化学奖范文10篇

时间:2023-04-03 20:56:58

化学奖

化学奖范文篇1

1902

埃米尔·费雷(EmilFischer)德国人(1852--1919)

埃米尔·费雷,德国化学家,是一九O二年诺贝尔化学奖金获得者。他的研究为有机化学广泛应用于现代工业奠定了基础,后曾被人们誉为"实验室砷明。"

1903

阿列纽斯(SvanteAugustArrhenius)瑞典人(1859--1927)

在生物化学领域,阿列纽所也进行了创造性的研究工作。他发表了《免疫化学》、《生物化学定量定律》等著作,并运用物理化学规律阐述了毒素和抗毒素的反应。阿列纽斯是当时公认的科学巨匠,为发展科学事业建立了不可磨灭的功勋,因而也获得了许多荣誉。他被英国皇家学会接受为海外会员,同时还获得了皇家学会的大卫奖章和化学学会的法拉第奖章。

1904

威廉·拉姆赛(WilliamRamsay)英国人(1852--1916)

他就是著名的英国化学家--成廉·拉姆赛爵士。他与物理学家瑞利等合作,发现了六种惰性气体:氯、氖、员、氮、试和氨。由于他发现了这些气态惰性元素,并确定了它们在元素周期表中的位置,他荣获了一九O四年的诺贝尔化学奖。

1905

阿道夫·冯·贝耶尔(AsolfvonBaeyer)德国人(1835--1917)

发现靛青、天蓝、绯红现代三大基本柒素分子结构的德国有机化学家阿道夫·冯·贝耶尔,一八三五年十月三十一日出生在柏林一个著名的自然科学家的家庭。

1906

亨利·莫瓦桑(HenriMoissan)法国人(1852--1907)

亨利·莫瓦桑发现氛元素分析法,发明人造钻石和电气弧光炉,并于一九O六年荣获诺贝尔化学奖的大化学家。

1907

爱德华·毕希纳(EduardBuchner)德国人(1860--1917)

爱德华·毕希纳,德国著名化学家。由于发现无细胞发酵,于一九O七年荣获诺贝尔化学奖,被誉为"农民出身的天才化学家"。

1908

欧内斯特·卢瑟福(ernestRutherford)英国人(1871--1937)

一八七一年八月三十日,在远离新西兰文化中心的泉林衬边,在一所小木房里,詹姆斯夫妇的第四个孩子铤生了。达就是后来在揭示原子奥秘方面板出卓越贡献,因而获得诺贝尔化学奖金的英国原子核物理学家欧内斯待·卢瑟福。

1909

威廉·奥斯持瓦尔德(F.WilhelmOstwald)德国人(1853--1932)

奥斯特瓦尔德所到之处,总要燃起科学探索的埔熊烈火。他在莱比锡大学开展了规模宏大的研究工作。由于他从很多方顶研究了催化过程,顺利地完成了使氨发生氧化提取氧化氮的研究工作,它为氨的合成创造了条件。奥斯特瓦尔德在这一领域中的成就得到世界科学界的高度评价。由于在催化研究化学平衡和化学反应率方面功绩卓著,一九O九年他获得了诺贝尔化学奖金。

1925

化学奖范文篇2

工作。

瑞典皇家科学院6日宣布,将2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。

蛋白质是由氨基酸组成的,氨基酸如同砖头,而蛋白质则如结构复杂的建筑。正如同有各种各样的建筑一样,生物体内也存在着各种各样的蛋白质。不同的蛋白质有不同的结构,也有不同的功能。通常看来蛋白质的合成要比蛋白质的降解复杂得多,毕竟拆楼容易盖楼难。

蛋白质的降解在生物体中普遍存在,比如人吃进食物,食物中的蛋白质在消化道中就被降解为氨基酸,随后被人体吸收。在这一过程中,一些简单的蛋白质降解酶如胰岛素发挥了重要作用。科学家对这一过程研究得较为透彻,因而在很长一段时间他们认为蛋白质降解没有什么可以深入研究的。不过,20世纪50年代的一些研究表明,事情恐怕没有这么简单。

最初的一些研究发现,蛋白质的降解不需要能量,这如同一幢大楼自然倒塌一样,并不需要炸药来爆破。不过,20世纪50年代科学家却发现,同样的蛋白质在细胞外降解不需要能量,而在细胞内降解却需要能量。这成为困惑科学家很长时间的一个谜。70年代末80年代初,今年诺贝尔化学奖得主阿龙·切哈诺沃、阿夫拉姆·赫什科和欧文·罗斯进行了一系列研究,终于揭开了这一谜底。原来,生物体内存在着两类蛋白质降解过程,一种是不需要能量的,比如发生在消化道中的降解,这一过程只需要蛋白质降解酶参与;另一种则需要能量,它是一种高效率、指向性很强的降解过程。这如同拆楼一样,如果大楼自然倒塌,并不需要能量,但如果要定时、定点、定向地拆除一幢大楼,则需要炸药进行爆破。

这三位科学家发现,一种被称为泛素的多肽在需要能量的蛋白质降解过程中扮演着重要角色。这种多肽由76个氨基酸组成,它最初是从小牛的胰脏中分离出来的。它就像标签一样,被贴上标签的蛋白质就会被运送到细胞内的“垃圾处理厂”,在那里被降解。

这三位科学家进一步发现了这种蛋白质降解过程的机理。原来细胞中存在着E1、E2和E3三种酶,它们各有分工。E1负责激活泛素分子。泛素分子被激活后就被运送到E2上,E2负责把泛素分子绑在需要降解的蛋白质上。但E2并不认识指定的蛋白质,这就需要E3帮助。E3具有辨认指定蛋白质的功能。当E2携带着泛素分子在E3的指引下接近指定蛋白质时,E2就把泛素分子绑在指定蛋白质上。这一过程不断重复,指定蛋白质上就被绑了一批泛素分子。被绑的泛素分子达到一定数量后,指定蛋白质就被运送到细胞内的一种称为蛋白酶体的结构中。这种结构实际上是一种“垃圾处理厂”,它根据绑在指定蛋白质上的泛素分子这种标签决定接受并降解这种蛋白质。蛋白酶体是一个桶状结构,通常一个人体细胞中含有3万个蛋白酶体,经过它的处理,蛋白质就被切成由7至9个氨基酸组成的短链。这一过程如此复杂,自然需要消耗能量。

化学奖范文篇3

对于有机化学来讲,大部分有机分子都是基于共价键而形成,因此传统有机化学都是讲授某个分子内部共价键的形成和断裂机制[1,2]。而超分子化学则是研究两个或多个分子通过非共价键相互作用,缔合组装成具有特定结构和功能的超分子体系的科学。所谓非共价键其实是一种次级键,也叫分子间作用力,包括学生所熟知的氢键,以及金属-配位作用、亲疏水作用、静电作用、范德华力等等。超分子化学主要发轫于1967年CJPederson发现冠醚,继而DJCram提出主客体化学,最后由JMLehn系统提出超分子化学概念。由于他们的卓越贡献,三人于1987年共享了诺贝尔化学奖。超分子化学发展十分迅猛,科学家J-P.Sauvage、J.F.Stoddart和B.L.Feringa利用超分子化学手段在分子机器的设计与构造方面由于做出重大贡献而分享了2016年的诺贝尔化学奖[3]。2017年10月,笔者有幸在南京大学和Sauvage教授进行了深入交流,探讨了其获诺奖的标志性超分子——索烃的合成经历。

2有机超分子化学

如上所述,有机化学是超分子化学的重要发展根源之一。从两次授予超分子领域诺贝尔化学奖的情况可以受到启示。所有获奖的6位科学家中所研究的对象均为有机分子。例如,Pederson的冠醚是一种有机大环分子、Sauvage的索烃是两个有机大环分子以环套环的形式互锁、Stoddart的分子梭则是一个环状有机分子在一个线性有机分子上的穿梭运动等等。显然,有机化学为超分子的发展奠定了基石,并且逐渐形成了化学的一个新分支——有机超分子化学。有机超分子化学的概念可以概括为:以有机分子为对象,研究它们的自组装规律、组装结构及组装体性质,以期获得具有特定功能的有序有机分子聚集体。

3有机化学课程中超分子相关内容

以张文勤等编著的《有机化学》为例[4],在书中第十章第六节第1小节介绍了冠醚。本小节里面简单介绍了冠醚的结构和命名,简要回顾了Pederson发现冠醚并与Cram、Lehn等一起获得诺贝化学奖。并且描述了不同大小的冠醚对不同金属离子的选择性络合。最后举例冠醚可以用作相转移催化剂。在书中第二十章第三节第3小节介绍了蛋白质的结构。蛋白质的结构的一个显著特征就是其肽链会进行螺旋和折叠,形成三维特定的功能体。其中,该小结重点叙述了氢键在形成α螺旋和β折叠中的重要作用。而氢键的形成主要是由于酰胺基中的氧原子和另一酰胺基中的胺基氢原子相互作用。第二十章第四节第2小节,课本介绍了核酸的结构。核酸结构中的碱基对正是通过二重氢键和三重氢键进行连接配对,最终形成DNA的双螺旋稳定结构。

4超分子概念在有机化学中的深化尝试

目前的现状是大部分教师在讲授有机化学时[5],与超分子相关的内容基本是一笔带过。冠醚一节有的教师讲十分钟,有的教师则不讲;对于蛋白质和核酸部分,基本上所有老师都不讲。总的来说,在绝大部分情况下,一般教师在讲授有机化学这门课程时,涉及到超分子相关的内容的讲授全部加起来基本不超过十分钟。针对这一现状,可以做出如下尝试。可以将涉及到超分子的内容上升到一堂课,即一个学时(45分钟)。由于这一部分考试时不作要求,其课程目的,结合前面所述,一共有三个方面:一是提升学生对化学有更高层次的认识,二是为学生将来如果从事科学研究奠定基础,三是激发学生的学习热情。对于最后一点,还是非常重要的。学生在学习有机化学时可能会觉得枯燥,适当把教学内容进行引申,让他们进一步认识到有机化学的重要意义,有利于提高学生的学习兴趣。课程安排如下:在介绍冠醚一节时进行适当引申,从教材现有的内容出发,提出超分子化学概念。从1987年的超分子诺贝尔化学奖延伸到2016年的分子机器诺贝化学奖,简单介绍人物轶事。讲解超分子是分子之间相互作用的结果,特别强调其是研究“分子以上层次”的科学。为了便于学生的理解,在讲授时可以把原子、分子和超分子之间的关系形象地比喻为字母、单词和句子的关系。超分子之间的连接纽带正是超分子作用力,也即非共价键作用力,包括氢键、配位键、主客体作用等等。此时延伸介绍氢键在蛋白质结构和核酸结构中的重要作用,以及这些结构中还存在的其它超分子作用力。最后从蛋白质折叠和碱基对的结构出发简单介绍一下现在最前沿的科研成果——仿生折叠体和多重氢键材料的开发。

5总结

超分子化学已经成为一门高度交叉融合的学科,或者说它是一种手段或策略,可以用来研究和解决诸多领域或学科的问题。在有机化学课程教学过程中,对超分子化学进行适当深化介绍,比起以往忽略不教或一笔带过,是有着非常积极的意义的。因此笔者建议教师在讲授有机化学时,应适当深化超分子相关内容教学,从而提升学生对化学的认识层次,激发学生的学习热情,以及为学生将来从事相关工作打下基础。

参考文献

[1]王龙,刘娜,邵蕾,等.高校有机化学教学改革的研究与实践[J].广东化工,2018,45(2):197.

[2]肖军安,刘志平.有机化学前沿在有机化学教学中的应用——以环丙烷的性质为例[J].广西师范学院学报(自然科学版),2018,35(4):136.

[3]强琚莉,蒋伟,黄飞鹤,等.分子机器的设计与合成——2016年度诺贝尔化学奖成果简介[J].科技导报,2016,34(24):28.

[4]张文勤,郑艳,马宁,等.有机化学[M].第五版.北京:高等教育出版社,2014.

化学奖范文篇4

关键词:有机化学;科研成果;渗透分析

1科研成果在有机化学教学中的渗透的重要意义

化学教师如果在教学的过程中让学生接触到当前先进的化学知识以及生产过程中的实际应用,可以显著的提升学生对有机化学知识学习的兴趣,加深学生对有机化学知识体系的理解。因此,如何将科研成果应用于有机化学教学过程中,将科研成果贯穿到有机化学课堂教学中,实现教学内容多样化,提升化学教学的教学质量,是当前化学教学相关工作人员的工作重点。

2环境友好化学理念在有机化学教学中的渗透

环境友好化学是有机化学的延伸,环境友好化学与有机化学有着密切的联系,环境友好化学能够从源头上消除污染,降低对周边环境的影响,促进企业生产出无毒无害的化学产品。双氧水化学别称为过氧化氢,双氧水的主要产物为水和氧气,双氧水具有价格低廉、不产生污染物的优点。在1998年,日本科学家曾发表过以双氧水为氧化剂,以Na2WO4•2H2O和[CH3(n-C8H17)3N]HSO4为催化剂,在不使用卤素、有机溶剂的方式来实现环己烯直接氧化为结晶己二酸的反应。其反应的方程发生的过程如下图所示,该种反应的收率高达90%以上。乙二酸是合成尼龙的主要材料之一,尼龙制品在全球范围内的产品年均高达240万吨,当前乙二酸在生产的过程中主要采用的是环己酮、环己醇或两者相混合的方式最为原材料,加入硝酸氧化物来进行生产,但是硝酸氧化物在使用的过程中会产生大量的一氧化氮,而一氧化氮是温室效应的元凶之一,并且在生产的过程中还会伴随着硝酸蒸汽进而导致酸雨现象,严重的腐蚀工业设备。环己烯直接氧化为结晶己二酸的反应:化学教师在讲解氧化放应的过程中引入环境友好化学的理念,不仅仅能够扩大学生的事业,还能够打破传统的教学框架,还能够体现出素质教育的目标,实现学生综合素养的提。

3诺贝尔化学奖在有机化学教学中的渗透

诺贝尔化学奖的颁发能够直接的反映出20世纪之后化学研究的主要科研成果,化学教师在讲解有机化学知识引入诺贝尔化学奖,能够让学生更为直观的感受到有机化学的重要性,进而提升学生学习化学知识的热情和积极性。诺贝尔化学奖的引入还是有机化学知识体系的一大有效补充。当前我国有机化学教材记录的关于卤代烃亲核取代反应的活性比较时,教材中记录的为乙烯式卤代烃和芳基卤代烃因为卤素原子孤对电子和双键的共轭作用,使得C-卤素键的极性降低、C-卤素键的键长缩短,使得该类化合物在进行亲核取代反应时活性较低,如果在其中加入催化剂,则能够改变原有的反应机理,进而使得卤代烃和芳基卤的反应时间大为缩减,反应效率大为提升。这三位科学家提供了一种精细的工具来合成复杂的有机分子,当前这一成果的应用十分广泛,主要应用于制药、电子工业、高新材料等方面。交叉偶联反应:化学教师通过引入诺比尔化学奖,可以让培养和锻炼学生面型社会实际、面向实际问题的学习观和价值观,进而提升学生实践能力和创新意识让学生感受到创新观念的重要性,进而培养出具有高水平实践能力和创新观念的复合型化学人才。

4结语

随着全球有机化学科学进度的不断开展,将当前先进的科研成果引入到有机化学教学中去,能够使得有机化学教学内容更为丰富、教学体系更为前沿化,使得有机化学课堂更为生动。提升学生对有机化学知识学习的兴趣,开阔学生的知识面,实现化学教学质量提升的目标。

参考文献:

[1]石先莹.科研成果在有机化学教学中的渗透[J].大学化学,2015,30(05):26-31.

化学奖范文篇5

关键词:生物化学原理;健康意识;环保意识;为人处世;科学素养

作为一名大学老师,教书和育人必须并重、密不可分。《生物化学》是生命科学领域一门非常重要的基础课程,是研究生命的化学本质的科学,力求从分子水平回答“生命是什么”这一永恒的难题。这门课内容博大精深,包含了很多重要的生物化学原理,其中的很多原理与我们的生活息息相关,蕴含着丰富的人生哲理。在教学过程中,如果能适时地将这些深奥的理论与生活实际相联系,不但能有效提高同学们的学习兴趣,还能做到既教书又育人。

1结合生物化学的原理,培养同学们的“健康意识”

在教学过程中发现,经常有同学不吃早餐。为了增强同学们的健康意识,每学期第一次上课时就重点强调,上《生物化学》课必须要吃早餐,但不能到课堂上吃,还特意问大家,这矛盾吗?同学们都说,不矛盾。在整个教学过程中,不失时机地强化吃早餐的重要性。比如讲到“胆固醇的分布及功能”时,强调不吃早餐易患胆结石。胆汁是由肝细胞不断生成的,在非消化期间进入胆囊内贮存,不吃早餐导致胆囊中的胆汁没有机会排出,而使胆汁中的胆固醇大量析出、沉积,久而久之形成胆结石。再比如讲到“糖酵解”的意义时,重点阐述糖酵解是某些细胞(眼角膜、红细胞,特别是大脑细胞)唯一生成腺嘌呤核苷三磷酸(adenosinetriphosphate,ATP)的途径,成人每天约需要160g葡萄糖,其中120g用于脑代谢。如果不吃早餐,葡萄糖得不到及时供应,将对这些细胞产生很大的影响。讲到“糖异生”时进一步强调,如果不吃早餐,体内葡萄糖缺乏,将通过糖异生补充,从而加重肝脏的负担。通过一学期的强化,很多同学告诉我养成了定时吃早餐的好习惯,有毕业好多年的同学见到我时,仍然记得不吃早餐的危害!另外,讲代谢部分时,强调肝脏在代谢中的重要作用,为了更好的保肝护肝,需要同学们养成良好的生活习惯,特别是不要熬夜,最好在十一点之前入睡,坚持锻炼等。还有“烫发的生物化学原理”“煤气中毒的生物化学原理”“酶原激活的生物学意义”等,都可以在教学过程中培养同学们的健康意识。

2结合生物化学的原理,培养同学们的“环保意识”

环保无小事,保护生态环境,是造福社会、造福子孙后代的伟大事业。2017年10月18日,主席在报告中指出,坚持人与自然和谐共生,必须树立“绿水青山就是金山银山”的理念,坚持节约资源和保护环境的基本国策。但是,随处乱丢垃圾、过度使用塑料袋等行为随处可见,国民的环保意识亟需提高。为人师表,身教重于言教,只有自己真正做到了,才会对别人产生正面的影响。平时的生活中,我非常注重低碳环保,比如一水多用、基本不使用塑料袋等,因此,在教学过程中也会留心挖掘生物化学原理中蕴含的环保理念并不失时机地传达给同学。三羧酸循环(也称柠檬酸循环)是三大类营养物质代谢的枢纽,从草酰乙酸与乙酰辅酶A合成柠檬酸开始,经过一系列循环又回到草酰乙酸,循环中每一种物质被重复利用,最大限度发挥了自身的作用。这启发我们生活中很多东西是可以循环利用的。每次讲到柠檬酸循环时,我都会把自己的环保理念传授给同学,并倡导同学们少用或不用塑料袋,尽量减少白色污染。丙氨酸-葡萄糖循环使肌肉运动产生大量的氨和丙酮酸,两者都要运回肝脏进一步转化,以丙氨酸的形式运送一举两得;在肝脏中,丙酮酸可以生成葡萄糖,氨通过尿素循环排出体外。这样的安排真是太完美了,简直无可挑剔,我们不禁慨叹生命的神奇和伟大。讲到这里,我给同学们展示了一张照片,一个用过的洗衣粉袋子装满了垃圾,然后让大家解读。起初,同学们一头雾水,在我的提示下,一名同学站起来说:“洗衣粉袋子和垃圾都要运到垃圾桶,它们一块运送,既节约了资源,也达到了运送垃圾的目的,这也是丙氨酸-葡萄糖循环给我们的启示!”真是生活中处处有环保啊,这位同学的回答令我十分满意,也博得了大家羡慕的眼神和热烈的掌声。

3结合生物化学原理,教授“为人处世”之道

做人与处事是需要用一生去研究和实践的课题,只有生命终止,研究和实践活动才能结束,我们才能评价一个人的研究和实践成果。换句话说,做人做事,需要我们用一生去学习和实践。作为大学教师,应不断加强自身的思想和道德修养,在课堂上以饱满的精神状态和积极向上的心态影响学生,以高尚的人格力量感召学生,真正做到“教书育人”。细细体味,我们会发现,生物化学的原理蕴含着丰富的人生智慧,启发我们学会为人处世。酶活性中心的结构特点有两种学说解释酶与底物的结合,一种是“锁钥学说”,酶的活性部位和底物的形状是互补的,有利于酶与底物的结合;一种是“诱导契合学说”,底物分子或酶分子,或两者的构象同时发生一定的变化后才互补,第二种学说能更好地解释酶与底物识别并结合的动态过程。讲到这里,可以启发同学人与人之间的交往需要相互尊重,相互体谅,遇到问题时必须有一方或双方做出让步,才能保证关系融洽,和谐相处。生物化学中有一些迂回曲折的反应,比如,脂肪酸的b-氧化包括脱氢、水化、再脱氢、硫解等几个步骤,三羧酸循环中也有类似的反应,提示同学为人处世也需要适当灵活,遇到困难时应多开动脑筋,有时需要另辟蹊径,切忌“不撞南墙不回头”。酶活性中心的氨基酸残基有接触残基,辅助残基,结构残基和非贡献残基,提示我们,在一个集体中,有的人处于重要地位,有的人处于次要地位,还有的人处于更加次要的地位,但每个人都代表集体的形象,每个人都在为集体做着贡献;如果这个集体是一个小家庭,爸爸妈妈支撑整个家,孩子则是家的“核心”,每个人都非常重要,提示我们每个人都应珍爱生命,努力活出属于自己的精彩!丙氨酸-葡萄糖循环则告诉我们团结协作的重要性,人与人之间应互相帮助,互相支撑,合作共赢。还有酶原激活的生物学意义告诉我们,应该在合适的时间做正确的事……

4结合诺贝尔奖获得者的故事,培养同学们的“科学素养”

诺贝尔奖是科学界的最高荣誉,自1901年开始颁布以来,有关生物化学方面的研究共产生化学奖、生理与医学奖合计70余项,是所有学科中获得诺贝尔奖最多的一个学科[1],可见生物化学在医学和生物学领域的重要地位。在教学过程中,适时地将诺贝尔获得者的感人故事融入课堂,不但能激发学生的求知欲,提高学习兴趣,还能培养同学们对科学的向往,提高教学质量[2-3]。在氨基酸的化学性质部分,介绍英国著名化学家桑格的传奇故事。桑格是第四位两次获得诺贝尔奖的科学家,也是唯一两次获得诺贝尔化学奖的科学家。因测定出胰岛素的氨基酸排列顺序获1958年诺贝尔化学奖,又因发明测定DNA(脱氧核糖核酸,deoxyribonucleicacid)序列的方法(即桑格测序法)获1980年诺贝尔化学奖。在研究测定胰岛素一级结构过程中,历经10多年,饱尝了数不清的失败,助手也离他而去,一个人坚持实验,终于在1953年弄清了胰岛素的一级结构。桑格一生淡泊名利,以极大的热情投身科学研究,于2013年11月19日在熟睡中去世,享年95岁。桑格还深情寄语中国青少年:“科学研究最大的乐趣之一就是你总是可以进行一些不同的尝试,它从来不会使人厌倦,有些人在遇到困难时就泄气,但我在遭受挫折时从来不着急,我会开始设计下一次实验,整个探索的过程都充满了欢乐。”讲到酶的化学本质时,介绍美国化学家,身残志坚的萨姆纳,他首次确认了酶的性质,获得1946年诺贝尔化学奖。17岁时打猎被击中左前臂,被切除,从此,试着用右手做每一件事,靠顽强的毅力考入心仪已久的哈佛大学化学专业,后靠着诚意师从福林教授。1926年,提取到尿素酶,还发现酶可以结晶,并阐明酶的化学本质。讲到DNA的二级结构时,穿插双螺旋结构发现者沃森和克里克的故事。沃森出生在美国芝加哥,从小勤学好问,读了薛定锷《生命是什么?》受到极大的震撼,决心搞清楚遗传的核心究竟是什么。克里克出生在英国北安普敦,从小读少儿百科全书,遇事好猜想,对科学入迷,中学时读了科学家鲍林的著作《普通化学》后,对化学实验产生了浓厚的兴趣,后来自学生物学和化学。沃森和克里克在英国剑桥卡文迪许实验室一见如故,合作开始DNA之谜的探索。科学家们那种对科学执着、热爱、永不放弃的精神,善于分析总结前人研究成果的智慧以及协同合作、攻坚克难的团队意识,非常值得我们学习[4]。

在教学过程中利用《生物化学》探究生命奥秘的学科特点,适时地穿插诺贝尔奖获得者的故事,不但能有效唤起学生热爱生命的情感,使其产生探知生命奥秘的欲望,还能培养他们的科学素养,增强学习动力。总之,教书育人,是每一位教师的神圣职责。这要求我们在教学过程中时时处处用心,在教授科学知识的同时,适时地渗透人生的哲理,以此来影响学生成才的优秀品质和思想,从而真正做到“教书育人”[5]。

参考文献

[1]郭晓强,时兰春.生物化学与诺贝尔奖.医学与哲学,2005,26(5):68-69

[2]朱葆华.生物化学教学方法的几点体会.生物学杂志,2009,26(1):89-90

[3]王然,刘永,侯筱宇.诺贝尔奖史在生物化学教学中的应用价值.西北医学教育,2010,18(5):985-987

[4]程红娜.在生物化学教学中进行励志教育的探索.继续医学教育,2014,28(12):27-29

化学奖范文篇6

公元前500~400年古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。

公元1661年英国化学家波义耳首先提出了化学元素的概念。

公元1687年英国物理学家牛顿在其著作《自然哲学的数学原理》中奠定了经典力学基础,引入超距作用概念。

公元1774年法国化学家拉瓦锡提出质量守恒原理。

公元1789年德国化学家克拉普罗特首先发现了自然界中最重的元素——铀。

公元1808年英国化学家道尔顿在他的著名著作《化学哲学新系统》中,提出了用来解释物质结构的“原子分子学说”。

公元1811年意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。

公元1820年瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。

公元1832年英国物理学家法拉第提出了电解定律。

公元1854年德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒管”进行了低气压放电实验。

公元1858年德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。

公元1864年德国物理学家汗道夫发现阴极射线。

公元1869年俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素排成了“元素周期表”,又在1871年写成了《化学原理》一书。

公元1876年德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。

公元1884年瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。

公元1885年英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。

公元1891年爱尔兰物理学家斯托尼首先提出把电解时所假想的电单元叫做“电子”。

公元1895年

德国物理学家伦琴在12月28日宣布发现了x射线(又称伦琴射线)。为此他获得了1901年度首届诺贝尔物理学奖。

法国物理学家佩兰断定阴极射线确是带负电荷的微粒流,他曾因研究物质的间断结构和测量原子体积而获得了1926年度诺贝尔物理学奖。

荷兰物理学家洛伦茨首先提出了经典电子论,他还确定了电子在电磁场中所受的力,即洛伦茨力,并预言了正常的塞曼效应。

公元1896年

法国物理学家贝克勒尔在3月1日用铀盐样品进行实验时发现了天然放射性,他也是第一个使用乳胶照相探测射线的科学家,为此同居里夫妇一起获得1903年度诺贝尔物理学奖。

荷兰物理学家塞曼在研究外磁场作用下的光发射时发现塞曼效应,这也是磁场对原子辐射现象的影响,为此他获得了1902年度诺贝尔物理学奖。

公元1897年

英国物理学家汤姆逊在4月30日从阴极射线的研究中证实了电子的存在。由于他在研究电在气体中的传导所作得的重大贡献而获得1906年度诺贝尔物理学奖。

1897~1914年,美国物理学家米利肯等先后多次精确测量电子的质量和电荷,1899年又测定了电子的荷质比。米利肯因对电子电荷的测定和光电效应的研究获得1923年度诺贝尔物理学奖。

公元1898年

后来加入法国籍的波兰物理学家和化学家居里夫人证明含有铀元素的化合物都具有放射性,并由此发现了“镭”。

法国物理学家皮埃尔·居里等在《自然》杂志11月16日这一期里第一次写下了“放射性”这一术语。

居里夫妇发现了钋和镭等放射性元素,由于他们发现了天然放射性和对铀的研究,在1903年同贝克勒尔一起获诺贝尔物理学奖。另外,居里夫人因发现镭和钋获得1911年度诺贝尔化学奖,成为世界上第一位连续两次荣获科学上最高奖赏的女科学家。

汤姆逊提出了第一个原子结构模型即“正电云”原子模型,俗称“西瓜模型”。

公元1899年

贝克勒尔等人发现射线在磁场中发生了偏转现象。同年,新西兰出生的英国物理学家卢瑟福区分了前两种不同辐射,分别叫做“α射线”和“β射线”,并指出β射线和阴极射线一样也是带负电的电子流。

俄国物理学家列别捷夫发现了光对固体的压力并进行了测量。

英国物理学家汤姆逊从一些毫无放射性的普通金属受到紫外线照射时能放出电子的现象中发现了“光电效应”。

公元1900年

贝克勒尔从β粒子流的研究中发现它的质量和电荷都与电子相同。

卢瑟福等从射线的研究中又辨认了第三种射线为“γ射线”。

卢瑟福第一次测量了放射性的周期并引入了“放射性常数”这一术语。

德国物理学家普朗克在12月17日柏林科学院物理学会的一次会议上,提出热辐射公式中的量子假设。后因为阐明光量子理论而获得1918年度诺贝尔物理学奖。

公元1901年佩兰提出了关于原子行星结构的第一个假设。

公元1902年

英国物理学家卢瑟福和其合作者索第开始对铀的α放射性进行系统研究,发现了放射性递减的数学规律,到1907年从中找到了一连串放射性元素,建立了铀放射系,为此卢瑟福获得了1908年度诺贝尔化学奖。

法国化学家德马尔赛测定了镭的光谱线。

开始了在X或γ射线辐照下液态绝缘体的导电性研究。

居里夫妇发现了自然界放射性物质都有放射性现象,指出了放射能的强度,并从数吨沥青铀矿中提炼得0.1克氯化镭。

公元1904年先后加入瑞士和美国籍的德国物理学家爱因斯坦首先提出“光子”概念,光子具有动量和质量,从而确立了光的波粒二象性。

公元1905年著名科学家爱因斯坦提出了“狭义相对论”以及质能关系式E=mc²;同年他又提出了光电效应定律,并在1907年发表了热容量的量子论,1916年创立广义相对论。由于他对数学物理的杰出贡献和阐明光电效应规律而获得1921年度诺贝尔物理学奖。

公元1906年卢瑟福开始研究大质量亚原子粒子α穿过物质时的现象,弄清了α粒子的本质为以后发现原子核进行了准备。

公元1907年

发现钾有放射性。

开始对特征X射线进行研究。

公元1908年

德国物理学家布赫雷尔用实验证实了爱因斯坦的理论。

德国物理学家盖革和卢瑟福用圆柱形计数器对α粒子进行测量。

公元1910年

精确地测定阿伏加德罗常数。

奥地利物理学家赫斯等证明“宇宙射线”来源于地球外的外层空间,他也因此和发现正电子的美国物理学家安德森一起获得1936年度诺贝尔物理学奖。

公元1911年

卢瑟福把α粒子大角度散射实验结果公诸于世,第一次计算了原子行星结构,确定了原子中有“核”存在,从而建立了“有核原子模型”或称“行星模型”。

苏格兰物理学家威尔逊发明云雾膨胀室,可用来跟踪和测量离子轨迹,他也因此和康普顿一起获得1927年度诺贝尔物理学奖。

索第提出同位素概念,后被汤姆逊进一步补充。索第因研究放射性物质和同位素获得1921年度诺贝尔化学奖。

英国物理学家巴克拉测得了各种原子所固有的“特征x射线”,他也因此获得1917年度诺贝尔物理学奖。

公元1912年

汤姆逊建成了第一台能够分离同位素的仪器(后被称为“质谱仪”),并用来研究、分离氖的两种同位素氖-20和氖-22。

德国科学家劳厄发现X射线在晶体中产生衍射,他也因此获得1914年度诺贝尔物理学奖。

公元1913年

盖革制成了针状计数器。

丹麦著名理论物理学家玻尔提出原子结构的量子化轨道理论,并对氢原子进行计算。他也因此获得1922年度诺贝尔物理学奖。

英国物理学家莫塞莱利用特征x射线在晶体上的反射特性,准确地测定了其波长。由此可将各种元素按照特征x射线的波长顺序进行排列,得出它们之间的相互关系,使核电荷数和原子序数等同了起来。

卢瑟福提出原子内部隐藏着巨大能量。

公元1914年

卢瑟福把氢原子核叫做“质子”。

考塞耳奠定量子化学基础。

公元1916年原子内的电子沿着椭圆轨道运动。

公元1919年

卢瑟福首次实现人工核反应,用α粒子轰击氮核结果打出了质子。

英国物理学家阿斯顿制成了第—台高效能质谱仪,并用来精确测定同位素质量。

公元1920年

测量分子运动速度。

卢瑟福提出在原子核的狭小范围内,一个质子和一个电子由于相互吸引而紧密结合成一体,可看成是一个单独粒子。

公元1921年美国化学家哈金斯把质子-电子复合体看成是电中性的,并将它命名为“中子”。

公元1923年美国物理学家康普顿从光量子和电子的碰撞实验中,发现从原子反射回来的X射线的康普顿效应,并因此与威尔逊一起获得1927年度诺贝尔物理学奖。这一效应也被中国物理学家吴有训所发现,故也称为康普顿-吴有训效应。

公元1924年

奥地利物理学家泡利提出一种排斥原理,称为“泡利不相容原理”,认为质子和电子都绕自身轴线旋转。这种自旋方向可以有两种相反的方向,即在一个原子中不能有两个或更多的电子处在完全相同的状态。为此他在1945年获得诺贝尔物理学奖。

法国物理学家德布罗意首先提出波动力学,建立了物质波概念。他因发现电子的波动性而获得1929年度诺贝尔物理学奖。

公元1925年德国物理学家海森伯创立量子力学(矩阵力学),这是一种强调可观察量的不连续性的新量子论。海森伯还在1927年发现了测不准原理,首先创造基本粒子中的同位旋观念,他也因此获得了1932年度诺贝尔物理学奖。

公元1926年奥地利物理学家薛定谔创立量子力学(波动力学)的基本方程,这是一种强调物质波动性的新量子论,即把电子看成所谓电子云。为此,他与狄拉克共同获得1933年度诺贝尔物理学奖。

公元1928年

俄国出生的美国物理学家盖莫夫提出用质子代替α粒子作为轰击粒子。

盖革等制造了正比计数器。

美国和前苏联都成功地进行了电子衍射实验。

制成盖革-弥勒计数器。盖革用金属针作为集电极,而弥勒建议用一横穿整个圆筒的金属丝代替尖针,可使计数器工作时更稳定。

公元1929年

英国物理学家狄拉克从电子性质的数学处理方法中提出了“反粒子”概念,并得出相对论波动方程,亦称狄拉克方程。为此他与薛定谔共同获得1933年度诺贝尔物理学奖。

英国物理学家考克饶夫和瓦尔顿制造成功第一台“粒子加速器”,被叫做“静电加速器”。它实际上是一个高压倍压装置,通常被称为高压倍加器。为此他们获得了1951年度诺贝尔物理学奖。

公元1930年

美国天文学家拉塞尔指出有迹象表明太阳能是由氢的热核反应所形成。德国物理学家乌特曼等人也发现了这一现象。

德国物理学家博特和贝克尔开始用α粒子去轰击轻金属铍的实验。

泡利提出中微子假设,并在12月4日给某同事的信中指明存在中微子。1934年泡利与费密正式提出中微子理论,25年后被证实。

公元1931年

美国物理学家劳伦斯设计制成第一台“回旋加速器”。为此他获得了1939年度诺贝尔物理学奖。

美国物理学家范德格喇夫建成第一台静电加速器,并以他的名字命名。

考克饶夫和瓦尔顿利用他们的加速器人工加速质子轰击锂-7,原子核使它发生了分裂,这是第一个由人造轰击粒子引起的核反应。

公元1932年

美国化学家尤里发现氘(D),亦称重氢,并因此获得1934年度诺贝尔化学奖。

法国物理学家约里奥·居里夫妇重复了博特和贝克尔用α粒子轰击铍的实验,他们得到了相同的结果,但未能发现中子。

英国物理学家查德威克从α粒子轰击铍的核反应过程中发现了“中子”,他为此获得1935年度诺贝尔物理学奖。

美国物理学家安德森在研究宇宙射线对铅板的冲击中发现了电子的反粒子“正电子”。他为此与澳大利亚物理学家赫斯共同获得1936年度诺贝尔物理学奖。

德国物理学家海森伯在发现中子后不久立即提出原子核的中子-质子模型。

公元1934年

法国物理学家约里奥·居里夫妇在用α粒子轰击轻元素的核反应实验过程中,发现了第一个人工放射性核素,并证实了正电子的存在。他们因此获得了1935年度诺贝尔化学奖。

查德威克终于弄清了中子比质子更重。

后来加入美国籍的意大利物理学家费密首先提出了b衰变的理论。他首先实现了中子慢化,并发现慢中子与核产生核反应的优点。同年他首先用慢中子轰击铀,想获得超铀元素。

卢瑟福与澳大利亚物理学家奥利芬特、奥地利化学家哈尔特克一起,氘-氘反应中制得了氚(氢的第三个同位素)。

美国物理学家贝内特提出“收缩效应”,用以解释等离子体受磁场约束的现象。

公元1935年

加拿大出生的美国物理学家登普斯特发现铀中有0.7%的铀原子属于一种较轻的同位素铀-235。

日本物理学家汤川秀树在核相互作用中提出了交换粒子的学说,建立了介子理论,并因此获得了1949年诺贝尔物理学奖。

费密发现了超铀元素的存在。

美国物理学家奥本海默提出加速氘核作为产生核反应的轰击粒子的设想。

公元1936年美国物理学家安德森和内德迈耶从宇宙射线的研究中探测到一种中等质量数的粒子,称之为“μ子”。

公元1937年在美国劳伦斯实验室中,与费密一同工作的意大利物理学家西格雷用中子轰击钼,结果发现了43号元素锝。

公元1938年

美国物理学家拉比发现磁共振原理,并因此获得1944年度诺贝尔物理学奖。

德国出生的美国物理学家贝特和德国天文学家魏扎克分别独立地得出在太阳上可能产生的H-H和C-N循环的聚合反应,并证明靠氢的聚变来维持太阳能是不成问题的。

德国物理化学家哈恩和施特拉斯曼在研究中子与铀核作用所形成的各种放射性元素的分析中发现了铀核的裂变现象。哈恩为此获得了1944年度诺贝尔化学奖。

公元1939年

哈恩早先的长期合作者-奥地利物理学家梅特涅和她的侄子弗里施在丹麦哥本哈根写出了第一篇发现铀核裂变的论文,并在1月发表。当时美国生物学家阿诺德建议把铀核分裂成两半的现象仿照活细胞的分裂现象称做“裂变”。

约里奥·居里等提出铀核裂变链式反应的可能性,并取得为获得原子能而建造原子堆的专利权。

格兰特发现钍核裂变。

法国物理学家佩兰的儿子F·佩兰提出了“临界质量”的概念。

8月2日,著名科学家爱因斯坦写信给美国总统罗斯福,建议政府早日对核武器的研究加以关注。

美国物理学家麦克米伦和艾贝尔森在用慢中子轰击铀的实验中鉴别出了93号元素镎,并因此与另一位美国物理学家西博格一起获得1951年度诺贝尔化学奖。

公元1940年

在裂变发现后,美国总统罗斯福下令设置原子能机构,开始进行原子能实验。

前苏联科学家哈利顿和捷利多维奇指出了维持铀核裂变链式反应的条件,同年前苏联科学院作了世界上第一次铀核裂变链式反应的试验。

公元1941年从镎的放射性衰变产物中辨认了具有微弱放射性的94号元素钚,实际上美国物理学家西博格在1940年就证实了钚的存在,并因此与麦克米伦一起获得1951年度诺贝尔化学奖。

前苏联物理学家弗辽罗夫和彼得夏克发现了铀核的“自发裂变”现象。

公元1942年

12月2日,费米等科学家在芝加哥大学球场看台下建成了世界上第一座核反应堆(CP-1芝加哥1号堆),用天然铀作该裂变燃料,石墨作慢化剂。

美国军方接管了原子能研究的各项工作,拟订了“曼哈顿工程”计划,由奥本海默教授全面负责领导工作。

西博格等人在实验室里制成铀-233。

公元1943年

美国建造第一个核武器研制中心—洛斯阿拉莫斯实验室,开始研制原子弹。

1943~1944年美国建成第一座生产钚的工厂—汉福特制钚工厂。

1943~1945年美国建成第一座铀-235分离工厂—橡树岭气体扩散工厂。

公元1944年费密算出在地球上实现热核反应的条件。氚和氘的聚变点火温度为五千万度,氘和氘的点火温度则高达四亿度。而为了实现氢和氢聚变,温度更高,为十亿度以上。同样的氢核聚变反应在太阳上只要一千五百万度。

公元1945年

发现原子序数95号元素镅和96号元素锔。

建成250兆电子伏电子回旋加速器。

7月16日凌晨5时半,在美国的新墨西哥州阿拉莫戈多沙漠附近成功地爆炸了第一颗内爆型钚239原子弹。同年8月6日和9日,分别在日本广岛投下代号为“小男孩”的原子弹和在长崎投下了代号为“胖子”的原子弹,死伤和平居民几十万人。

公元1946年

1月26日,在联合国由苏、美、英、法和加拿大五国代表组成有关原子能问题委员会。前苏联提出了关于立刻完全禁止使用原子武器的建议。

建成了放大倍数高达16万倍的电子显微镜。

中国物理学家钱三强和何泽慧应用核乳胶观测了铀核的三分裂现象。

根据契林科夫效应制成计数器。

美国国会通过原子能法(麦克马洪法),据此美国可独占战时美、英、加三国研制原子弹的秘密。

6月,前苏联开始建立铀工业,并开始建造分离铀-235的气体扩散工厂。

公元1947年

英国物理学家鲍威尔从宇宙射线发现了“π介子”,并为此获得1950年度诺贝尔物理学奖。

前苏联第一座石墨金属天然铀反应堆投入运行。

美国物理学家利比证明自然界中存在放射性碳-14,并利用它进行年代测定。他也因此获得1960年度诺贝尔化学奖。

8月英国第一座低功率石墨实验性反应堆(GLEEP)投入运行。

前苏联在乌拉尔建造生产钚的反应堆。

11月6日,前苏联外交部长莫洛托夫宣布“原子弹的秘密早就不存在了”。

公元1948年

12月15日,由约里奥·居里主持建成法国第一座天然铀重水慢化的核反应堆“左亚”ZOE,继前苏联之后打破了美国的核垄断。

人工生产π介子获得成功。

公元1949年前苏联成功地进行了第一次原子弹爆炸试验。

公元1950年

1月31日,美国宣布已开始制造氢弹。

英国第一个生产钚的反应堆投入运行。

3月,世界保卫和平大会常设委员会在斯德哥尔摩开会,通过了禁止原子武器并建立严格国际监督的宣言。全世界展开了反对使用原子武器的运动。

公元1951年

英国物理学家韦尔为了最终实现聚变点火,首次作了利用收缩效应来约束等离子体的尝试。

美国物理学家小施皮策提出利用扭成“8”字形的容器进行聚变反应有好处。后来制成的这种装置叫做“仿星器”。

8月,美国在爱达荷州的阿尔科建成了第一座增殖反应堆,并于同年12月20日第一次发出了由核能产生的电力。

10月6日,前苏联又进行了一次原子弹爆炸试验。

公元1952年

美国在布鲁克海文建成了第一个快中子反应堆。

10月,英国首次进行原子弹(钚)爆炸试验。

11月1日,美国在马绍尔群岛进行了第一次氢弹装置爆炸试验,所用的装料是液态氘和氚,整个装置重达65吨。

公元1953年

8月8日,前苏联政府首脑马林科夫宣布:美国在氢弹生产方面已不再是垄断者。

8月20日,前苏联政府公报宣布在8月12日爆炸了第一颗氢弹。同年9月18日塔斯社又报导了关于几种新型原子弹的试验。

英国采用气体扩散法的卡彭赫斯特铀-235分离工厂正式投产。

美国物理学家格拉塞发明了用以研究亚原子粒子的气泡室,为此获得1960年度诺贝尔物理学奖。

公元1954年

3月1日,美国在比基尼岛正式爆炸了第一颗氢弹。

6月27日,世界上第一座原子能发电站在前苏联建成发电,电功率为5000千瓦。

利用裂变产物的放射能制成重量很轻的“核电池”;也有不用裂变产物而用钚-238,这种核电池已被用来为人造卫星长期提供动力。

3、4月间美国在太平洋马绍尔群岛进行了数次威力巨大的氢弹试验,致使附近居民和日本渔民遭受重大灾难。

9月,前苏联宣布试验了一种有助于解决防御原子进攻的新型原子武器。

美国建造的第一艘核潜艇“鹦鹉螺号”下水服役。

公元1955年

法国开始研究气体扩散法和建造与产钚堆有关的分离工厂。

1月19日,世界和平理事会常务委员会发表告全世界人民书,号召反对原子战争,销毁存储的全部原子武器。并发动大规模的签名运动,获得了世界各国各阶层人民的广泛支持和拥护。

前苏联宣布帮助包括我国、波兰、捷克斯洛伐克、罗马尼亚和民主德国等国建立研究原子能的科学实验中心。接着于3、4月间在莫斯科签订了在1955~1956年间完成实验性反应堆和回旋加速器设计工作的协定。

由于前苏联的建议,在日内瓦举行了第一次和平利用原子能国际会议。与会科学家交流了经验和成果,前苏联公开了世界上第一座原子能发电站的结构。

在美国伯克利的加利福尼亚大学建造了一台6GeV高能质子同步稳相加速器,又叫做“贝伐特朗”,意思是京电子伏级加速器。

公元1956年

锝的发现者意大利物理学家西格雷(当时已移居美国)和美国物理学家钱伯林等人利用“贝伐特朗”发现了“反质子”,为此共同获得1959年度诺贝尔物理学奖。

意大利出生的美国物理学家皮奇奥尼及其合作者报导发现”反中子”。

英国利用卡彭赫斯特铀-235分离厂开始生产军用高浓铀年产高浓铀0.7吨。

英国第一座天然铀石墨气冷堆卡尔德豪尔核电站投入运行。

美国政府建成了希平港1号压水堆核电站,发电容量为6万千瓦。

前苏联把核动力应用到交通运输方面,第一艘原子能破冰船设计成功;第一架原子能飞机进入地面试验和飞行试验阶段;第一辆原子能机车的初步设计已经提出。

美籍中国理论物理学家李政道和杨振宁发现β放射性中粒子的宇称不守恒性,推翻了宇称守恒定律;而美籍中国物理学家吴健雄在实验上对此伟大发现进行了验证。由于李政道和杨振宁发现在弱相互作用下宇称不守恒和基本粒子理论的研究成果而共同获得1957年诺贝尔物理学奖。

在美国萨凡纳河反应堆附近,由美国物理学家莱因斯和科恩观测到中微子。

5月,英国成功地进行了首次氢弹试验。

12月5日,前苏联建成了第一艘“列宁”号原子破冰船在列宁格勒下水,其排水量16000吨,主发动机功率44000马力。

公元1957年英国物理学家劳逊在研究轻核聚变反应的条件时,发现除了高温还需保持一定时间,并提出了著名的“劳逊判据”。

公元1958年德国物理学家穆斯鲍尔首次完成了对核激发能级宽度的直接测量,发现了原子核中γ射线的无反冲共振吸收,他也因此与美国物理学家霍夫施塔特共同获得1961年度诺贝尔物理学奖。

公元1959年利用闪烁计数器的双闪烁证实了中微子的存在。

公元1960年

2月13日,法国在非洲撒哈拉沙漠中爆炸了第一颗原子弹装置。

美国在布鲁克海文建造了质子能量为33GeV的交变磁场梯度同步加速器。

美国物理学家阿尔瓦雷斯发现了某种核子态γ共振,他由于对基本粒子物理学的贡献获得1968年度诺贝尔物理学奖。

法国动工建造第一座年产1.5吨铀-235的气体扩散工厂。

公元1961年

欧洲原子核研究委员会建造了质子能量为28.5GeV的交变磁场梯度的同步加速器。

美国物理学家盖尔-曼等通过SU(3)对称性理论,对基本粒子进行分类。他也因此获得了1969年度诺贝尔物理学奖。

公元1962年

3月,美国第一艘核商船“萨凡纳”号下水航行。

云母片固态径迹探测器开始应用。

布鲁克海文实验室首先研究γ中微子。

公元1963年盖尔·曼提出夸克假设。

公元1964年10月16日,中国第一颖原子弹(铀-235)爆炸成功。

公元1965年美国物理学家莱德曼和他的合作者合成了由一个反质子和一个反中于所构成的复合体,这就是“反氘核”,亦称反氢-2原子核。

公元1966年中国北京基本粒子理论组在北京物理讨论会上报告了层子模型。

公元1967年

在美国加利福尼亚斯坦福特大学建成了长3公里能量为20Gev的电子直线加速器。

6月17日,中国第一颗氢弹爆炸成功。

公元1968年前苏联建成交变磁场梯度强聚焦质子同步加速器,能量为70GeV。

化学奖范文篇7

关键词:化工专业选修课;案例教学;研究生教学

研究生课程在研究生培养中起着极其重要的作用。2014年,教育部了《关于改进和加强研究生课程建设的意见》(教研[2014]5号),《意见》明确了培养单位应科学认识课程学习在研究生培养中的重要地位和功能,切实转变只重科研忽视课程的实际倾向,把课程建设作为学科建设工作的重要组成部分,将课程质量作为评价学科发展质量和衡量人才培养水平的重要指标[1]。但在研究生选修课程的教学中,还存在不少问题,选而不修的现象普遍存在,一方面是研究生对选修课的学习重视不够,另一方面是教师在授课时,采取教学方法不利于调动研究生学习积极性,导致选修课教学质量不高。为能更好地发挥选修课在研究生培养中的作用,对研究生选修课的教学方法的改革迫在眉睫,要将教师从传统的授课方式———做PPT、授课、考试,转变成以案例教学为主的教学模式,以提高研究生课程教学质量。

一、化工研究生专业选修课教学当前存在的问题

《精细有机合成新方法与技术》是我校化学工程与技术一级学科硕士学位授权点一门重要的选修课,课程主要介绍精细化学品合成反应和合成路线,重点介绍近代合成技术、生物化学合成和绿色合成,以及一些特殊的合成实验技术。《精细有机合成新方法与技术》教学与其他研究生选修课一样,存在以下问题。第一,注重对理论知识的传授,而利用理论解决科研中存在的实际问题,介绍不多,学生不知道如何在科学研究中利用理论知识来解决实际问题,从而导致学生对学习课程提不起兴趣。第二,教师通常采用传统方法授课,学生处于被动学习状态,不积极思考问题,对知识的掌握常常是一知半解,不利于学生开展科学研究工作。第三,由于研究生选修课常常采取开卷考试方式,导致部分学生对学习选修课重视程度不够。

二、案例教学法的优点

案例教学法是一种把实际工作中的真实情景加以典型化处理,形成供学生思考分析的案例,通过学生独立研究和相互讨论的方式,来提高学生分析问题和解决问题能力的一种教学方法[2-3]。案例教学法由美国哈佛大学法学院院长ChristopherColumbusLangdell教授在1870年创立,广泛用于理、工、农、医、文、经、管等领域的教学中,取得了良好的教学效果,对学生创新实践能力的提高起到积极的作用。案例教学法的主要优点有[4-5]:(1)真实性。案例取材于学科专业领域科学工作者的科研实践活动,不是凭借个人的想象力和创造力杜撰出来的例子。(2)完整性。如科学研究成果案例的介绍,授课教师从科研课题的文献调研、申请立项、实验过程、数据处理、课题结题、研究报告撰写及成果的发表等环节进行现身说法,这种教学案例具有从开始到结束的完整性特征。(3)典型性。这种教学案例的共同特点是由一个或几个科学问题组成的,内容完整,解决问题的过程具体详细,有一定代表性。(4)启发性。教学中所选择的科研案例是为一定的教学目的服务的。

三、案例教学法在《精细有机合成新方法与技术》课程中的应用

(一)根据教学目的,丰富教学案例库。《精细有机合成新方法与技术》在实施案例教学法以来,我们根据课程教学大纲,努力做好教学案例库的建设工作。案例库主要由下面几种案例组成:(1)有机合成发展史案例。例如,1924年德国化学家维勒(Wohler)首次从无机物人工合成有机物———尿素;1845年德国化学家(Kolbe)合成醋酸;1854年法国化学家Bezthelot合成油脂。教师通过“有机合成发展史”案例教学,使学生了解有机合成科学家奋斗历史,展示科学家们从事科学研究的思维活动,有助于培养学生的科学素养和创新精神。(2)“有机合成科学家获诺贝尔化学奖”案例。例如,德国化学家EmilFisher因合成嘌呤等杂化化合物获得1902年的诺贝尔化学奖;英国化学家Robinson因全新、简捷的合成托品酮获得1947年的诺贝尔化学奖。教师利用授课内容与诺贝尔化学奖案例的关系,引导学生追踪有机合成史上重要有机化合物的合成过程,激发学生对科学研究的兴趣,从而让学生学习和掌握科学研究的正确方法。(3)“我国有机合成发展”案例。例如,1965年我国科学家成功合成了具有生理活性的牛胰岛素;1981年成功合成了酵母丙氨酸转移核糖核酸。实践证明,在课堂教学中渗透“我国有机合成发展”案例,有助于学生了解国情,提高学生的民族自豪感,使他们深刻地认识到自己肩上的责任。(4)学生收集“有机合成新成果”案例。教师在上第一节课时,布置学生收集“有机合成新成果”案例,要求收集的案例来自于近五年发表的SCI、EI文献,教师安排一定的合成技术应用内容,让学生通过搜集的案例,结合教学内容,制作多媒体课件,进行讲解与讨论,然后教师根据学生讲解的案例涉及的合成原理、合成技术进行点评,通过这样的教学方法,加深了学生基本知识的理解,以及对课程学习的兴趣。(二)以学生为中心,丰富案例教学形式。实践证明,案例的选择固然重要,但案例教学形式,对案例教学模式的实施效果,有重大影响。在多年的教学实践中,我们针对工科研究生的特点,总结出来以下教学形式:(1)合成理论内容结合案例讲授法。这种教学形式是在授课时,将讲授的合成理论与案例相结合,通过案例分析,加深学生对理论的理解。(2)合成技术结合案例讲授法。这种讲授形式是在授课时,让学生通过阅读教师提供的案例,体会教师所讲授的合成技术在实际研究中的应用情况。(3)合成路线设计结合案例讲授法。这种讲授形式是在授课时,让学生先自行设计合成路线,教师再结合前人合成案例,对学生设计的合成路线进行评价,让学生领悟到自行设计的合成路线的不足。(三)优化教学氛围,促进学生参加案例教学的兴趣。首先,建立科学合理的课程考核方法,提高学生参加案例教学的积极性。案例教学效果取决于平时学生的参与积极性。其次,教学充分备课,善于调动课堂气氛,是提高案例教学效果的保证。教学要做好课堂教学设计,精心选择案例,对用于课程教学的案例要做到充分了解,这样才能在讲授时,将课程的基本理论和基本概念与案例相联系,进行剖析,同时对学生的讨论才能进行有效的点评,使学生通过案例教学真正掌握知识,获得在科学研究中分析问题和解决问题的方法。

参考文献:

[1]中华人民共和国教育部.教育部关于改进和加强研究生课程建设的意见:教研[2014]5号[A/OL].(2014-12-05)[2018-08-13].www.moe.edu.cn/src-site/A22/s7065/201412/t20141205_182992.html.

[2]邱选兵,齐美山,魏计林,等.案例教学法在工程类创新型研究生实践教学中的应用研究[J].大学教育,2014,(12):135-137.

[3]张春莉,权元元.教育硕士研究生培养中应用案例教学法的实证研究[J].学位与研究生教育,2013,(1):44-48.

[4]郭伟,张翼飞,杨克军.农学专业学位研究生课程教学中案例教学法的应用[J].高等农业教育,2016,(1):93-95.

化学奖范文篇8

科学精神是在科学发展的历程中,科学界逐渐形成的一些传统规矩、指导原则,这就是科学精神,是贯穿于整个科学发展历程中的具有普遍意义的意识,是人们在从选题到应用的全部科学活动中的所采取的态度。科学精神作为促进科学活动的精神动力,其内涵包括:求真务实的精神、竞争协作的精神、继承创新的精神、敬业献身的精神等等,随着科学的发展和社会历史条件的变化,这些精神不断丰富、不断拓展、不断向社会渗透、辐射而成为一种时代精神。本文仅从化学史的角度对这几种精神做如下探析:

1.求真务实的精神

科学是以求真务实为天职和灵魂的,科学的本征也表现在它坚持真理这一品格上。一代代科学家正是坚守着求真务实的品格,才越来越多地认识了周围的种种真实存在和客观规律。19世纪30~40年代,格罗夫、焦耳、迈尔、赫姆霍兹等科学家,在不同的国度、不通信息的情况下差不多同时关注能量与质量的相互关系,各自进行观察、实验、分析,却得出了大致相同的结论。1828年德国的维勒首次用无机物合成了尿素,使人们信奉百年之久的“生命力论”受到冲击,当维勒将成果报告给他的老师、化学权威贝采里乌斯时,却受到了老师的极力反对,但维勒用古希腊大学者亚里士多德的千古名句“吾爱吾师,吾更爱真理”道出了他对真理的挚爱和虔诚,他以大量事实证明了自己理论的真理性,并将“生命力论”扫出了历史舞台。

科学研究以客观实践活动为基础,凭科学事实立论,以科学实验为检验理论正确与否的标准。1911年英国化学家卢瑟福根据α粒子散射实验提出了原子结构的“行星式模型”,而他的学生玻尔将普朗克的量子论和爱因斯坦的光子说引入了原子模型,提出了著名的玻尔原子模型,并得到了实验的验证,正因为这一点,卢瑟福不但不反对,反而顶住种种压力亲自推荐其,并勇于修正自己的论点,还鼓励玻尔继续研究,以完善新理论,充分表现出卢瑟福唯事实、唯真理是从的大科学家风范。

求真与务实在具体的科学过程中是统一的,那就是实事求是的精神,它是科学之所以是科学、科学区别于宗教迷信和伪科学的唯一标准。前苏联的勒伯辛斯卡娅声称用人工方法培育了“活细胞”;朝鲜金凤汉宣布发现了“经络小体”,但他们的结果都经不起实践的检验。就科学而言,实践标准指的是科学实验,科学实验必须遵循一套严密的程序和规范。如某“特异功能大师”声称从2000km以外的广州乃至大洋彼岸的美国“发功”到北京某实验室,竟然改变了放射性物质的衰变率,该实验据云有教授级的科学家参加、有精密的仪器设备、有设计、有数据、有分析、有结论、有报告,被称为“高层次”、“突破性”实验,但却经不起科学实验的检验,如没有遵循起码的“双盲”准则,完全不属于科学意义上的事实。所以科学活动中的“眼见为实”与实践标准有着本质的区别:前者是肤浅的经验论,后者是马克思主义的命题。

2.竞争协作的精神

科学在追求真理和创新的历程中,向来充满竞争,“并逐曰竞,对辩曰争”,竞争是科学发展的重要动力。20世纪50年代,鲍林、威尔金斯和沃森、克里克等人为揭示dna的结构曾展开了激动人心的“双螺旋竞争”。桑格、鲍林、佩鲁斯、肯德鲁等人也曾为解开蛋白质结构之谜进行过紧张的角逐。

人类对纷纭浩淼的自然界的认识是一个复杂的过程,通过不同观点、不同学派的交锋,人类的认识才会由浅入深、由表及里、由片面到全面,才能愈来愈接近真理,对同一事物从不同角度、用不同方法去研究,有利于将问题引向深入,有利于更深刻地揭示其规律,有力地促进科学全面地发展。在有机化学结构理论的初期,核团学说与二元论的争论、一元论与二元论的争论引发了取代学说和类型论的提出。18世纪末意大利的加法尼与伏打之间的“蛙腿之争”,使伏打电池研制成功,并由此引发了电动势的研究,为电化学诞生奠定了基础。19世纪末,德英科学家之间关于阴极射线本质的“波动说”和“粒子说”持续争论了几十年,以克鲁克斯为代表的德国学者普遍认为阴极射线是一种带负电的电磁波;而英国学者们则认为阴极射线是一种粒子流。1894年汤姆逊用实验证明了阴极射线是带负电的粒子,即“电子”,似已结束了此争论,但1924年法国的德布罗意又提出了微观粒子波粒二象性的假说,使人们更深刻地认识了微观粒子的运动规律和原子的内部结构。

不同观点和学派的自由竞争可以激发人们探索真理的积极性,使研究充满活力和生气,谁经受不住竞争熔炉的锤炼,谁就会被淘汰,这种无情的压力所带来的动力是巨大的,它导致了人才的脱颖而出,也“在相当广阔的范围内培植进取心、毅力和大胆首创精神”。①如:沃森和克里克在“双螺旋竞争”时只是30岁左右名不见经传的小人物,而对手鲍林、威尔金斯等是卓有成就的大科学家,但他们不惧怕权威,坚持自己的观点,最后在竞争中成为分子生物学的开创者。

科学上任何形式的学阀作风和以行政手段压制别人观点的做法都是与科学精神相违背的。19世纪中叶,法国的杜马因年青化学家罗朗和日拉尔提出了与自己观点不同的理论,便横加指责,并对他们进行人身侮辱、压制和排挤,导致两位科学家英年早逝,也极大地妨碍了科学的发展。

在科学还是个人或少数人活动的“小科学”时期,许多发明和创造可能是个人或少数人的行为;现在科学已发展到国家规模乃至国际规模,科学研究的日趋复杂、学科间的相互渗透日益明显,单靠一个人、一项专长已难有所作为,需要依靠集体的智慧和力量去完成。所以“现在科学的大规模性,面貌一新且强而有力,使人们以‘大科学’一词来美誉之。”②化学史上团结协作、日臻进益的例子举不胜举。20世纪60年代我国几十位化学家共同努力,完成了含有51个氨基酸的结晶牛胰岛素的全合成。1975年诺贝尔化学奖获得者、澳大利亚的康福斯与生物化学家普杰克长达20年的紧密合作,共研究出了13个反应的立体化学机制,并因此双双闻名于世。美国化学家穆尔和坦斯终生合作,硕果累累,并由于对核糖核酸化学结构和催化活力的研究成果共获了1972年诺贝尔化学奖。

纵观诺贝尔化学奖百年获奖历史,在1901—1930年间共颁奖26次,授奖28人,其中合作获奖的只有1929年英国的哈登和瑞典的奥伊勒.凯尔平1项;1931—1960年间共颁奖26次,授奖35人,其中7项为合作授奖;1961—2000年间共颁奖40次,有69人获奖,其中19项为合作授奖。当代科学前沿重大课题,小至粒子大到浩瀚宇宙,复杂至生物基因重组,都愈来愈成为全人类的共同问题,成为时代的课题,例如要解决环境、资源、人口等问题,更要求跨国界的科学共同体通力合作。正如爱因斯坦深刻指出:“不管你们喜欢不喜欢,科学是,而且永远是国际的。”③

3.继承创新的精神

在1995年全国科学技术大会上的讲话中指出:“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。”科学作为一种精神生产,与物质生产的最大区别就是它不能重复生产老产品,必须不断创造新产品。提出新理论、解决新问题、探索新领域、得出新成果,这是科学的本质表现,也是衡量科学有无价值和价值大小的尺度。科学历来着重“首次”、“第一”,在科学史上充满了为“优先权”而展开的激烈争论,这也是科学的创新要求所引发的一道独特的风景线。

科学的怀疑精神是创新的前提,它对于现有的认识都要问一个为什么?看看是否真的有根据?根据是否充分?如何寻求更新的突破……大量事实证明:怀疑批判的头脑是科学家的另一个“重要仪器”。近代化学奠基人波义耳如果没有敢于怀疑的精神,就不可能促成化学从医药和炼金术中剥离出来成为一门独立的学科。雷利、巴拉尔如果不对研究中的异常现象产生怀疑,就不可能发现元素氩和溴;而李比希和维勒却由于没有用怀疑的眼光去审视已观察到的异常,才使他们与发现元素溴和钒失之交臂。拉瓦锡正是由于不盲从、敢于怀疑,才打破了统治化学界百年之久的“燃素说”,掀起了一场史无前例的“化学革命”;而普里斯特列和舍勒虽先于拉瓦锡发现了氧气,但他们囿于传统的束缚,竟使“真理从鼻尖溜走”。

科学是一个知识累积、智力接力的过程,雏凤清于老凤声,后人能够超越前人,是因为站在前人的终点起跑,所以继承是创新的基础。居里夫人是在伦琴发现x射线和贝克勒尔发现铀放射线的基础上发现镭的,所以贝克勒尔于1903年与居里夫妇共享了诺贝尔奖;居里夫人的女儿伊来纳、女婿约里奥也正是继承和发展了母亲对人工放射性的研究,才测定了放射性元素的半衰期和进行放射性的合成,而获1935年诺贝尔奖的。在元素周期律的发现过程中,如果没有德贝莱纳提出的“三元素组”、迈尔的“六元素表”、纽兰兹的“八音律”等元素分类工作的基础,就不会有门捷列夫的元素周期律,在此基础上,周期表又经过了零族的增加、莫斯莱的原子序数等不断的发展和完善过程,直到今天仍有许多人在研究周期律,周期表也出现了维尔纳式、波尔塔式等多种形式。

科学的继承不是消极的前后相继和兼收并蓄,而是取其精华、弃其糟粕,批判地继承、辩证地扬弃。如:“燃素说”虽是一种错误的理论,但其中也包含着某些合理因素,它所提供的实验材料、公式、定律和方法仍可被利用。正如恩格斯所说:“在化学中,燃素说经过百年的实验工作提供了这样一些材料,借助于这些材料,拉瓦锡才能在普里斯特列制出的氧气中发现了幻想的燃素的真实对立物,因而推翻了全部的燃素说。但燃素说者的实验结果并不因此而完全被排除……它们还保持着自己的有效性。”④

4.敬业献身精神

科学研究的主体为求真而研究,不以科学发现以外的因素为目的,它排斥私欲的恶性膨胀、财迷心窍以及见利忘义的行为,这是一种最高远的境界。当科学家认定自己所从事的是人类最伟大的事业、并愿为之献身时,科学就被注入了永不衰竭的生命活力。

科学家的献身精神首先体现在对待科研成果的态度上。美国女科学家罗莎琳.弗兰克林为华生等人攻克dna的双螺旋体结构难题而获得诺贝尔奖提供关键性数据。当居里夫人得知镭可以用于放射性治疗癌症后,毅然放弃了申请专利的权利,将其贡献给人类。中国化工专家侯德榜留美8年,为发展祖国化工事业,他放弃了国外优厚待遇,回国后发明了“侯氏制碱法”,并将索尔维制碱技术公诸于众,造福全人类。

勇往直前、不怕牺牲、勇于献身,这是科学精神的最高表现。正是科学家的无私奉献,才谱写了科学不朽的诗篇,才换得科学的永恒。“科学是要求人们为它贡献毕生的,就是有两次生命也不够用”。⑤道尔顿一生淡泊名利,为了科学,他要求自己坚持永远不能找到时间去结婚。因氟研究而获1906年化学诺贝尔奖的穆瓦桑明知氟的毒害很大,仍不顾危险反复实验,终致受害而英年早逝。居里夫人由于长期与放射性物质接触而以身殉职。

科学精神是无数科学家在从事科学活动中代代承传的一笔巨大的精神财富,也是启迪后人不断实践创新的标范和动力,同时,科学精神自身也在其承前启后的过程中得以充实和拓展。学习化学史的目的不仅在于了解化学发展中的具体史实和历史变迁过程,更重要的是融会和继承前辈化学家的科学精神,从而使我们的教与学、科研与实践、开拓与创新攀上一个新的境界。

参考文献

⑴列宁.列宁选集,第3卷,北京:人民出版社,1972

⑵普赖斯.小科学.大科学,上海:世界科学社,1982

⑶爱因斯坦.爱因斯坦文集.(3)北京:商务印书馆,1979

⑷恩格斯.自然辩证法.北京:人民出版社,1986

⑸pavlov,i.p.dequesttoacadenricyouth,science,1936

⑹巨乃歧.论科学精神,太原:科学技术与辩证法,1981

⑺刘德华等.论自然科学研究中的理性精神,北京:自然辩证法研究,2000:12

化学奖范文篇9

*同志是享受国务院政府特殊津贴的专家,全国电化教育先进工作者、全国教育系统劳动模范、中学特级教师、市首批有突出贡献的专家,长春市首批名师、广州市首届名校长。荣获人民教师奖章、中国化学会优秀青年化学奖,两次荣获教育部优秀成果二等奖,四次荣获全国教育科研成果一等奖。

*同志为人师表、率先垂范,重视个人党性修养。他坚定马克思主义信仰和共产主义信念,坚决贯彻执行党的基本路线和方针政策,自觉实践“三个代表”重要思想,坚持解放思想,坚持科学发展观,积极构建和谐校园,用自己的模范行为影响班子成员和教师。使学校行政班子成为积极进取、团结合作、坚强有力的战斗集体。

为强化师德建设、提高专业水平,培养高素质党员队伍和教师队伍,他从现代学校内涵发展出发,在全校大力倡导学习研究之风,不断提高教师队伍自身素质。他倡导“以人为本、追求卓越、务实开拓”、“宏扬民族精神,树立职业尊严”等学校精神,支持教师参加国内外学术交流、考察学习和课题研究活动,不断完善教职工聘用制度,优化职称、学历结构,建立教职工发展性考评激励制度,初步建立充满生机和活力的用人机制和分配制度。

为营造精神家园,体现人文关怀,*同志组织学校党员与贫困户“结对子”,真正把党的温暖落到实处。他时刻关心师生生活。亲自制定了“必探望”和“必出车”制度,即教职员工生病必探望、节假日必探望教职工、教职员工家中有困难和急事必出车,受到党员、职工的欢迎。

化学奖范文篇10

一、借助现代化教学手段,创设直观情境教学

以前的教学就是老师实施通过在课堂上说,把重点写在黑板上的方式来教学,并不能把高度抽象性和严密逻辑性的特点表现出来。这种方式很难让学生很快地理解和掌握所学的内容。所以我们就要跟上时代的步伐。利用多媒体把图像、声音、文字、动画结合的方式,将化学中抽象的概念和难以理解的东西通过情境教学来体现出来,这样会激发学生的热情,也能培养他们的观察能力和思维能力。比如,在教学第八单元课题3“金属资源的利用和保护”中“铁的冶炼”是本课教学的重点和难点问题,不能只靠说和书本上的内容来描述,要利用多媒体技术实施学生展现铁的冶炼原理和工业冶铁原理。让他们能够直观地看到本节课的内容,也让他们深入理解,通过这种方式既开阔了学生的视野,也为下节的教学做好了铺垫。

二、联系生活实际,创设生活化情境教学

我们的生活中处处留有化学的影子,如医学、林业、农业、工业等。诺贝尔化学奖获得者RogerD•Kornberg也曾说:“对于生活的方方面面,都可以从化学角度来理解。”作为一名初中化学教师,要积累生活中与化学有关的素材,然后把生活中的这些素材引入到课堂中来,通过生活中的点点滴滴让学生进一步地来了解化学,让他们去理解、去掌握化学知识,这样不仅激发了他们学习化学的兴趣和热情,也能提高老师上课的效率。真是一举两得的事情。例如,在学习“酸和碱”这一单元的内容时,由于本单元涉及较多的典型物质以及表示化学性质的方程式,对于刚开始学习化学的学生难度较大,因此,我们可以将一些涉及酸碱盐的生活理论知识引入教学中,让学生从亲身体验来开始理解并掌握酸碱盐的知识。如在教授“常见的酸”这一内容时,可以引入生活中常见的并且用途很广的酸,如可以食用的酸食醋,胃液中可以帮助消化的盐酸,可以做饮料的柠檬酸、碳酸等等。这样,让学生先了解生活中比较常见的“酸”及其应用,再进一步让学生理解酸的性质,有利于提高学生利用化学知识分析和解决生活实际问题的能力。这是我通过多年的教学总结出来的在初中化学教学中实施情境教学的看法和建议。希然能对广大同仁有所帮助,能起到抛砖引玉的作用。

作者:陆向华单位:江苏省海门市海南中学