究的问题,这样才能激发学生对学习的思考和探索,从而达到培养学生数学探究性学习的效果。

例:拆数问题。总长100米的篱笆靠墙围一个矩形羊圈。

(1)当x=20米时,面积S是多少?(2)当x分别为30米,40米,50米,60米呢?

(3)当x为多少时,所围矩形面积最大?

本例中,学生原有知识为:矩形面积=长×宽;总长100米,一边为x,则另一边为100-x。例中的问题(1)(2)简单计算就可得出,但却是问题(3)的辅垫,学生在训练中容易比较发现,当把100分成50米和50米时,所围成的矩形面积最大。

例:函数图像的交点坐标。在一次函数教学时,可设计以下渐进式问题:

(1)直线y=x+3与X轴,Y轴分别交于点A、B,求点A、B的坐标。

(2)直线y=x+3与直线y=-2相交于点P,求点P的坐标。

(3)直线y=x+3与直线Y=3x-5相交于点M,

求点M的坐标。

结合(1)的方法容易解出问题(2),但问题(3)具有一定的挑战性。教学时问题(1)可总结为解方程组的形式,求出与X轴的交点坐标;同理对问题(2)可总结为解方程组的形式,求出点P的坐标。这样学生容易想到问题(3)的解答方法了。

数学建模能力的培养不在于某堂课或某几堂课,而应贯穿于学生的整个学习过程,并激发学生潜能,使他们能在学习数学的过程中自觉地去寻找解决问题的一般方法,真正提高数学能力与学习数学的能力。

二.数学建模教学的基本过程

培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题的目的,使数学建模意识成为学生思考问题的方法和习惯。

三.数学建模教学的重要性

二十一世纪课程改革的一个重要目标就是要加强综合性、应用性内容,重视联系生活实际和社会实践,逐步实现应试教育向素质教育转轨。纵观近几年高考不难推断,数学应用题的数量和分值在高考中将逐步增加,题型也将逐步齐全。而以解决实际问题为目的的数学建模正是数学素质的最好体现。

目前中学数学教学现状令人担忧,相当一部分教师认为数学主要是培养学生运算能力和逻辑推理能力,应用问题得不到应有的重视;至于如何从数学的角度出发,分析和处理学生周围的生活及生产实际问题更是无暇顾及;为应付高考,只在高三阶段对学生进行强化训练,因学生平时很少涉及实际建模问题的解决,其结果是可想而知的,所以在中学加强学生建模教学已刻不容缓。

四.数学建模教学的意义

在学校开展数学建模教学,可激发学生的学习积极性,学会团结协作的工作能力;培养学生的应用意识和解决日常生活中有关数学问题的能力;能使学生加强数学与其它各学科的融合,体会数学的实用价值;通过数学建模思想的渗透和训练,能使学生适应对人才的选拔要求,为深造打下坚实的基础,同时也是素质教育的重要体现。

参考文献:

[1] 数学思想与数学教育[J],数学教育学报.1995

[2] 丁石孙、张祖贵.数学与教育[M],湖南教育出版社.1998

[3] 孙亚玲.现代课程与教学研究新视野文库--课堂教学有效性标准研究、教育科学出版社.2008

数学建模的重要性篇3

一、加强课堂教学,渗透建模思想

1.数学教师要有紧迫感,自觉完善自身的知识结构,提高自身数学建模能力

越来越多的数学教师已认识到数学建模教学的重要性,只有积极参与到数学建模的教学活动中,注意收集数学建模资料,钻研有关数学建模的课题,提高把握建模教学的能力,才能在课堂教学中提高应用性问题教学的质量.

2.创设生动的问题情境,激发学生情感

在应用题课堂教学中,教师要发挥多媒体技术手段的优势,根据具体教学内容,学生的认识水平、设计和应用多媒体课件创设生动的问题情境,为学生提供主动发现、主动发展的机会,激励学生积极参与建模活动.

3.重视知识产生和发展过程教学

由于知识产生和发展过程本身就蕴含着丰富的教学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用.

4.采用启发性式和讨论式教学法,发挥学生的主体作用

在高中应用性问题的课堂教学中,教师应当采用启发式和讨论式教学法,通过多种途径、多种方式参透数学建模方法,努力拓展学生自主发展的空间,让学生独立思考,让学生动脑、动手、动口,使学生真正成为课堂教学的主体.

二、优化中数建模过程,全面实施素质教育

1.中数建模教学要突出学生的主体地位

学生主体地位是指学生应是教学活动的中心,教师、教材、一切的教学手段,都应为学生的学习服务;学生应积极参与到教学活动中去,充当教学活动的主角.学生的主体地位主要有以下四个方面的表现:学习的积极性、学习的主动性、学习的独立性和学习的创造性.

在中数建模教学中教师要充分运用渗透与激励的教育手段.渗透,就是教师结合教学内容与教学实际,从素质教育的角度出发,把人格教育、非智力因素、学习方法、思维方法和各种能力的培养等素质教育的内容有机地溶于教学过程当中.激励,就是教师运用适当的语言、举动、方式(设计)、内容(问题)激发学生的兴趣,积极性和主动性,鼓舞学生的思维、行动和意志.

2.中数建模教学要分别要求,分层次推进

中数建模方法是解决应用问题的重要方法,但因为长期受传统应试教育的影响,造成学生动手操作能力差,应用意识薄弱.在中数建模教学中,根据素质教育面向全体学生,促进学生全面发展的目标,教师要重视学生的个性差异,对学生分别要求,个别指导,分层次教学,对每个学生确定不同的数学建模教学要求和素质发展目标.对优生要多指导,提高较高的数学建模目标,鼓励他们大胆使用计算机等现代教育技术手段,多给予独立建模的机会,能独立完成高质量的建模论文;对中等程度的学生要多引导,多给予启发和有效的帮助,使中等程度的学生提高建模的水平,争取独立完成数学建模小论文;对差生要多辅导,重点渗透数学建模的思想,只需完成难度较低的建模习题,不要求独立完成数学建模小论文.当学生遇到困难时,教师应多用鼓励的方式激励学生,通过师生融洽的情感交流,帮助学生增强信心,提高自信,进而克服困难,取得建模成功.只要教师本着热爱学生关注学生成长的出发点,就能充分挖掘学生的潜能,调动学生的积极性和主动性,让学生在建模教学中体会到学习的收获与进步.

3.中数建模教学要全方位渗透数学思想方法

数学思想方法是数学知识的精髓,是知识、技能转化为能力的桥梁,是数学结构中强有力的支柱.由于中数建模教学面对的是千变万化的灵活的实际问题,建模过程应该是渗透数学思想方法的过程,首先是数学建模化归思想方法,还可根据不同的实际问题渗透函数的思想、方程的思想、数形结合的思想、逻辑划分的思想、等价转化思想、类比归纳和类比联想思想及探索思想,还可向学生介绍消元法、换元法、待定系数法、配方法、反证法、解析法、归纳法等数学方法.只要我们在中数建模教学中注重全方位渗透数学思想方法,就可以让学生从本质上理解数学建模的思想,就可以把数学建模知识内化为学生的心智素质.

数学建模的重要性篇4

关键词:小学数学;建模思想;渗透

小学数学基础学科是一门抽象性的工具学科,它在学习过程中,可以通过数学模型的构建方式,完整地描绘出现实生活和事物的特征,并引导学生理解数学知识与现实社会的联系,从而增强小学生的数学表达能力和综合分析能力,在学以致用的建模思想运用过程中,引领小学生逐步进入数学知识的殿堂。

一、小学数学建模思想渗透和应用综述

小学数学基础教育不仅要引导学生把握数学基本知识,还要注重培养学生的自主数学学习能力、数学表达能力和思维能力,为了达到这一教学目标,需要在素质教育的理念倡导下,充分引入数学建模思想和方法,这是数学思维中的重要思想,它对于小学生数学知识的建构有着极其重要的意义和作用,由于小学生的可塑性极强,因而在小学阶段就渗透和融入数学建模思想,可以帮助学生形成自成一体的、适宜自身学习特点的数学学习模式,从而在数学建模的尝试学习过程中,增强学生自身的数学逻辑思维能力和综合分析能力,提升小学数学学习效率。

二、探讨小学数学教学中的建模思想渗透举措分析

1.注重引导小学生积累感知的表象,搭设数学建模基础

小学数学建模思想的渗透和融入,必须以一定的感知表象为基础和前提,由于数学知识的抽象性和逻辑性较强,因而要引领学生对数学模型建构的对象进行充分而全面的感知,要对表象进行感知积累,在众多共性事物中,抽象、剖离出共性事物的本质属性和内在特征及关系,在学生掌握了丰富的感知表象经验之下,为后续的数学模型构建奠定基础。例如,在教学分数的学习和认知过程中,可以引导学生观察不同的事物,如:孙悟空手中变幻伸缩的金箍棒、平均等分的苹果等,通过对这些生活感知的表象内容,进行不同角度的观察,理解不同数学模型中的共性,从而增强学生的数学感知能力,实现对“分数”数学模型的建构。

2.探索数学模型的属性与本质特征

在小学数学模型的构建过程中,教师要向学生渗透建模思想,而这个建模思想的渗透和融入,并不是独立于数学概念和原理之外的“独立体”,而要体现出数学模型的本质属性,要将生活中的数学进行升华和提炼,从而揭示出生活数学的本质属性,由生活数学转化为学科数学,从而使数学建模教学更具有实际意义和价值。

例如,在数学“平行线”的概念教学中,可以渗透数学建模思想,利用学生头脑中的生活数学模型:马路上的人行斑马线、五线谱、课桌的两边等,从而引导学生对“平行线”的数学本质进行思考和探索,在问题设疑或情境设疑的策略下,通过数学本质的揭示,增强学生对数学概念的认知和理解。又如,在“一半”和“半个”的数学概念教学中,要引导学生明晰其含义,要明确意识到“一块的1/2”和“1/2块”是存在本质上的区别的,在前者的表达方式中,1/2是数的概念,揭示其部分与整体之间的数学关系;而后者的1/2则是量的概念,用于体现事物的大小概念。只有在单位 “1”是一个物体的状态下,两者才具有相同的含义;而当单位“1”表达的是一个整体,则两者的含义就大相径庭。可见,要准确而清晰地揭示出数与量的本质区别与联系的前提下,才能进行分数的模型建构,从而准确把握分数的数学本质属性。

3.引发学生进行联想和想象,优化数学建模过程

在数学建模思想的渗透引导教学中,教师要创设机会,为学生提供联想和想象的空间,允许学生在反复的实践过程中,实现跳跃式思维,从而实现新旧知识的链接,在想象和联想的反复实践中,完成数学模型的建构。

4.及时进行概括与提炼,提升数学模型的应用价值

在小学数学建模思想的渗透和应用过程中,要实现建模过程的不断深化和递进,要在数学知识的复习和回忆过程中,不断对数学建模过程和方法,进行及时概括和总结。这样,才能不断提升学生的思维活动水平,并拓展数学建模思想的实际应用价值。

总而言之,在小学数学的建模思想渗透和融合过程中,教师要注重数学知识的前期预设,关注学生在数学建模思想和方法运用中的过程,并引领学生对感知的表象,进行抽象化的归纳和提炼,从而在学生自主揣摩和反复的实践过程中,生成自主的数学化学习方法,并将数学模型应用于生活实际中,增强数学模型的实际应用价值。

参考文献:

[1]黄培添.小学数学教学中建模思想的渗透[J].学周刊, 2015(14).

数学建模的重要性篇5

论文摘要:论述数学建模对培养学生的创造性、竞争意识和社会应变能力的作用, 研究了数学建模对高职数学教学的重要作用, 提出了数学教育不仅要使学生学会并掌握一些数学工具,更应着眼于提高学生的数学素质能力,而数学建模竞赛正是培养这种能力的有效载体.

高等职业教育作为教育类型得到了空前发展.高职教育在于培养适应生产、建设、管理、服务第一线需要的高素质技能型人才不仅成为人们的一种共识, 而且逐步渗透到高职院校的办学实践中.数学课程作为一门公共基础课程如何服务于这个目标成为高职基础课程改革中的热点.将数学建模思想融入高职数学教学应是一个重要取向之一.

一、数学建模竞赛对大学生能力培养的重要性

大学生数学建模竞赛起源于美国, 我国从1989 年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加.数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛.数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革”.数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识.题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件.竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力.数学建模竞赛也是一个合作式的竞赛,学生以小组形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷论文.数学建模涉及的知识几乎涵盖了整个自然科学领域甚至涉及到社会科学领域.而且愈来愈多的人认识到学科交叉的结合点正是数学建模.数学建模竞赛是能够把数学和数学以外学科联系的方法.通过竞赛把学生学过的知识与周围的现实世界联系起来,培养了学生的下列能力:

(一)有利于大学生创新性思维的培养

高等教育的重要目的是培养国家建设需要的中高层次人才,而许多教育工作者认识到目前的高等学校教学中还存在着许多缺陷,其中一个重要的问题是培养的学生缺乏创造性的思维,缺乏一种原创性的想象力.这是我国高等教育的一个致命弱点,严重制约了我国科技竞争力.我国高等学校的教学还是以灌输知识为主,这种教育体制严重扼杀了学生的能动性和创造性.数学建模竞赛并不要求求解结果的唯一性和完美性,而是重点要求学生怎样根据实际问题建立数学关系,并给出合乎实际要求的结果和方案,重点考察的是学生的创造性思维能力.

(二)有利于学生动手实践能力的培养

目前的数学教学中,大多是教师给出题目,学生给出计算结果.问题的实际背景是什么? 结果怎样应用? 这些问题都不是现行的数学教学能够解决的.

数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果.在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力.动手实践能力有助于学生毕业后快速完成角色的转变.

(三)有利于学生知识结构的完善

一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机信息处理、Internet 网、计算机信息检索等.因此数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养.另外数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力.

(四)有利于学生团队精神的培养

学生毕业后,无论从事创业工作还是研究工作,都需要合作精神和团队精神.数学建模竞赛要求学生以团队形式参加,3个人为一组,共同工作3天.在竞赛的过程中3位同学充分的分工与合作,最后完成问题的解决.集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识.任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞.

二、将数学建模思想融入高职数学教学中

通过数学建模,给我们的教学模式提出了更多的思考,使我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建?现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力.只有遵循现代的教学策略才能培养出适应新世纪、新形势下的高素质复合型人才.知识的获取是一个特殊的认识过程,本质上是一个创造性过程.知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神.在学习、接受知识时要像前人创造知识那样去思考,去再发现问题,在解决问题的各种学习实践活动中尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力.数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法.因此,在数学教学中应该融入数学建模思想.如何将数学建模思想融入数学课程中,我认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中.以为要抓好以下几个关键点:

转贴于

(一)在教学中渗透数学建模思想

渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过多强调灌输其逻辑的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.

而高职教材中的问题都是现实中存在又必须解决的问题,正是数学建模案例的最佳选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养学生灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的, 而是有现实的来源与背景, 有其物理原型和表现的.在教学实践中, 我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学教师的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.

(二)在课程教学及考核中适度引入数学建模问题

实践表明,真正学会数学的方法是用数学, 为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题.同时越来越多的人认识到,数学建模是培养创新能力的一个极好载体, 而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力; 学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神.在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题.这些应用题可以独立或自由组合成小组去完成, 完成的好则在原有平时成绩的基础上获得“额外加分”.这种作法, 鼓励了学生应用数学,提高了逻辑思维能力, 培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力, 调动了学生的探索精神和创造力, 团结协作精神, 从而获得除数学知识本身以外的素质与能力.

(三)、适时开设《数学建模和实验》课

数学建模竞赛之所以在世界范围内广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展, 数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术.为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等.与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟.它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析.在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理.计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用是不言而喻的.

当今世界经济的竞争是高科技的竞争,是人才综合素质与能力的竞争.数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用.所以说进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径.

参考文献

[1] 姜启源.数学模型[M].北京:高等教育出版社,1986.

数学建模的重要性篇6

论文摘要:数学建模教学研究成为当代数学教育方向之一,数学建模多媒体教学仍需要数学教育工作者去探索,针对大学数学建模课程特点,在现代教育理论基拙上,提出多媒体建模教学在实践过程中应该注意的几点认识。

多媒体教学已经成为21世纪教育教学改革的一个重要突破口,其作用已是深入人心,尤其在培养学生创新能力、个性发展方面起到了显著的效果。数学建模已有了很久的历史,近年来,我国陆续开始在各个大学把数学建模的内容列人研究生、大学生教学计划中去,数学建模课程教学却还是很年轻的一门课程,数学建模教学及其各种活动迅速活跃发展,成为当代大学数学教育改革的主要方向之一。多媒体数学建模教学更是一个新鲜事物,它的教学功效仍需要我们大学数学教育工作者去探索研究,相信只有努力把握好它们的有机结合,才能扬长避短,才能真正发挥多媒体辅助教学的催化剂作用。多媒体建模教学还有很多潜能和作用等待我们发掘和利用。本文根据多媒体教学,数学建模教学的实践,总结出以下几方面的体会。

1信息量传播有余,学生课堂理解不足

现在多媒体教学中有不少一味追求教学材料的数量,教学环节密度过大,屏幕切换过频,学生应接不暇、眼花缭乱,教学的重点、难点很难得到充分解决,直接严重影响着教学效果。解决这个问题,最重要的就是要明白,多媒体在数学建模课堂教学中只是一个辅助工具。搞清教材知识点的主与次,合理布局内容及信息量,合理使用,不该用时坚决不用。尽量避免王顾左右而言他现象的产生,忌讳数学建模多媒体课堂教学成为现代灌输式的练习场。

教师所教的数学建模知识,大都是理论与技巧结合,必须经过学生在特定学习活动过程中理解,数学建模学习不是简单的信息堆积复制,绝不是由教师把知识简单地传递给学生、学生简单被动地接收信息,而是学生主动地建构理解知识体系及其涵义,这种建构理解是无法由他人单纯靠灌输来实现的。

2屏幕内容生动有余,师生交流不足

数学建模多媒体教学的优势体现在“直观生动”上,它可以激发兴趣,使原本抽象的知识形象化、简单化,便于学生理解掌握。这样达到了增强学生学习的兴趣和信心的目的,然而学生的感官在接受直接刺激下,学生的学习基本上是听、看、记了,最多做到“放映”教师传授的内容罢了,显然忽视了学生在建模学习过程中的主体创造性思维,就缺乏师生之间的互动。学生缺乏独立性与自主性,缺乏创新意识和创新能力;对知识的掌握停留在感官记忆水平上,难以产生思维上的广泛、深人植入;甚至无法激发学生深层学习的动机和兴趣,致使思维滞后,造成思维缺乏想象。“画虎不成反类犬”的多媒体教学宁可不用。

要达到解决应用问题能力,就要在注重发挥教师的主导作用的同时,更要充分发挥学生主观能动性,积极主动参与。教师及时准确丰富的语言交流是弥补学生基础薄弱、思维迟缓矛盾的必不可少的手段,是学生思维同步教师教学的桥梁,课堂教学互动性提高了,才能使学生在深层次的学习后,通过积极自主的学习,学会解决创造性问题。课堂交流如何充分发挥好“教师主导”与“学生主体”的积极作用,当然这需要我们进行锲而不舍的亲历亲为才能逐步实现。

3教师课堂创设情景有余,学生间合作不足

多媒体建模的演示教学容易做到信息来源丰富、详实,良好的课堂创设情景,可以调动大多数学生的学习兴趣和求知热情,将学生很快引进建模问题的氛围,使学生跨越时空、跨越学科,跨越个体差异,调动学生的情感,情不自禁地自然进人创设环境。

数学建模是个系统过程,由于智力因素与非智力因素的原因,学生在数学建模中应采取各种合作方式解决问题,提高课堂效率,加强建模能力提高,思维上取长补短,技巧上扬长避短,养成同学间交流的习惯是顺利解决应用问题的重要环节。

沉浸在学生聚精会神、对课堂内容的心满意足中,教师往往忽视学生间的探索、讨论、合作和交流,就无法做到学生在心理_t的自我激励、自信心的增强。建模知识和技能是一点一点培养的,我们必须注意在这个教育平台上,合理创设数学建模问题情境,比如提出现实中最接近的热点问题、最可能产生共鸣的实际生活问题,结合学生的思维活动特点,让学生如亲临其境,参与其中,使得每个学生有平等机会进行数学建模交流,让学生展现闪光点,激发创新欲望,那么,建模教学知识的长远目的或许就不难实现。

4课上体验有余,实践不足

多媒体教学可以详尽再现应用性问题的提出到解决的全过程,尤其近年来,数学建模侧重问题解决的趣味性和实用性,据此,教师在多媒体教学中往往照搬成熟典型问题,试图一点带面,这容易造成中规中距的呆板模式教案范例,多媒体教学手段又给数学建模在课堂罗列大量所谓经典问题提供了可能工具,长此以往,培养出的是纸上谈兵的赵括就不足为奇了。

数学建模离不开数学能力创新,势必要掌握足量的数学思想和数学工具。学习数学建模知识可以培养训练思维能力。当然,在学习过程中,重要的是掌握认知和思考的方法。数学建模都来自于工程技术及社会经济生活,学生清楚其重要的社会价值,放手让学生去思考、去解决,这样就丰富了学生对数学应用的感性认识和理性认识。引导学生走出“课堂”,尤其随着现代多媒体飞速发展,利用多媒体信息技术帮助学生进行数学建模实战就变得很有可能了,学生可以在课后继续用原始数据验证完善模型的优劣,巩固课堂建模理论,进一步提高解决实际问题的动手能力。

5建模成效标准单一,求全责备

数学建模的重要性篇7

【关键词】经济领域 数学建模

【中图分类号】F830

一、数学建模的内涵

数学模型是指把某种事物系统的主要特征、主要关系抽象出来,用数学语言概括地或近似的表述出来的一种数学结构。他是对客观事物的空间形式和数量关系的一个近似的反映。

数学建模是建立数学模型解决实际问题过程的简称,是利用数学方法解决实际问题的一种实践。数学建模是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间确定的数学模型,求解该数学模型,解释验证所得到的解,从而确定能否用于解决问题、多次循环、不断深化的过程。也就是将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简单地说,就是用数学式子( 如函数、代数方程、微分方程、积分方程、差分方程等)来表述所研究的客观对象或系统在某一方面的存在规律。将一个实际问题用模型表述以后可以检验此问题在不同假设条件下的不同结果, 也可以用来预测在不同条件下特定问题未来的发展。

如遇复杂实际问题,要写出其数学模型不太现实,如果此时运用计算机模拟问题再分析其发展过程及结果,就可能找出其内在规律性,进而预判其发展趋势与结果。所以说当我们不能用精确数学模型解决时,有时也可用计算机模型解决。

二、数学建模的意义

一门科学运用数学的程度决定了其发展水平。随着计算机及科学技术迅猛发展,数学已全面渗透应用到从自然科学到工农生产、从经济活动到社会生活的各个领域。当需以定量手段对研究对象进行分析、预测、决策和控制时,往往要用到数学,其运用时最重要环节就是构建数学模型,这是用数学解决实际问题的桥梁,有了他数学才能应用于实践并为实践而服务,现如今数学建模已成为研究许多复杂经济金融问题不可缺少的重要工具。

萨缪尔森运用数学分析解决经济领域难题开启了数学建模在经济领域的应用,引领了经济学术界前所未有的改革,使经济研究迈上一个新台阶。数学建模从1992年兴起到现在已发展二十年,其间用数学建模已帮助解决了许多领域以往根本无法解决的复杂繁琐问题,如类似变动连续性难题以及集成优化地解决时效变化难题等,目前各个领域技术人才都在运用数学建模对经济活动进行分析预测进而达到有效控制和决策,促进自身更好发展。因此,作为培养经管类人才的高等院校开设数学建模课程,对提高学生分析和解决问题能力是十分重要的,是国家培养有数学素质高级经济管理人才有效途径。

在经济快速全球化时,一个国家金融等方面竞争根本上为金融等经济人才竞争。如今金融经济类教育上有差距,明天会变成一个国家金融经济等方面发展上的差距,而定量建模能力的高低正代表了会计金融经济管理人才水平的高低,所以培养定量建模能力是国家培养具有数学素质的高级经济管理人才的关键。目前我国高等教育还没有足够重视数学建模,在培育学生此方面能力上还存在着一些问题。

三、数学建模人力资源教育现状分析及存在的问题

(一)没有领会高等数学在经济活动中的重要作用

高等经管专业大多课程都要用到经济数学,所以高等数学是经管专业一门必修基础课,很多诺贝尔经济学奖都是由于科学、恰当地应用了现代数学方法来解决经济问题而获得的。随着我国快速发展,经济管理领域对数W应用越来越广泛,也越来越频繁,但是我们高等院校经管专业学生还没有充分认识到数学在经济领域中的重要性,一直以为经管类专业开设的高等数学没有多大用处,觉得无需开设此课程,因此很多经管专业学生学习数学不认真。

(二)高等数学教材设计偏重纯理论知识,忽略其经济实践应用

目前高校普遍设置有微积分、线性代数、概率论与数理统计及统计学4门数学课,所选用的教材仍然是过去的旧教材,教学内容单一,教学主要是传授较系统的数学知识,教材内容安排及例题和学生经管类专业基本没有联系,经济方面在教学中应用很少,都是纯粹的定义、定理及其证明,虽注重对学生解题能力的培养,但忽视数学对经济最前沿应用的阐述,学生很难从高等数学课程感受到数学分析在经济实践中的重要作用,忽视训练学生运用数学方法去分析、解决经济问题,教学内容不能体现与经济实践相关性,导致学生不了解数学与经济之间的关系,当然也无法领会高等数学在经济中的重要作用,很难激起他们学习数学的积极性。另外,在教学中过于强调推理的严密性、演算的技巧性和方法的多变性,也使部分学生对高等数学产生畏惧心理失去学习兴趣。

(三)设置数学课程门数及安排数学课时偏少

经济管理专业一般会开设高等数学、线性代数、概率论与数理统计课程。数学建模虽然能解决经济生活中的实际问题,属于基础的工具课程,但大多数院校并未开设此课,或少数院校仅把数学建模设置成选修课,设置数学课程门数及安排课时偏少使学生数学理论基础及数学方法应用于解决经济问题的能力薄弱,不能达到学生对未来研究和经济工作实践要求。

(四)教学方法和教学手段不适宜,很难激发学生学习兴趣

高等数学教学过程目前都以教师为中心,以讲授传统教材为主,讲定理定义,填鸭式推导,再解题举例,做习题,最后考试,没有实验,缺乏创新,没有运用数学分析解决实际问题的思考训练。多媒体采用不恰当,切换PPT速度太快,学生跟不上教师思路,导致学习困难,同时,也限制学习者自主能动性,难以激发他们学习积极性。

(五)数学建模课程的师资能力不强

数学建模要求知识面广,运用知识解决实际问题更灵活,承担这门课教师要综合素质更高,因此高校开设这门课较其他学科难度要大。高校大多数教授数学教师一般都毕业于基础性数学专业,对数学建模关联的经济、工程技术等其他领域知识必然有限,计算机应用能力不强,因此,这类教育背景的教师承担经管类专业数学建模课本身有着知识结构短缺能力不强问题。另外,高校数学教师觉得此课程与自已掌握知识相差太远,有很多与自已专业没有联系,无法激起教师参与数学建模教学的积极性。

(六)学生的数学基础差异较大

经管专业学生部分毕业于文科,相对于理科学生而言其数学基础相对较差,如果教师仅简单讲授数学定理、推导、证明和类型题计算,那么学生数学语言表达和应用能力以及逻辑思维等能力不会得到很好的训练和提升,从实际问题抽象为数学问题能力就很弱,使学生以后学习数学建模障碍会更大,从而导致学生缺乏自信心,学习热情不高,认为数学建模是理工科要学的,对自已用处不大,这也是高校经管专业文科生普遍存在的一个问题。

四、数学建模能力分析

(一)经济管理领域的数学建模应能力要求

1.逻辑推理能力。是学生学习和工作必备基本能力。

2.数学应用能力。数学建模是用数学语言表达经济活动内在变量关系而解决经济问题的过程,所以其基本能力是数学应用能力。

3.计算机应用能力。当不能用数学语言表达经济变量关系时,有时也可用计算机程序设计来模拟表达其变量关系,所以计算机应用能力也是数学建模的基本能力。

4.统计分析能力。经济变量关系除可表达为确定函数关系外,还可表达为不确定随机关系,随机关系表达需要统计分析理论和方法,所以统计分析是经济建模一项很重要能力。

5.实证研究能力。实证研究是目前会计、金融、经济、管理很重要研究方法,其不但可检验原理论正确和有效性,也能探索出新经济变量关系。所以实证研究是数学建模方法之一,实证研究能力也应为经济管理建模一项重要能力。

6.实践创新能力。数学建模不仅可证明原有理论还可能发现新的理论,所以数学建模需要学生擅于思索且还要敢于创新。

(二)经管领域中数学建模的理论基础

经管领域的数学建模是用数学或计算机方法研究分析经济变量关系而解决经济问题的实践。他需要宽厚扎实理论基础,包括数学、统计学、经济学、管理学、金融学、会计学以及计算机程序设计知识。

经济建模需用数学语言表达经济问题自然需要扎实数学理论基础。他有由确定经济变量关系建立的确定性数学建模,更有由大量不确定经济变量关系建立随机性模型,这种不确定的一定概率下的经济变量关系要用统计理论才能建立经济数学模型而帮助解决经济问题,所以统计学是经济数学建模很重要的理论基础。在建立经济管理领域数学建模时还会用到经济学和管理学原理,所以经济学管理学也是建模不可缺少的知识。会计学作为企业财务与财务管理的学科,实质上他是经济财务问题成熟完善的模型以及在模型基础上建立的理论,所以也可以说会计学是经济数学建模的成果,经济数学建模是会计学理论发现发展与研究的过程和方法,如资本资产定价模型、投资组合模型、证券估价模型、期权定价模型等,都是会计很重要的理论。金融、会计、经济彼此紧密联系,很多经济建模也是会计建模、金融建模,金融学与会计学一样,与经济数学建模是互为依存的,都是经济数学建模重要的理论基础。当用计算机方法模拟建立经济数学建模时,就会用到计算机程序设计等理论知识,所以计算机理论也是经济数学建模必不可少的理论。因此经管建模是融会计、金融、经济、数学、计算机理论知识为一体的交叉性学科。

五、数学建模能力培养及提升建议

开设数学建模课程是培养具有数学素质高级经济管理人才有效途径。

(一)课程中要强调数学思想和方法重要意义,促动学生学习数学热情

数学思想和方法是\用数学规律分析和解决数学问题的想法途径。教师引导学生掌握并运用,不仅能使学生在以后的学习中轻松自如,而且还能在实践中灵活应用,能够分析和解决一些实际中的经济问题,使他们感觉数学重要性而促进他们学习数学的热情。

教学中也可利用榜样力量通过真实案例鼓励学生。如举例说明,诺贝尔经济学奖的获得都是因为其研究工作科学而恰当地运用了数学方法去解决他们所面临的特定经济问题,建立了行之有效的经济问题的数学模型。再如华尔街和一些发达国家大银行、证券公司高薪雇用大批高智商的数学、物理博士从事资本资产定价、套利、风险评估、期货定价等方面的工作;还有一些高薪IT界的工作者,如IBM、微软、谷歌这类IT行业领袖,不但大量地招聘数学专业的博士、硕士到公司工作,而且还专门设有相当规模的数学研究部门进行数学理论研究,以提高其核心竞争力。另外,数学建模在经济领域的广泛应用,使国家越来越需要具有数学建模能力高级经济人才,因此此类经济人才更具有未来职业竞争实力。通过引入以上案例来激发那些想有所作为的学生学习数学的热情。

(二)挖掘数学教材内容,使数学建模思想方法充分融入教学中

数学建模的重要性篇8

数学建模教育的思想方法是:从若干实际问题出发,发现其中的规律,提出猜想,进行证明或论证。数学建模要求学生结合计算机技术,灵活运用数学的思想和方法,独立地分析和解决问题。它不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风。

一、技校教育开展数学建模的可行性与途径

对学生进行数学建模思想与方法的训练,有两种途径:第一是开设数学建模课。这个途径受时间限制,对于技校教育更是如此。由于学制短,分配给数学课程的时数较少,对于教学建模教学而言,是非常不够的。第二个途径是将数学建模的思想和方法有机地贯穿到传统的数学基础课程中,使学生在学习数学基础知识的同时,初步获得数学建模的知识和技能,为日后用所学知识解决实际问题打下基础。将数学建模的思想和方法融入技校数学教学中,是一种符合现代技校教育实际的一种教育方法,原因有以下两个方面:

1.数学应用广泛

数学区别于其他学科的明显特点之一,就是它的应用极其广泛,可以解决许多实际问题。许多模型,如银行存款利率的增加、人口增长率、细菌的繁殖速度、新产品的销售速度,甚至某些体育训练问题等,都可以用数学知识解决。所以,在技校教育现有的数学基础课的某些章节中插入数学建模内容,有非常丰富的资源。

2.技校教育注重实用性

注重实用性,不强调理论严谨性,使得学校和教师在进行数学教育的改革时,拥有较大的优势和灵活性。在技校数学基础课融入数学建模内容时,可以对原有的教学内容进行适当调整,如只讲专业课需要用到的内容,删除某些繁琐的推导过程和计算技巧等。对于大多数计算问题,包括求极限、求导数、求积分等,都可以用Mathematica、Matlab等数学软件直接在计算机上得出结果。这样,可以有效地解决增加数学建模内容而不增加课时的矛盾。

二、在教学中渗透数学建模思想的实践初探

高等数学中的函数、向量、导数、微分、积分都是数学模型,但教学中也要选择更现实、更具体,与自然科学或社会科学等领域关系直接的模型与问题。这样的题材能够更有说服力地揭示数学问题的起源、数学与现实世界的相互作用,体现数学科学的发展过程,激发学生参与探索的兴趣。

1.重视函数关系的应用

建立函数模型,在数学建模中非常重要,因为用数学方法解决实际问题的许多例子,首先都是建立目标函数,将实际问题转化为数学问题。所以,要重点介绍建立函数模型的一般方法,掌握现实问题中较为常用的函数模型。

2.重视导数的应用

利用一阶导数、二阶导数可求函数的极值,利用导数求函数曲线在某点的曲率,在解决实际问题中很有意义。在讲到这些章节时,适当向数学建模的题目深入,可以收到事半功倍的效果。例如,传染病传播的数学模型的建立,就用到了导数的数学意义(函数的变化率);经济学中的边际分析、弹性分析、征税问题的例子,都要用到导数。总之,在导数的应用这章中,适当多讲一些实际问题,能培养学生对数学的积极性。

3.充分重视定积分的应用

定积分在数学建模中应用广泛,因此,在定积分的应用这章中,微元法以及定积分在几何物理上的应用,都要重点讲授,并应尽可能讲一些数学建模的片段,巧妙地应用微元法建立积分式。

4.充分重视常微分方程的讲授

建立常微分方程,解常微分方程是建立数学模型解决实际问题的有力工具。为此,在数学课程教学中,要用更多的时间讲解如何在实际问题中提炼微分方程,并且求解。

三、渗透数学建模思想应注意的几个问题

数学建模的重要性篇9

一、数学建模思想在大学数学教学中的作用

(一)有利于大学数学教学改革

数学建模思想与传统的大学数学教学方法不同,其注重教师与学生的互动,尊重教师与学生的主体地位,以师生互动为基本特点。数学建模思想打破了传统数学教学中教师主导课堂,以教师为中心的教学局面,有利于大学数学教学方法的改革,有利于增强大学数学教学效果。数学建模思想在教学方法上有所创新,数学建模所使用的教学方法多来自于“数学模型”、“数学实验”及“数学软件介绍及应用”等,数学建模思想有助于大学数学教学方法的改革[1]。数学建模思想中还包括很多先进的科技知识,这些知识的教授可以有效改善传统数学教学中教学内容陈旧缺乏新意、知识面狭窄等问题。

(二)有助于激发学生的数学学习兴趣

教学内容多、学时少是大学数学教学普遍存在的问题,该问题导致很多大学教师在大学数学课堂教学中只重视理论与习题的讲解,而忽视对学生利用数学知识解决现实问题能力的培养,进而使很多学生认为大学数学学习无关紧要,甚至对大学数学学习失去兴趣。数学建模思想主要强调的是用数学知识解决现实中的问题,并帮助学生将生活中遇到的实际问题转化为规范的数学问题,并加以解决。数学建模思想注重培养学生的合理假设能力,使学生将实际问题合理假设为一道规范的数学问题,并通过一些相关实例的讲解,帮助学生架构起一座连接数学知识与现实问题的桥梁,从而提高学生对大学数学知识的掌握程度及应用能力。数学建模思想可以将数学知识与现实问题有机地结合起来,使学生感受到大学数学知识在解决现实问题中的重要作用,从而激发他们的数学学习兴趣,促使他们积极投身大学数学学习。

(三)有助于提高学生多方面的能力

数学建模思想的独特性使其对学生多方面能力的提高具有积极意义。数学建模过程中需要将数学知识反复应用到实际问题中,并在应用过程中进行缜密的计算、分析与推理,从而找出解决实际问题的最佳方案。这一过程能够有效提高学生的分析及推理能力;数学建模思想具有一定的开放性特点,其没有统一的答案,学生可以根据自己的知识基础从不同的角度出发寻求解决问题的办法,这有助于提高学生的想象力与创新能力。数学建模中涉及生活中的诸多领域,作为在校大学生不可能对每一个领域的专业知识都熟练掌握,因此其必须在建模过程中查阅并迅速消化相关的文献资料,并将这些知识应用到建模过程中。因此,建模活动在增加学生数学知识的同时,还可以开阔学生的眼界,丰富学生的知识涉猎。由此可见,数学建模思想对于大学生各方面能力的提高有着重要的作用。

二、在大学数学教学中渗透数学建模思想的具体措施

(一)在定理公式的讲解中渗透数学建模思想

数学知识本身都是对现实世界中的数学模型进行的研究[2]。因此,教师可以在定理公式的讲解过程中渗透一定的数学建模思想。例如,在教授线性代数时,教师可以将线性代数中抽象的概念与定理以一种现实中的模型代替,即用现实例子表达数学知识;由于概率统计具有极强的理论性与实用性,且其与现实生活中很多领域息息相关。在教授概率统计知识时,教师可以利用现实例子帮助学生理解。如让学生用概率统计原理来分析篮球比赛中球员篮球投不中的原因。

(二)在考试中渗透数学建模思想

传统的大学数学考试,往往将测试重点放在学生的知识掌握程度上,而忽视对学生的数学综合素质的考量。在大学数学考试中渗透数学建模思想就是将学生的思维能力、创新能力、想象力等纳入数学考评中。教师可以将现实中存在的问题加入试题,让学生利用数学建模的方式解决。数学建模思想在大学数学考试中的渗透既可以增强数学考试测评的针对性,又可以促进学生积极思考。

(三)加强数学建模的相关训练

数学建模的重要性篇10

【关键词】数学建模比赛;大学数学课程;分数系统;效用;SPSS相关性分析

一、学生调查

1.调查对象:①全国数学建模比赛:40支队伍参赛,队员来自于数学与统计学院、机电与信息工程学院、物理学院、商学院,共120名同学。其中获得全国奖的有6支队伍,省级奖的有20支队伍;②美国大学生数学建模比赛(MCM/ICM):共有32支队伍参赛,队员分别来自数学与统计学院、机电与信息工程学院、物理学院、商学院,共96名同学。其中获得一等奖1支队伍,二等奖的有11支队伍。

二、效用分数系统设计

首先调查对象所评价的单科课程分数平均值直接可用于表示单科课程的效用值,利用该值就能够表现和比较各单科数学课程与数学建模比赛之间的效用。由于每门课程的学分可以代表该门课程的学习难易程度与重要性,不妨就用学分大小数值作为课程的重要系数。而科目重要系数与总学分数的比值可以表示此科目在数学教育中所占的比重,利用此比值乘以各科的效用分数后求和,该值可以表示出所有科目与数学建模比赛之间的总效用程度。根据这些数据结果我们就可以分析他们之间的效用大小及相关性。

三、数据展示与分析

通过比较两个图,我们同样发现提高学习效用分数较高的科目同样是在数学建模比赛中运用较多的科目,这说明数学建模比赛题目对特定科目的直接要求要大于其它科目,运用的最直接最多的科目必然在提高该科目能力上比其它科目强,因此在提高学生学习能力的效用上有着表上所表现出的高低情况。并且从调查问卷的主观问题回答中,我们发现很多学生在数学建模比赛中并不能大量运用到书上所学到的知识,虽然是与这些科目完全相关,但是学生大多数情况下是在网络上获取相关知识,利用已经学会的课本知识去学习其它资源(网络与其它书本)上可能对该建模比赛题目有用的知识,进而把它运用到题目中去。并且从大量同学对调查问卷中一个问题(参加数学建模大赛你最大的收获是什么)的回答中,大多数同学认为数学建模大赛让他们深刻的了解到数学在实际中运用的意义和广泛的应用基础,激发其学习数学的兴趣,并大大提高了自身的综合能力,比如从大量资源里面查找到相关资料、团队合作的能力、独立思考能力、论文写作能力等。

在对调查问卷统计后,学生在导师对数学建模比赛中效用一问所打分数的平均值为6分,众数为6分,也有一部分同学打分较高。大多数学生表示老师在比赛中的效用并不是很大,一般也不能在题目解答上提供较直接的帮助,但学生同时也表示老师能扩宽同学思考题目的思路且在最后修改论文所提供的帮助非常大。

数学科目与数学建模比赛相互总效用表

主要原因:数学建模比赛对一些高学分的基础课程如数学分析、高等代数等科目的要求并不如其它科目直接,然而基础课程在大学数学教学环节中所占比重又较大,其中数学分析学分高达18分,高等代数学分高达10分,所以导致总效用不高。

次要原因:数学建模比赛题目对课本知识要求也不直接,通常是根据已学会的知识去掌握学习其它资源的知识,导致学生对各科目的效用分数打分不高;两大数学建模比赛的题目选择性较少,导致对不同科目相关性的覆盖面较小。

四、SPSS相关性分析

首先选取各个课程的效用平均值作为分析对象,再利用SPSS从得到两组数值之间找到一种关系来刻画这种相关性的程度大小,之前的分析属于一种主观性的分析,以下作为效用相关性的客观分析。在利用SPSS软件分析中,我们采用两种检测方法即用Kendall秩相关系数与Spearman秩相关系数值来描述两者之间的相关性,数值越接近1表示他们之间的相关性越接近于完全正相关,如上图所示,Kendall秩相关系数的值为0.812,Spearman秩相关系数的值为0.865,这两组的数值都非常接近1,说明两者彼此之间的联系十分紧密,数学建模比赛确实能有效提高学生学习数学科目的能力,同时也说明各数学科目也能在数学建模比赛中得到充分的效用,这项活动对大学生数学教育是十分有效的且有意义的。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].高等教育出版社.

[2]孙成功.数学建模课程和数学建模竞赛的教育功能研究[J].天津科技大学理学院.