数学建模论文范文
时间:2023-03-16 09:46:12
导语:如何才能写好一篇数学建模论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。
1数学建模融入数学课程能够培养和提高学生的学习兴趣
学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。
2数学建模思想融入数学课程能够加快高职学校素质教育的步伐
高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。
3数学建模思想融入数学课程能够提升学生各方面的能力
学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。
二、数学建模教学实践及学生创新能力的提高
近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。
1融入数学建模思想精心设计教学内容
按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。
2灵活多样的教学方法与现代教学手段相结合
在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。
3形成“课内、课外”互动的良好氛围,“教学、实践、竞赛”一体化的有效机制
根据高职院校数学课时较少学生基础较差的特点,设计课内课外互动的教学模式,课内教学环节系统培养学生建模思想方法,课外环节为学生创建进行建模实践的平台,两种教学模式结合实现综合能力的提高。融“教、学、做”为一体,理论与实践教学相互渗透。以建模课程推动建模竞赛,以建模竞赛带动校园数学文化,实现学生综合素养的提高。2010年以来,《数学建模与数学试验》作为公共选修课程,面向全院所有专业学生开设,每学期的选修人数均在200人以上,大大拓宽了学生的知识面,提高了学生数学建模的能力。由数学建模爱好者组成的院数学建模协会,以“基于学术、用于生活”为主要目标,以“导师指点、同学互促”为活动形式,着力培养学生创新精神和创新能力。活跃校园文化气息,促进学生全面发展。
4数学实验室初具规模,数学问题软件解决
为培养学生的创新能力,加强实践性教学,学院创建了数学建模实验室。数学建模实验室有32台计算机,实验室面积100余平方米,投入经费约20余万元。每台机器都安装了与数学建模有关的Matlab、Lingo、SPSS等软件,供学生上机实践。另外,学院创新实验室和大型多媒体教室可供数学建模培训和选修课上课使用。高等数学课程中每学期专门拿出18个实验学时,学习利用Matlab等数学软件解决数学问题,学生学习数学积极性大大提高。
5数学建模成绩与学生创新能力稳步提高
篇2
论文摘要摘要:数学建模课程教学的根本宗旨在于能力的培养和综合素质的提高,而能力和素质的培养应以知识及教育模式为载体。本文在高校数学教育改革的背景下,介绍了数学建模教学中引导-发现教育模式对教育改革和创新人才培养所起到的促进功能。
高等学校作为知识创新和人才培养的最主要基地,承担着培养知识结构合理、基础扎实、勇于创新、具有国际竞争力的优秀人才的重任。因此,以素质教育为核心,培养大学生综合素质和创新能力已成为我国高等教育改革的重点和着眼点。那么,在这项改革中,教育模式和方法的探究就显得尤为重要。
教育模式和方法不是一成不变的,是随着时代、社会环境和受教育主体的需求而改变的,当代大学生面临什么样的社会背景和走势,这些背景和走势对大学生的学习提出了什么样的要求[1。
科技发展走势摘要:科学知识发展越来越快,知识更新周期越来越短,这样情况下会学比学会更重要。
市场经济走势摘要:市场经济的本质特征是竞争。随着我国市场经济的深化,竞争日趋激烈,就业和创业都有竞争,决定竞争胜败的是人的能力和素质,包括人的学习能力。
学习化时代走势摘要:21世纪人类进入学习化社会,终身学习是每一个社会成员的任务,人可以离开学校但离不开学习。大学生的根本任务是学习,但首要是学会学习,为一生的学习打基础。
经济形势走势摘要:人类社会正在从工业经济走向知识经济,创新成为第一位的,创新性学习成为最重要的学习。
21世纪的数学教育对受教育主体面临的上述走势表现出如下的反应和变化摘要:
1.数学教学将从传统的“传授知识”的模式更多地转变到“以学生为主体,以喜好为引导”的实践模式;
2.数学教学将更着重培养、发展学生的数学学习能力。包括采集和处理信息的能力;独立获取知识的能力;自我练习和实践的能力;创新学习的能力;
3.素质教育要求我们在基础教育阶段就开始培养学生有实现自我“可持续发展”的意识和能力,它要求我们的学生学会设问、学会探索、学会合作,去解决面临的新问题。只有学会学习,才能学会生存,只有敢于创新,才能赢得发展。
数学建模作为一个学数学、用数学的过程,恰好是实现上述目标的有效途径之一。同时数学建模给学生们再现了一个微型的科研过程,这对学生们今后的学习和工作无疑会有很好的影响,也对学生的能力提出了更高层次的要求。近年来,数学建模已成为国际、国内数学教育中稳定的内容和热点之一,在建模内容、模式、范围和课堂教学内容真正意义的结合上进行了不懈的努力和探索,本文通过对数学建模教学模式进行了探究和探索,旨在拟出一套具有较强操作性、行之有效的培养学生数学建模能力的途径和方法。
教学是一种由师生双方共同完成的、有目的、有组织的活动,它是教和学的有机统一,其中教师起着主导功能。“教什么”、“如何教”直接影响着学生学习的主动性和积极性,影响着教学的效率和质量,也关系到教学目标能否实现,教学任务能否完成。优秀教师取得成功的关键就在于他们能对教学内容(教什么)和教学方法(如何教)进行合理的组合,即能按某一种或某几种有效的教学模式进行教学。
数学建模教学模式主要有三种摘要:讲解-传授数学建模教学模式;活动-参和数学建模教学模式;引导—发现数学建模教学模式。本文主要介绍引导—发现数学建模教学模式[2。
发现学习的根本目的在于促进学生在获取知识的同时,拓展思维能力,培养独立思索能力和创新精神,从而在学习方式上,改变了从师型过多,自主型过少的状况;注重知识的发生、发展过程,让学生自己发现新问题,主动获取知识,从而在学习状态上,改变了顺从型过多,新问题型过少的状况;实施发现法教学,根据青少年好奇、好学、好问、好动手的主要特征,在教师指导下,通过阅读、观察、实验、思索、讨论等方式,引导学生像数学家当初发现定理那样去发现新问题、探究新问题,进而解决新问题,总结规律,努力使学生成为知识的发现者,从而在学习层次上,改变了继续型过多,创新型过少的状况;发现法教学不注重新问题的结果,因为新问题提出方式的不同会产生不同的结论,从而在思维方式上,改变了求同型过多,求异型过少的状况;发现法教学旨在在发现新问题过程中培养学生学习的喜好,而不单是应对考试,从而在学习情感上,改变了应试型过多,喜好型过少的状况。
一般认为,引导—发现教学模式由以下四个环节组成摘要:
(1)设置情境或创设发现新问题;(2)收集信息并进行探索实验;(3)引导发现,激励学生自主地解决新问题;(4)引导评价,及时归纳总结。
“引导—发现”数学建模教学模式对于教师和学生来说,都是一个学数学、用数学共同促进的过程。非凡对于教师来说,教师的“引导”体现在为学生创设一个好的新问题环境,激发起学生的探索欲望,最终由学生“自主发现解决”面临的新问题,并使获取的知识成为继续发现新问题,获取新知识的起点和手段,形成新的新问题环境和学习过程的循环。它的主旨应通过这个过程让学生在发现新问题,在探索求解的实践活动中学习数学,加深对数学意义的理解,习惯用数学思维来思索新问题,提高用数学知识解决新问题的能力和意识。
“发现”在教学中起着非常重要的功能,它能充分调动学生的主动性和积极性,在探索、发现的过程中培养学生的思维能力和创新精神。同样在数学建模教学中,老师应有针对性地选择一些富有思索性、探索性的新问题,引导学生在发现中学习。因为发现法有两个效用摘要:一是“喜好”,即能使学生在发现中产生“兴奋感”,近而培养学习喜好,从“化意外和复杂性为可预料性和简单性”的行动中获得理智的满足,能使数学建模教学比较生动活泼。二是“迁移”能力的提高。这是指学生从发现学习中能获得这样一种能力,在碰到类似的但未学习过的新问题时其思维过程将大大缩短,具备举一反三的能力。引导—发现教学模式的宗旨是要人们意识到并把握科学探究的过程,而不仅仅是找到新问题的答案。在这一模式中,师生之间是一种合作的关系,师生比较平等,学生可以自主地进行探究,有利于培养学生的自控能力。
这一教学模式主要应用在数学建模的高级阶段,在这一阶段,学生己有一定的建模能力,可以接触较复杂的应用新问题,学生在采集有用信息时,发现新问题,在教师的引导下解决新问题。但这种教学方法对教师和学生的要求都比较高,教师需要了解学生把握建模方法的思维过程和学生的能力水平,学生则必须具备良好的认知结构,而内容必须是较复杂的,符合探究、发现等高级思维活动方式。因此,在数学建模教学中教师应根据不同的教学内容和教学对象有选择地采用此模式进行教学,扬长避短,使此模式教学取得实效。
参考文献
[1张德江《会学比学会更重要-在学习革命探究会成立大会上的讲话》[J长春工业大学学报2006.3页码107-110
[2沈小青《数学建模教学模式论》[D福建师范大学200310页码16-19
[3叶平《教学模式摘要:从“广播式”向“分互式”演讲》[J中国地质大学学报2001.3
篇3
“学起于思,思源于疑。”疑问是思维的开端,创新的基石,是打开学生探究之门的钥匙。在建模教学中同样如此,一个巧妙的问题,不仅可以激发学生的学习热情,诱发学生探究动机,还可以将学生的思维引向深处,从而使学生的探究更有深度与广度,在学生的积极思考与主动探究来圆满地完成教学任务。为此在教学中,要尽量避免没有悬念的教学,而是要善于运用提问艺术,抛出富有启发性与探索性的问题,一石激起千层浪,这样更能引导学生展开主动探究。如在学习“平均数”时,我首先让学生思考,班内两个小组参加学校的比赛,其中第一小组5个人,第二小组8个人,哪个小组的水平高一些呢?这样的问题与学生的现实生活密切相关,与教学内容紧密相连,具有很强的趣味性与针对性,更能引发学生的学习热情与主动思考。通过思考后,学生提出了一些解决方法,比较总分的高低,看最高分在哪个小组等。但随后学生又发现这些方法存在一定的局限性,并不能客观反映各小组的实际情况。学生初步建模失败,此时就需要教师因势利导,给予必要的启发与诱导,进而引入“平均数”的建模,这样就可以实现学生的有效探究,更加利于学生对此知识点的本质性理解。
二、深入本质,深化理解
学生的认知规律是由形象到抽象再到形象,这一特点决定了在学生建模的过程中,要加强引导,深入本质。如植树问题是小学数学教学的一个重点也是难点,而要突出重点突破难点,就必须要让学生深入本质的理解,这样学生才能灵活地加以运用,才能掌握数学建模这一重要的数学思想。经过师生之间的互动探究得出不封闭路的植树棵数=间隔数+1后,再次提出问题引导学生思考:(1)道路长度是100米,每隔5米种1棵树,有多少个间隔?可以种多少棵树?(2)如果间隔数是30个,可种多少棵树?间隔数是n个,可种多少棵树?(3)如果路的长度改变,而其他条件不变,植树棵数=间隔数+1这个公式是否成立?(4)思考为什么植树棵数不等于间隔数而是等于间隔数+1?这样的几个问题层层递进,由特殊到一般,由抽象到弄错,步步深入,可以将学生的认知由形象引向抽象再到形象,从而达到学生对知识的深刻理解与灵活掌握,亲历数学建模全过程,实现对这一基本数学思想的真正内化。
三、回归生活,提升能力
数学学科源于生活,同时又服务于生活,与生活有着千丝万缕的联系。这一学科特征决定了在数学建模教学中不仅要重视从现实生活中来提炼与抽象出数学模型,同时还要注重将数学模型运用于生活实践中,回归生活,指导实践,这样才能真正实现学以致用,促进学生数学素养与能力的整体提高。如关于植树问题,在学生抽象出数学模型,总结出公式以后,为了提升学生的认知,促进学生将知识转化为能力,我们还要引导学生能够运用抽象出的模型来解决现实问题。如广场上的大钟6点敲响6下,所用时间是10秒,那么12点时敲响l2下所用的时间是多少?这样将学生所总结出的模型运用于现实生活问题的解决之中,将学生思维的全过程展现出来。这样就可以避免学生对模型的机械套用,而是遵循了学生从现实生活提取数学素材抽象出数学模型再到将数学模型还原于具体的生活问题。这样更能加深学生对数学模型的理解与认知,使学生已经建立的数学模型得以不断扩展与延伸,才能促进学生对模型的内化,实现学生的真正理解与灵活运用,提升学生的能力;更为重要的是可以让学生真切地感受到数学建模的实用性与必要性,促进学生掌握建模这一最基本、最重要的数学思想。
篇4
所谓数学建模,从字面意思看,其以数学理论与实际生活的关联为教学重点,其教学内容的设定目标在于培养学生的动手能力、实践能力,力求帮助学生从实践中深入体会数学理论知识.对于高中数学中的建模教学,在国外被重视的时间早于国内,我国1993年的数学课程改革研讨会上才首次提出“建立数学模型”的议题,2003年的高中数学课程标准中才明确了数学建模这一学习活动在高中数学教学大纲中的必要性.
虽然我国正式明文提出有关高中数学中的建模教学的相关内容,但在实践效果来看并不理想.不少高中对于这一议题的实施常常会因不同学校的差异、这样那样的实际情况限制等条件而不完全落实指导思想.加之高中学习阶段的紧张性,常常会形成建模被冠以浪费时间的名号而不被应用.然而,就现状分析来看,高中生们对高中数学的应用能力远不如预想的好.相关教育者及研究人员也逐渐意识到这一严峻问题,终于将眼光投入到建模教学对于高中生思维发展的重要性.
以“高中数学,建模”为关键词查询2000年至2014年十余年时间内的研究理论文献,得出结果29600篇,这一结果是值得我们欣慰的,越来越多的人们关注到高中数学建模的重要性,并不断探索其有效实践方式及效果分析.就建模教学对于高中数学的意义而言,具有多重性.首先,建模教学的内容特殊性可以在学生与老师之间形成良性制动系统,也就是说,老师们在研究建模教学具体操作时,会多方面权衡各方条件及因素,对于课堂设计有促进意义.此外,通过以小组学习为主要教学方式的建模教学过程,可以培养学生们对于高中数学的非智力因素.目前,数学建模在高中数学中的实施难点在于多数教师并不具备数学建模的教学经验,教师们在不断尝试,因此,数学建模的收效性一般.
二、高中数学建模对学生的多方位影响
(一)拓宽学习范围,以数学为中心融合进其余学科的知识,有利于学生视野范围的扩大.数学学科以基础学科的身份在其余学科中常常出现,比较常见的包括物理、化学、生物,而表面看关联不大的语文学科也处处体现着数学的思想.原本传统高中数学教学过程中,往往忽视了这一点,造成学生们的思维局限性.而数学建模的出现对这一现状的改善有促进作用.其中,通过有效的课堂教学模式及教学内容的设计,建模教学可以集合数学与物理、化学、生物甚至是美术的问题来供学生们思考.换言之,在教学过程中体现数学与其他学科之间的呼应关系,既可以帮助学生巩固数学知识,更能起到辅助学生进一步理解其余学科内涵的作用.学科间的交叉无形中培养学生自主建立建模意识,有利于学生们思维的发散性发展.
(二)以创新性思维影响学生的思维过程,在潜移默化中提升学生的思维水平.建模教学区别于传统教学的明显特征在于其创新思维的引入.通过课堂上的多元化教学方式的促进,可以培养学生的创新思维能力,在面对贴合实际的理论问题时,学生们会受到建模思想的印象而自发地运用多维度分析、辨别能力,这对于学生们发散性思维的养成很有益处.而建模教学中的创新性并不是空谈,其有实际的理论支撑以及丰富的知识源储备作依托.同时,建模教学对于学生的思维深刻度与灵活度也有一定要求,可以在过程中锻炼学生独立、自觉寻求问题最佳解决方案的能力,对其今后的工作、生活能力的提升也有帮助.
(三)以倡导学生自主学习、实践的操作过程,培养学生自主探索问题解决方法的良好学习习惯.区别于传统高中数学单一的教学方式,建模教学不再将学生们的学习过程局限于接受传输、记忆要点、模仿练习的枯燥过程,而是将自主探索、主动实践、合作学习、多样性自学等教学模式融入到高中数学的课堂教学中.从学生心理条件的分析中我们可以看到,上述几种建模教学的常用方式有助于学生在思维养成中的主动性的培养,改变传统教什么做什么的呆板模式,令学生的学习过程成为教师初期引导、学生后期再创造的愉快过程.此外,多样性、多元化、信息化的教学过程也符合现代社会的发展趋势,对于高中生思维的锻炼有很大帮助,在学习能力提升的同时,可以令学生掌握很多学习之外非常有用的实践能力,真正实现学生们各方面能力的综合提高.
三、议题要点概括
建模对于培养学生思维能力及实践能力有重要意义,在当前建模思想被广泛重视的时代背景下,相关教育工作者及研究人员需要注意自身对于学生们的引导方式及方向.以对实际问题进行抽象分析的原则对教学内容建立对应的、恰当的数学模型.值得注意是,在当前建模教学依旧处于探索期的阶段,教师们或许需要借助于传统教学与建模教学的对比方式,在效果及便捷性方面给学生提供直观感受,以明显的实践结果令学生自主体会建模教学的优点与优势.此外,在建模教学对学生思维发展的影响的探究过程中,需要注意不能忽视学生的非智力因素的培养与课堂教学的融合.
高中数学的建模过程所包含的问题应该来源于学生的生活实际,而不能以学生较难接触到或不具备普遍性的生僻现象作为建模对象,否则将因与实际生活脱节而增强学生对建模过程的反感情绪.此外,高中学生的数学知识储备与解决问题能力水平相对不高且具有一定局限性,因此,高中数学中的建模过程不能设计得过于复杂.
篇5
题名。字体为常规,黑体,二号。题名一般不超过 20 个汉字,必要时可加副标题。 摘要。文稿必须有不超过300字的内容摘要,摘要内容字体为常规,仿宋,五号。摘要应具备独立性和自含性,应是文章主要观点的浓缩。摘要前加“[摘要]”作标识,字体为加粗,黑体,五号。 正文。用五号宋体,1.5倍间距。 文稿以 10000 字以下为宜。 文内标题。力求简短、明确,题末不用标点符号(问号、叹号、省略号除外)。层次不宜超过5级。第1级标题字体为常规,楷体,小四;第2级标题字体为加粗,宋体,五号;次级递减。层次序号可采用一.(一).1.(1).1),不宜用①,以与注释号区别。文内内容字体为常规,宋体,五号。 数字使用。数字用法及计量单位按 GB T15835—1995《出版物上数字用法的规定》和 1984年12月27日国务院的《中华人民共和国法定计量单位》执行。4位以上数字采用3位分节法。5位以上数字尾数零多的,可以“万”、“亿”作单位。标点符号按GB T15835—1995《标点符号用法》执行。 附表与插图。附表应有表序、表题、一般采用三线表;插图应有图序和图题。序号用阿拉伯数字标注。常规,楷体,五号。图序和图题的字体为加粗,宋体,五号。 引用。引用原文必须核对准确,注明准确出处;凡涉及数字模型和公式的,务请认真核算。 参考文献。论文应附有参考文献并遵循相应的格式。参考文献放在文末。 “[参考文献]”字体为加粗,黑体,五号;其内容的汉字字体为常规,仿宋,小五。 参考文献中书籍的表述方式为:
序号 作者 书名 版本(第1版不标注) 出版地 出版社出版年 页码参考文献中期刊杂志论文的表述方式为:序号 作者 论文名杂志名 卷期号 出版年 页码参考文献中网上资源的表述方式为:序号 作者 资源标题网址 访问时间(年月日) 页眉,页脚。团队序号位于论文每页页眉的左端。页码位于每页页脚的中部,用阿拉伯数字从“1”开始连续编号。 论文用A4纸打印出来,并将论文首页和论文装订到一起,一齐上交。论文出处(作者):
一个教授心目中理想的学位论文
毕业论文提纲的步骤
篇6
1.1农产品的变质函数农产品在运输过程中容易腐烂,Dave对物体变质宿点进行了分析,提出了包含生命周期的易腐物品的函数形式较为复杂,采用指数表示农产品的变质速度。本文采用定义农产品的指数变质函数描述农产品的鲜活度随时间和温度的变化情况。农产品在运输过程中的温度已经设置完,本文设置农产品运输在一个稳定的温度环境下完成,设置农产品的变质函数如式(1)所示:Q(t)=Q0•K•e-βt(1)其中,Q0用于描述农产品在新鲜情况下的质量;t用于描述运输农产品消耗的时间;K用于描述农产品随温度变化而变质的速度常数,也就是农产品变质速度,K值较小说明农产品呈现静态变质特征,K较大说明农产品呈现动态变质特征,β用于描述农产品对时间的敏感系数,也就是农产品的变质程度,如果农产品对时间敏感度相对增加,则β的取值降低,否则提升。
1.2数学建模对农产品运输距离问题进行优化,需要设置的前提条件是:(1)所有农产品需求点的地理位置和需求量事先设置;(2)农产品配送中心保存的农产品量可以满足全部需求点的要求量;(3)应一次性满足需求点的要求量,并且执行任务的车辆是唯一的;(4)农产品在运输时的变质损失可忽略不计,通过充分符合时间窗限制,调控农产品的变质损失。则构建的农产品运输距离与变质关系的数学建模,如式(2)所示:Z=∑i=0n∑j=0n∑k=1mCijXijk+A∑j=1nmax(ETj-tj,0)+A∑j=1nmax(tj-LTj,0)+∑i=0n(Qi-gi)•p(2)其中,tj=∑i=0n∑k=1mXijk(ti+tij+si),tj表示车辆到达需求点j的实际时间,tij表示i到j的行驶时间,si表示在需求点i卸车的时间,i,j=1,2,,n。设置的农产品运输过程的限制规范如下述各式所示:∑i=1ngiyik≤q(k=1,2,,m)(3)∑k=1myik=ìím(i=0)1(i=1,2,,n)(4)∑i=1nxijk=yijk(j=1,2,,n;k=1,2,,m)(5)∑j=1nxijk=yijk(i=1,2,,n;k=1,2,,m)(6)xijk=0或1(i,j=1,2,,n;k=1,2,,m)(7)yik=0或1(i=1,2,,n;k=1,2,,m)(8)其中,配送中心的编号是0,农产品需求点编号为1,2,…,n,农产品运输任务和配送中心都用点i描述;Cij表示通过点i到j消耗的费用;xijk表示决策变量,用于描述车辆k是否从i到j;k用于描述车辆号;车辆数量为m;农产品需求点数量为n;农产品运输的时间制约系数是A;gi用于描述i点的需求量;q表示车辆载重量;éùETiLTi表示农产品运输任务j的时间限制区间。Qi=gi/(K•e-βtik)表示车辆k在tik时间运输到i点,并且符合点i要求情况下的载货量。p表示单位农产品在运输过程中由于变质产生的损失价值。式(2)表示目标函数;式(3)表示每辆车都不超载;式(4)表示确保各需求点都有1个车辆进行配送;式(5)、(6)用来限制到达和离开需求点的车辆数量是1;式(7)用来描述i同j间有无距离;式(8)表示yijk的取值。
1.3农产品变质情况下最佳运输距离上述分析的农产品运输距离优化模型是NP-Hard问题,采用指数变质函数对该模型进行约束,会提高农产品带时间窗的运输距离问题更加复杂。农产品在运输过程中受到时间的相对限制,可分为静态农产品变质和动态农产品变质两种类型,其中静态变质的时间相对较短,变质程度较弱,产生的损失也较低;而动态变质的时间较长,变质程度较强,产生的损失较高。本文采用最大最小蚁群算法,求解静态农产品变质情况下,最佳农产品运输距离。具体的过程为:(1)对变量进行初始化处理,初始时刻τij=0,各条距离上的信息素值是τij=1,迭代次数nc0,k1,车辆行驶时间Tsolu=0,车辆剩余载重Q-net=Q,不能符合需求点要求的需求点集为V-net={V}1,V2,,Vn,Zbest=M,M为较大正数。(2)按照车辆载重以及时间窗口的限制,明确蚂蚁后续可选的转移点集V-allowed。分析V-allowed是否为空集,如果是空集,设置kk+1,Tsolu=0,Q-net=Q,V-allowed=V-net。(3)运算蚂蚁选择不同需求点的转移概率是pkij=[τij]α•[ηij]β∑I∈V-allowed[τij]α•[ηij]β,产生随机数,按照随机数以及概率选择蚂蚁后续转移点Vt,调整Q-net,Tsolu以及V-net。(4)分析V-net是否为空集,若不是,返回(2);若是,则说明需求点都被配送到货,n个点都处于解集中,记录蚂蚁数量mk。(5)采用式(9)对各边(i,j)进行信息素调整:τij(t+1)=pτij(t)+τij(t)τij(t)=ìí2L(gb)IE边(i,j)在本次求解的运输路径上0otherwise(9)其中,L(gb)表示当前时刻蚂蚁距离搜索中获取的全局最优路线长度,且有0.1≤ρ≤0.9。(6)对信息素值的上下限进行判定和调整。τmaxij(t)=ìíρk•τij(0)+11-ρ•2f(Sgb),0<k<811-ρ•2f(Sgb),k≥8(10)其中,f(Sgb)表示当前全局最优解距离的长度。τmin=τmax/10,实时调整τij的值。IEτij>τmax,τij=τmaxIEτij<τmin,τij=τmin(7)对各边(i,j)设置τij0;ncnc+1,运算目标函数值,并分析目标函数值是否变化,若有,记录所得解。(8)IEnc<NC(预定迭代次数),重新迭代,否则跳出。
1.4采用动态规划算法求解动态农产品变质情况下最佳运输距离假设从配送中心发出m辆车,有配送需求的客户n个,某t时刻出现p个新需求客户,m辆车从配送中心出发,配送完所有有需求的客户,最后回到配送中心[6]。其阶段数为2m+n+p,某一车辆k从客户点i到客户点j,(i,j)用于描述农产品运输过程的变质状态变量,某一t时刻出现p个新需求客户,按照这些客户的位置、配送时间窗、需求量和现今车辆的剩余载重量,将新需求客户插入原来的车辆配送计划中。用Xijk描述车辆k从客户点i到客户点j则记为1,反之记为0;Yjk表示车辆k配送客户点j则记为1,反之记为0。车辆k由客户点i行驶到客户点j,将车辆运输成本、农产品动态变质损失成本和客户惩罚成本组成的综合最低成本作为目标函数。
2实例验证
为了验证本文模型的有效性,需要进行相关的实验分析。实验选取某城市农产品配送中心,对10个配送中心需求点进行瓜果配送。配送中心车辆载重约束为6t,运行速度为50km/h。10个需求点要求量、配送车辆到达时间窗口和到达后的处理时间用表1描述。配送中心和不同需求点间的距离用表2描述。设置变质函数为Q(t)=Q0°e-t/200,确定瓜果运输距离同变质关系模型,确保满足总体需求点不同需求条件下的运输成本最低问题。采用Matlab编制基于最大最小蚁群算法程序并且结合实例问题进行求解,设置α=1.5,β=3,m=30,Q=8,ρ=0.7,运行次数为6000。运行10次结果分别是2827.5,2827.5,2827.5,2764.5,2754.5,2754.5,2728.5,2727.5,2728.5,2728.5。本文方法获取的最佳瓜果运输距离为2727.5,最优解趋势用图1描述。Fig.1Theoptimalresultstrendchart分析图1可得,本文模型的性能较为稳定,10次求解最差与最优结果相差很小,有效解决了求解瓜果运输距离陷入局部最优的缺陷,是处理农产品运输距离优化的有效方法。
3结论
篇7
数学建模,旨在培养学生解决实际生活问题的能力.它的实际性和创造性被越来越多的教师所接受.数学建模不仅可以让学生能够运用所学数学知识解释生活难题,而且可以通过实际生活的案例来提高学生接受数学学习的兴趣,从而提高数学教学效果.因此,数学建模教学应被大力推广.
2高中数学建模教学出现的问题
目前许多高中数学课本中将有关数学建模的内容都分散于各个教学单元中,使其内容失去了连贯性,学生不能灵活运用数学知识,大大降低了数学建模教学的优势和目的.另外许多高中生在学习数学建模的过程中存在或多或少的障碍.高中生由于地区或者其他原因,对于现实问题的洞察能力和数据的处理能力均有限,导致数学建模教学不能顺利地进行.另外,许多教师对于建模的教育理念存在偏差,不重视数学建模,因此,教学效果也就可想而知.
3加强高中数学建模教学的对策
1)重视各章前问题教学高中数学课本在每章前面均有一个关于本章教学内容的实际问题,而通过重视各章前问题教学,可以引发学生对于数学建模的兴趣,从而使得学生明白数学建模教学的意义.例如,某公园有个大型摩天轮,该摩天轮可以吊起78个客舱,一次能运载350个乘客.坐该摩天轮从开始到最后需要耗时30min,转速为5m•min-1.问,乘客乘坐该摩天轮时,从摩天轮的最低点开始计时,他所处的高度h与所坐的时间t的关系,并用数学模型解释.这个章前问题就是典型的运用数学模型来解决生活中的问题,因此,高中数学教学应加强章前问题教学,培养学生重视数学建模的意识.
2)加强数学开放题教学高中数学教师可以通过加强数学开放题的教学提高数学建模教学效果.因为数学开放题可以锻炼学生开放性思维和创造性思维.开放题可以接近生活中的现实问题,例如,随着科技的发展和能源的消耗过剩,现今市场上出现3种汽车类型,一是传统的以汽油为原料的汽车,二是以蓄电池为动力的车,三是用天然气作为原料的汽车.通过对这3种类型的车使用原料成本进行分析比较,并建立数学模型,分析汽油价格的变化对这3种车所占市场份额的影响.这种开放性的试题,没有具体的答案,只要学生所建的数学模型能够将问题说得通,都算是成功的数学建模.
3)注重案例式教学注重案例式教学是值得教师学习的提高教学效果最有效的方法.通过分析典型的数学案例理解建模的优势,提高数学建模的教学效率.例如,甲、乙2人相约到某地相遇,该地距离出发点为20km,他们约定一个人跑步,而另外一个人步行,当跑步者到达某个地方后改为步行,接着步行的人换成跑步,再步行,如此反复转换,已知跑步的速度是10km•h-1,步行的速度是5km•h-1,问至少花多少时间2人都可以到达目的地.这种相遇问题在数学教学中应该经常见到,这是一种典型的案例题,通过典型案例的数学建模教学,不仅可以让学生对问题更加印象深刻,而且可以使得学生更容易接受数学建模教学的方式,从而提高数学建模教学的效果.
篇8
(1)培养同学对复杂现象的洞察力。
数学建模中所涉及的大多数问题一般具有一定复杂性。要对具体问题建立数学模型,反映问题的实质,就需要抓住问题的本质,建立各种因素的内在联系,并通过数学工具表达出来。例如,在公交车调度问题(2001年B题)中,需要照顾乘客和公交公司双方面的利益,这是一个多目标规划问题,大部分参赛队都把题目中的调度要求“候车时间不超过10分钟,车辆满载率在50%至120%之间”作为硬约束条件,而从出题人、评卷专家和实际情况来看,这些要求都可以放宽,只要抓住问题的本质,转化成单目标规划问题,并给出如何确定调度方案,以及判断方案的优劣的标准,就是一份不错的答案。培养同学对复杂现象的洞察力的有效方法除了经验的传授外,更重要是通过练习,让同学们在实践中主动培养对复杂现象的洞察力。包括研讨班,课堂讨论等方式。
(2)培养同学抽象的分析能力。
在数学建模的实践中,能否取得最后的成功,关键是要有将实际问题抽象成数学模型的能力。而这一能力的获得也是需要通过大量的实践,使同学们在数学模型的实践中提高抽象的分析能力。在DVD在线租赁方案设计(2005B题)中,要确定商家至少要购买多少光盘,还要使得顾客满意度最大,而这两个问题是互相矛盾的。这就要求参赛者必须先确定一个量,在此基础上求出最少购买量或最大满意度。另外,如果每一位顾客都只能从自己事先预定订的光盘中租借,又要按题目要求“每次皆三盘”,则问题本身可能无解。事实上,在建立了整数规划模型以后,即使去掉上述第一个约束条件,由于目标函数是“使得顾客满意度最大”,在模型的计算过程中也会尽可能考虑到这一约束,因为很显然,从没有预订的光盘中租借是不可能使满意度最大的。
(3)培养建立模型的想象力。
深入事物本质,寻找其内在联系不仅需要逻辑思维,更需要形象思维,而形象思维通过形象概括来能动地反应事物的本质。美国心理学家Vinacke特别提出了想象力对思维,特别对问题解决的作用,因而想象力构成对问题研究的实在要素,是成功的关键。在数学建模中培养学生的想象力是参加整个数学建模活动的重要环节。也是同学们在建立数学模型中发挥主观能动性,体验探索的乐趣,从中体会创新带来的收获。
二、注重培养学生综合运用知识的能力
注重培养学生综合运用所学的知识在数学建模竞赛实践也是十分重要的,包括以下三个主要环节。
(1)综合运用物理学,力学,工程和经济社会学中的相关知识,原理和方法对现实世界的特定对象所提出的实际问题,研究分析其内在机理,寻找反映事物本质的内在规律,并综合运用数学工具加以描述和刻画,即建立与原型问题对应的数学模型。
(2)综合运用计算机技术和数学方法对已建立的数学模型应用数学软件编程进行数值计算,实现模型求解,并以此来对模型进行检验。
(3)运用已检验的数学模型回答所提出的实际问题对所研究的特定对象进行结构分析,预测等等。
三、注重培养学生的科研能力
学生参与数学模型的活动,运用数学工具分析和解决实际问题是提高数学教学的有效手段。对一个数学模型中所提出的原型问题,怎样引导学生一步一步地接近问题的本质,寻找恰当的方法,从最原始工作开始,分析问题,查阅资料,提出各种方案,发现数学模型的不足和问题,从模型到数据,再从数据到模型,在不断地反复过程中,使学生体验到探索问题,运用知识进行研究的整个过程,这对学生未来的发展都是极有益的,以数学模型的教学为平台,对学生进行科研的基本训练,也是数学模型能力培养的重要方面。
四、结语
篇9
关键词:数学建模;计算机技术;计算机应用
随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。
1 数学建模的特质
从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。多个学科之间互相影响,从中找到互相之间存在的相互联系,其中有许多不能够被忽视的数学元素,且这些元素都是至关重要的,所以这个计算过程十分复杂,计算量与数据验算过程也十分耗费时间,因此需要充足的存储空间支持这一过程的运行。在数学建模的过程当中,所涉猎的数学算法并不是很简单,而建立的模型也遵循个人习惯,因此建成的模型也不是一成不变的,但是都能够得出相同的答案。 正因如此,在数学建模的过程当中,就需要使用各种辅助工具来完成这一过程。由于计算机软件具有的高速运转空间,使得计算机技术应用于数学学科的建模过程当中,与数学建模过程密不可分息息相关。由此可见,计算机技术的应用水平对于数学学科的重要作用。
2 数学建模与计算机技术之间的联系
2。1 计算机的独特性与数学建模的实际性特点 计算机的独特性与数学建模的实际性特点,使得二者之间有着密不可分的联系,正是因为这种联系使得双方都能够有长足的发展,在技术上是起着互相促进的作用。计算机的广泛应用为数学建模提供了较为便利的服务,在使用过程当中,数学建模也能够起到完成对计算机技术的促进,能够在这一过程中形成更为便捷高速的使用方法与途径,使得计算机技术应用更为灵活,也可以说数学建模为计算机技术的实际应用提供了更为广阔的应用空间,从中不难发现,数学建模对于计算机应用技术的支持性。计算机应用技术需要合成的是多方面的技术支持,而数学建模则是需要首要完成的,二者之间是相互影响共同促进的作用。
篇10
ABCD分值: 5分 查看题目解析 >33. 已知双曲线()的离心率为2,则的渐近线方程为
ABCD分值: 5分 查看题目解析 >44. 在检测一批相同规格共航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为
ABCD2.8kg分值: 5分 查看题目解析 >55. 要得到函数的图象,只需将函数的图象
A向右平移个周期
B向右平移个周期CD分值: 5分 查看题目解析 >66. 已知,则
ABCD分值: 5分 查看题目解析 >77. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是
A2B3
C4D5分值: 5分 查看题目解析 >88. 执行右面的程序框图,如果输入的,则输出的的值分别为
A
B4,7C3,7D3,56分值: 5分 查看题目解析 >99. 已知球的半径为,三点在球的球面上,球心到平面的距离为,,则球的表面积为
ABCD分值: 5分 查看题目解析 >1010. 已知,若,则
ABC2D1/2分值: 5分 查看题目解析 >1111. 已知抛物线的焦点为,准线为.若射线()与分别交于两点,则
A2BC5D分值: 5分 查看题目解析 >1212. 已知函数若方程有五个不同的根,则实数的取值范围为
ABCD分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313. 若函数为奇函数,则 .分值: 5分 查看题目解析 >1414. 正方形中,为中点,向量的夹角为,则.
分值: 5分 查看题目解析 >1515. 如图,小明同学在山顶处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在处测得公路上两点的俯角分别为,且.若山高,汽车从点到点历时,则这辆汽车的速度为(精确到).参考数据:.
分值: 5分 查看题目解析 >1616. 不等式组的解集记作,实数满足如下两个条件: ①;②.则实数的取值范围为.分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。17已知等差数列的各项均为正数,其公差为2,.17. 求的通项公式;18. 求.分值: 12分 查看题目解析 >18(本小题满分12分)如图1,在等腰梯形中,,于点,将沿折起,构成如图2所示的四棱锥,点在棱上,且.
19. 求证:平面;20. 若平面平面,求点到平面的距离.分值: 12分 查看题目解析 >19在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:
21. 根据表中的比赛数据,比较运动员A与B的成绩及稳定情况;22. 从前7场平均分低于6.5分的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;23. 请依据前7场比赛的数据,预测冠亚军选手,并说明理由.分值: 12分 查看题目解析 >20已知函数().24. 若是的极值点,求的单调区间;25. 求在区间的最小值.分值: 12分 查看题目解析 >21综合题26. 已知圆,点,以线段为直径的圆内切于圆.记证明为定值,并求的方程;27. 过点的一条直线交圆于两点,点,直线与的另一个交点分别为.记的面积分别为,求的取值范围.分值: 12分 查看题目解析 >22选修:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.28. 若直线与椭圆交于两点,求的值;29. 求椭圆的内接矩形周长的值.分值: 10分 查看题目解析 >23选修:不等式选讲已知使不等式成立.30. 求满足条件的实数的集合;31. 若,对,不等式恒成立,求的最小值.23 第(1)小题正确答案及相关解析正确答案
T={t|t≤1}解析
令,则,因为使不等式|x-1|-|x-2|≥t成立,所以t≤1,即T={t|t≤1}.23 第(2)小题正确答案及相关解析正确答案
9.解析
免责声明
公务员之家所有资料均来源于本站老师原创写作和网友上传,仅供会员学习和参考。本站非任何杂志的官方网站,直投稿件和出版请联系杂志社。