生物化工论文范文10篇

时间:2023-03-20 16:32:00

生物化工论文

生物化工论文范文篇1

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。

2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

生物化工论文范文篇2

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的

DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。

2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

生物化工论文范文篇3

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。

2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

生物化工论文范文篇4

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

生物化工论文范文篇5

一、生物化工工程的教学现状分析

传统的生物化工工程教学模式以《生化工程》课本为基础,仿照生物工艺流程的线性关系,主要描述从培养基灭菌到生物反应器及生物反应动力学直至发酵工程下游技术。从生物工程专业整个专业人才培养计划的学科教学大纲来看,其中的许多基础理论和《微生物工程工艺原理》、《酶工程》以及《生物工程设备》等课程都有不同程度的重复。这种重复知识点的讲授很容易让学生产生轻视情绪,降低学习热情。另外,生化工程涉及许多枯燥的公式推导,有时整堂课都是“公式复公式,公式何其多”,导致课堂氛围枯燥,学生思想疲惫,注意力涣散,经常无法达到预期的教学效果。

二、生物化工工程在生物工程专业课程体系中的位置

在整个专业课程体系中,生化工程的主要前修课程有微生物学、生物化学、物理化学、化工原理以及微生物工程工艺原理,生化工程本身又对后面的酶工程、生物工厂设计等专业课的学习起到铺垫的作用,可谓承上启下,至关重要。

三、生物化工工程课程教学改革

根据上述的分析,笔者对生物化工工程课程改革提出了以下见解:

1.教学内容的承流与革新

在实际教学过程中应时刻把握好教学核心问题:注重对工程意识的强化,并适当对教学内容做些调整,如弱化培养基灭菌的基础理论讲解,强化其中的动力学衡算过程,将细胞反应动力学中的基础原理并于《酶工程》与《微生物工程工艺原理》课程讲解,但对几种动力学模型的建立与应用则应当结合具体实例,加强学生对实际应用的兴趣和工程意识。另外,设立单独的生物化工工程综合实验l,让学生利用所学知识,切实感受到生物化工工程从物料准备中间发酵控制到下游处理获得发酵产品的完整过程,感受生物工程生产线的真实过程,使学生们能够巩固理论知识,增强理论联系实际的能力,并增强团队合作能力,提高专业实验设计与分析水平,并能够激发学生们的科研兴趣,增强专业信心。

2.教学方法的突破与创新

随着计算机及电子技术的进步,多媒体教学已经成为高校教育的主要方式之一,在与形形色色生物产品生物工艺联系紧密的生物工程类课程的授课过程中,多媒体教学更是能够发挥特长,灵活的展现生物工程高科技产品的生产过程,为学生们的视听带来新体验,激发学习积极陛。充分利用多媒体的信息再现、信息集成、交互、虚拟等多种功能,可以在授课过程中,穿插为学生播放一些生物工艺流程以及工厂的车间场景的图片;并可利用虚拟功能,虚拟工程场景,让学生自主的依据工程基本原理设计布置工厂;还可以播放一些工厂运转的视频,强化学生对工程化形成产品生产的认识。课堂教学应以学生为本,不要单一的仅仅采取讲授的填鸭式教学,可采用问题探究式教学,从Et常生活中的小问题引出专业问题,如由高压锅煲汤引出培养基灭菌,由豆豉的食用引出发酵的能量换算,努力引导学生进行探究发现的良好习惯,培养学生自发自觉的科研精神,有秩序有目的的组织教学内容,形成问题、选择问题、讨论问题、形成新的假设、实践与论证、如何获得结论,一步步启发引导学生的思维流动,带着自我探究来获得知识。

3.完善教学评价方法,改变考核方式

生物化工论文范文篇6

1生物化工产业的特点与优势

生物化工将生物和化工两个重要产业有机融合,以生物细胞催化和转化为平台,利用化学工程技术和装备,将实验室规模的生物技术实现大规模的工业化,最终促进行业之间融合和发展,创造生产力和价值,在食品、饲料、化工、造纸、纺织、医药、生态修复等方面发挥积极作用。生物化工以生物技术为依托,通过化学工程手段实现工业化,重点突出以生物活性催化转化为核心,经过微生物代谢或酶的生物催化,将以生物质原料或传统化工初级原料转化为高附加值的生物、化学制品。生物化工产业具有绿色、安全、高门槛、高投入、长周期、高回报的特点。与传统石化产业相比,生物化工产业建立的是一种基于碳素循环利用的绿色经济模式。生物制造产品比传统石化产品平均节能30%~50%,减少环境影响20%~60%[2]。生物产业是我国战略性新兴产业的主攻方向,将来在化工领域20%~30%的化学工艺过程将会被生物技术过程所取代。

2我国生物化工产业发展情况

生物化工起源于第二次世界大战时期,抗生素的大规模生物发酵生产和应用是主要标志事件。我国的生物化工研究开发比较晚,始于20世纪80年代初,主要是中科院所及高等院校,经过30多年时间的不断发展,我国生物化工产业技术水平、规模、影响力均取得了很大程度的进步,生物发酵产品总产量居世界第一。每年生物能源代替化石能源用量超过3300万t标准煤,处于世界领先水平。在京津冀、长三角、珠三角等地,技术、资金、政策高度集中的生物化工产业集群逐渐形成。根据中国发酵产业协会统计数据,2018年我国淀粉糖产量超过1300万t,发酵氨基酸产量达到600万t,发酵有机酸产量245万t,发酵生产多元醇163万t,发酵制酶制剂145万t,发酵生产酵母36.6万t,功能发酵制品360万t,食用酵素产量超过15万t。其中,柠檬酸、赖氨酸、谷氨酸的产量和工艺居世界前列,新型生物酶制剂、酵母及其提取物、功能性发酵制品等产品的研究开发和应用也取得长足发展。随着我国以基因技术为代表的生物技术取得突破,我国生物化工产业正在形成鲜明的特点,逐渐实现从效仿、被动跟跑为主向领跑、自主研发和创新转变,从学术研究发表高质量论文为主向企业和市场实际需求转变,从实验室规模向工业化和自动化转变,从依靠经验为主向科学可控细胞代谢调控转变,从以国内市场需求为主向全球市场需求转变,逐渐建立了相对完善的生物化工产业发展体系。近年来,世界各国越来越重视生物产业布局和发展,而我国也出台了许多政策大力支持生物化工产业的发展,并在国家层面对我国生物化工产业的发展进行了规划。目前我国生物化工产业已经具备加快发展、在部分领域实现跨越式发展的良好基础。

3生物化工产业存在的问题及解决思路

虽然我国生物化工产业已经取得了巨大的成就,但我们仍然还要清醒地看到,中国生物化工产业发展也存在着诸多问题,例如研发投入严重不足,尖端人才缺乏,创新性的鼓励分配机制不够明确,开拓性、颠覆性的技术创新还不多,行业发展不平衡、不充分,存在短板现象,核心的菌种开发方面能力不强,产业化水平低,实验室技术实现工业化形成生产力的还不多,新产品技术储备少,研发周期长、研发速度慢,技术及装备水平还不能满足产业发展需求。目前,我国生物化工产业生态系统依然存在制约行业创新发展的政策短板,生物化工产业发展成果还不能满足人民群众对健康、绿色生活方式的迫切需求,我国要成为生物化工产业强国依然有很长的路要走。中国生物化工技术及产业想要实现跨越式发展,首先需要制定发挥战略引领和调节作用的顶层设计。进入21世纪,我国政府部门对生物产业的发展高度重视,先后出台了《关于印发促进生物产业加快发展若干政策的通知》《关于加快培育和发展战略性新兴产业的决定》《国家中长期科学和技术发展规划纲要(2006-2020)》《“十三五”国家战略性新兴产业发展规划》《“十三五”生物产业发展规划》等一系列对生物产业利好的产业政策和措施,明确将生物产业定位为我国战略性新兴产业,在科技投入、税收激励、金融支持、政府采购等方面对生物产业项目给予大力支持和帮扶。发展规划指出,到2020年,生物产业规模达到(8~10)万亿元,生物产业增加值占GDP的比重超过4%,成为国民经济的主导产业[3]。就目前而言,各地方正在科技投入补助、研发平台构建、尖端人才引进等方面发挥重要作用,引导企业产业创新、人才激励创新,加快新旧动能转换,构建企业核心竞争力。其次,发展生物化工产业应以市场需求为导向,构建研发—中试转化—工业化推广转化完善的产业体系。生物化工基础研发是根基,是一切技术蓬勃发展的源头和理论支撑;生物化工中试转化是桥梁,起到承上启下的纽带作用,是检验基础研发成果的试金石;生物化工的工业化是生产力的具体体现,是创造财富,实现生物化工产业相关科技成果实现价值,满足社会需求的载体。最终,发展生物化工产业的发展壮大离不开人才的培育,特别是尖端人才。人才是第一资源,是一切生产力和财富的创造者,所有的科技史都已经证明,一流创新人才和一流的科学家,是推进科技创新和产业布局占据优势的关键所在。在人才储备方面,应注重人才培养和人才引进,要识才爱才敬才,不拘一格用人才,培育一大批在生物化工产业方面具有国际领先水平和战略视野的尖端人才、技术领军人才、青年技术能手和创新创业团队。

4生物化工产业重点发展方向

随着生物科技的进步及其向工业领域的快速渗透,生物化工产业掀起了新一轮的科技革命,特别是在生物医药、生物基新型材料、生物质能源方面尤为突出。4.1生物医药方面。《“十三五”生物产业发展规划》指出,以基因技术和细胞工程等先进技术突破为基础带来的革命性转变,将加快新型药剂的研发速度[4]。到2020年,实现医药工业销售收入4.5万亿元。医药工业事关国家安全、人民幸福安康,事关中国制造2025和国家战略性新兴产业等国家重大战略规划能否顺利落地和实施,医药工业的稳定持续发展对推进健康中国建设具有重要意义,而生物医药代表了医药工业最前沿的技术和发展方向,以基因技术快速发展为契机,以临床用药需求为导向,充分利用生物化工工程化技术平台,在肿瘤、重大传染性疾病、神经精神疾病、慢性病及罕见病等领域研发原创性治疗药物,加快创制研制新型抗体、蛋白及多肽等生物药,对我国加快建设生物医药强国具有重要的战略意义。4.2生物基新型材料方面。相比传统化学法,利用生物化工技术生产的生物基材料具有安全、绿色、环保、低能耗的特点,是一条可持续发展的道路。基于生物质来源的聚乳酸(PLA)、聚对苯二甲酸丙二醇酯(PTT)、聚丁二酸丁二醇酯(PBS)、聚氨基酸、聚四氢呋喃、聚有机酸、蛋白质纤维已经列入《战略性新兴产业重点产品和服务指导目录(2016版)》,为生物基材料下一步发展指明了方向。随着生物化工技术与传统化工的深入融合,生物基来源的聚酯、聚氨酯、尼龙、橡胶、多糖等新型材料已经成为规模化生产和示范应用的目标,并逐渐取代了传统的高污染低效率的化学法生产模式,利用生物化工技术生产的生物基材料已经在越来越多的领域展现出强大的生命活力。4.3生物质能源方面。我国是能源需求大国,利用生物化工技术,大力发展绿色的生物质能源,取代煤炭、石化等传统能源,是我国能源产业发展的重要方向。围绕能源安全、消费革命及大气污染治理等重大需求,我们必须要依靠科技,创新现有能源供应模式,提高生物质能源的应用领域和范围,提升生物质能源科技转化和产业化水平,推进利用以秸秆纤维素为原料,利用细胞合成、生物酶法转化生产燃料乙醇、丁醇等的示范工程,加大以纤维素为原料开发生物柴油等生物燃料的前沿技术的技术开发和资金投入力度,打造一批示范生产企业,推动生物质能源的市场应用,最终实现生物质能源在发电、供气、供热、燃油等领域的全面规模化应用。

5结语

随着生物技术的持续、深入发展,生物化工产业在国民经济中发挥出越来越重要的作用,深刻影响着人民群众衣食住行各个方面。为满足人民群众对健康、绿色生态等方面的迫切需要,必须深入落实国家相关产业政策,进一步加大在生物化工产业的研发投入力度,立足长远,以全球视野对生物化工产业进行布局和谋划,依靠科技创新驱动生物化工产业突破发展,规范生物化工产业产品国家标准,推动生物化工产品在食品、保健、医药、能源等领域的应用,努力打造经济增长新动能,为建设“健康中国”发挥重要的作用。

参考文献:

[1]王昌林,韩祺.着力推进生物产业供给侧结构性改革[J].中国生物工程杂志,2017(37):5-8.

[2]2013~2014年世界塑料工业进展[J].塑料工业,2015(3):1-40.

[3]杜焕来,杨鲲鹏,刘建军.关于推进河南省生物产业跨越式发展的研究[J].创新科技,2018(11):14-17.

生物化工论文范文篇7

关键词:生物化学;创新创业;教学改革;教学实践

近年来,随着社会的发展,对人才的创新创业能力提出了更高的要求,为适应社会需求,培养具有深厚理论知识和技能和创新、创业能力的“双创型”高素质人才是当今高等教育的发展趋势[1-3]。2014年9月总理提出了“大众创业、万众创新”、以创新驱动发展的国家战略,引领了全国各普通高等院校的双创教育改革新方向[4-5]。常州大学是具有“产学研”办学特色的高等院校,是培养具有创新精神、责任意识、专业素养、协作品质、国际视野的适应社会发展需要的高级应用型人才的重要基地,在国内加强双创教育的背景下,常州大学制药与生命科学学院生物工程、制药工程和药学三个专业调整了培养方案,将教学目标从传统单一的知识讲授转向培养学生创新创业能力和解决实际问题的能力与素养的方向转变,增加了创新创业能力培养培训模块,做到理论与实践相衔接。生物化学是生物学及生物技术领域的一门基础学科,也是一门涉及到化学、微生物学、生理学、分子遗传学和分子生物学的一门交叉学科。生物化学作为常州大学制药与生命科学学院生物工程、制药工程与药学专业的专业基础课以及石油化工学院化学工程与工艺、应用化学、能源化工、食品专业的专业基础课,在分子水平上探索与解释生物体生长发育与遗传等复杂现象,具有内容抽象难懂、知识体系复杂、学习难度较大等特点[6],同时,生物化学是现今发展最为活跃的学科,新的理论、技术与方法不断涌现,并支撑其他学科的发展,因此,在生物医药类及生物化工类专业人才培养的课程体系中占有举足轻重的地位[7]。在国内外创新创业教学改革的大环境下,立足于我校的实际情况,促进生物化学课程的教学实践与改革,为培养具有创新创业能力的人才奠定基础。

1以创新创业为导向的生物化学课程教学改革探索

1.1整合教学内容与教学重点。在生物化学的教学内容中一共包括三大模块:一是生物分子的结构、性质、功能,包括糖、脂类、蛋白质、核酸、酶、激素、维生素及抗生素等,叫做结构生物化学或静态生物化学;二是这些生物分子在生物体内的代谢过程及调控方式,叫做代谢生物化学或动态生物化学;三是核酸等生物大分子的功能、结构特征、生物信息传递及基因的表达与调控,叫做分子生物学。在生物医药类专业的培养方案中有分子生物学课程,儿生物化工类课程对分子生物学知识依赖较少,因此,将原来生物化学课程中分子生物学部分并入分子生物学课程当中,这样避免了讲授内容的重复性,在同样的课时下可以对结构生物化学与代谢生物化学的教学内容进行深入讲解,此外,重点突出蛋白质化学、酶化学与代谢化学的教学内容,这部分教学内容更加贴切生物化学的特点,强化学生解决实际问题的能力。1.2以“翻转课堂”教学模式促进学生接触学科前沿。在传统的教学模式中,学生在教学过程中主要是知识的接收者,学生作为“学”的主要执行者,学的效果直接反应教学成效,因此学生才是教学活动的主体,教师应该在教学活动中充当主导作用,但现今的教学模式却是以教师为主体,无法充分调动学生学习的积极性。“翻转课堂”的教学模式可以充分发挥学生的主体地位,调动学生的学习热情,在学习的过程中,由教师布置有关生物化学的学科前沿的学习内容,学生利用课外时间查找、收集相关资料并制作成PPT,在课堂上进行讲解和汇报,并与教师和同学进行讨论。一方面,在课堂上通过教师与同学讨论的方式可以掌握学生的学习情况,同时可以充分调动学生的学习的主观能动性;另一方面,学生通过自学生物化学方面的学科前沿可以充分将理论知识与实际的科研与应用相联系,更加了解学习生物化学的重要性,同时可以提高学生查阅文献的能力、创新能力与科学研究能力,为学生的创新创业奠定理论基础。1.3理论与实践相结合。生物化学是一门实践性很强的课程。一方面,教师根据我校专业培养方案与学生的就业方向,编撰适合我校专业学生使用的生物化学实验指导手册,并且合理安排相对应的实验,使学生在生物化学实验操作中加强对理论知识的理解,同时提升学生的动手操作能力;另一方面,我校制药与生命科学学院生物工程专业开设“生物工程创新实验”课程,该课程共3学分,要求学生须在大三结束之前由相应教师进行指导完成课题项目,并在大三学期结束时进行答辩,由专业课教师根据学生完成课题情况进行打分,可将生物化学课程与该课程进行有机结合,指导学生完成酶、代谢等方面的研究内容,从而使学生深入对书本知识的理解,通过参加科学研究可以让学生了解基础知识对科研的重要性,成功的实验结果也会加强学生的成就感,增加学生对科研的兴趣,进一步激发学生的学习热情,通过科研来反哺教学。

2以创新创业实践项目为导向的生物化学教学实践改革探索

2.1教师指导大学生学科(科技)竞赛。通过开放省级高校重点实验室等科研平台,促进学生开展科技创新活动,由教师指导学生参加学科竞赛,如全国大学生生命科学创新创业大赛、“挑战杯”全国大学生课外学术科技作品竞赛和创业计划大赛、全国大学生生命科学竞赛、全国“药苑论坛”等竞赛活动。教师指导学生制定合理的实验方案、实验流程,指导学生撰写项目申报书,并及时提供详细的修订意见,对学生进行系统化的创新创业实训。2.2科研项目驱动的创新创业实践教学。生物化学是生物医药类及生物化工类专业的基础学科,与之相关的科学研究、产品的开发和生产都需要生物化学理论知识为支撑,学生通过参加科学研究,可以加深对理论知识的理解,并应用于实际的科研中去。学生可以通过加入教师的研究室,从事相关项目的科研工作,同时,学生也可以根据自己的兴趣爱好,在专业教师的指导下开展科研项目,在实验过程中利用课堂中所学理论知识解释实验现象,分析实验结果,使学生达到生物化学理论知识与实践相衔接。同时鼓励学生根据科研成果撰写科技论文、申明专利,教师提供详细的修订意见,提高学生的科研能力及创新能力。2.3打造创新创业教学团队与辅助教学团队。创新创业教学团队与教辅教学团队是创新创业教育的关键。通过搭建由专任教学、学长及企业家共同指导学生创新创业活动模式,增加学生的学习兴趣,充分调动学生自主学习的能力,激发学生创新创业激情,促使生物医药类专业学生形成创新计划与创新项目。同时,我院生物医药类专业以中国工程教育专业认证标准为基础,结合社会发展需求,组建了由专任教学、学长及企业家参与的教学工作委员会,定期修订培养方案,符合具有鲜明创新创业特色的人才培养目标,满足社会经济发展需求。2.4教学成效。在创新创业教育模式下,生物化学的教学取得了部分成效。生物化学的理论教学改革激发了学生学习生物化学的兴趣,并将理论应用于解决实际问题中,解决了生物化学教学内容与实践相脱节的问题。生物化学实践教学内容的改革提升了学生的实践能力、创新能力及科研能力。近年来,学生发表的各类研究论文30余篇,申请发明专利20余项,在“挑战杯”全国大学生课外学术科技作品竞赛、“创青春”全国大学生创业大赛、“互联网+”大学生创新创业大赛及全国大学生生命科学创新创业竞赛等省级以上体现学生实践动手能力和创新创业能力的大赛中获得各类奖20余项,2名同学获得国外知名高校全额奖学金攻读博士学位,显著提升生物医药类专业及生物化工类人才培养质量。

3结语

将创新创业教育融入生物化学教学改革激发了学生学习生物化学的兴趣,解决了生物化学课程教学内容与实践相脱节的问题,提升了学生的创新能力和科学研究能力,并取得了一定成果。开展高校创新创业教育,对于培养适应社会发展的高素质“双创”人才具有重要作用,有利于提升就业质量,促进社会经济可以持续发展。

参考文献

[1]于小越.“互联网+”视域下校企合作提升大学生创新创业能力研究[J].科教文汇,2019(9):60-62.

[2]王芳,宋瑛琳,田明,等.高等农业院校创新创业教育与生物学专业教育深度融合的探析[J].中国现代教育装备,2019(17):105-108.

[3]张艳,金刚,曲小姝,等.基于创新创业模式下的药理学教学改革与实践[J].吉林化工学院学报,2019,36(8):21-23.

[4]杨灿明.新时代高校创新型人才培养[J].国家教育行政学院学报,2018(7):3-7.

[5]张微娜,侯佳苗,张锦鹏.“四轮驱动”推进中医药院校大学生创新创业教育发展研究[J].法制与社会,2019(27):195-196.

[6]张晓云,张红印,顾香玉,等.以工程教育专业认证为导向的“生物化学”课程教学改革[J].农产品加工,2018(5):92-94.

生物化工论文范文篇8

关键词:食品质量与安全专业;实践教学体系;构建教育部

从2002年开始正式批准了合肥学院食品质量与安全专业的招生,学院根据国内外发展形势,于2014年在原来生物技术专业基础上新办了“食品质量与安全”专业方向。食品质量与安全专业是一个以生命科学和食品科学为基础,研究食品的营养、安全与健康的专业,主要培养通食品、强检验、善管理三位一体的技术管理应用型人才。为全面提高教学质量,培养新世纪需要的道德、知识、能力的全面发展、具有创新精神和实践能力的科学技术与经营管理兼备的复合型人才,必须建立与培养方案相适应的但又相对独立的实践教学保障体系。

1食品质量与安全专业的特点与培养目标

1.1学科特点。具体到食品安全问题的产生,主要是由生物学特性和商品特性引起的,其隐患源包括动植物食品原料在收获或生产过程中混入一些杂质;食物(动物或植物)生长过程中农药残留、兽药残留和添加剂等;食品(动植物)本身可能天然就含有有毒有害物质,如禾本科、豆科植物中的氢氰酸、发芽马铃薯中的龙葵碱、畜产品中的肝脏毒素、水产品中的河豚毒素以及谷物和坚果中的过敏源等。另外还有许多食源性致病菌,如大肠杆菌、沙门氏菌、单胞增生李斯特氏菌、肉毒梭状芽孢杆菌等。可见,食品加工的所有过程和环节都可能影响到食品的质量与安全,这就要求从事本专业具人其有很强的实践能力。1.2培养目标。培养食品卫生监督、检验、安全性研究和质量管理的复合型人才,了解食品生产加工的全过程,熟悉食品法规与标准及食品分析检测技术,具有食品质量管理的能力。

2食品质量与安全专业实践体系的构建

2.1指导思想。以实践教学与理论教学同等重要的指导思想,根据人才培养的目标要求,以实验、实习、实训等方式相结合,由基础实验到专业实验的,由简单实验到综合实验的,建立起一个多层次开放的实践教学体系,整体优化并与理论教学有机统一的食品质量与安全专业实践教学体系。2.2实践教学的目标。合肥学院是应用型本科类院校,培养的服务于地方经济的工程性人才,人才培养应理论和实践并重,以培养实际应用能力为主线,突出实践的教学模式。结合合肥学院的定位及食品质量安全的专业培养目标,实践教学目标为:通过系统的实践教学系统的学习,加强并延展强化理论教学的内容;通过训练使学生能熟练掌握本专业的基本实验技能;提高学生综合运用能力,具备在实际技术生产和应用上发现问题、解决问题的能力;加深对专业、行业和社会的认识,并使其专业能力能服务与当地社会,从而符合合肥学院地方性应用型大学的办学定位。2.3多层次的实践教学体系。2.3.1基础实验体系。以模块化的形式将各种基础实验技能融合成基础实验体系,包括物理实验、物理及分析化学实验、无机及有机化学实验、计算机知识信息等,通过学习此类实验学习,要求学生掌握化学试剂配制、常规化学反应机理、计算机数据处理及分析等能力,达到理工科基本素养。2.3.2专业基础实验体系。通过生物基础实验模块(包括食品化学实验、食品微生物实验、食品生物化学实验、细胞生物学实验等)学习,要求学生掌握食品专业生物化工基础知识,要求学生能够使用常规仪器设备,培养和强化学生食品检测和分析的基本技能和科研素质。为进一步的食品质量于安全专业实验教学做准备。2.3.3专业实验体系。第4学期开始专业实验教育模块,包括食品检测与分析、食品感官评价、仪器分析、食品安全与检测、食品加工工艺等实验课程,通过这些课程的教学,要求学生掌握专业的食品加工、食品检测实验技能,并能对得到的实验数据进行处理分析,并完成检测报告的能力,以及严谨的科学态度和实事求是的良好学风的培养,并能够运用所学知识分析和解决实际生产中的问题。2.3.4实习、实训体系。实验教学使对某项实验技能进行的专向训练,而实习、实训体系是将学生直接放入生产一线,培训他们在实际生产中的综合食品检测及分析能力。整个实训体系又分为工程实训模块、实践模块、认知实习模块以及创新创业第二课堂模块。实习实训体系和实验体系的结合,使我们的课程从学校真正的走入工厂,让学生切身的感受食品生产的过程,并将利用前面实验课上学习的实验技能应用过来,检测食品的营养于安全。2.3.5科研创业能力实践。鼓励教师指导学生,以团队的形式申请创新创业计划项目,开展各种竞赛;通过食品质量于安全综合大实验和毕业论文进行短期的科研训练,让学生主动参与实践,主动探索和创造,充分发挥学生创新创业潜能,为创业创新做好准备。我们分析每个实践教学阶段的目标和内容,防止中间有交叉的现象,更对其中一些内容进行符合食品质量于安全方向的改进。根据学生对专业更感兴趣的现象,调整基础实验中的一些内容,使其食品企业检验操作项目的一部分。例如,在生物化学实验中,直接开设凯氏定氮法检测牛奶的蛋白质含量;在CAD制图课程中,将食品企业实际需要的绘图内容设定为作业题目等。这样每一阶段的实践环节均以提升学生的职业能力和素养为目标,均与学生的专业实践能力有关,形成了以专业能力培养为目标,从基础、专业基础、专业到综合实践内容均与专业实际相关,实验—单项技能训练—综合技能训练—现场实习螺旋上升的立体化实践教学新模式,有效地提高了学生实践能力。

参考文献

[1]刘新星,蒋昊,申丽,等.资源加工实验教学示范中心的建设与实践[J].实验室研究与探索,2012,3(1):90-92.

[2]刘春芝,孙莉莉.基于就业能力提升的层级递进式实践教学体系研究——以经贸专业为例[J].现代教育管理,2012,3(1):79-82.

[3]安广杰.食品质量与安全专业课程体系设置的思考[J].中国轻工教育,2007(2):60-61.

[4]励建荣,邓少平,顾振宇,等.我国食品质量与安全专业人才教育模式的思考与实践[J].中国食品学报,2004,4(4):109-112.

生物化工论文范文篇9

【关键词】教学改革;内涵建设;生物工程

生物工程产业其创新性和发展趋势日新月异,产业的新发展相应对人才培养提出了新的要求,通过探索不同育人模式和创新机制,提高教学质量,走内涵式发展之路是应用型本科高校生物工程类专业建设重要环节,是高校专业发展由规模化发展转向质量提升的必由之路[1]。“生物制药工艺学”(Biopharmac-euticaltechnology)是生物工程专业的核心课程之一,其学科基础是生物化学、微生物学、发酵工程、基因工程等多门基础学科,为药物生产提供原理和方法,内容包括以生物性成为为原料,采用现代生物技术,包括微生物发酵、酶工程、细胞培养和分子生物学技术等提供产品和技术。“生物制药工艺学”课程综合性强,集合了生物工程专业理论知识和实践技能知识体系,该课程的建设对应用型本科院校生物工程类人才培养目标、素质结构及专业内涵建设具有重要意义。

1课程目标与人才素质结构培养

生物工程类专业包括生物工程、生物制药和合成生物学专业,生物技术革命极大推动了系统生物学、合成生物学等新兴学科发展,也推动生物检测试剂、抗体疫苗等产品的生产需求。如何挖掘新的专业特色、培养兼具工程素养、创新能力和具备国际化视野的生物工程类专业人才是专业内涵建设的目标,对生物工程技术人才培养提出了新的要求:满足新型生物工程技术人才在相关领域从事产品生产、生产管理、工艺设计和新产品开发,实现“知识+能力+素养”综合化、全方位的复合型人才培养目标。“生物制药工艺学”是生物工程专业的一门生物工程专业核心课程,其主要内容包括生物药物生产工艺原理及其控制,课程理论与实践紧密结合,要求学生在学过生物化学、发酵工程、细胞工程、基因工程、分离与纯化工程等课程的基础上,通过本课程的学习,了解和掌握各类生物药物的理化性质、分子结构等特征,并按照不同工艺的特点,确定天然原料、工程菌、细胞系、动力学等过程工艺与生产方法,并如何应用这些基本理论去分析和解决生产过程中的具体问题[2]。通过掌握生物工程科学原理和工艺技术过程等基础理论和技能,培养能在生物工程领域从事生产技术提升、产品开发推广的应用型工程技术人才。“生物制药工艺学”课程目标要求掌握生物药物制备的技术原理、生产工艺和纯化技术方法等方面的专业知识;运用生物工程的基本理论,分析和解决生物工程制药的能力;运用生物工程知识进行制药工艺的改进、技术创新以及新药的研发,在此过程中培养学生自学能力和科研能力;在课程学习过程中培养科学思维能力,掌握生物制药工艺学的基本理论、基本实验技能,具备良好的专业素质和求实创新的精神。课程要求学生能够开展专业实验,包括制定方案、处理样品、开展实验、分析数据、撰写报告、得到合理有效的结论等。

2“生物制药工艺学”教学方法革新

课程是专业人才培养的核心单元和核心要素,课程体系对学生提高本科生的创新素质发挥重要作用。新工科专业人才是专业内涵建设,是通过课程挖掘新的专业特色、培养工程素质和创新能力的[3]。课程改革能激发学生学习的主动性和针对性,使学生具备扎实的专业理论知识、工业生产实际应用能力,能够使学生具备良好的工程实践基础、组织管理水平和团队合作能力,在生物工程相关领域从事生物工程相关产品过程管理、工艺设计、产品研发的应用型工程技术专业人才,实现专业知识和能力素养综合化、全方位的复合型人才培养目标。生物工程专业核心知识领域包括生物化学、细胞生物学、分子生物学等内容,涵盖生物体的结构、功能及特征、生物与环境、生物化工、生物工程的原理与应用等知识领域,也是涵盖“生物制药工艺学”课程体系的内容。优化课程体系,合理安排课程之间知识点的逻辑关系,调整部分课程理论和实践课程的比例,培养复合型应用技术型人才是生物工程专业人才培养方案的重要内容。构建优秀课程教学团队,开展课程建设,将课程作业、课程测验、实验实习报告、课程论文等成绩纳入课程总评成绩中,便于综合考察学生学习效果。“生物制药工艺学”学习要求药品研发与生产与制药工艺相结合,前沿科技成果与制药工艺相结合,在实习基地观摩和操作实践中,加深体会,激发学生对理论知识学习和未知知识领域探究的热情。鼓励教师离岗访学、或到企业“双师型”培训,推进产教融合、注重实践教学和校企合作,加强学术交流。在每个知识模块的学习过程中,掌握具体产品的基本原理和生产技术,通过问题导向式学习、比较式学习、研究式学习和拓展式学习等方法,引入各种慕课和网络教学资源,丰富教学素材多元化。通过引入虚拟仿真教学手段,推进教学方式与信息技术深度融合,加强学生践操作能力培养。开展线上线下、主动与被动的协同教学,实现教育教学过程的有机互补。如在基因工程制药工艺一章中,重组生物制品的工艺研发要求的核心内容、其相关法规和技术的指导原则之间的关系,如何把基因工程技术应用于抗生素、氨基酸和维生素等制药中。通过问题激发知识的学习,知识的学习反过来被用于问题的解决,使知识更加丰富,容易记忆,也便于迁移。在新理念的指导下,改革教学方法与学习方法,创新课堂教学方式方法,采用讨论式、翻转课堂等课堂教学方法,激发学生研究性学习兴趣。注重课内与课外、线上与线下、提高实践教学与学习效率。

3课程建设与研究性学习

专业内涵建设是应用型本科教学中复杂的系统工程,而学科建设和专业建设是高校内涵式发展的首要内容,课程又是专业人才培养的核心单元和核心要素,真正对学生发挥作用的是课程体系[3]。生物工程专业知识单元的选择既要涵盖共性教学规范,同时根据教学资源的差异,体现专业的特色与优势。优化课程体系及个课程之间的逻辑关系,将部分课程由理论课程为主调整为以实践课为主,开展课程建设,构建优秀课程教学团队,将课程作业、课程实验报告、课程测验、课程论文等成绩纳入课程总评成绩中。专业核心课程凝练涉及学生在本专业领域习得的基本专业理论知识与方法论,这部分课程知识内容需要系统的、层次性地逐步展开,课程的开发与设计需要结合当前学科专业领域的新技术、新方法、新工艺、新成果。专业核心课程强调工程人才的设计、研发、创新能力、解决复杂工程问题的能力与多学科学术共同体之间对话交流与合作的能力等。挖掘和充实生物技术领域新的研究成果、前沿学术发展经验及时融入课堂教学,注重培养学生的研究性学习方法和创造性思维模式,激发创新灵感,构建新型的教学模式和育人模式。深度融合生物学与工程学,结合学校、区域等特色,提高生物工程学科人才培养质量,加强服务社会功能。“生物制药工艺学”课程涵盖分子生物学、细胞生物学、生物化学等内容,包括生物工程设备、生产工艺、质量控制、工厂自动化设计等工程内容,其专业内容主要领域分为基因工程、细胞工程、发酵工程、生化工程和生物反应器工程,其中基因工程是现代生物工程的核心。在“生物制药工艺学”教学过程中,基于问题的教学模式(Problem-basedlearning,PBL)提升问题解决能力效果显著。推行基于问题的探究式学习方法,检索相关知识点研究进展,帮助学生开展研究性学习。通过学生理论知识掌握与实践技能的训练,培养学生的兴趣爱好,推进教学方式与信息技术深度融合,充分利用虚拟仿真教学等网络课程资源,开展线上线下、主动与被动的协同教学,实现教育教学过程线上线下的有机互补[4]。同时,本科生导师制强调因材施教个性化教育培养模式,通过导师的启发和引导,培养学生发现问题、解决问题的能力,也是素质教育改革的新思路,对人才创新素质提升以及本科教育改革有着积极的意义。

4课程建设与工程教育专业认证

“双万计划”一流专业、一流课程建设战略和专业认证在人才培养质量和提升专业竞争力发挥重要作用。本科教学质量保证与质量改进的重要措施是国际工程教育专业认证,主要强调以学生为中心、以产出为导向的效果和持续改进的理念。合格的专业认证有利于学校规范面向工程教育的各个环节,提升学校的人才培养声誉,培养全面合格的工程技术人才。地方应用型高校主要从师资队伍水平、人才培养能力、科研成果转化、社会服务水平和文化传承效果等方面,发挥用人单位反馈、第三方评价等在人才培养、人才需求、专业标准和专业认证等方面的作用[5]。通过生物工艺学课程学习和生产实践,分析学生掌握工程知识、问题分析能力、工程设计解决方案、研究性学习能力水平,把生物工程产业需求和前沿技术更新到教学内容中。以行业需求为导向,通过企事业单位评价和反馈推动教学质量提升,了解用人单位对生物工程企业对学生知识结构、能力结构、课程体系及其他方面的反馈评价,从而优化培养方案、论证课程体系、强调教学过程、落实质量监控以及持续改进机制。夯实教学内容生物工程类专业认证重点考核条件是否为达到学生预期目标而设置。根据生物工程专业认证标准、学科建设和行业发展的最新状况,对本专业的培养目标、课程体系、培养方案进行适时评价与修订。

5结语

应用型高校生物工程类专业内涵建设与产业的新发展密切相关,专业内涵建设以培养未来生物科学产业发展人才为己任。课程体系、教学过程及学科建设方面必须适应新时代的发展需求,探索生物工程类学科专业领域的新技术、新工艺、新方法、新成果,培养具有良好的理论知识体系,富有开拓精神、创新意识和实践能力的工程技术人才,更好地为生物制药行业输送合格的应用技术型人才。

参考文献

[1]周旦,赵红专.地方本科高校特色专业建设内涵式发展的理论与实践[J].教育现代化,2019,6(59):126-128.

[2]余琼,王秋新.工科课程思政实践路径探索——以“生物制药工艺学”课程为例[J].黑龙江教育(理论与实践),2021,1359(7):25-26.

[3]过建春,李志宏.地方新建本科院校特色发展之路探索[J].中国高等教育,2017(12):34-36.

[4]陈文琪,张薇.“新工科”建设背景下工科专业内涵建设研究[J].科教导刊,2018,35(12):5-6.

生物化工论文范文篇10

论文摘要:香菇多糖是具有免疫调节活性、抗感染作用、抗肿瘤作用、降低胆固醇、抑制转氨酶活性和血小板凝集等作用的功能性活性物质,现已用于临床作为抗肿瘤、抗病毒型肝炎、抗辐射、抗糖尿病等。其应用主要是制成片剂、胶囊剂和口服液来使用。

香菇多糖(lentinan,LNT)是从伞菌科真菌香菇(lentinasedodes)的子实体或经香菇深层发酵菌丝体中分离得到的一种β-1,3-葡聚糖,20世纪60年代日本科学家首先证明其具有显著的免疫调节活性和抗肿瘤活性,经临床验证,因而引起人们的广泛重视,已在国际市场上推广应用。香菇多糖的生物活性主要表现在:免疫调节活性、抗感染作用、抗肿瘤作用、降低胆固醇、抑制转氨酶活性和血小板凝集等的作用。香菇多糖的毒副作用与通常化疗药物比较,由于轻微可忽略不计。香菇多糖目前除了作为抗肿瘤药物在临床上应用外,还有许多其他作用,如抗辐射、抗糖尿病等,还有报道香菇多糖的硫酸酯化衍生物具有良好的抗HIV活性,也是重要的功能性食品基料。

香菇多糖纯品一般为白色粉末状固体,对光和热稳定。在水中最大溶解度为3mg/ml;能溶解于0.5mol/lNaOH,溶解度可达50~100mg/ml;不溶于甲醇、乙醇、丙酮等有机溶剂中。香菇多糖具有吸湿性,在相对湿度为92.5%的25℃室温环境中放置15天,吸水量可达40%。香菇多糖是极性大分子化合物,其特定的结构与免疫活性有密切关系。因此香菇多糖的提取和制剂过程中大多采用不同温度的水和稀碱液,并尽量避免过于酸性条件下操作,因为强酸性能引起多糖苷键的断裂。

随着现代生活节律的加快,生活水平的提高,各种即食、方便、全营养高能组合食品以其实用和携带方便、快速补充能量和体力、消除疲劳、增强体质、延年益寿、美容等而备受人们的青睐,香菇多糖就是能满足人们这一需求的生物活性物质。

1香菇多糖片

1.1香菇多糖片处方的确定

1.1.1填充剂的选择

填充剂可以增加片剂的重量和体积。香菇菌多糖原料质地疏松,可压性差,筛选处方时,首先对填充剂进行选择。对常用的填充剂淀粉、糊精、微晶纤维素和甘露醇,以及无机盐类填充剂磷酸氢钙、碳酸钙和硫酸钙进行比较。结果表明:淀粉、糊精、微晶纤维素和甘露醇对糖测定有干扰;磷酸氢钙、碳酸钙对糖测定虽无干扰但可压性差;使用硫酸钙作填充剂,对该片剂质量指标的测定无干扰,颗粒可压性好,片剂表面光滑美观,而且具有较好的硬度和崩解效果。

1.1.2粘合剂的选择

粘合剂在制片中具有使固体粉末粘结成型的作用。以硫酸钙为填充剂筛选4种粘合剂:羟丙甲基纤维素(HPMC)、淀粉浆、糊精、聚维酮(PVP),并与水作为润湿剂进行比较,结果表明前三者对糖测定有干扰,PVP对分子量测定有干扰,而水则无干扰,易被物料迅速吸收,且能满足压片要求。

1.1.3崩解剂的选择

崩解剂是能促使片剂在胃肠道中迅速崩解成小粒子的辅料。以常用的崩解剂交联羧甲基纤维素钠(CCNa)、交联聚维酮(PVPP)、羧甲基淀粉钠(CMSNa)进行筛选,结果表明,它们均对糖含量测定有干扰。以硫酸钙为填充剂所制片剂,在水中能很快崩解,崩解时间为2min左右,因此不用加入另外的崩解剂。

在以上处方筛选的基础上,选用硬脂酸镁为润滑剂,对本品的处方进行综合筛选,结果为:香菇菌多糖10g,硫酸钙290g,硬脂酸镁3g,水适量,欧巴代薄膜包衣材料适量,制成1000片。

1.2制备工艺

由于香菇菌多糖原料为灰黑色,主要辅料为类白色,压片外观颜色不均匀,因此本品用淡黄色薄膜衣改善外观。

将香菇多糖与硫酸钙按处方比例混匀,加水制成软材,16目筛制粒。50℃~60℃干燥,16目筛整粒,按照处方比例加入硬脂酸镁,混匀,压片。包薄膜衣即得成品。

2香菇多糖胶囊

2.1空胶囊的制备

2.1.1原料

制备空胶囊的主要原料是明胶,以骨、皮混合胶较为理想。为增加坚韧性和可塑性,一般加增塑剂甘油、山梨醇、羧甲基纤维素纳等;为减小流动性、增加胶冻力,可加琼脂等;为避光,可加遮透剂二氧化钛,用量2%~3%。为矫味和便于识别,可加矫味剂和着色剂,如乙基香草醛、柠檬黄等;为防腐可加防腐剂尼泊金酯等。

2.1.2空胶囊制备工艺流程

溶胶→蘸胶制坯→干燥→拔壳→截割→整理。生产环境要高度整洁,温度10℃~25℃,相对湿度35%~45%,一般由自动化生产线完成。

2.2香菇多糖的填充

本品选用0号胶囊。将香菇多糖常温下过100目筛,装胶囊每粒100mg,封口辐照灭菌包装,制成的香菇多糖胶囊,室温可放置一年。

3香菇多糖口服液

口服液是在汤剂的基础上改进和发展而成的,它具有中药汤剂所不具备的许多优点,如克服了汤剂临用时制备的麻烦,浓度较高,剂量较小,加入芳香矫味剂后,口感好,便于服用、携带和贮藏。口服液多灌封于易拉盖瓶中,质量相对稳定,适合工业化生产,因此口服液的研制与生产逐年上升,是目前应用较多的剂型之一。

3.1香菇多糖口服液配方

以1L口服液计:香菇多糖10g,乙酸锌0.03345g,白砂糖39.14g,蜂蜜106.4g,柠檬酸1.000g,黄原胶0.5g。

3.2香菇多糖口服液生产工艺

取适量的香菇多糖粉溶于水中,将研细的乙酸锌缓慢加入,边加边搅拌;加完后用稀氢氧化钠溶液调节pH6.2~6.5,搅匀后使其自然沉降,冷却过夜。次日过滤,得澄清的香菇多糖液,在该清液中加入用柠檬酸酸化的蜂蜜、白糖,加热搅拌均匀,趁热过滤,再向清液中加入适量黄原胶和溶解好的山梨酸钾,精滤,罐装,封口,1150C灭菌20min。检验,包装。产品呈淡黄色,略有焦糖香,味感协调柔和、酸甜适口,体态滑润,澄清透明,无沉淀,无肉眼可见的外来杂质。

参考文献

[1]黄益丽,廖鑫凯,李清彪,等.香菇多糖的生物活性[J].生命的化学,2001,21(5):371-373.

[2]林楠等.香菇多糖的研究进展[J].食品研究与开发,2007,28(5):174-176.

[3]姜军平,唐俊昌.实用生物化工技术[M].西安:西安交通大学出版社,2000:278-283.

[4]张国喜,荣融,周兴伟.香菇菌多糖片处方筛选及制备工艺优化[J].江苏药学与临床研究,2006,14(6):352-354.

[5]许牡丹,陈合.药食兼用食品加工技术[M].北京:化学工业出版社,2006:458-460.