影像技术论文范文10篇

时间:2023-04-07 17:06:50

影像技术论文

影像技术论文范文篇1

(一)影像技术的跨界研究

将图像打印在布料上的这种技术兴起以后,走在前列的荷兰、奥地利、日本和美国,由于技术尚不够成熟,一时未能全面推广,国内现阶段也只限于通过纺织品转印这种技术来完成。在此基础上,将其与170多年前“利用了一个黑暗的屋子的一堵墙上的孔,将外面的景物投射到了平面上”的这种传统拍摄照片方式相结合,将会在服装领域中开创全新的影像技术模式。

(二)服装面料研究

相纸是最为传统的显影材质。在服装设计中面料就相当于相纸一样,属于影像技术的根基。根据质地均匀且不易变形的纤维纸基、增加洁白度的薄层氧化钡、阻止冲洗相纸时化学液体进入纸基的树脂层、感光乳剂层以及相纸表面保护层的这五层相纸构造的原理,选择能够承载影像技术实施的面料就显得极为重要。依据市场考察以及对面料的特殊要求,材质的选用应具备以下特性:

1.经纬纱线细密,布面上没有纤维过于稀疏造成的洞眼(窟窿多的面料会造成化学药剂的渗漏,不适合制作)。

2.布面平整,带有清晰的粗纹理肌理,纺织过程中由于接线过多造成的线头疙瘩越少越好。

3.具有高纯度的面料材质,且纤维含量越高,变形程度越小。

4.酸碱度适中,在面料生产过程中,会用到各种化学物质加以漂洗等,如果化学物质残留过度,就会导致酸性或碱性过高,会使药剂在保存过程中的损毁加速。

5.色泽自然最佳,在新型面料完成之前必然会涂刷底料,所以材质本身的颜色应对显影的影响不大。在选购过程中,最好不采用过分白或颜色不自然的面料,很可能是加工过程不规范导致化学试剂使用过度造成的结果。

(三)工艺流程研究

用现代与传统暗房工艺的流程在面料上“拍摄”独一无二的画面,让人们大为赞叹。首先是将新型面料“曝光”,形成看不到的影像或“潜影”。再于黑暗中将不同的显影药品涂抹于面料上,使其在普通光线下持久显示更真实的影像。然后去除上面没有感光的乳剂后,进行清洗和干燥。最后是印相即有图案的面料装在立式投影机中,用放大镜头在新型布料上形成影像。因面料颜色、材质不同的特性,制出的成衣主要有两大区别。浅色面料可按正常工艺流程进行,然而深色面料因有易变色的局限性,所以,在最终印相的过程中放张可以反复使用的隔离纸,成像后取出即可。

二、影像技术在服装设计中的创新性

在影像技术迅猛发展更新的今天,把传统工艺保留并延续在影像技术的基础上,采用与之前不同的成像载体和新兴的影像技术相结合方式运用在服装领域中,将会呈现一个全新的影像视觉效果。

(一)多元化的技术手段

随着保留传统工艺并延续影像手法的技术革新,影像质量等方面都有显著的提升。它解决了制作工艺粗劣、对小批量个性化服装的竞争力不足的问题。同时,满足了人们对服装带有独具一格特性的需求。也可以在质地松软的皮革、无机物或变化多端、成分复杂的有机物上显影。技术的完善对材质有了更多更好的兼容。

(二)新颖的显影材质

一是新型面料的生产解决了传统影像技术只适用于表层是聚酯纤维及棉质含量极高衣服的现象。这不仅可以对化纤服装进行“拍摄”成像,还可选用亚麻布、涤纶等材质的面料服装。其次,不会出现类似用专用打印机经过高温熨压后颜色会发生变化的情况,如白色会变黄。制作完成后深色面料品质稳定,药剂与纤维完美融合会使图样的色泽与原来相同。再次,增加了布料的通气性和柔软程度,延长了使用寿命。最后,既提高了图案的色彩真实性,又使韧性更强,并富有强烈的层次感,在一定程度上解决了因横向拉扯导致图案出现小细纹的可能性。

(三)完善的工艺流程

市面上常见的纺织品转印技术工艺流程主要按照深、浅色面料分两大类型,一般采用含有胶质的转印纸或特殊升华材料生产服装。但现代与传统暗房的制作流程大大克服了国内印刷设备缺陷的问题,例如颜色多了不会化色,细线变粗、漏色等现象均可较大程度地避免出现,另外在制作过程中不会出现蓝点、红点等问题,材质本身有纹理也能够有清晰的人物类、风景类等细腻图样出现。

(四)独特的显影效果

照片冲洗后即为固有的影像,而面料上显影效果是随材质的软硬程度或曝光时间长短变化。若整件衣服中从衣身到袖口部分的柔软程度逐渐递增,在制作过程中曝光时间也较短,则图样会出现渐变的效果。在定影过程中面料发生平面转动也能达到如幻影般的不清晰图案。或者,可根据市场需求和个人喜好量身定制不同图案效果的新型面料,从而裁剪出各种廓形的个性化服装。经过以上的分析及考量,在传统影像技术基础上的创新是通过进一步对影像技术、面料材质等方面的探索与研究。新型布料的纹理赋予服装的深度和立体感是普通纸张无法实现的。尝试投射影像在布料上经过“曝光”后显影成像,最终根据不同的服装设计手法进一步完善裁剪,这就像一件珍贵的原创艺术品。

三、结语

影像技术论文范文篇2

关键词:影像技术支付结算影像交换系统

在金融支付工具中,支票携带方便,具有信用和授权补记等功能,是我国最普遍使用的非现金支付工具之一。但是长期以来,我国的支票只能在同城范围内使用。在跨区域经济往来中,人们只能选择汇兑、银行汇票、商业汇票甚至现金支付等结算方式,票据传递成本高、清算效率低、资金在途时间长,缺乏灵活性和便利性,使用极不方便。

支票影像技术是银行综合运用影像技术和支付密码等技术,将纸质支票转化为影像和电子信息,实现纸质支票截留,利用信息网络技术将支票影像和电子清算信息传递至出票人开户银行进行提示付款,实现支票全国通用的业务处理技术。票据影像交换系统就是影像技术在银行票据交换过程中的实体表现。

一、建设影像交换系统的必要性

1.有利于推动我国支票业务的发展,满足人们多样化的支付结算需求

近年来,虽然电子支付等新型支付工具发展迅速,但支票仍是重要的信用支付工具。据统计,2007年支票的年签发量为12亿笔,金额达300万亿元,其中跨城市的支票使用量达到10%左右。伴随生产要素的自由流动、金融市场的紧密联系、经济主体的频繁交往和地区经贸的纵深发展,支票日益呈现突破地域限制和实现全国通用的态势。我国部分地区在人民银行当地分支行的组织下,开展支票跨区域使用试点,例如京津廊区域、上海及周边区域、广深区域等,有效促进了区域经济的发展,同时也反映了社会对支票全国通用的强烈需求。

2.有利于完善我国金融基础设施,顺应国际支付清算的发展趋势

目前,许多国家的支票均已实现全国通用,美国《21世纪支票法案》在保护传统清算方式的同时,鼓励采用影像技术推动票据的无纸化传递和清算;包括印度在内的许多发展中国家也在建设基于影像技术的全国支票截留系统。显然,影像技术正引领未来票据领域的发展,在支付清算过程中起到重大的作用。

中国人民银行审时度势,在立足国情和借鉴国外先进经验的基础上,于2007年在全国金融系统推广了以影像技术为支撑的支票影像交换系统平台,实现纸质支票截留和支票全国通用。

二、影像交换系统的总体架构及处理流程

根据我国幅员辽阔、业务量大、各地业务量不均衡等实际情况,同时为避免业务处理集中于一个节点带来的巨大压力,影像交换系统采用了三层结构:第一层是影像交换总中心,负责接收、转发跨分中心的支票影像信息。第二层是影像交换分中心,负责接收、转发同一区域内的支票影像信息,并向总中心发送和接收跨分中心的支票影像信息。第三层是票据交换所,负责采集支票影像信息和录入电子清算信息,按规定格式生成支票业务报文。

影像交换系统提供了多种接入方式。银行机构可以直接接入影像交换系统,也可以通过票据交换所间接接入影像交换系统。采用直接接入影像交换系统办理业务的银行机构,应具备影像采集条件,并与影像交换系统连接,通过省级机构集中向影像交换系统提交和接收支票影像信息。采用间接接入影像交换系统办理业务的银行机构,由于未与影像交换系统直接连接,可采取传递实物支票或磁介质方式,委托票据交换所向影像交换系统提交和接收支票影像信息。其中直接接入方式能更好地提高支票清算的效率,目前,建设银行和华夏银行已实现直接接入方式。

影像交换系统的处理流程包括三个阶段:第一阶段是纸质票据流,即收款行完成纸质支票的截留和影像采集;第二阶段是影像信息流,即影像交换系统将影像业务信息传递给出票人开户行审核付款;第三阶段是资金清算流,即出票人开户行通过小额支付系统返回业务回执和完成资金清算。

三、影像交换系统的信息安全技术

支票影像信息的真实性和安全性,主要采用信息安全技术手段来保证。支票影像交换系统采

用以数字证书为核心的加密技术,对传输的信息进行加密、解密、数字签名和签名验证。目前票据交换所和具备影像采集条件的银行机构,都在使用数字证书对支票影像业务报文进行数字签名,不仅保障了网上传递信息的保密性和完整性,也保证了交易实体身份的真实性和签名信息的不可抵赖性。

四、影像交换系统在银行支付结算应用中存在的问题

目前影像交换系统业务处理主要存在以下几个方面的问题:一是退票率过高。主要表现为空头支票、印鉴不符、支付密码不符和信息不匹配等,对支票影像业务发展和社会公众信心造成了不利影响。二是逾期业务量大。按照规定,出票人开户行收到影像信息后,应于T+2日内返回业务回执。然而在实际操作中,很多银行未按规定返回业务回执,造成客户资金无法及时到账,影像交换系统支持支票异地使用的及时性和便利性未能充分体现。三是跨区域业务量发展较慢。据统计,新增跨区域支票业务主要在沿海及经济发达地区,而经济落后地区发展较慢,这种局面很大程度制约了影像系统的应用。

产生这些问题的原因:一是银行基础设施不完善。如采用印鉴核验的银行未完成客户印鉴入库工作,采用支付密码核验的银行支付密码推广不到位或未与客户签订依据支付密码核验的付款协议,造成核验通过率低,出现退票;大多数银行采用分散接入方式,业务处理自动化程度低。二是支付清算纪律不严格。一些银行存在无理拒付、随意退票、逾期付款等现象,造成大量退票和逾期业务。三是业务操作不规范。一些银行不按规定加盖银行机构代码,录入信息与影像信息不匹配。四是影像核验过于审慎。少数银行存在“宁可不付,不可错付”的心理,对电子验印系统参数设置过高,不按规定办理查询查复,影像稍有瑕疵便直接退票。

五、推动影像系统建设和业务发展的措施

为解决上述问题,保障支票业务的正常清算,人民银行着重采取了以下措施:

1.完善银行业金融机构的基础设施

一是鼓励具备条件的银行集中接入影像交换系统,提高业务处理的自动化水平和系统效率。

二是要求各银行协调客户,在新收支票或存量支票上加盖付款银行机构代码,确保支票影像业务传输路径的准确性。

三是支持银行的接口开发和行内系统改造。

四是督促银行做好电子验印和支付密码的核验付款工作。

2.提高影像采集的质量

为提高业务处理效率,防范客户资金风险,各银行应按照人民银行的选型指导意见采购扫描仪,并与外挂软件兼容。票据交换所的扫描仪应按规定设置图像采集标准。各银行要加强责任心,认真录入和复核,确保电子清算信息与支票影像信息一致。

3.严肃支付清算纪律

规范各方当事人的权利和义务,保障影像交换系统的安全、高效运行;颁发管理制度,要求各参与者必须按规定提出影像和审核付款,不得违反规定退票和拒绝付款、不得拖延付款;对于违规的银行,人民银行将进行通报和按规定处罚。

影像技术论文范文篇3

1.1人才培养目标

在内科学课程设计时要明确高职医学影像技术专业人才培养目标:为基层医疗卫生系统培养紧缺人才。经过3年时间,使学生成为适应基层医疗卫生事业改革,掌握医学影像技术基本理论及技能,能从事放射诊断、超声诊断等工作的高素质应用型人才。

1.2应具备的能力

掌握基础医学、临床医学基本理论知识和临床技能等;熟练掌握常见病的放射诊断、超声诊断基本知识、理论,具备从事医学影像诊断临床工作的能力;具备正确的思维方式和综合运用相关知识分析解决临床问题、做出正确影像诊断的能力。

1.3主干学科、主要课程

该专业主干学科包括基础医学、临床医学、医学影像学。主要课程包括内科学等。

2高职医学影像技术专业内科学理论教学课程设计

2.1突出高职医学影像技术专业特色及就业岗位需要的知识

高职医学影像技术专业学生文化基础较薄弱,对学习公共课、专业基础课、综合素质类课程兴趣不高。因此,内科学课程设计不能模仿和照搬本科课程,也不能把中专的课程简单地组合起来。高职医学影像技术专业人才培养模式必须进行相应改革,才能适应社会,尤其是基层医疗单位对人才的需求。通过适当精简、融合、重组、增设等,打破原有课程设计界限,优化课程和教学内容体系;突出职业能力培养与岗位技能训练,以突出操作能力、注重临床教学、加强技能实践、适应基层需要为原则,设置医学影像技术专业内科学课程体系。近年来我们按照这个思路,以“实际、实用、实践、实效”为原则,在制订内科学教学计划时重点选择必须具备的基本理论知识和技能,以常见病、多发病为重点,以增强动手和分析解决实际问题能力为核心,体现岗位需要的知识。

2.2明确内科学的重要性,激发学生学习兴趣

2.2.1明确内科学的地位

开始授课前向学生介绍内科学与专业课程、临床工作的关系,以激发学生的学习兴趣。让学生明白内科学在临床医学中占有极其重要的地位,是临床各科的基础学科,所阐述的内容在临床医学的理论和实践中具有普遍意义,是学习和掌握其他临床学科知识的重要基础。其涉及呼吸、循环、消化、泌尿、造血等系统的常见病以及理化因素所致的疾病,与外科学并称为临床医学的两大支柱学科。

2.2.2明确内科学学习的意义

内科学的教学任务和目的是:通过教学使学生掌握内科常见病、多发病的病因、发病机制、临床表现、诊断要点和防治措施,为日后学习其他临床学科和从事临床实践或基础研究工作奠定坚实基础。内科学是其他临床学科的基础,亦有医学之母之称。内科学是临床医学的核心学科,临床医学的共性诊断与治疗思想集中表达在内科学中;且在临床实践中,内科疾病也最为常见,其涉及面广,整体性强,既有自身的理论体系,又与基础医学密切相关,其诊疗原则与方法亦适用于其他临床各科。

2.2.3明确内科学的学习方法

内科学的学习方法是通过病史询问或面谈后,进行体格检查,根据病史与检查所见做实验室检查与影像学检查,以期在众多鉴别诊断中排除可能性较低者,获得最有可能的诊断,给出合理治疗方案。

2.3改革教学方法和教学手段,提高学生学习积极性

2.3.1重视“三基”教学,强化教学与临床实践的关系

“三基”即基础理论、基本知识、基本技能。内科学学习以疾病为中心进行讲解,包括病因、发病机制、病理解剖、生理变化、临床表现、影像学诊断方法和防治措施等。如学习“慢性支气管炎”时,先让学生复习支气管的解剖和生理特点,炎症的病理特点,咳嗽、咳痰的临床特点及影像学特点,再进行讨论并提出诊断依据,给予合理治疗,从而达到基本理念与临床知识的有机结合,为形成正确的临床思维奠定基础。

2.3.2重视疾病间影像诊断的鉴别

影像诊断的主要依据是图像,通过对图像的观察、分析、归纳和总结作出诊断。内科学课堂教学注重启发式和讨论式教学,采取多种教学方式,以培养学生主动学习、分析问题的能力。如肺炎链球菌肺炎、肺结核病早期,病变部位病理改变为渗出性炎症,影像学检查表现为相似的X线征象,但这两种疾病的典型临床表现不一样,如发热症状,肺炎链球菌肺炎多呈稽留热,肺结核病人多表现为长期低热,于午后或傍晚开始,次日晨降至正常。通过对这两种疾病的介绍,引导学生明确学习内科学的重要性和意义,使学生明确影像学检查只是辅助检查,必须结合临床表现进行分析才能得出合理的影像诊断,从而为临床医生明确诊断提供依据。

2.3.3利用多媒体教学设备进行教学,增强直观性

充分利用多媒体等教学手段进行教学,增强直观性,加深学生感性认识,激发学生的学习兴趣。在教学中为了增加对学生的感官刺激,弥补临床见习中的不足,通过多媒体展示临床病例后再进行教学。如讲授“慢性支气管炎”“肺心病”时,先以病案形式展示实例,激发学生的求知欲,使其积极参与到教学中。教学中还可通过对解剖、病理生理知识的复习来阐述疾病的演变和表现、两种病之间的联系、影像诊断的变化,组织学生进行讨论,提出诊治方案,不仅使学生产生成就感,而且提高了其分析、探索问题能力,从而收到良好的教学效果。

2.3.4强调教学总结和复习

教学中对一堂课的内容加以归纳、总结和复习,使学生明确重点,从而达到巩固知识、加深理解的目的。课堂导入和结束的方法多种多样,只要能提高教学效果的方法就是好方法。如教师对“肺结核”一病讲授完理论知识后,就要引导学生进行总结,明确“肺结核”临床分5型,每型的影像特征不同。

2.3.5改革考核方法,评价学生综合能力

重视课间学习,培养学生理论联系实际意识,从而提升学生操作技能。改革考核方法,评价学生的综合能力,如通过病例分析引导学生注重理论知识与临床实践相结合,明确岗位需求、就业要求,为培养应用型人才奠定基础。

3加强教师实践能力和综合能力培养

教师的能力评价对教师的业务发展具有导向作用。高职院校只有一部分教师有深入生产第一线实践的经历,大部分教师缺乏动手能力,不能将医院最新技术引入教学之中。随着经济的发展和社会的进步,高职“双师型”教师已成为主要的师资力量。教师应定期深入临床,熟练掌握临床技能,了解相关的政策、法律法规,了解社区医疗、农村卫生室岗位需求;认真备好、写好教案,全面推进素质教育,为培养具有较强实践能力的医学人才贡献力量。

4选好教材

影像技术论文范文篇4

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、WAVELET的历史起源

WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。

1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、WAVELET影像压缩简介及基础理论介绍

一、WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、影像压缩过程

原始图形资料→色彩模式转换→DCT转换→量化器→编码器→编码结束

三、编码的基本要素有三点

(一)一种压缩/还原的转换可表现在影像上的。

(二)其转换的系数是可以量化的。

(三)其量化的系数是可以用函数编码的。

四、现有WAVELET影像压缩工具主要的部份

(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。

(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种本论文由整理提供

为内插。

(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。

(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、WAVELET影像压缩未来的发展趋势

一、在其结构上加强完备性。

二、修改程式,使其可以处理不同模式比率的影像。

三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、加强运算的能力,使其可支援更多的影像格式。

五、使用WAVELET转换藉由消除高频率资料增加速率。

六、增加多种的WAVELET。如:离散、零元树等。

七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、增加8X8格的DCT模式,使其能做JPEG的压缩。

九、增加8X8格的DCT模式,使其能重叠。

十、增加trelliscoding。

十一、增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

伍、影像压缩研究的方向

1.输入装置如何捕捉真实的影像而将其数位化。

2.如何将数位化的影像资料转换成利於编码的资料型态。

3.如何控制解码影像的品质。

4.如何选择适当的编码法。

5.人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。

6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。

7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。

附录:

嵌入式零元树小波转换、阶层式嵌入式零元树小波转换、阶层式影像传送及渐进式影像传送

目前网路最常用的静态影像压缩模式为JPEG格式或是GIF格式等。但是利用这些格式编码完成的影像,其资料量是不变的,其接受端必须完整地接受所有的资料量後才可以显示出编码端所传送的完整影像。这个现象最常发生在利用网路连结WWW网站时,我们常常都是先接收到文字後,其网页上的图形才,慢慢的一小部份一小部份显示出来,有时网路严重塞车,图形只显示一点点後就要再等非常久的时间才再有一点点显示出来,甚至可能断线了,使得使用者完全不知道在接收什麽图案的图形,无形中造成网路资源的浪费。此缺点之改善,可以使用嵌入式零元树小波转换(EZW)来完成。

阶层式影像传送系统的主要功能为允许不同规格之显示装置或解码器可以从同一编码器中获得符合其要求之讯号,如此不需要对於不同的解码器设计不同的编码器配合利用之,进而增加了其应用的范围,及减低了所架设系统的复杂度,也可以节省更多的设备费用。利用Shapiro所提出的嵌入式零元树小波转换(EZW)技术来设计阶层式影像传送系统时,其编码的效果不是很好。主要的原因是,利用(EZW)技术所设计的编码器是根据影像的全解析度来加以编码的,这使得拥有不同解析度与码率要求的解码器,无法同时分享由编码器所送出来的位元流。虽然可以利用同时播放(Simulcast)技术来加以克服之,但是该技术对於同一影像以不同解析度独立编码时,将使得共同的低通次频带(LowpassSubband)被重复的编码与传送,而产生了相当高的累赘(Redundancy)。

基於上述情况,有人将嵌入式零元树小波转换(EZW)技术加以修改之,完成了一个新式的阶层式影像传送系统。该技术为阶层式嵌入的零元树小波转换(LayeredEmbeddedZerotreeWavelet,简称LEZW技术。这个技术本论文由整理提供

使我们所设计出来的阶层式影像传送系统,可以在编码传送前预先指定图层数目、每层影像的解析度与码率。

LEZW技术是将EZW技术中的连续近似量化(SAQ)加以延伸应用之,而EZW传统的做法是将SAQ应用於全部的小波转换系数上。然而在LEZW技术中,从基层(BaseLayer)开始SAQ一次仅用於一个图层(Layer)的编码,直到最高阶析度的图层为止。当编码的那一图层码率利用完时,即表示该图层编码完毕可以再往下一图层编码之。为了改善LEZW的效率,在较低图层的SAQ结果应用於较高图层的SAQ过程中,基於这种编码的程序,LEZW演算法则可以在每一图层平均码率的限制下,重建出不同解析度的影像。因此,LEZW非常适合用於设计阶层式影像传送系统。

LEZW技术也可以应用於渐进式传送,对於一个渐进式影像传送系统而言,控制其解析度将可以改善重建影像的视觉品质。而常用的渐进式传送方法有使用向量量化器或零元树资料结构编码演算法则。但是向量量化器需要较大的记忆体及对与传送中的错误敏威,而利用EZW技术所设计的渐进式影像传送系统,可以改善这些缺点,所以享有较好的效能。但是它也有缺点就是,应用於渐进式传送时是根据全解析度来做编码及传送,因此在低码率的限制之下时,若用全解析度来显示影像将使得影像模糊不清。所以在低码率传送时的影像以较低的解析度来显示时,则可以使影像的清晰度有所改善。

所以将LEZW技术延伸至渐进式传送,在编码之前可以先设定每一级(Stage)的解析度与传送每一级所累加的码率(AccumulatedRate),然後再编码与传送之。该系统在低码率时用低解析度来显示影像,在较高码率时则以高解析度来显示影像,将改善渐进式传送的视觉品质。此系统在编码传送的过程中,允许传送的位元流在任一点位置被中断停止,而接收端可以由所接收到的资料,将影像重建在资料中断时的解析度下。

渐进式影像传送与阶层式影像传送的设计方法是相似的,只不过在传送方法上两者有相当大的不同。在阶层式影像传送系统中,所有图层的资料是平行的一起传送出去的。而渐进式影像传送则是以级对级(Stage-by-Stage)的方式传送的。因此,利用LEZW技术所设计的渐进式传送可看做是单一图层(Single-Layer)系统,其解析度与传送都是可以控制的。如此网路资源的浪费,便可得到某种程度上的解决。

影像技术论文范文篇5

【关键词】课程设计;实践教学;医学成像设备学;医学影像技术

0引言

医学影像技术专业作为提供医学成像设备相关行业专业人才的重要基地,如何培养适合当前高新技术发展,掌握先进医学影像技术,掌握医学影像设备的设计研发,维护管理的专业人才成为普遍关心的难题。《医学成像设备学》是医学影像技术类专业的核心课程之一。内容包括医学影像设备的发展历程和分类、常规X线机、数字X线机、CT机(CTComputedTomographyX线计算机断层成像设备)、磁共振、超声和核医学等成像设备的基本结构、功能、技术参数和临床应用。其中《医学成像设备学课程设计》是该课程的重要实践教学环节。医学成像设备价格昂贵,对于设备的安装和人员防护标准要求较高,大学实验室尚无法满足要求,课程设计教学无法达到良好的预期效果。本文将从以下三个方面以项目驱动实践教学的方法对《医学成像设备学课程设计》的教学模式进行深入研究。

1增加认知实践

认知实践着力于“认知”。21世纪以来,随着行业内三大巨头公司GE医疗、飞利浦医疗、西门子医疗器械有限公司,简称为“GPS”把研发中心或生产线建立在了中国。国内医学影像设备的研发和生产也取得了显著的成效。涌现出一大批医学影像设备的民族企业研发机构如联影、迈瑞、鱼跃、明峰等。国内医学影像技术行业的快速发展迫切需要高端医学影像专业人才。《医学成像设备学》主要讲述医学成像设备的原理及应用。《医学成像设备学课程设计》从课程出发,将理论与工程实际紧密联系起来。与X线机实验,X线CT实验,磁共振实验一起共同组成医学影像专业的核心实践教学模块。利用医学影像研究所现有实验设备GE单排CT,富士公司的DR,上海医疗器械厂自主研发的移动式X线机设备等。通过对这些进口和国产设备各方面的比较和性能参数的分析,使同学们看到国内医疗器械行业的发展。学院近年来与飞利浦、西门子、联影都签订了战略合作实习基地备忘录,利用这些基地带领学生们实地参观,也邀请企业或医院的专家到学院来做专题讲座为同学们讲解专业知识。

2改进课程设计内容

课程设计课题来源于与各大公司或医院合作的课题。比如,高频X线机电源分配子电路设计就来源于与上海医疗器械厂合作的昆腾高频高压发生器研发项目。X线机球管测试则来源于与飞利浦暑期实习合作项目,具体改进如下。

2.1每天一个学时左右的微视频教学环节

微视频的引入改善了教学环境,加深了课堂教学的深度和广度,拓宽了学生的视野。请同学们准备一个20分钟以内的简易的微视频,可用手机很方便录制素材,用电脑或者平板电脑就可以后期制作出来。比如X线机电源电路的设计中采用三相半波、三相六波和三相十二波电源的电路在应用领域的差别。同学们经过大量的调查研究,通过互联网,学校图书馆,电话联系,实地考察取材,得到视频素材。在移动互联网,物联网的新环境下,微视频,微课这种形式更能激发同学们的创作热情。这些微视频可以上传至班级群或云端共享,在宿舍,回到家里,随时随地都可以回放。比课本上纯理论分析的设备硬件电路原理描述更能促进大学生思考。

2.2课程设计结合工程实际,有利于培养大学生

工程师的基本工程素养随着企业对工科毕业生解决复杂工程问题能力的需求与日俱增,高校的人才培养模式需要从偏重理论教学向注重实践教育转变。由教师主导改变为学生主导模式,启发学生选读相关工程领域的新科研成果和发展方向的工程应用,更有利于提高学生学习兴趣和解决实际问题的信心。医学成像设备如X线设备、CT设备等都是大型设备,整机系统制作难度较大。对于只做过基础电路实验的同学一周内完成课程设计尤其难,只能通过仿真设计完成电路分析到设计的过渡。并不是所有的学生都具备电子CAD(计算机辅助设计)的基础,针对医学影像专业本科生的特点,结合往届学生的教学经验,主要推荐学习两个难度适中的电路设计软件和仿真软件:PROTEL和Multisim,适用于板级的模拟/数字电路板的设计工作。通过这两个软件可以完成电路原理图的绘制和印制线路板的制作,并通过仿真查找原始电路设计的问题再纠错。而熟悉这两个软件的使用对于大学生将来从事硬件开发也非常有益。对于局部核心电路的设计要求学生做面包板辅以实验,来加强学生们对于电子元器件的认知。比如做高频发生器电源电路的设计内容时,要求学生采买绝缘栅型双极型晶体管(IGBT),并制作电路板。市场上IGBT型号众多,参数各异,如何采买各种类型的元器件也是大学生将来成长为工程师的第一步。很多大学生正是在这一周的课程设计内学会了看色环电阻,学会在购买二极管三极管时需要事先了解哪些参数如何采买等。

2.3资源共享

参考工程实践中项目的解决方案模式指导学生进行本课程设计。整个课程设计以工程项目方式立题,以解决具体工程实践问题为目标,由两三个同学组成一个小组,分工合作再做系统集成。每组设立一个负责人,整个课程设计过程都是以学生为主体。设计题目所给出的设计参考资料有部分是英文的,需要翻译。专业文献的翻译必须结合专业课程内容采用专业术语才能做到准确、专业。课程设计拆整为单,将设计问题分解为一个一个模块可以降低设计难度和制作难度,最大程度上解决了课时过少问题。由于自己的独立完成任务情况将会影响到整体问题的解决使得每个同学更负责更主动,从而克服了大家一起做同一个模块的惰性。让外语翻译能力强的同学做技术翻译工作,电路设计能力强的同学做原理图设计,而仿真能力强的同学做仿真。后期则需要大家一起共享经验与教训,分析结果,讨论课程设计报告内容。这种管理模式正是目前用人单位开发项目采用的常规模式,通过提前适应团队协作,以解决工程实际问题为目标的个人负责结合团队需要模式。使同学们更全面地了解企业医学成像设备研发、制造、维护需要,也使同学们更了解医院的影像设备管理规范和自身的安全防护。

2.4课程设计结果分析。课程设计的最后一天为成果汇报日。鼓励学生采用多媒体+实物的方式进行汇报。汇报由项目的提出,整个项目的分解,目标方案的制定,最终实现和实物或仿真展示等几个部分组成。每组汇报完毕,由其他项目组提问相关技术问题。有时提问的角度也是很有创意甚至可以作为下一届的设计题目。通过你问我答,同学们在轻松的氛围内学到了知识,提高了做项目讲解的能力。通过互动能触发学生更全面的思考。2017届医学影像专业的一组同学就是在汇报后,完善了方案,充实了上交论文的内容。课题的结束往往只是下一个课题的开始,课程设计的内涵得以延续。而教师在掌控整个汇报的过程中也可以受益良多,真正实现了教学互长,当然也对教师提出了更高的要求。

3创新实验报告,优化成绩评定标准

基于上述几点课程设计内容上的改进,对于实验报告的要求也进行了改进。课程设计不能像理论课那样出试卷给评分标准进行评定。也不能像实验课程那样根据实验报告或数据分析给分数。课程设计都是结合工程实践中的项目而设计的一个个的小课题,要求学生根据小组的既定题目写专业论文。格式参照科技论文的格式,字数在2000字左右。一周的实践中期要求上交一份中期汇报简报,报告课程设计的进度和设计方法等。成绩评定不单单从论文入手,还要综合考虑一周时间内每个同学的工作量,由平时分和报告分两部分三比七确定。而平时分,结合课程设计中组员表现由各小组组内互评给出。对于这种自己参与打分,同学们表现得非常认真。付出时间较多并带动了整个项目进展的同学都被组员给了高分,极大地体现了平时成绩的公平性。比起大多数理论课只由几次作业成绩取平均要客观些。杜绝了平时缺席,考试成绩好就能得高分的结果评价弊端。论文的内容准确合理、格式正确、论述严密作为课程设计报告分数评价标准。平时分数和报告分数相结合得到《医学成像设备学课程设计》实践课程的最终分数。

4结束语

在上海市重点建设课程项目的资助下,本文《医学成像设备学课程设计》对该课程教学进行了探索。探索的目的,一是为了提高实践教学质量,从而为培养能在医疗卫生单位从事医学成像技术的医学高级专门人才奠定基础;二是为国内从事《医学成像设备学课程设计》教学的同行提供一点参考。微视频形式新颖,主题突出,交互性强更能激发学生学习兴趣。结合工程项目的问题解决为导向的分组合作方式更利于发挥学生的特长,使之明白团队合作的必要性。但限于作者水平文中尚有不当之处,恳请同行给予指正。

参考文献

[1]聂生东.关于医学影像工程专业建设的实践与思考[C].医学影像学全国教学研讨会会议论文集,2007.

[2]徐跃.医学影像设备学[M].北京:人民卫生出版社,2012.

[3]高春芳,李国柱,黄磊,等.浅谈《医学影像设备学》实践教学改革[J].医学理论与实践,2016,29(15):2131-2132.

[4]张晓瀛,马东堂,王德刚.美国MIT电气科学与工程专业本科生培养[J].电气电子教学学报,2012,34(4):8-10.

[5]GeneralAbstracts.MolecularImagingandBiology[C].Pro-ceedingsoftheworldmolecularimagingcongress2016,,18(2):1-1278.

[6]倪德克,师亚莉,朱旭花,等.EDA技术在数字电路课程设计教学改革中的探索与实践[J].大学教育,2016,(4):118-119.

[7]石磊,郝静.Multisim仿真在电路课程中的应用[J].科技资讯,2015,13(20):200.

影像技术论文范文篇6

关键词:在线教学;医学影像技术;课程设计

在肺炎疫情防控的特殊时期,根据教育部“停课不停教、停课不停学”的工作要求,全国高校积极开展课程的线上教学。上海健康医学院在上海市教委的指导下,在2020年春季学期开展了大规模在线教学活动,组织全校所有专业进行了线上授课。医学影像技术专业经过一个学期的在线教学实践,积累了一些经验,同时也发现了一些问题。本文就医学影像技术专业所开展的在线教学活动,以及教学中遇到的一些问题进行探讨,旨在为同行提供一些借鉴。

1医学影像技术专业在线教学情况

1.1在线教学的组织与实施。2019—2020学年第二学期的在线教学分为2周试运行周和19周的正式教学周。医学影像学院开设线上教学的课程总门数为54门,其中本科层次29门,高职层次25门。所有课程都在校内超星课程平台上完成了建课,其中教师使用自建资源或自行录制授课视频的课程为48门,选用线上共享他人优质课程资源(链接到超星平台)的4门,使用其他技术(云班课)的课程2门(在超星平台进行签到、答疑互动等环节)。在线授课以教师录播为主,结合直播形式进行集中答疑。学校对线上教学活动提出了“1141”的要求。第一个“1”指教师授课PPT上传到平台供学生自主学习;第二个“1”指必须有课程的线上讲授(课件中重点和难点的录屏或旁白上传或直播讲解,也可推荐上相关课程资源收看);“4”指授课中包括但不限于作业、线上测验、线上互动讨论、线上答疑辅导等活动;最后一个“1”指PPT或录屏等视频中需包含任务设置,比如不少于1次/15分钟的进阶式测试等。在课程建设和在线教学过程中,医学影像学院注重课程思政建设。在每门在线课程的首页上强调了教学资源的学习功能,不得在网上传播。学院加强教师的思想政治教育,强调在线教学的特殊性,让教师更加注意授课中的语言和行为,把好意识形态关。1.2课程在线考核。2019—2020学年第二学期的所有课程采用在线形式考核。医学影像学院共完成54门(95门次)课程考核。所有课程的在线考核统一在学校超星平台上进行。每门课程的教师先编制题库,然后通过随机组卷的形式,从题库随机抽取题目,生成5~20套试卷。配合题目选项乱序等功能,尽可能减少试卷的重复度。医学影像学院在线课程考核过程中严格按照学校的文件要求执行,总体平稳有序。1.3在线论文管理与答辩。根据普通高等学校本科专业类教学质量国家标准和学校要求,医学影像技术专业全体本科生需完成本科毕业设计(论文)。论文的过程管理采用“中国知网”的“大学生毕业设计(论文)管理系统”,实现了论文题目双选、任务书、开题报告、中期检查、论文提交与、最终稿上传等所有过程材料的在线管理。通过指导教师、评阅专家、答辩专家等不同角色的电子签名上传,实现了全过程文档的自动导出归档。答辩统一采用腾讯会议App进行在线答辩,要求学生全程开启摄像头并全程录像。答辩过程中,学生自述不少于10分钟,答辩小组提问不少于10分钟。答辩成绩根据答辩评分标准进行评分。在各组答辩过程中,学院答辩巡视组对各组的答辩情况进行巡查。通过在线答辩,发现教师和学生都能够接受这种新的答辩形式,而且能够很好地利用各种即时在线工具,取得了比较好的效果。1.4在线教学质量监控与保障。为了不断提高在线教学质量,确保做到线上线下教学质量实质等效,上海健康医学院形成了“校级督导—院级督导—同行听课”三级教学监控体系(见图1)。由校外专家组成的校级督导,对全校课程进行分类质量监督。院级督导由学院资深教授组成,听课覆盖学院所有课程。同行听课在教研室层面开展,每位教师听课次数不少于4次,被听课次数不少于2次。同时,在2019—2020学年第二学期组织了3轮在线课程资源巡查与通报,针对所有在线课程建设与运行情况进行巡查。另外,每个班配备了学生教学信息员,向学生处反馈课程的教学情况,在每周的教学质量周报告中进行通报。

2在线教学取得的成效

经过一个学期的在线教学,取得的成效主要有以下几个方面:一是教师和学生普遍接受了在线教学这种新的模式。相较于以前的传统课堂教学,现在教师能更主动地思考怎样在课程中加入在线元素。二是技术层面上,教师对在线教学相关的各种软件和工具的使用能力大幅度提高,对于各种录屏软件、视频制作软件、课程平台的各种设置与操作等都能比较熟练地使用。三是积累了一部分优质的在线资源。很多教师都是自己开发授课视频或实验视频来完成教学任务。在这个过程中,积累了一部分优质的在线资源,为后续优质在线课程建设奠定了基础。四是积累了在线教学经验。在一个学期的在线教学中,很多教师为了提升教学效果,尝试多种教学模式和方式,比如课件录播、直播授课、网上文字答疑、语音答疑、直播互动等,这些都为教师后续开展在线教学或混合式教学积累了宝贵的经验。

3在线教学中的困惑及思考

3.1部分课程的实践教学效果欠佳。医学影像技术专业培养“能在医疗卫生机构及相关研究机构从事医学影像学检查技术及医学影像设备的管理、操作、维护和图像处理工作”的高素质复合型应用人才[1]。在整个课程体系中,实践学时占了很大比重。经过一个学期的“纯”在线教学,发现部分课程的实践环节安排比较困难。有一些课程,比如医学图像处理技术、微机原理与接口技术等,可以通过虚拟仿真、视频示教等形式,配合实验报告等能圆满完成教学任务。还有一部分课程,比如X线设备及摄影技术、CT设备及扫描技术等,虽然也可以通过视频观摩来完成教学,但是学生没有亲自动手操作,缺少肌肉记忆,教学效果不太理想。这样一些课程的实践环节,还有待后续再安排线下教学进行强化巩固。3.2需要完善“课程学习社区”建设。这次大规模的在线教学中,总体来看每门课程都如期完成了教学任务。但是,横向比较各门课程的建设情况,能发现课程建设存在良莠不齐的现象。通过在线学习,学生除了能够像常规课堂那样获取PPT和课程讲解的视频之外,应该能够更便捷地做到与教师互动、同学间交流学习,获取课程相关的衍生资源,进行不同层面的课程测试与评价等。为此,要通过不同形式和方式的在线资源建设,构建和完善在线课程的“课程学习社区”[2]。3.3以“学”为主理念有待更充分体现以学生为中心的教学理念,倡导学生主动参与,能够让学生学会学习,学会合作[3]。此次大规模在线教学,是以“教”为主向以“学”为主转变的一个契机。但是在实际教学过程中,发现部分教师青睐直播授课,等于是将原来的传统课堂照搬到线上,以“学”为主理念有待进一步夯实。

4结论

上海健康医学院在2019—2020学年第二学期进行了全校规模的在线授课。医学影像技术专业在这个过程中,完成了在线授课、毕业设计(论文)指导和在线答辩、在线考核等教学活动。通过一个学期的在线教学积累了许多经验,同时也发现在实践教学、在线课程建设、以“学”为主课程设计等方面还需要进一步改进。

参考文献:

[1]教育部高等学校教学指导委员会.普通高等学校本科专业类教学质量国家标准[M].北京:高等教育出版社,2018.

[2]席秋玉.高校网络课程学习社区的构建、实现与分析研究[D].上海:上海师范大学,2008.

影像技术论文范文篇7

由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。

壹、前言

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、WAVELET的历史起源

WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。

1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、WAVELET影像压缩简介及基础理论介绍

一、WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。

WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、影像压缩过程

原始图形资料→色彩模式转换→DCT转换→量化器→编码器→编码结束

三、编码的基本要素有三点

(一)一种压缩/还原的转换可表现在影像上的。

(二)其转换的系数是可以量化的。

(三)其量化的系数是可以用函数编码的。

四、现有WAVELET影像压缩工具主要的部份

(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。

(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。

(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffat''''slineartimecodinghistogram的基础上。

(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、WAVELET影像压缩未来的发展趋势

一、在其结构上加强完备性。

二、修改程式,使其可以处理不同模式比率的影像。

三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、加强运算的能力,使其可支援更多的影像格式。

五、使用WAVELET转换藉由消除高频率资料增加速率。

六、增加多种的WAVELET。如:离散、零元树等。

七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、增加8X8格的DCT模式,使其能做JPEG的压缩。

九、增加8X8格的DCT模式,使其能重叠。

十、增加trelliscoding。

十一、增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

伍、影像压缩研究的方向

1.输入装置如何捕捉真实的影像而将其数位化。

2.如何将数位化的影像资料转换成利於编码的资料型态。

3.如何控制解码影像的品质。

4.如何选择适当的编码法。

5.人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。

图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。

影像技术论文范文篇8

由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。

壹、前言

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、WAVELET的历史起源

WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。

1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、WAVELET影像压缩简介及基础理论介绍

一、WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。

WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、影像压缩过程

原始图形资料→色彩模式转换→DCT转换→量化器→编码器→编码结束

三、编码的基本要素有三点

(一)一种压缩/还原的转换可表现在影像上的。

(二)其转换的系数是可以量化的。

(三)其量化的系数是可以用函数编码的。

四、现有WAVELET影像压缩工具主要的部份

(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。

(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。

(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffat''''slineartimecodinghistogram的基础上。

(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、WAVELET影像压缩未来的发展趋势

一、在其结构上加强完备性。

二、修改程式,使其可以处理不同模式比率的影像。

三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、加强运算的能力,使其可支援更多的影像格式。

五、使用WAVELET转换藉由消除高频率资料增加速率。

六、增加多种的WAVELET。如:离散、零元树等。

七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、增加8X8格的DCT模式,使其能做JPEG的压缩。

九、增加8X8格的DCT模式,使其能重叠。

十、增加trelliscoding。

十一、增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

伍、影像压缩研究的方向

1.输入装置如何捕捉真实的影像而将其数位化。

2.如何将数位化的影像资料转换成利於编码的资料型态。

3.如何控制解码影像的品质。

4.如何选择适当的编码法。

5.人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。

图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。

影像技术论文范文篇9

由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。

壹、前言

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、WAVELET的历史起源

WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。

1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、WAVELET影像压缩简介及基础理论介绍

一、WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。

WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、影像压缩过程

原始图形资料→色彩模式转换→DCT转换→量化器→编码器→编码结束

三、编码的基本要素有三点

(一)一种压缩/还原的转换可表现在影像上的。

(二)其转换的系数是可以量化的。

(三)其量化的系数是可以用函数编码的。

四、现有WAVELET影像压缩工具主要的部份

(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。

(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。

(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffat''''slineartimecodinghistogram的基础上。

(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、WAVELET影像压缩未来的发展趋势

一、在其结构上加强完备性。

二、修改程式,使其可以处理不同模式比率的影像。

三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、加强运算的能力,使其可支援更多的影像格式。

五、使用WAVELET转换藉由消除高频率资料增加速率。

六、增加多种的WAVELET。如:离散、零元树等。

七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、增加8X8格的DCT模式,使其能做JPEG的压缩。

九、增加8X8格的DCT模式,使其能重叠。

十、增加trelliscoding。

十一、增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

伍、影像压缩研究的方向

1.输入装置如何捕捉真实的影像而将其数位化。

2.如何将数位化的影像资料转换成利於编码的资料型态。

3.如何控制解码影像的品质。

4.如何选择适当的编码法。

5.人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。

图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。

影像技术论文范文篇10

由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。

壹、前言

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、WAVELET的历史起源

WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。

1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、WAVELET影像压缩简介及基础理论介绍

一、WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。

WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、影像压缩过程

原始图形资料→色彩模式转换→DCT转换→量化器→编码器→编码结束

三、编码的基本要素有三点

(一)一种压缩/还原的转换可表现在影像上的。

(二)其转换的系数是可以量化的。

(三)其量化的系数是可以用函数编码的。

四、现有WAVELET影像压缩工具主要的部份

(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。

(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。

(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。

(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、WAVELET影像压缩未来的发展趋势

一、在其结构上加强完备性。

二、修改程式,使其可以处理不同模式比率的影像。

三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、加强运算的能力,使其可支援更多的影像格式。

五、使用WAVELET转换藉由消除高频率资料增加速率。

六、增加多种的WAVELET。如:离散、零元树等。

七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、增加8X8格的DCT模式,使其能做JPEG的压缩。

九、增加8X8格的DCT模式,使其能重叠。

十、增加trelliscoding。

十一、增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

伍、影像压缩研究的方向

1.输入装置如何捕捉真实的影像而将其数位化。

2.如何将数位化的影像资料转换成利於编码的资料型态。

3.如何控制解码影像的品质。

4.如何选择适当的编码法。

5.人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。

图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。