高中生物教案范文10篇

时间:2023-03-23 13:53:08

高中生物教案

高中生物教案范文篇1

1.真核细胞的有丝分裂(C:理解)。

2.真核细胞有丝分裂的细胞周期的概念和特点(B:识记)。

3.无丝分裂方式的过程和特点(A:知道)。

三、重点和难点

1.教学重点

(1)真核细胞有丝分裂的细胞周期的概念和特点。

(2)真核细胞有丝分裂的过程。

2.教学难点

真核细胞有丝分裂过程中,各个时期染色体的变化特点。

四、教学建议

本节教学内容可安排2课时,包括讲课和学生实验。第1课时讲述植物细胞的有丝分裂;第2课时做观察植物细胞有丝分裂的实验。通过对比动植物细胞有丝分裂的异同,总结有丝分裂的特征。最后,简述无丝分裂和减数分裂,概括细胞增殖的意义。讲课内容和实验的内容应有机结合。

本节教学手段的运用,要考虑到关于细胞增殖知识的特点,可运用自制的剪贴图、投影片、录像等手段,体现细胞有丝分裂过程的连续变化,把染色体的行为变化直观地表现出来。

本节教学内容的引入,可以讲述以下几点:①多细胞生物一般是由一个细胞(受精卵),经过细胞的分裂和分化,最终生长发育成一个新个体的;②单个细胞和多细胞生物体的生命期都是有限的,多细胞生物体内衰老、死亡细胞的补充,以及生物种族的繁衍,都是以细胞分裂为基础的;③细胞分裂的方式有三种,本节主要学习细胞有丝分裂的知识。

在讲述细胞周期时,可从分析一个新细胞(子细胞)的诞生开始,分析它的两种发展方向:一是随着生长、分化而成为具有特定形态、结构和功能的细胞,直至衰老、死亡;二是保持连续分裂的能力,通过分裂产生新的子细胞,开始它的新的生命周期,周而复始。受精卵、植物分生组织细胞、动物的一些上皮细胞等就属于这种具有连续分裂能力的细胞。分析细胞周期时,要注意分析分裂间期是一个周期的开始,是为分裂期作准备的时期。另外,应让学生注意,间期要比分裂期的时间长得多,要引起学生对间期的重视。

在分析细胞分裂间期时,要引导学生思考:间期应为分裂期准备什么才能使分裂后的子细胞继承母细胞的特性?在讲述DNA分子复制和有关蛋白质合成时,要联系染色质结构的知识。使学生理解这种复制与合成最终表现在染色质细丝的倍增上。每条染色质细丝(将来的染色体)都产生出另外一条跟自己完全一样的染色质,由于着丝点连在一起,而没有分开。

在分裂期的教学中,教师应注意以下几点:①利用剪贴图显示各分裂期的主要变化;②注意把核膜、染色体、纺锤丝的行为变化和染色体最终平分复制的知识紧密地联系起来,使学生理解这些变化的协调性和合理性;③为了突出染色体的平均分配,可用模型模拟染色体的平分过程;④注意强调两个子细胞间及子细胞与母细胞间染色体(内部的DNA)的数目和种类相同;⑤在讲述细胞板形成时,要联系高尔基体的作用。

在讲述动物细胞有丝分裂时,可把动植物细胞有丝分裂全过程图呈现出来。让学生观察对比,归纳出相同点和不同点。在这里,教师可进一步强调动植物细胞有丝分裂的共同特征,使学生理解这些特征对生物的重要意义。

对无丝分裂和减数分裂的处理,按教材内容讲述即可,不必过多发挥。

五、参考答案

复习题一、1.(D);2.(C);3.(D);4.(D)。

二、1.染色质、核仁、核膜、中心体等结构发生了明显的变化。具体的变化是:

染色质复制后的DNA缩短变粗,由染色质成为染色体。

核仁逐渐解体。

核膜逐渐消失。

中心体由一组中心粒变成两组中心粒,两组中心粒分别位于两极,每组中心粒周围发射出放射状星射线,纺锤体形成。

2.这是因为在细胞周期中,分裂间期所需要的时间大大长于分裂期。

3.有丝分裂中期的细胞,主要特点是全部染色体排列在赤道板上。可以根据染色体的这个变化特点找到分裂中期的细胞。

4.全部染色体平均分配到细胞两极时,是在有丝分裂的后期。由于染色体上有遗传物质,因此,全部染色体平均分配到细胞的两极的行为,可以使亲代和子代之间保持遗传性状的稳定性,对生物的遗传有重要意义。

实验讨论题实验三制作好洋葱根尖有丝分裂装片的关键有以下几点:(1)剪取洋葱根尖材料时,应该在洋葱根尖细胞一天之中分裂最活跃的时间;(2)解离时,要将根尖细胞杀死,细胞间质被溶解,使细胞容易分离;(3)压片时,用力的大小要适当,要使根尖被压平,细胞分散开。

六、参考资料

细胞的增殖周期细胞从前一次分裂结束开始,到下一次分裂结束为止,这样一个周期叫做细胞增殖周期。

20世纪50年代以前,人们把细胞增殖周期划分为分裂期和静止期两个阶段。当时认为分裂期是细胞增殖周期中的主要阶段。近年来,由于放射自显影和细胞化学等技术的迅速发展,对于细胞增殖过程的动态研究也日趋深入。现在了解到,过去一直被忽视的所谓“静止期”却是细胞增殖周期中极为关键的一个阶段,因为与DNA分子复制有关的一系列代谢反应,都是在这个阶段进行的。所以现在都把“静止期”叫做间期。

现在,一般把细胞增殖周期分为两个阶段:间期和分裂期。细胞在前一次分裂结束之后就进入间期,这时就是新的细胞周期的开始。间期一共分为三个分期。间期结束就进入有丝分裂期。根据目前的认识,整个细胞增殖周期可以分为G1、S、G2、M四个小分期,如下表:

细胞增殖周期中的各个分期,各有其公务员之家,全国公务员共同天地不同的特点。

(一)G1期的特点G1期是从上次细胞增殖周期完成以后开始的。G1期是一个生长期。在这一时期中主要进行RNA和蛋白质的生物合成,并且为下阶段S期的DNA合成做准备,特别是合成DNA的前身物质、DNA聚合酶和合成DNA所必不可少的其他酶系,以及储备能量。

(二)S期的特点从G1期进入S期是细胞增殖的关键时刻。S期最主要的特征是DNA的合成。DNA分子的复制就是在这个时期进行的。通常只要DNA的合成一开始,细胞增殖活动就会进行下去,直到分成两个子细胞。

(三)G2期的特点G2期又叫做“有丝分裂准备期”,因为它主要为后面的M期做准备。在G2期中,DNA的合成终止,但是还有RNA和蛋白质的合成,不过其合成量逐渐减少。特别是微管蛋白的合成,为M期纺锤体微管的组装提供原料。

(四)M期的特点细胞一旦完成了细胞分裂的准备,就进入有丝分裂期。细胞分裂期是一个连续的过程,为了研究的方便,可以人为地将它分成前、中、后、末四个时期。M期的细胞有极明显的形态变化。间期中的染色质(主要成分是DNA和蛋白质),在M期浓缩成染色体形态。染色体的形成、复制和移动等活动,保证了将S期复制的两套DNA分子平均地分到两个子细胞中去。

有丝分裂过程中两个重要的细胞器

1.中心粒

中心粒的结构通常是一对互相成直角的圆筒状小体,直径0.25μm,长度不定,位于邻近核模的细胞质中。筒壁由9组大约呈30°倾斜排列的三联微管组成,从横断面看像一个风车。在一对中心粒的周围是一团透明的电子密度高的中心粒周围物质,这个复合物称为中心体。

中心粒要经过一个复杂的发育周期,才能达到成熟并且具有微管组织中心的作用。DNA合成前期(G1期)的细胞有一对互相垂直的中心粒。到DNA合成期(S期)时,两个中心粒稍有分离,在距母中心粒的一定距离(约50~60nm)处,与其垂直的方向复制出一个子中心粒。DNA合成后期(G2期)的晚期到有丝分裂期(M期),子中心粒不断长大,逐渐分离,移到两极的两对中心粒形成晕,并且组成纺锤体及星体。到分裂期末期,每个子细胞各获得一对中心粒──一个母中心粒和一个子中心粒。

2.着丝点

长期以来,着丝粒和着丝点这两个术语是作为染色体上纺锤体附着区域的同义语使用的。遗传学文献中多用着丝粒一词,而细胞学家多用着丝点一词。后来,在电镜下研究哺乳类染色体超微结构时发现,主缢痕两侧是一对三层结构的特化部位,认为是非染色质性质物质的附加物,称为着丝点(图2-10)。在主缢痕区存在着丝粒,由此把染色体分成二臂。着丝粒的两侧各有一个蛋白质构成的三层的盘状或球状结构,称为着丝点。着丝点与纺锤体的纺锤丝连接,与染色体移动有关。在分裂前期和中期,着丝粒把两个姐妹染色单体连在一起,到后期两个染色单体的着丝粒分开,纺锤丝把两条染色单体拉向两极。并非有丝分裂各个时期,或各种生物的染色体,都有这种分化的结构。

图2-10中期染色体上的着丝点

(示着丝点分为内、中、外三层,上面附着有微管)

细胞质分裂广义说来,有丝分裂应该包括细胞质分裂。但是,也可以把细胞质分裂看做是一个单独的阶段。

大多数真核生物的细胞质分裂是与核分裂协调进行的,细胞质分裂起始于中后期。细胞质分裂面一般总是和纺锤体的赤道面一致,其方向约在核分裂中期就已确定。如果在中期时用离心法改变细胞的纺锤体的正常位置,细胞分裂面方向并不随之改变。但是,如果在中期之前改变纺锤体的位置,细胞质分裂面的方向也就随着发生改变。

动物细胞在进行细胞质分裂时,先是在要形成分裂面处的细胞质收缩,环细胞表面出现一条窄的凹沟,这条沟叫做分裂沟。分裂沟环绕细胞表面一圈,使细胞呈哑铃状。它的形成和细胞膜下方的细胞质微丝有关系。

植物细胞因为有细胞壁,它的分裂方式不同于动物细胞(有花植物的花粉粒的成熟分裂与动物细胞一样,形成分裂沟),最主要的差别是植物细胞在进行细胞质分裂时,有细胞板的形成。细胞板产生于晚后期或早末期。

无丝分裂关于无丝分裂的问题,长期以来就有不同的看法。有些人认为无丝分裂不是正常细胞的增殖方式,而是一种异常分裂现象;另一些人则主张无丝分裂是正常细胞的增殖方式之一,主要见于高度分化的细胞,如肝细胞、肾小管上皮细胞、肾上腺皮质细胞等。

无丝分裂是最早发现的一种细胞分裂方式,早在1841年就在鸡胚的血细胞中看到了。因为分裂时没有纺锤丝出现,所以叫做无丝分裂。又因为这种分裂方式是细胞核和细胞质的直接分裂,所以又叫做直接分裂。

无丝分裂的早期,球形的细胞核和核仁都伸长,然后细胞核进一步伸长呈哑铃形,中央部分狭细。最后,细胞核分裂,这时细胞质也随着分裂,并且在滑面型内质网的参与下形成细胞膜。在无丝分裂中,核膜和核仁都不消失,没有染色体的出现,当然也就看不到染色体复制的规律性变化。但是,这并不说明染色质没有发生深刻的变化,实际上染色质也要进行复制,并且细胞要增大。当细胞核体积增大一倍时,细胞核就发生分裂,核中的遗传物质就分配到子细胞中去。至于核中的遗传物质DNA是如何分配的,还有待进一步的研究。

原核细胞的DNA复制和细胞质分裂原核细胞的分裂包括两个方面:(1)细胞DNA的复制和分配,使分裂后的子细胞能得到亲代细胞的一整套遗传物质;(2)细胞质分裂,把细胞基本上分成两等份。

原核细胞的DNA分子是环状的,无游离端。在一系列酶的催化下,经过解旋和半保留式复制,形成了两个一样的环状DNA分子。复制常是由DNA附着在细胞膜上的部位开始(图2-11)。在DNA分子复制完成之后,便开始了细胞质分裂。当然,在开始分裂之前需要细胞生长,细胞的生长反映了细胞内按比例地合成一定量的结构蛋白酶。

图2-11细菌细胞DNA的复制和细胞分裂

细胞分裂时,先由一定部位开始。复制好的两个DNA分子仍与细胞膜相连;随着连接处的生长,把DNA分子拉开。在细胞中部,细胞膜环绕细胞发生内褶,褶中产生了新的壁物质,形成了隔(图2-12)。隔不断向中央生长延伸,最后形成了将细胞隔为两部分的完整的隔。隔纵裂为二,把母细胞分成了大致相等的两个子细胞。

高中生物教案范文篇2

二、教学目的

1.组成生物体的化学元素主要有20多种,包括大量元素和微量元素(B:识记)。

2.组成生物体化学元素的重要作用(B:识记)。

3.生物界与非生物界的统一性和差异性(B:识记)。

三、重点和难点

1.教学重点

(1)组成生物体的化学元素,大量元素和微量元素。

(2)组成生物体的化学元素的重要作用。

2.教学难点公务员之家,全国公务员共同天地

生物界与非生物界的统一性和差异性。

四、教学建议

本章内容的教学时间是4课时,其中讲课可安排3课时,实验安排1课时。教学内容的前后顺序可依教材进行,也可以重新组织。例如,先通过学生实验,使学生对生物组织中糖类、脂质、蛋白质等化合物有一个感性认识。然后,在此基础上,再学习组成生物体的各类化合物。最后,归纳总结组成生物体化学元素的特点。

本节教学安排1课时。教师在教学中可以多运用对比的方法,使学生通过对比,发现并且概括出组成生物体的化学元素的特点:①从无机的非生命环境中元素的组成与生物体元素组成的对比中,发现它们的统一性,了解生物体的元素组成特点;②从动物体与植物体组成元素的对比中,发现不同类型的生物体,元素的组成有区别;③从生物体内不同元素的含量对比中,发现生物体元素组成的特点,以及这些特点与构成生物体的化合物、生物体特性的联系。

在教学中,应注意学生的知识背景。如果按照教材顺序安排教学,可以联系初中生物课中有关的知识,联系本地学生的生活常识。如果本节内容安排在第二节之后学习,则应该充分联系各种化合物的元素组成、含量以及生理作用。

为了提高本节的教学效率,教师在课前应做好必要的准备。例如,无机的非生命环境中的元素与生物体的元素对比表,动物(人)体与植物体组成元素的对比表等。把这些对比表制成投影片或幻灯片等,以便及时呈现给学生,使学生有较充裕的时间进行观察、对比和思考,也便于教师归纳总结。

本节教学应该渗透以下几点:①从元素水平就可以看出生物的物质性(世界上没有生命体特有的元素),以及组成生物体物质的特殊性;②组成生物体的元素的作用,只有在生活的机体中,在生物体特定的结构基础上,在与其他物质的相互作用中才能体现出来;③生物体的大量元素和微量元素是依据含量划分的,不可轻视微量元素的作用。另外,生物体中不都是必需元素,环境中有些非必需元素也会进入到生物体中。

五、参考答案

复习题一、1.(D);2.(C);3.(D)。

二、2.组成生物体的化学元素在无机自然界中都可以找到,这个事实说明:生物界和非生物界具有统一性。

旁栏思考题仙人掌和鲸的化学元素组成大体相同。但是,这些化学元素在这两种生物体内的含量相差较大。

铁在人体内主要功能是合成血红蛋白,构成一些酶的辅基,合成肌红蛋白。因此,铁缺乏时易患缺铁性贫血,症状是面色苍白、头昏、乏力、心悸、气急等。

锌在人体内参与多种酶的组成,也是酶的活性所必需的,并且是蛋白质合成的必要元素。因此,锌缺乏时的主要症状是少年生长迟缓、性器官发育受影响。

六、参考资料

玉米与人体的化学元素组成(质量分数/%)

元素

玉米

人体

O

C

H

N

Si

K

Ca

P

Mg

S

Cl

Al

Fe

Mn

Na

Zn

Rb

44.43

43.57

6.24

1.46

1.17

0.92

0.23

0.20

0.18

0.17

0.14

0.11

0.08

0.04

_

_

_

14.62

55.99

7.46

9.33

0.005

1.09

4.67

3.11

0.16

0.78

0.47

0.012

0.47

0.01

0.005

细胞的元素组成在细胞内可以找到至少62种元素,常见的约有29种,其中重要的有24种。这些常见的元素绝大部分属于元素周期表上原子序数较低的元素。

按其在生物体内的含量不同,可以分为大量元素和微量元素。

按元素的生物学功能,大致可以分为下列类型。

1.构成细胞的基本元素:如C、H、O、N、P是构成核酸的主要元素;C、H、O、N、S是构成蛋白质的主要元素等。公务员之家,全国公务员共同天地

2.调节机体生命活动的元素:如离子态的Na+、K+、Ca2+、Mg2+、Cl-、H+及OH-、HCO3-、SO42-、HPO42-等其他离子。

高中生物教案范文篇3

二、教学目的

1.组成生物体的水、无机盐、糖类、脂质、蛋白质、核酸这几种化合物的化学元素组成、在细胞内的存在形式和重要的功能(C:理解)。

2.组成生物体的无机化合物和有机化合物是生命活动的基础(C:理解)。

3.各种化合物只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象(A:知道)。

三、重点和难点

1.教学重点

组成生物体的无机化合物和有机化合物的化学元素组成,各种化合物在细胞中的存在形式和重要功能。

2.教学难点

(1)蛋白质的化学元素组成、相对分子质量、基本组成单位、分子结构和主要功能。

(2)核酸的化学元素组成、相对分子质量、基本组成单位和重要功能。

四、教学建议

本节的教学内容较多而时间又较紧,教师要注意合理分配时间,突出重点和难点。建议教师对水、无机盐、糖类和脂质的内容安排1课时,蛋白质和核酸的内容安排1课时,学生实验用1课时。

在本节教学的开始,教师可以利用教材中讲到的细胞内各种化合物的含量表,从整体上概括出构成细胞的化合物;指出生命的物质基础,是以蛋白质和核酸为主体的多分子体系。公务员之家,全国公务员共同天地

在讲授无机化合物水时,可以从水在细胞、组织中两种存在形式的分析入手,引出水的作用。引导学生理解水的含量与生命活动的状态密切相关。在讲述水时,要注意渗透出两种形式的水存在着动态转化,不能截然分开。如果能恰当地运用生活常识,说明水的存在状态和作用,将会更吸引学生,使学生加深对水的认识。

关于无机盐的教学,可以从学生已知的知识中提出问题,通过简明的分析,使学生懂得无机盐的存在形式和作用。例如,为什么在观察动物和人的细胞时,要用一定浓度的生理盐水?为什么长期缺乏铁会出现缺铁性贫血?从这些问题的分析过程中,归纳出无机盐对维持细胞形态、参与重要的物质组成等作用。

关于糖类的教学,应该尽量联系学生生活中经常接触的糖类物质,提高学生的学习兴趣,增加感性认识。在本节教学中,要注意适当突出后边将要应用的糖类知识,这样可以为进一步的学习打下知识基础。通过讲述糖类的水解作用,使学生理解单糖、二糖、多糖三者的区别和联系。关于糖类的作用,既要突出它是生命系统赖以维持的主要能源物质,又要点出它是细胞许多结构中不可缺少的成分。

关于脂质的教学,似乎可以渗透储存脂质(脂肪)、结构脂质(磷脂等类脂)、功能脂质(固醇)的提法,这样有利于学生对不同脂质的作用特点的理解。在学生条件较好的学校,可以分析一下磷脂分子的特点,为学习细胞膜的结构打下基础。

蛋白质的内容是本节教学的重点和难点。教师在讲述蛋白质的组成和结构时,可以按照以下教学思路来设计教学过程:①通过列举水、葡萄糖、几种蛋白质的相对分子量,使学生认识到蛋白质属于生物大分子;②指出对生物大分子结构的研究,常采取分层次认识的方法;③对蛋白质的组成和结构的教学,可从有关元素、基本单位──氨基酸、肽、肽链间的结合和卷曲、折叠而成的空间结构等几个层次逐步深入。

在讲述氨基酸时,可以从甲烷、乙酸、甘氨酸渐渐引入。随着羧基(-COOH)、氨基(-NH2)的出现,指出它们的化学特性。在认识了甘氨酸的基础上,再进一步变换R基,认识几种其他氨基酸。最后,归纳总结出氨基酸的共同点和区别。

在讲述肽时,要注意讲清缩合、肽键、二肽、多肽和肽链的概念。要指出每种多肽都具有特定的氨基酸种类、数目和排列顺序,这种特点决定着肽链的空间结构,从而为学生理解多肽间的区别和蛋白质的多样性打下基础。

对于蛋白质的空间结构,教师不必详细讲述,可以让学生通过对教材中某种胰岛素空间结构示意图的观察,了解蛋白质具有一定的空间结构就可以了。但是应该对学生指出,蛋白质的生理作用依赖于自身特定的空间结构。

在讲述蛋白质的功能时,应该注意从列举典型的、易于理解的例子中,概括出蛋白质是构成细胞和生物体结构的重要成分和在生命活动中发挥的重要作用。

另外,关于蛋白质结构内容的教学,要充分利用剪贴图、投影片和教材中的示意图,来帮助学生理解动态的、抽象的知识内容。

关于核酸的教学,要注意处理好与《遗传与变异》一章有关内容的联系。本节对核酸化学元素的组成和基本组成单位的认识,可以从介绍分析生物大分子的方法入手,使学生初步了解核酸分子的元素组成、基本单位──核苷酸和多核苷酸链。应指出DNA和RNA两类核酸在组成上的区别和DNA的主要作用。

在本章的最后,教师要强调说明,任何一种化合物或几种化合物的混合都不能完成生命活动。细胞内的各种化合物必须按照一定的方式组成特定的结构,才能在生命活动中发挥作用。

五、参考答案

复习题一、③,①,④,②。

二、1.(A);2.(A);3.(D)。

三、1.因为这两种蛋白质的分子结构不同(即氨基酸的种类不同,排列次序不同,空间结构不同),所以它们的功能也不相同。

2.细胞内的各种化合物必须按照一定方式组成特定的结构,才能在生命活动中发挥作用。

旁栏思考题老年人容易发生骨折是因为随着年龄的增长,机体代谢发生变化而导致骨质疏松造成的。骨质疏松主要是缺少了骨的重要成分碳酸钙。

临床上医生给病人点滴输入葡萄糖液,可以起到给病人提供水、营养和增加能量的作用。因为葡萄糖氧化分解时释放大量的能量,可以供给病人生命活动的需要,有利于早日康复。此外,细胞中水的含量最多。病人维持各项生命活动,绝对不能缺少水。

实验讨论题实验一1.某些化学试剂与生物组织中的有关有机化合物发生一定的化学作用后,能够生成新的化学物质,而这种化学物质是有固定的颜色的。根据实验中所产生的特定的颜色反应,如砖红色、橘黄(或红)色、紫色,可以分别鉴定生物组织中有糖、脂肪、蛋白质的存在。

六、参考资料

细胞的化学组成细胞中各种化合物的平均值如下表(表1-1):

表1-1细胞中各种化合物的平均值

化合物

质量分数%

平均相对

分子质量

种类

85.0

1.8×10

游离形式的水和结合形式的水

蛋白质

10.0

3.6×104

清蛋白、球蛋白、组蛋白、核蛋白等

DNA

0.4

1.0×106

RNA

0.7

4.0×105

脂质

2.0

7.0×102

脂肪、磷脂等

糖类及其

他有机物

0.4

2.5×102

单糖、二糖、多糖等

其他

无机物

1.5

5.5×10

Na+、K+、Ca2+、Mg2+、

Cl-、SO42-、PO43-等

在组成细胞的各种化合物中,水是含量最多的物质,是生命活动的最重要的介质。地球表面出现了液态水时,才具备了生命发生的条件。但是,只有当原始地球的物质经过漫长的演变,出现了原始的核酸和蛋白质并且组合在一起,表现出原始的新陈代谢时,才开始出现原始的生命现象,产生了原始的生命。恩格斯早在一百多年前就已提出“生命是蛋白体的存在方式”。现代生物科学认为,承担生命的“蛋白体”主要是核酸和蛋白质的整合体系。因此说,细胞的主要成分是蛋白质和核酸。

水在生物体和细胞内的存在状态

1.结合水吸附和结合在有机固体物质上的水,主要依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成亲水胶体。多糖、磷脂也以亲水胶体形式存在。这部分水不能蒸发、不能析离,失去了流动性和溶解性,是生物体的构成物。

2.自由水填充在有机固体颗粒之间的水分,可流动、易蒸发,加压力后可析离,是可以参与物质代谢过程的水。

水在生物体内的作用水是生命存在的环境条件,同时也是生活物质本身化学反应所必需的成分。水对于维持生物体的正常生理活动有着重要的意义,因此水是生物体内不能缺少的物质。

1.水是细胞内的良好溶剂生物体内的大部分无机物及一些有机物,都能溶解于水。水是物质扩散的介质,也是酶活动的介质。细胞内的各种代谢过程,如营养物质的吸收,代谢废物的排出,以及一切生物化学反应等,都必须在水溶液中进行。

2.水的其他作用①由于水分子的极性强,能使溶解于其中的许多种物质解离成离子,这样也就有利于体内化学反应的进行。②由于水溶液的流动性大,水在生物体内还起到运输物质的作用,将吸收来的营养物质运输到各个组织中去,并将组织中产生的废物运输到排泄器官,排出体外。③水的热容大,1g水从15℃上升到16℃时需要4.18J热量,比同量其他液体所需要的热量多,因而水能吸收较多的热而本身温度的升高并不多。水的蒸发热较大,1g水在37℃时完全蒸发需要吸热2.40kJ,所以人蒸发少量的汗就能散发大量的热。再加上水的流动性大,能随血液循环迅速分布全身,因此水对于维持生物体温度的稳定起很大作用。④水还有润滑作用。⑤对植物来说,水能保持植物的固有姿态。由于植物的液泡里含有大量的水分,因而可以维持植物细胞的形态而使枝叶挺立,便于接受阳光和交换气体,保证正常的生长发育。⑥对生物体的生命活动起重要的调控作用。生物体内水含量的多少以及水的存在状态的改变,都影响着新陈代谢的进行。一般情况下,生物体内的含水量在70%以上时代谢活跃;含水量降低,则代谢不活跃或进入休眠状态。当自由水比例增加时,生物体的代谢活跃,生长迅速;而当自由水向结合水转化较多时,代谢强度就会下降,抗寒、抗热、抗旱的性能提高。

无机盐无机盐在细胞中的含量虽然不多,却是生命活动所必需的。如果将一块组织放在蒸馏水中,从细胞中去掉盐类,该组织就会死亡。许多无机盐在细胞中呈离子状态存在。无机盐在生物体和细胞中的作用主要有以下几点。

1.是构成细胞或构成生物体某些结构的重要成分。

2.参与并调节生物体的代谢活动。有些无机离子是酶、激素或维生素的重要成分。例如,含锌的酶最多,已知有70多种酶的活性与锌有关;钴(Co)是维生素B12的必要成分,参与核酸的合成过程;铁(Fe)参与组成血红蛋白、细胞色素等,参与氧的运输和呼吸作用中的电子传递过程等。

3.维持生物体内的平衡。体内平衡是使细胞具有稳定的结构和功能,使生物能维持正常的代谢和生理活动的必要条件。有关体内平衡的内容很复杂,情况多变。其中的3个主要方面与无机盐含量的稳定密切相关。

(1)渗透压平衡:细胞内外的无机盐的含量是维持细胞渗透压的重要因素。

(2)酸度平衡(即pH平衡):pH调节着细胞的一切生命活动,它的改变影响着细胞组成物的所有特性以及在细胞内发生的一切反应。例如,各种蛋白质对于pH的改变非常敏感,人体血浆pH降低0.5时,人就立即发生酸中毒。无机离子如HPO42-/H2PO4-和H2CO3/HCO3-等,组成重要的缓冲体系来调节并维持pH平衡。

(3)离子平衡:动物细胞内外的Na+/K+/Ca2+的比例是相对稳定的。细胞膜外Na+高、K+低,细胞膜内K+高、Na+低。K+、Na+这两种离子在细胞膜内外分布的浓度差,是使细胞保持反应性能的重要条件。此外,在细胞膜外Na+多、Ca2+少时,神经细胞就会失去稳定性,对于外来刺激就会过于敏感。

糖类的分布和功能糖类是生物体的主要能源物质和重要的组成成分,在自然界中分布极广,几乎所有的动物、植物、微生物的体内都有它,尤以存在于植物体内的为最多,约占植物体干重的80%。在植物体内,构成根、茎、叶骨架的主要成分是纤维素多糖。在植物种子或果实里的主要储存物质,如淀粉、蔗糖、葡萄糖、果糖等都属于糖类。在动物血液中的血细胞内,也有葡萄糖或由葡萄糖等单糖缩合成的多糖存在,在肝脏、肌肉里的多糖是糖元。人和动物的组织器官中所含的糖类,不超过身体干重的2%。微生物体内的含糖量约占身体干重的10%~13%,其中有的呈游离状态,有的与蛋白质、脂肪结合成复杂的物质,这些物质一般存在于细胞壁、黏液或荚膜中,也有的形成糖元或类似淀粉的多糖存在于细胞质中。

糖类的功能有以下几点。(1)糖类是生物体的主要能源和碳源物质:糖类物质可以通过分解而放出能量,这是生命活动所必需的。糖类还可以在生物体内转化成其他化合物(如某些氨基酸、核苷酸、脂肪酸等),并提供碳原子和碳链骨架,是构成组织和细胞的成分。(2)糖类与生物体的结构有关:纤维素和壳多糖都不溶于水,有平坦伸展的带状构象,并且堆砌得很紧密,所以它们彼此之间的作用力很强,适于作强韧的结构材料。纤维素是植物细胞壁的主要成分。壳多糖是昆虫等生物体外壳的主要成分。细菌的细胞壁由刚性的肽聚糖组成,它们保护着细胞膜免受机械力和渗透作用的损伤。细菌的细胞壁还使细菌具有特定的形状。(3)糖类是储藏的养料:糖类以颗粒状态储存于细胞质中,如植物的淀粉、动物肝脏和肌肉中的糖元。(4)糖类是细胞通讯识别作用的基础:细胞表面可以识别其他细胞或分子,并接受它们携带的信息,同时细胞也通过表面上的一些大分子来表现其本身的活性。细胞与细胞之间的相互作用,是通过一些细胞表面复合糖类中的糖和与其互补的大分子来完成的。(5)糖类具有润滑保护作用:黏膜分泌的黏液中有黏稠的黏多糖,可以保护润滑的表面。关节腔的滑液就是透明质酸经过大量水化而形成的黏液。

磷脂和糖脂磷脂是构成生物膜的主要成分。它广泛分布在动植物组织中。磷脂在动物体内多存在于脑和神经组织中,在心脏和肝脏中的含量也不少;植物的种子中含磷脂也比较多,如大豆种子的磷脂达2%。磷脂大多不溶于丙酮,不溶于水,但像亲水胶体一样,能在水中膨胀并形成乳状液或胶体溶液。磷脂的种类很多,有卵磷脂、脑磷脂、神经磷脂等。

卵磷脂又称蛋黄素,大量存在于各种动物的组织和器官中,尤其在蛋黄、脑、肾上腺、红细胞中的含量较多。蛋黄中卵磷脂的含量可达8%~10%。许多种种子,如大豆、向日葵的种子也含有卵磷脂。

糖脂是一类具有一般脂质溶解性质的含糖脂质,包括脑糖脂、神经节糖脂、甘油醇糖脂等。

磷脂和糖脂都是构成生物膜的磷脂双分子层结构的基本物质,也是某些生物大分子化合物(如脂蛋白和脂多糖)的组成成分。

类固醇和固醇类固醇又称“甾族化合物”,是环戊烷多氢菲类化合物的总称,一般具有重要的生理作用,在自然界广泛分布,也有人工合成的。类固醇的主要种类和分布情况如下。

1.自然界存在的

(1)固醇类。固醇又称“甾醇”,是含羟基的环戊烷骈全氢菲类化合物的总称,以游离状态或同脂肪酸结合成酯的状态存在于生物体内,最重要的有胆固醇、豆固醇和麦角固醇(表1-2)。

表1-2固醇的主要种类和分布情况

类别

固醇名称

分布

动物固醇

胆固醇

脊椎动物体内

7-脱氢胆固醇

皮肤和毛发内

粪固醇

动物粪便中

植物固醇

麦固醇

麦芽中

豆固醇

大豆中

谷固醇

高等植物中分布很广

酵母固醇

麦角固醇

麦角、酵母菌和毒菌内

(2)固醇衍生物。常见的有:强心苷,如洋地黄毒素,存在于洋地黄植物的叶中,是一种强心药;蟾毒素,是蟾蜍分泌的毒素,可作药用;胆酸、胆汁酸组成的胆汁;肾上腺皮质激素、昆虫的蜕皮激素、性激素(包括雌激素、孕激素和雄激素等),能调节动物和人体的新陈代谢及生殖、发育等生理活动。此外,维生素D有利于机体对钙、磷的吸收。肾上腺皮质激素、胆酸、性激素、维生素D等物质,在人体内都可以由胆固醇转化而来。

2.人工合成的类固醇药物如抗炎剂、促蛋白合成类固醇、口服避孕药等。

氨基酸的R基团每个氨基酸都有一个R基,R基也叫侧链基团,不同氨基酸的R基是不同的。例如,甘氨酸的R基只是一个氢原子;有些氨基酸的R基属于烃基;有些则含有某种官能团,如羟基(—OH)、巯基(—SH)、氨基(—NH2)、羧基(—COOH)等。

根据氨基酸所连接的R基化学结构的不同,可以将氨基酸分成脂肪族氨基酸、芳香族氨基酸、杂环氨基酸、杂环亚氨基酸四大类。

甘氨酸惟一不含有不对称碳原子的最简单的非必需氨基酸。广泛存在于蛋白质中。

丙氨酸即L-α-氨基丙酸。一种属于丙酮酸代谢体系的非必需氨基酸。

蛋白质分子的结构通常将蛋白质的结构分为一级结构、二级结构、三级结构和四级结构(图1-1)。

图1-1蛋白质分子的一、二、三、四级结构示意图

1.蛋白质的一级结构:又称为初级结构或化学结构,是指蛋白质分子中,由肽键连接起来的各种氨基酸的排列顺序。目前可以运用氨基酸自动分析仪和氨基酸顺序自动分析仪,对蛋白质的一级结构进行测定。

2.蛋白质的二级结构:蛋白质的二级结构是指蛋白质分子中多肽链本身的折叠方式。近些年来,通过研究知道,蛋白质分子的多肽链本身一般不是全部以松散的线形分子状态存在于生物体内的,而是部分卷曲、盘旋成螺旋状(一般呈所谓α螺旋),或折叠成片层状(又称β折叠),或呈β回折(发夹回折、U形转折),或呈无规则卷曲。蛋白质的二级结构主要依靠氢键来维持结构的稳定性。

3.蛋白质的三级结构:具有二级结构的肽链,按照一定方式进一步卷曲、盘绕、折叠成一种看来很不规则,而实际上有一定规律性的三维空间结构,叫做三级结构。这些肽链所以会卷曲、盘绕、折叠,主要是因为肽链的侧链之间的相互作用。

4.蛋白质的四级结构:具有三级结构的蛋白质分子,通过一些非共价键结合起来,而成为具有生物功能的蛋白质大分子,就是蛋白质的四级结构。构成蛋白质功能单位的每条肽链,称为亚基。亚基虽然只具有二、三级结构,但是在单独存在时并没有生物活力,只有完整的四级结构才具有生物活力。例如,磷酸化酶是由2个亚基构成的,马血红蛋白是由4个不同的亚基(2个α肽链,2个β肽链)构成的,谷氨酸脱氢酶是由6个相同的亚基构成的。

有些蛋白质分子只有一、二、三级结构,并无四级结构,如肌红蛋白、细胞色素c、核糖核酸酶、溶菌酶等。另一些蛋白质则一、二、三、四级结构同时存在,如血红蛋白、谷氨酸脱氢酶等。

调节生理活动的许多激素是蛋白质从化学本质上看,人和动物的激素可以分为4类:①氨基酸衍生物激素(如甲状腺激素、肾上腺素、血清血管收缩素);②肽和蛋白质类激素(如脑垂体激素、胰岛素、甲状旁腺素、生长素和促肾上腺皮质激素);③类固醇激素(如肾上腺皮质激素、性激素);④脂肪酸衍生物激素(如前列腺素)。

肽和蛋白质类激素,包括许多种激素。下面重点介绍胰岛素、生长素和促肾上腺皮质激素。

1.胰岛素:胰岛素是胰腺内的胰岛β细胞公务员之家,全国公务员共同天地所产生的一种激素。胰岛素是一种相对分子质量较小的蛋白质,在有锌和其他金属离子存在时,胰岛素分子可以围绕这些离子形成聚合体。在调节糖类、脂肪和蛋白质的代谢中具有十分重要的作用。

高中生物教案范文篇4

初步掌握鉴定生物组织中还原糖、脂肪、蛋白质的基本方法。

二、教学建议

教材中本实验安排为验证性实验,有条件的学校可以改为探索性实验,安排在讲课之前,或与讲课同步进行。

本实验难度并不大,但内容较多,实验时间较长,因此,必须作周密安排,才能按时完成。实验中应注意以下几点。

1.增设教师演示实验。上课之前,教师应该准备好做演示实验所需的实验材料、用具、仪器和试剂等。同时,逐项完成还原糖、脂肪、蛋白质3类有机物的鉴定实验。在实验课上,将3个实验的正确结果分别展示在讲台上,并作扼要的介绍,以便使学生将自己的实验结果与教师的演示实验作比较。

2.实验中学生应分工合作。在“还原糖的鉴定”实验中,当每组两个学生中的一个制备生物组织样液时,另一个学生可以用酒精灯将水煮开,以便缩短实验的等待时间。在“脂肪的鉴定”实验中,一个学生制作临时装片时,另一个学生则可以调试显微镜。另外,在完成前两个实验时,一个学生洗刷试管、清洗玻片和整理显微镜,另一个学生则可以进行后一个实验的操作。

3.关于鉴定还原糖的实验,在加热试管中的溶液时,应该用试管夹夹住试管上部,并放入盛开水的大烧杯中加热。注意试管底部不要接触烧杯底部,同时试管口不要朝向实验者,以免试管内溶液沸腾时冲出试管,造成烫伤。如果试管内溶液过于沸腾,可以上提试管夹,使试管底部离开大烧杯中的开水。

4.做鉴定还原糖和蛋白质的实验时,在鉴定之前,可以留出一部分样液,以便与鉴定后的样液的颜色变化作对比,这样可以增强说服力。

5.斐林试剂的甲液和乙液混合均匀后方可使用,切勿将甲液和乙液分别加入组织样液中。

三、参考资料

还原糖的鉴定原理生物组织中普遍存在的还原糖种类较多,常见的有葡萄糖、果糖、麦芽糖。它们的分子内都含有还原性基团(游离醛基或游离酮基),因此叫做还原糖。蔗糖的分子内没有游离的半缩醛羟基,因此叫做非还原性糖,不具有还原性。本实验中,用斐林试剂只能检验生物组织中还原糖存在与否公务员之家,全国公务员共同天地,而不能鉴定非还原性糖。

斐林试剂由质量浓度为0.1g/mL的氢氧化钠溶液和质量浓度为0.05g/mL的硫酸铜溶液配制而成,二者混合后,立即生成淡蓝色的Cu(OH)2沉淀。Cu(OH)2与加入的葡萄糖在加热的条件下,能够生成砖红色的Cu2O沉淀,而葡萄糖本身则氧化成葡萄糖酸。其反应式如下:

CH2OH—(CHOH)4—CHO+2Cu(OH)2→CH2OH—(CHOH)4—COOH+Cu2O↓+2H2O

用斐林试剂鉴定还原糖时,溶液的颜色变化过程为:浅蓝色棕色砖红色(沉淀)。

蛋白质的鉴定原理鉴定生物组织中是否含有蛋白质时,常用双缩脲法,使用的是双缩脲试剂。双缩脲试剂的成分是质量浓度为0.1g/mL的氢氧化钠溶液和质量浓度为0.01g/mL的硫酸铜溶液。在碱性溶液(NaOH)中,双缩脲(H2NOC—NH—CONH2)能与Cu2+作用,形成紫色或紫红色的络合物,这个反应叫做双缩脲反应。由于蛋白质分子中含有很多与双缩脲结构相似的肽键,因此,蛋白质可与双缩脲试剂发生颜色反应。

用于鉴定还原糖的实验材料准备植物组织是常用的实验材料,但必须加以选择。在双子叶植物中,光合作用的主要产物葡萄糖形成后,合成为淀粉,暂时储藏在叶子内,因此最好不用双子叶植物的叶子作实验材料。有些单子叶植物,如韭菜、鸢尾,并不将光合作用的初始产物转变为淀粉,因此叶内含有大量的可溶性单糖,但是,由于叶片中叶绿素的颜色较深,对于鉴定时的颜色反应起着掩盖作用,导致实验现象不明显,因此,也不宜用单子叶植物的叶子作实验材料。

本实验最理想的实验材料是还原糖含量较高的植物组织(或器官),而且组织的颜色较浅或近于白色的,如苹果和梨的果实。经试验比较,颜色反应的明显程度依次为苹果、梨、白色甘蓝叶、白萝卜。

用于鉴定脂肪的实验材料准备实验材料最好选择富含脂肪的种子,如花生种子(取其子叶)。供实验用的花生种子,必须提前浸泡3~4h。浸泡时间短了,不容易切成片;浸泡时间过长,则组织太软,切下的薄片不易成形。

做鉴定脂肪的实验,教师可根据本地区的情况选用苏丹Ⅲ或苏丹Ⅳ染液。苏丹Ⅲ染液遇脂肪的颜色反应为橘黄色,苏丹Ⅳ染液遇脂肪的颜色反应为红色。因苏丹Ⅳ染液与脂肪的亲和力比较强,所以,染色的时间应比较短,一般为1min左右。

用于鉴定蛋白质的实验材料准备实验材料最好选用富含蛋白质的生物组织(或器官),植物材料常用的是大豆种子,动物材料常用的是鸡蛋(卵白)。如用大豆种子,必须提前浸泡1~2d,这样容易研磨成浆。有条件的学校,可以直接采用现成的大豆磨成的豆浆,豆浆可以购买,也可用小型的研磨机制取。利用豆浆作实验材料,可以节约实验时间。

如果用稀释的卵白作实验材料,效果会更好。

斐林试剂的配制

甲液质量浓度为0.1g/mL的氢氧化钠溶液

乙液质量浓度为0.05g/mL的硫酸铜溶液

使用时临时配制,将4~5滴乙液滴入2mL甲液中,配完后立即使用。

苏丹Ⅲ溶液的配制称取0.1g苏丹Ⅲ干粉,溶于100mL体积分数为95%的酒精中,待全部溶解后再使用。

苏丹Ⅳ溶液的配制称取0.1g苏丹Ⅳ干粉公务员之家,全国公务员共同天地,溶于50mL丙酮中,再加入体积分数为70%的酒精50mL,充分混合后即可使用。

高中生物教案范文篇5

一本章的主要内容和特点

本章包括《组成生物体的化学元素》和《组成生物体的化合物》两节教材。第一节教材需用1课时教学,第二节教材需用2课时教学。此外,有1个学生实验。

第一节《组成生物体的化学元素》。首先,在节的引言中,明确指出自然界中的生物和非生物都是由化学元素组成的。接着,讲述组成生物体的化学元素、组成生物体化学元素的重要作用、生物界与非生物界的统一性和差异性三方面内容。

关于组成生物体的化学元素的内容,一开始就指出组成生物体的化学元素主要有20多种,紧接着以玉米和人体为例,将含量较多的化学元素以及这些元素的含量列成表。通过对表中内容的分析,概括出两点:一是组成玉米和人体的基本元素是C、O、H、N;二是组成生物体的各种化学元素,在不同的生物体内,含量相差很大,由此进一步提出了大量元素和微量元素的概念和种类。

关于组成生物体化学元素的重要作用的内容,首先强调指出,在大量元素中,C是最基本的元素,C、H、O、N、P、S这6种元素是组成细胞的主要元素。接着,说明组成生物体的化学元素进一步组成多种多样的化合物,这些化合物是生物体结构和生命活动的物质基础。

关于生物界与非生物界的统一性和差异性的内容,主要是从组成生物体和无机自然界的化学元素的相同和不同,提出了辩证唯物主义观点:一点是从组成生物体的化学元素在无机自然界中都可以找到的事实,来说明生物界和非生物界具有统一性;另一点是从组成生物体的化学元素在生物体内的含量与在无机自然界中的含量相比,两者相差很大的事实,来说明生物界和非生物界还具有差异性。

第二节《组成生物体的化合物》。首先,明确提出构成细胞的化合物,主要包括无机化合物的水和无机盐,有机化合物的糖类、脂质、蛋白质和核酸。然后,依次讲述构成细胞的这6种化合物。公务员之家,全国公务员共同天地

关于无机化合物的水,着重说明它在细胞中含量最多;水在不同的生物体中和不同的组织、器官中含量不同;水在细胞中以结合水和自由水两种形式存在;水在细胞内的重要作用。最后强调指出,生物体的一切生命活动,绝对不能离开水。

关于无机盐,强调指出它在细胞中虽然含量很少,且大多数无机盐以离子状态存在于细胞中,但是具有多方面的重要作用:无机盐既是细胞内复杂化合物的重要组成成分,又对维持生物体的生命活动有重要作用。

关于糖类,主要说明它由C、H、O3种化学元素组成,它是构成生物体的重要成分,也是细胞的主要能源物质;糖类大致分为单糖、二糖和多糖等几类(其中的葡萄糖、核糖、脱氧核糖、淀粉、糖元等是重要种类),以及它们在生物体内的分布和重要作用。

关于脂质,主要说明它由C、H、O3种元素组成,一般包括脂肪、类公务员之家,全国公务员共同天地脂和固醇等;这几类物质在生物体内的分布和重要作用,并强调指出,磷脂是构成细胞膜和多种细胞器的膜结构的重要组成成分。

关于蛋白质,是本节的重点内容,教材中比较详细地讲述了有关内容。首先,强调蛋白质在细胞中只比水的含量少,大致占细胞干重的50%以上,它是细胞中各种结构的重要化学成分。接着,说明蛋白质主要由C、H、O、N4种化学元素组成;它是一种高分子化合物,相对分子质量很大;基本组成单位是氨基酸;蛋白质的分子结构是由许多氨基酸分子互相连接而成;蛋白质分子的多样性,决定了蛋白质在生物体内有多种重要的功能。

关于核酸,首先明确指出核酸是遗传信息的载体,它对生物体的遗传、变异和蛋白质的生物合成有极重要的作用。然后,说明核酸由C、H、O、N、P等化学元素组成,也是一种高分子化合物;核酸的基本组成单位是核苷酸;核酸可以分为脱氧核糖核酸和核糖核酸两大类。

本节教材的最后一段指出,任何一种化合物都不能单独地完成某一种生命活动,只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。这里也体现了辩证唯物主义的观点。

在本章中,为了配合学习有机化合物的内容,安排了学生实验《生物组织中还原糖、脂肪、蛋白质的鉴定》,主要是根据某些化学试剂,能够分别使生物组织中上述三种有机化合物,产生特定的颜色反应,来鉴定生物组织中有还原糖、脂肪和蛋白质的存在。

二本章与其他章的联系

1.本章是绪论后的开篇章,所讲内容是最基础的知识,因此与后面的各章都有密切关系,是学习好其他各章的基础,教学中要注意前后知识的联系。

2.组成生物体的化学元素和化合物的知识,是讲述第二章《生命活动的基本单位──细胞》的重要基础。例如,讲述细胞膜的结构和功能,会用到磷脂、蛋白质等知识。

3.第三章《生物的新陈代谢》,与本章联系十分紧密。例如,讲述植物的物质代谢时,要用到酶、水、大量元素、微量元素等知识;在讲到人和动物的物质代谢时,要用到糖类、脂质和蛋白质的知识。

4.第四章《生命活动的调节》在讲到激素的调节作用时,要用到蛋白质等知识。

5.第六章《遗传和变异》在讲到生物体的遗传性和变异性时,有关蛋白质和核酸的知识,是重要的基础知识。

高中生物教案范文篇6

一本章的主要内容和特点

本章是在学生初中阶段初步学习过细胞的知识,以及在前一章学习了关于生命的物质基础知识的基础上,进一步学习高中阶段的关于细胞的知识。生物体的一切生命活动,主要是在细胞内进行的。因此,高中阶段有必要从细胞是生命活动的基本单位的高度,进一步讲述真核细胞的亚显微结构和主要功能的知识,以及有关细胞增殖、分化、癌变和衰老的知识。

本章包括三节教材:第一节《细胞的结构和功能》;第二节《细胞增殖》;第三节《细胞的分化、癌变和衰老》。第一节《细胞的结构和功能》内容很丰富,共分三小节:第一小节《细胞膜的结构和功能》,本小节内容以及章的引言和第一节的引言,共需用3课时教学;第二小节《细胞质的结构和功能》,需用2课时教学;第三小节《细胞核的结构和功能》,共需用2课时教学。第二节《细胞增殖》,需用1课时教学。第三节《细胞的分化、癌变和衰老》,需用1课时教学。此外,本章有两个学生实验。

第一节《细胞的结构和功能》,在分成小节讲述之前,用了几小段文字和一些图表,先介绍了几点有关的内容:观察细胞内部的精细结构,必须应用电子显微镜或其他更为精密的仪器;细胞的种类繁多,大小、形状各不相同,功能也不相同;细胞可分为原核细胞和真核细胞两大类,绝大多数生物是由真核细胞构成的;细胞虽然微小,但是有非常精细的结构和复杂的自控能力,这些是细胞能够进行各种生命活动的基础。真核细胞比原核细胞复杂得多,因此,首先学习关于真核细胞的结构和功能的知识。

第一节的第一小节《细胞膜的结构和功能》,主要讲述细胞膜的分子结构和细胞膜的主要功能两方面的内容。第一方面,关于细胞膜的分子结构,明确提出细胞膜是一层由磷脂和蛋白质构成的膜。在细胞膜的中间是磷脂双分子层,这是细胞膜的基本支架;有的蛋白质分子排布在磷脂双分子层的表层;有的蛋白质分子部分嵌插或贯穿在整个磷脂双分子层中。构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,这种特点对于细胞膜完成各种生理功能非常重要。再有,在细胞膜的外表有一层糖蛋白,叫做糖被,它在细胞生命活动中有重要功能。第二方面,关于细胞膜的主要功能,主要讲述细胞膜与周围环境进行物质交换的功能,而对细胞膜的其他多种功能不可能都加以介绍。由于细胞膜与周围环境进行物质交换的内容比较复杂,学生在学习上有一定难度,因此教材本着化繁为简、深入浅出的精神,主要讲述了自由扩散方式和主动运输方式,略去了其他运输方式。教材强调指出,自由扩散是被动运输的方式;主动运输方式的特点是必须有载体蛋白质的协助,需要消耗细胞内新陈代谢所释放的能量。主动运输能够保证活细胞按照生命活动的需要,主动地选择吸收所需要的营养物质。接着,在讲了上述两种运输方式的基础上,明确指出细胞膜的通透性特点:细胞膜是一种选择透过性膜。

第一节的第二小节《细胞质的结构和功能》,主要讲述细胞质基质和细胞器两方面的内容。第一方面,关于细胞质基质的内容有:细胞质基质中含有多种无机的和有机的化合物;细胞质基质是活细胞进行新陈代谢的主要场所;在细胞质基质中存在着多种细胞器。第二方面,关于细胞器的内容,占了本节的大部分篇幅,重点讲了线粒体和叶绿体这两种细胞器,主要说明这两种细胞器在动植物体中存在的部位、在细胞内的分布、基本结构和主要功能,这些知识是学习后面有关章节必备的基础知识。此外,还简要讲述了内质网、核糖体、高尔基体、中心体和液泡这5种细胞器。本节教材最后强调指出,在活细胞完成各种生命活动的过程中,细胞质基质和细胞器是相互协调的,各种细胞器之间也是密切联系的。公务员之家,全国公务员共同天地

第一节的第三小节《细胞核的结构和功能》,主要讲述细胞核的结构、细胞核的主要功能、原核细胞的基本结构三点内容。第一点,关于细胞核的结构,简要介绍了核膜、核仁和染色质的知识。第二点,关于细胞核的主要功能,强调了细胞核是遗传物质储存和复制的主要场所,是细胞遗传特性和细胞代谢活动的控制中心,因此它是细胞结构中最主要的部分。第三点,关于原核细胞的基本结构,很简要地介绍了原核细胞在大小、细胞壁、细胞膜、细胞质、拟核这几个方面与真核细胞不同的特点,并且强调指出原核细胞最主要的特点是没有由核膜包围的细胞核。

第二节《细胞增殖》,在节的引言中指出细胞增殖是生物体的重要基本特征,细胞以分裂的方式进行增殖;细胞分裂是生物体生长、发育、繁殖和遗传的基础;真核细胞的分裂方式有有丝分裂、无丝分裂和减数分裂三种方式。本节教材主要讲述两方面内容:一方面,以大部分的篇幅讲述真核细胞的有丝分裂方式;另一方面,简要介绍真核细胞无丝分裂方式的特点。

关于有丝分裂的内容,主要有三点。在讲述这三点内容之前,先明确指出有丝分裂方式是真核细胞进行细胞分裂的主要方式,多细胞生物体以有丝分裂的方式增加体细胞的数量,体细胞进行有丝分裂是有周期性的。接着,讲述第一点内容,即细胞周期,主要讲述了细胞周期的概念、细胞周期包括分裂间期和分裂期两个阶段、这两个阶段所占时间的长短。第二点内容,讲述细胞分裂间期,强调指出这个时期是新细胞周期的开始,最大的特点是完成了DNA分子的复制和有关蛋白质的合成,为紧接着的细胞分裂期准备了条件,因此,细胞分裂间期是细胞周期中极为关键的准备阶段。第三点内容,讲述细胞分裂期,明确指出这个时期的特点主要是细胞核明显地发生着染色体的有规律的连续变化。为了研究的方便,分裂期又分为前期、中期、后期、末期。本节教材以较多的篇幅,着重讲述了分裂期各个时期细胞核内染色体的变化特点。在讲述了有丝分裂上述知识的基础上,最后指出有丝分裂的重要意义:将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去;由于染色体上有遗传物质,因此使生物的亲代和子代之间保持了遗传性状的稳定性。

关于无丝分裂方式,简要介绍了这种分裂方式的过程,以及因为在分裂过程中没有出现纺锤丝和染色体,所以叫做无丝分裂。

关于减数分裂方式,仅仅指出这种分裂方式是一种特殊方式的有丝分裂,与有性生殖细胞的形成有关,具体的分裂过程留待后面的有关章节讲述。

第三节《细胞的分化、癌变和衰老》,主要讲述了三方面的内容。关于细胞的分化,主要内容有:首先,明确指出细胞分化是生物界中普遍存在的一种生命现象,仅有细胞的增殖,而没有细胞的分化,生物体是不能正常发育的。接着,讲述了细胞分化的概念,并且说明细胞分化是在生物体整个生命进程中的一种持久性变化,但是在胚胎时期达到最大的限度。再有,提出多细胞生物必须经过细胞分化,体内才会形成多种不同的细胞和组织。最后,说明高度分化的植物细胞仍然保持着细胞的全能性。

关于细胞的癌变,之所以放在本节教材的第二部分来讲,是因为细胞的畸形分化与癌细胞的产生有直接关系,与细胞分化的知识有密切联系。细胞癌变的主要内容有:首先,提出癌细胞有一些独具的特征,教材中只介绍了癌细胞能够无限增殖、形态结构发生了变化、表面也发生了变化等特征。其次,讲述了导致细胞癌变的三大类致癌因子,即物理致癌因子、化学致癌因子和病毒致癌因子,同时也提出了致癌基因。最后,简要讲述了从多方面来预防细胞发生癌变。

关于细胞的衰老,首先说明细胞的衰老和死亡也是一种常见的生命现象。接着,进一步说明衰老的过程是细胞内生理和生化发生变化的过程,最终反映在细胞的形态、结构和功能上发生了变化,因而具有细胞衰老的共同特征,教材中提出了5种衰老的特征。最后指出,至今还没有一种假说能够完全揭示细胞衰老的原因。目前的科研工作表明,细胞衰老可能是多种内因和外因共同作用的结果。

二本章与其他章的联系

1.关于细胞膜的分子结构特点和功能的知识,对于后面学习《生物的新陈代谢》,讲述物质出入细胞、物质代谢等内容,是重要的基础知识。

2.关于细胞器的知识,与讲述物质代谢和能量代谢有直接关系。例如,叶绿体的结构和功能与光合作用关系密切,线粒体的结构和功能与有氧呼吸关系密切。

3.关于有丝分裂的知识,对于后面学习《生物的生殖和发育》一章中关于减数分裂的知识,是重要的基础。

高中生物教案范文篇7

一、知识结构二、教学目的

1.细胞膜的分子结构(C:理解)。

2.细胞膜的主要功能(C:理解)。

三、重点和难点

1.教学重点

(1)细胞膜的分子结构。

(2)细胞膜的主要功能。

2.教学难点

细胞膜内外物质交换的主动运输方式。

四、教学建议

第一节内容的教学时间是6课时,其中讲课4课时,学生实验2课时。讲课与学生实验应该有机结合,以便提高教学效率。

对本节教学,在教学手段上,应该充分运用示意图、模型、照片等直观教具。在认识方法上要求:①注意把组成生物体的化合物与细胞结构建立起联系;②注意分析细胞各部分结构特点与其功能的适应性;③注意讲述细胞各部分结构之间在功能上的联系。通过本节的教学,要使学生对第一章第二节中有关化合物的功能的认识具体化、结构化:使学生对细胞的结构和功能的认识物质化(达到分子水平)。

通过本节前言部分的教学,要使学生形成下列认识:①组成生物体的化合物,在细胞中以一定的方式有机地构建起来,因此才能表现生命;②细胞的种类多种多样(用备好的示意图逐一呈现原核细胞、真核细胞的显微结构),但是都具有细胞膜、细胞质和细胞核或拟核三部分,教材中将以真核细胞为主来认识细胞的结构和功能;③高中生物课将主要从亚显微结构水平上认识细胞的结构和功能(让学生观察教材中的示意图)。关于本节前言部分的教学,时间不宜太长。

关于第一小节中细胞膜的分子结构的教学,可以从以下几个层次剖析;①用纯净的细胞膜(红细胞的膜)为材料,进行化学分析,已经知道细胞膜三层结构的化学组成主要是蛋白质和磷脂(看教材中的细胞膜主要化学成分的含量表);②建立细胞膜的结构模型,对模型的分析深度可依据学生的条件而定,但要突出细胞膜的结构特点;③如果学生条件较好,可讲述有关细胞融合实验的结果和有关细胞内外物质浓度的差异等知识,证明细胞膜具有流动性和对物质进出有选择性的特点。关于细胞膜外表的糖被,只要结合教材中的例子简要说明就可以了。

关于细胞膜的主要功能的教学,重点是分析自由扩散和主动运输这两种物质通过膜的方式。可从具体的事实分析入手,归纳出两种方式的特点。例如,可用示意图显示细胞与组织液中氧和二氧化碳的浓度差(分压差)与扩散趋势,使学生认识到这些气体通过细胞膜时遵循扩散原理,进而推导出这一类物质的过膜方式。又如,通过对轮藻细胞中K+(或其他离子)和环境中的K+(或其他离子)的浓度差等具体事实的分析,使学生认识到一些物质进出细胞并不遵循扩散原理,而是由细胞膜主动运输的。在这里,教师应注意讲出主动运输需要膜上某些载体蛋白质参与。主动运输具有选择性,需要消耗细胞内新陈代谢释放的能量。

关于内吞和外排方式的小字阅读材料,可使学生了解大分子物质和颗粒性物质进出细胞的方式。

关于细胞膜的其他功能,可根据学生的接受能力酌情处理。关于细胞壁的知识,可在前言中结合介绍各种细胞时讲述。

五、参考答案

复习题一、1.脂质分子和蛋白质分子。2.选择透过性。

二、1.(D);2.(D)。

三、

出入细胞的物质举例

物质出入细胞的方式

细胞膜内、外物质浓度的高、低(如物质进入细胞)

是否需要载体蛋白质

是否消耗细胞内的能量

甘油

自由扩散

细胞膜外浓度高

细胞膜内浓度低

不需要

不需要

进入红细胞的K+

主动运输

细胞膜外浓度低

细胞膜内浓度高

需要

需要

旁栏思考题这是细胞的内吞作用。这对于人体有防御功能,并有利于细胞新陈代谢的正常进行。

六、参考资料

病毒细菌还不是最小的生物,比细菌还小的生物是病毒等。19世纪末期,有人首先证实烟草花叶病和牛口蹄疫的病原体非常小,它们可以畅通无阻地穿过细菌所不能穿透的瓷滤器,于是把这类病原体命名为“滤过性病毒”或“病毒”,以区别于其他许多种疾病的病原体──细菌。一般说来,病毒比多数自由生活的细菌要小,直径是0.08~3μm[1μm(微米)等于10-6m;1nm(纳米)等于10-9m。]左右。较大的痘类病毒(0.20μm以上)刚好可用光学显微镜看到,但不能对它进行细致的观察。较小的病毒,如鸡瘟病毒(70~100nm)、流行性乙型脑炎病毒(20~30nm),只有依靠电子显微镜才能观察到。病毒不能独立生活,它只有寄生在其他生物的细胞里才能进行代谢活动和繁殖后代。

病毒可以根据它们寄主的不同,大致分为三类:一是动物病毒,如寄生在鸡体组织细胞内的鸡瘟病毒;二是植物病毒,如寄生在烟草叶细胞内的烟草花叶病病毒;三是细菌病毒(也叫噬菌体),如寄生在大肠杆菌细胞内的Φ×174噬菌体。所有的病毒都没有典型的细胞结构。它们的结构主要是外面有一个由蛋白质组成的外壳,壳内含有另一种物质,叫做核酸(图21)。病毒在寄主细胞内依靠它们所含的核酸,不断地进行自我复制和繁殖,造成对寄主细胞的危害。在现在所发现的三百多种病毒中,大部分都是引起人类、动物、植物或细菌发生病害的病原体。

图2-1烟草花叶病病毒结构示意图公务员之家,全国公务员共同天地

1.核酸2.蛋白质

后来,科学家发现一种比病毒更简单的生命形式,叫做类病毒。它的大小相当于病毒的1/80,身体只是由小分子的核酸构成的,没有蛋白质。已经有人发现它是马铃薯纺锤块茎病的病原体。

近些年来,科学家还发现了朊病毒,这是只含蛋白质而无核酸的分子。朊病毒能侵入寄主细胞,在寄主细胞中繁殖,致使寄主因中枢神经系统病变而死亡。例如,引起疯牛病、羊瘙痒病的病原因子。关于朊病毒的繁殖和致病机制,有待进一步探究。

电子显微镜电子显微镜是一种精密分析仪器,在科学研究和现代工农业生产中,已经日益成为一种必不可少的重要仪器。我国在1965年试制成功20万倍电子显微镜,后来又研制成80万倍电子显微镜,它具有分辨率高(可以看清两个小点间的最小距离为0.144nm,相当于人的头发丝的2×10-7,已经达到可以分辨单个分子和原子的程度)、放大倍率范围宽、操作方便、使用范围广等特点,并配有自动照相装置。

电子显微镜是利用高速运动的电子来代替光波的一种显微镜。目前最常用的是通用式电子显微镜(图2-2)和扫描式电子显微镜。现在,通用式电子显微镜的直接放大倍数可达80万倍左右,分辨率一般是0.2nm,用它可以看到病毒、单个分子以及金属材料的晶格结构等。除上述两种电镜外,根据不同的成像原理,还有发射式电子显微镜、反射式电子显微镜、镜式电子显微镜等各种类型。各式电子显微镜广泛地应用于金属物理学、高分子化学、微电子学、生物学、医学以及工农业生产等各个领域。

膜的化学组成根据对细胞膜和细胞中其他各种膜的微量化学分析结果来看,膜主要含有脂质和蛋白质两大类物质。蛋白质约占膜干重的20%~70%,脂质约占30%~80%。各种膜所含的蛋白质与脂质的比例同膜的功能有关。功能较旺盛的膜,其蛋白质含量较高(表2-1),因为膜的功能主要由蛋白质来承担。此外,细胞膜还含有约10%的糖类,但是糖类都和蛋白质或脂质结合成糖蛋白或糖脂,分布在细胞膜的外表面。整合蛋白(又称内在蛋白)普遍为糖蛋白。

表2-1各种膜的基本组成(质量分数/%)

成分

髓鞘

红细胞

细胞膜

肝细胞

细胞膜

心肌

线粒体

叶绿体

片层

大肠杆菌

细胞膜

蛋白质

总脂质

磷脂

糖脂

胆固醇

其他脂质

22

78

33

22

17

6

60

40

24

微量

9

7

60

40

26

13

1

76

24

22

微量

1

1

50

50

6

20

24

75

25

25

膜脂主要是磷脂和胆固醇。磷脂约占总脂质的55%~75%,主要有卵磷脂和脑磷脂,其余是鞘脂和糖脂。各种脊椎动物细胞的胆固醇与磷脂的比值不同。细菌和植物细胞的细胞膜没有胆固醇。胆固醇有降低液晶态脂双层的通透性和脂分子运动性作用,而且可以增强动物细胞膜的韧性。

蛋白质是生物膜的另一种主要成分。根据蛋白质和膜的结合程度的不同,蛋白质分为整合蛋白和边周蛋白(又称外在蛋白)两类,整合蛋白约占膜蛋白总量的70%。各种蛋白质在膜上的分布是不对称的。膜蛋白不仅有机械支持作用,而且在物质运输以及受体、抗原和酶的形成等方面起着重要作用。

细胞外结构和细胞外被细胞膜并不是细胞的最外边界,各类细胞在细胞膜外还附着有细胞膜外结构。细胞膜外结构在结构、成分和功能等方面,因生物物种和细胞类型的不同而异。它包括的范围极其广泛,例如,血型抗原、鱼类和两栖类的卵膜、哺乳动物卵的透明带、基膜、动物软骨细胞间的基质、肠上皮细胞表面的黏蛋白、植物细胞壁,以及原核细胞的细胞壁和细菌荚膜等。细胞外结构根据来源、性质和同细胞膜的关系,可以区分为细胞外被、表面黏着物质和外在结构三类。

细胞膜的外表有一层由糖蛋白构成的外被,称为糖被或糖萼。糖被是细胞表面不可缺少的组成部分,在细胞生命活动中具有某些十分重要的特殊功能,因此对糖被的研究是目前国内外颇为活跃的领域。糖蛋白分子的种类很多,分子大小悬殊很大,相对分子质量可从15000到106以上。

细胞膜上的糖蛋白在细胞生理活动和细胞间期相互作用方面有许多重要功能,主要是分子识别、免疫反应、神经冲动的传导、激素受体和CAMP的代谢调节作用、血型抗原和酶。

膜的分子结构模型关于膜的结构,从20世纪开始一直到现在,科学家们提出了很多假说和模型。下面举几个比较流行的模型加以说明。

1.单位膜模型。这种模型于1935年提出,到20世纪50年代加以修正,随后经罗伯特桑(Robertson)的电镜观察加以完善。这种模型表示,细胞膜由脂质双分子层及在其内外两侧各覆盖一层蛋白质所组成。脂质分子相互平行,与膜垂直。蛋白质是以β折叠形式结合在膜的内外两侧,形成网状。罗伯特桑于1959年指出,所有生物膜的厚度基本上是一致的,这种三层结构的膜普遍存在于细胞中,他叫这样的膜为单位膜。但到20世纪60年代以后,由于应用了一系列新技术,科学家证实膜的脂质双分子层中也有蛋白质颗粒,并证实膜蛋白主要不是β折叠结构,而是α螺旋结构等。科学家根据这些事实,对生物膜的单位膜模型理论提出了修正。

2.液态镶嵌模型。这是细胞生物学的重要进展之一。科学家发现细胞膜不是静态的,而是膜中的脂质和蛋白质都能自由运动。这种模型叫做流动脂质—球蛋白镶嵌模型。这是个动态模型,表示细胞膜是由脂质双分子层和镶嵌着的球蛋白分子组成的,有的蛋白质分子露在膜的表面,有的蛋白质分子横穿过脂质双分子层。这种模型主要强调的是,流动的脂质双分子层构成了膜的连续体,而蛋白质分子像一群岛屿一样无规则地分散在脂质的“海洋”中。后来,不少实验都证实膜脂的“流动性”是生物膜结构的基本特性之一,因此这种模型比较普遍地被大家所接受和支持。但是,这种模型也有不足之处,它比较忽视了蛋白质分子对脂质分子流动性的控制作用,以及其他因素对脂质分子运动的影响。

3.晶格镶嵌模型。由于液态镶嵌模型有上述不足之处,沃利奇(Wallach)于1975年提出了晶格镶嵌模型。他指出:生物膜含有“流动性”脂质是可逆地进行从无序(“流动性”)到有序(晶态)的相变;在大多数动物细胞的膜系统中,这种“流动性”脂质呈小片的点状分布,面积小于100nm2左右。沃利奇认为,“晶格镶嵌”模型比“液态镶嵌”模型更能代表膜的真实结构。晶格镶嵌模型在一定条件下,可能代表某些膜的真实结构,但是并不能作为一般膜的通用模型。

4.板块镶嵌模型。1977年,Jain和White进一步发展了沃利奇提出的晶格镶嵌模型,提出了板块镶嵌模型(图2-3)。这种模型学说认为,在流动的类脂双分子层中存在许多大小不同、刚度较大的、彼此独立移动的类脂板块(有序结构板块)。这种无序结构区的板块和有序结构区的大小、形状、寿命、运动性、交换速率、板块内组分的留存时间等问题,都有待于进一步明确,但是它们之间的差别可能很大。分布于膜内两半层的板块彼此相对独立,呈不对称性,但是某些板块也可能延伸到全部双分子层。

图2-3板块镶嵌模型

上:图的中间部分是液晶态,两侧是晶态

下:表示具有不同的流动性的板块镶嵌分布

板块内各种组分之间的疏水力相互作用,蛋白质和类脂两者也可能形成另一种不同性质的长距离的有序组织(一般超过几百个分子大小)。因此,膜平面实际上是由同时存在的不同组织结构和不同性质的许多板块组成的,它的变化主要由板块内组分的构象和相互作用的特异性所决定。膜功能的多样性,可能与板块的性质和变化有关,这就可以解释所谓细胞内“区域化”的问题。细胞中“区域化”的特点,使细胞内各种错综复杂的生化反应能够彼此不受干扰,有条不紊地进行。

事实上,晶格镶嵌模型和板块镶嵌模型及液态镶嵌模型并没有本质差别,前二者只不过是对膜的流动性的分子基础作了解释,因而是对后者的补充。目前所流行的关于膜结构的基本观点仍然是流动镶嵌模型。由于膜的结构复杂和功能多样,还存在不少问题有待解决。目前看来还没有一个模型可以作为所有生物膜的通用模型。

膜流动性的控制机制所谓膜的流动性,包括膜脂的流动性和膜蛋白的运动性。膜脂的流动性随温度不同而有变化,或处于固相,或处于液相。当缓慢提高温度时,脂质双分子层可由晶态(凝胶)熔融为较为流动的液态,发生这一变化的熔融温度即相变温度。在相变温度以上,脂质处于液晶态。膜脂分子具有多种运动方式,如绕化学键旋转、左右摆动、围绕与膜平面相垂直的轴作左右旋转运动、沿膜平面作侧向扩散或侧向移动、由一个单分子层倒翻至另一层。有许多因素会影响膜脂的流动性,其中脂肪酸本身的不饱和程度起着主要的作用。膜的流动性对膜的功能活动,特别是酶的活性,具有重要意义。

膜蛋白的运动性,指膜蛋白在不同情况下都可以发生位置的变动。膜蛋白的运动方式有侧向扩散和旋转运动等。膜蛋白的运动要受其周围的膜脂性质和相态的制约,还要受细胞内部结构的控制,它在膜中的运动并不是随机性的“漂流”。

细胞膜的主要功能细胞膜作为细胞的内外边界,结构复杂,功能多样。它的主要功能如下:(1)为细胞的生命活动提供相对稳定的内环境;(2)选择性的物质运输,包括代谢底物的输入与代谢产物的排除,其中伴随着能量的传递;(3)提供细胞识别位点,并完成细胞内外信息跨膜传递;(4)为多种酶提供结合位点,使酶促反应高效而有序地进行;(5)介导细胞与细胞、细胞与基质之间的连接;(6)细胞膜参与形成具有不同功能的细胞表面的特化结构。

主动运输主动运输是指通过细胞膜本身的某种耗能过程,将某种物质分子由膜的低浓度一侧移向高浓度一侧的过程。按照热力学基本定律,溶液中的分子由低浓度处向高浓度处移动,就像物体沿着斜坡上移(图24),必须由外部供给能量。在细胞膜的主动运输中,这能量由细胞来供给。

图2-4被动运输和主动运输的区别

(图示分子可由高浓度处自动向低浓度处扩散,而分子由低浓度处移向高浓度处则需另外供能,正如滑雪者可由高坡自动下滑,而上坡需要人体费力一样)

主动运输是与被动运输相对而言的。自由扩散和协助扩散都属于被动运输,其特点是在这样的物质运输过程中,物质分子进行顺浓度梯度的移动,而与物质运输有关的膜或细胞并无能量消耗。但是,被动运输并不是与能量转换完全无关,而只不过是物质运输所需要的能量是来自高浓度溶液本身所包含的位能而已,就像位于斜坡高处的物体可以靠位能自动下滑而不需要另外供给能量一样。

在细胞膜主动运输的问题上,最重要的而且研究得最充分的是关于钠、钾离子的主动运输。很早以前就知道,包括人体各种细胞在内的所有动物细胞,其细胞内液和细胞外液中的钠、钾离子浓度有很大的不同。这是因为这些细胞的细胞膜上普遍存在着一种“钠钾泵”的结构,简称为“钠泵”,它们的作用就是能够逆着浓度差,主动地把细胞外液中的K+移入膜内,同时不断地把进入细胞的Na+移出膜外,因而形成和保持了K+、Na+在膜两侧的正常浓度差。大量事实证明,“钠泵”实际上是一种镶嵌在膜的脂质双分子层中具有ATP酶活性的特殊蛋白质,它可以被Na+、K+和Mg2+等离子所激活,可以分解ATP以获得能量,同时可以将膜外的K+移入膜内、将膜内的Na+移出膜外。

高中生物教案范文篇8

一、知识结构二、教学目的

1.真核细胞细胞核的结构和主要功能(C:理解)。

2.原核细胞的基本结构(B:识记)。

三、重点和难点

1.教学重点

(1)真核细胞的核膜和染色质。

(2)原核细胞中拟核的结构特点。

2.教学难点

关于真核细胞细胞核中的染色质,在细胞有丝分裂过程中的形态变化。

四、教学建议

本小节的教学内容可用1课时讲授,包括细胞核的结构和功能,原核细胞的基本结构两部分内容。前者应更多地采用观察分析方法,使学生重点掌握染色质的组成,了解其功能。后者主要通过对比的方法,使学生了解原核细胞和真核细胞的异同,认识原核细胞的原始性。

在关于细胞核的教学中,要利用模式图,通过观察概括出细胞核主要包括核膜、核质、核仁、染色质几部分。然后,重点分析核膜和染色质的结构、成分和功能。

关于核膜的结构,应注意让学生观察到核膜与内质网相通连,认识到核膜同样是选择透过性膜,它控制着细胞核与细胞质的物质交换,对核内的物质具有保护作用。细胞核和细胞质间存在着频繁的、大量的大分子物质的交流,核孔就成为这些大分子的理想通道。通过这种分析,使学生理解核膜的结构特点是与其功能相适应的。

在讲述染色质时,可以适当结合示意图,把染色质细丝的分子组成直观地表现出来。使学生了解,一条染色质细丝是由一条DNA分子,缠绕在多种蛋白质球体上形成的串珠状结构。

在讲述染色质与染色体的关系时,要注意强调它们是同一种物质的两种形态。伸展的染色质形态有利于在它上面的DNA储存的信息的表达,而高度螺旋化了的棒状染色体则有利于细胞分裂中遗传物质的平分。

在讲述细胞核的功能时,应重点讲述它是DNA储存场所和复制的场所。要让学生理解细胞核控制着细胞的生活,决定着生物体的性状。如果时间允许,可具体阐述教材中的例子,证明细胞核的这种作用。

在讲述原核细胞的基本结构时,建议列出对比表,从大小、细胞壁、细胞器、细胞核几方面概括出它与真核细胞的区别。在对比中,应渗透原核细胞的原始性,真核细胞结构的复杂性和完善性。

五、参考答案公务员之家,全国公务员共同天地

复习题二、1.(C);2.(D);3.(D);4.(C)。

三、主要有以下几点不同:1.细菌的体积较小;2.细菌的细胞壁不含纤维素,主要成分是肽聚糖;3.细菌的细胞质内只有分散的核糖体,没有其他复杂的细胞器。

六、参考资料

间期细胞核的形态和结构间期细胞核大多呈球形或卵球形,但是随物种和细胞类型不同而有很大差别,有的呈分枝状、带状。在哺乳动物中,嗜中性白细胞的核就是多叶形,而平滑肌的细胞核则为杆状。核的形状往往同细胞的形状有直接关系。多角形、立方形和圆形的细胞,其核多呈圆形。细胞核的位置多处于细胞的中央,如果细胞的内含物增多,则可以把核挤到一侧。例如,植物细胞的液泡增大后,核就偏到一侧。动物的脂肪细胞中脂肪滴加大后,核就被挤到细胞边缘,呈扁盘状。但是,不论细胞核是什么形状,其核膜多是凹凸不平的,有的甚至缺刻深陷,将核分叶。细胞核在细胞生活周期中,形状变化很大,在有丝分裂阶段时,细胞核可以暂时解体。

核膜的结构特点在细胞核的有双层膜结构,称为核膜。核膜是核的边界,由内外两层单位膜组成。核膜的每层膜厚约6.5nm,两层膜间隔10~50nm的空隙,称为核周腔。有的细胞中,可看到核周腔同内质网的腔隙相连通。在核膜外层的外表面上有颗粒状的核糖体,它们有合成蛋白质的功能。内层核膜与染色质纤维相连,不仅染色质纤维的两端连在核膜上,而且染色体的松散部分也常位于核孔的附近。

核膜并不是完全连续的,有许多部位的核膜内外两层互相连接,形成了穿过核膜的小孔,称为核孔。核孔是核质与细胞质进行物质交换的重要通道。核孔不是单纯的小孔,结构相当复杂,因此这种小孔又叫核孔复合体。核孔的直径大约70~80nm,核孔通道的直径约9nm。核孔的密度和总数因细胞类型不同而异。转录活动低或不进行转录活动的细胞,核孔很少。核孔在核膜上的分布不均匀,有一定的区域差别,核质与细胞质之间物质交换旺盛的部位核孔数目多。

核孔是细胞核与细胞质进行物质交换的重要通道。在核中装配好的核糖体亚单位,就是穿过核孔复合体进入细胞质的。但是,不是所有的RNA都可以自由穿过核孔,它们只有在核内经过处理,成为mRNA后才能穿出核。

核膜的主要功能真核细胞具有核膜,这在生物进化史上有重要意义。核膜作为细胞质同细胞核内部结构之间的界膜,对稳定细胞核的形态和化学成分起着十分重要的作用。核膜的主要功能有以下几方面。

1.屏障作用。核膜是遍布细胞中的“膜系统”的一部分,它的特殊功能之一是把核酸(尤其是DNA)集中在细胞核中。

2.控制细胞核与细胞质之间的信息和物质交换。主要有以下几点。

(1)离子与水分子可以自由通过核膜。但是,核膜对某些离子(如Na+)有一定的屏障作用,这不属于主动运输过程。

(2)单糖、二糖、氨基酸、染料、核苷、核苷酸、鱼精蛋白、组蛋白、RNA酶以及DNA酶等小分子物质,可以自由通过核膜。

(3)大分子和小颗粒物质的交换:高分子化合物如γ球蛋白、清蛋白等进出细胞核要由核孔通过。

3.核膜在染色质(体)的定位和细胞分裂时的作用。

(1)染色质的终末细丝常常连接在核孔上。这有助于解释为什么非常复杂的染色质在异常活跃的细胞核内不致紊乱。

(2)当细胞分裂开始之初,染色体的聚集有可能开始于核膜,然后由外向内发展。在前期或早中期分裂相中,核膜破碎,这些碎片可能加入核膜所附的微管成分,促其生长,从而使所附的染色单体定位并且发生分离。当细胞分裂完成,子细胞核重建,核膜新生或恢复时,它可能有使核仁组成中心定位,趋向中心位置的作用。

4.核膜在细胞核融合时的作用。当卵细胞受精时,精子和卵细胞的核膜可以相互识别并且相互接触,在一个以上的部位相互连结,进而相互融合成一个核。

5.核被膜具有某些生物合成的功能。在外层核膜表面附着核糖体,因此可以进行蛋白质的合成。在核周腔中存在多种结构的蛋白质和酶。核膜也能合成少量膜蛋白、脂质和组蛋白。有人还报道核膜有糖的合成作用。

核仁核仁是真核细胞间期核中最明显的结构。在光镜下的染过色的细胞内,或者相差显微镜下的活细胞中,或者分离细胞的细胞核内,都容易看到核仁,它通常是单一的或者多个匀质的球形小体。

核仁的大小、形状和数目随生物的种类、细胞类型和细胞代谢状态而变化。蛋白质合成旺盛、活跃生长的细胞,如分泌细胞、卵母细胞,其核仁大,可占总核体积的25%;不具蛋白质合成能力的细胞,如肌肉细胞、休眠的植物细胞,其核仁很小。

在细胞周期过程中,核仁是一个高度动态的结构,在有丝分裂期间表现出周期性的消失与重建。

核仁具有重要功能,它是rRNA合成、加工和核糖体亚单位的装配场所。因此,对核仁结构、动态和功能的研究,不仅为早期细胞学家所密切关注,而且在20世纪60年现核仁的重要功能以后,也一直受到各相关领域研究者的高度重视。

染色质和染色体染色质和染色体的主要成分都是DNA和蛋白质。它们之间的不同,不过是同一物质在间期和分裂期的不同形态表现而已。染色质出现于间期,在光镜下呈颗粒状,不均匀地分布于细胞核中,比较集中于核膜的内表面。由于染色较深,在光镜下常被误认为是核的界膜。染色体出现于分裂期中,呈较粗的柱状和杆状等不同形状,并有基本恒定的数目(因生物的种类不同而异),例如人体细胞有染色体23对,共计46条。染色体是由染色质浓集而成的,内部为紧密状态,呈高度螺旋卷曲的结构。

根据对染色体组成成分的分析,可知它在细胞分裂间期仍然存在而不是消失,只不过这时它的结构呈稀疏和分散状态:有的部分非常稀疏,因而在光镜下看不到;有的部分螺旋盘绕得比较紧密,因而在适当染色后呈颗粒状,这就是染色质。

现在已知染色体与遗传有密切的关系,因为其中所含的DNA是遗传物质。

原核生物和病毒原核生物包括细菌、蓝藻、放线菌、支原体、立克次体、衣原体等。现将其中几种原核生物和病毒,列表(表2-2)比较如下。

表2-2几种原核生物和病毒的比较

种类

细菌

支原体

立克次体

衣原体

病毒

直径d/μm

0.50~10.00

0.20~0.25

0.20~0.50

0.20~0.30

<0.25

可见性

光镜下可见

光镜下勉强可见

光镜下可见

光镜下勉强可见

电镜下可见

能否通

过细菌

过滤器

不能

不能

细胞壁

有坚韧的细胞壁

与细菌相同

与细菌相同

无细胞结构

繁殖方式

二均分裂

二均分裂

二均分裂

二均分裂

复制

培养方法

人工培养基

人工培养基

宿主细胞

宿主细胞

宿主细胞

核酸种类

DNA和RNA

DNA和RNA

DNA和RNA

DNA和RNA

DNA和RNA

支原体它是已知的可以自由生活的最小生物,也是最小的原核细胞。它的突出特点是没有细胞壁。因而细胞柔软,形态多变,具有高度多形性。在电镜下观察支原体细胞,可见具有细胞膜,细胞膜内有核糖体、RNA和环状DNA。支原体广泛存在于土壤、污水、昆虫、脊椎动物及人体内,是动植物和人类的病原菌之一。人的胸膜肺炎、尿道炎、关节炎、老年支气管炎等,以及家禽、家畜的呼吸道疾病等都可能是支原体引起的。现在正在生产抗肺炎支原体的疫苗,并且大规模试验这种疫苗在防治肺炎支原体所致的人类呼吸道疾病的效果。

衣原体衣原体是专性细胞内寄生物,可以直接侵入宿主细胞,能感染鸟类、哺乳动物及人类。如鹦鹉热衣原体能引起鸟类疾病,有时可传至人体。砂眼衣原体是使人患砂眼的病原体。

立克次体立克次体是介于细菌与病毒之间,而接近于细菌的一类原核生物。一般呈球状或杆状。也是专性细胞内的寄生物。通常寄生在节肢动物如虱、蜱、螨、蚤等的消化道表皮细胞内,并以节肢动物为媒介传染给人及其他脊椎动物。例如,普氏立克次体,由虱传染给人,引起流行性斑疹伤寒等。

原核细胞指构成细菌和蓝藻等低等生物体的细胞。它没有真正的细胞核,只有原核或拟核,所含的一个基因带(或染色体),是环状双股单一顺序的脱氧核糖核酸分子,没有组蛋白与之结合;无核仁,缺乏核膜。外层原生质中有70S核糖体与中间体,缺乏高尔基体、内质网、线粒体和中心体等。转录和转译同时进行,四周质膜内含有呼吸酶。无有丝分裂和减数分裂,脱氧核糖核酸复制后,细胞随即分裂为二。

蓝藻门旧称蓝绿藻门,藻类植物中最简单、低级的一门。根据近些年来形成的生物分界系统,蓝藻属于原核生物界。但是,蓝藻和原绿藻与植物界又有一些相同之处,故一些文献资料将它们分别归纳为原核藻类中的两个门。藻体是单细胞或群体,不具鞭毛,不产生游动细胞。一部分丝状种类能伸缩或左右摆动。细胞壁缺乏纤维素,由黏肽(含8种氨基酸和二氨基庚二酸以及氨基葡萄糖等)组成,壁外常形成黏性胶质鞘。无真正的细胞核,拟核的组成物质集中在细胞中央,无核膜和核仁,细胞内除含叶绿素和类胡萝卜素外,尚含有藻蓝素,部分种类还含有藻红素。色素不包在质体内,而是分散在细胞质的边缘部分。藻体因所含色素的种类和多寡不同而呈现不同的颜色。储藏物质为蓝藻淀粉。繁殖方式主要是分裂生殖,没有有性生殖。主要分布在含有机质较多的淡水中,部分生活在湿土、岩石、树干上和海洋中,有的同真菌共生形成地衣,或生活在植物体内形成内生植物。少数种类能生活在85℃以上的温泉内或终年积雪的极地。

蓝藻细胞模式图高中生物(必修)课本第一册中的蓝藻细胞模式图,只有5个图注,即拟核、核糖体、细胞壁、细胞膜、细胞质。实际上,蓝藻细胞的结构是比较复杂的,现将其详细结构注释如下图(图2-9)。

图2-9蓝藻细胞模式图

原核生物和真核生物的细胞壁

1.细菌细胞的细胞膜外有细胞壁,重量约占细胞干重的10%~20%,其主要成分是肽聚糖。此外,有的细菌的细胞壁还含有胞壁酸和特殊的脂质化合物。

细菌的细胞壁有以下功能。

(1)保护细胞,能承受相当大的压力,如革兰氏阳性菌,可承受2kPa的压力。还能使细菌细胞不会由于细胞质浓度较高而破裂。

(2)保持细胞的固有形态。

(3)有过滤作用,如相对分子质量大于10000的物质就不能通过。

(4)可为某些细菌的鞭毛运动提供可靠的支点。

2.藻的细胞壁的主要成分也是肽聚糖等,此外还含有氨基酸和胞壁肽氨基酸。

3.核生物植物细胞的细胞壁是具有一定硬度和弹性的固体结构。其主要成分是纤维素(在初生壁上还含有半纤维素和果胶质),它形成了细胞壁的网状框架。在电子显微镜下可以看到这种框架是由微纤丝系统组成。在完整的壁上,在微纤丝之间的空间,可以由其他物质所填充。

纤维素分子是由8000~15000个葡萄糖基(C6H10O5)通过糖苷键相互连接而成的多聚链,链间葡萄糖的羟基之间极易形成氢键。纤维素分子束聚集成为较大的单位──微纤丝,进而再聚集成较粗的纤丝──大纤丝。使得完整的纤维具有高度不溶于水的性质。使细胞壁牢固并具有一定形状。

在细胞的生长分化过程中,细胞壁不仅可以扩展和加厚,并且由细胞质合成的一些物质可以渗入到纤维素的细胞壁框架内,因而改变细胞壁的性质,使细胞壁完成一定的功能。例如,纤维素细胞壁的框架中因添加了木质素而木质化,这就增加了细胞壁的硬度,增强了细胞的支持力量。又如,在细胞壁表面添加了角质(脂质化合物),使角质化的细胞壁透水性降低,增强了细胞壁防止水分损失的作用。栓质化(栓质为脂质物质)的细胞壁,增强了不透水、不透气的性能,增强了保护作用。水稻、小麦、玉米等作物的茎、叶表皮细胞发生硅质化(渗入了二氧化硅),使细胞壁硬度增加,加强了作物茎秆的支持作用,等等。细胞壁上有胞间连丝,这些胞间连丝较多地出现在细胞壁没有加厚的位置上,这有利于细胞间的物质交换。

原核细胞与真核细胞的主要区别原核细胞与真核细胞的区别,公务员之家,全国公务员共同天地在高中生物(必修)课本第一册中主要提出了在细胞大小、细胞壁、细胞膜、细胞质和细胞核这几方面的明显区别。其实,二者在其他方面还有不少的区别,现列表(表2-3)比较如下:

表2-3原核细胞与真核细胞的主要区别

种类

原核细胞

真核细胞

细胞大小

较小(1~10μm)

较大(10~100μm)

染色体

一个细胞只有一条DNA,与RNA、蛋白质不联结在一起

一个细胞有几条染色体,DNA与RNA、蛋白质联结在一起

细胞核

无真正的细胞核,只有拟核

有核膜和核仁

细胞器

无线粒体、叶绿体、内质网、高尔基体等

有线粒体、叶绿体、内质网、高尔基体等

内膜系统

简单

复杂

微梁系统

有微管和微丝等

细胞分裂

二分体、出芽;无有丝分裂

能进行有丝分裂

转录与翻译

高中生物教案范文篇9

一、知识结构二、教学目的

1.细胞质基质内含有的物质和细胞质基质的主要功能(C:理解)。

2.线粒体和叶绿体的基本结构及主要功能(C:理解)。

3.内质网、核糖体、高尔基体、中心体、液泡这几种细胞器的主要功能(C:理解)。

三、重点和难点

1.教学重点

(1)线粒体和叶绿体的基本结构及主要功能。

(2)内质网、核糖体、高尔基体、中心体、液泡的主要功能。

2.教学难点

线粒体和叶绿体的基本结构和主要功能。

四、教学建议

本小节的教学内容,应结合学生实验统筹考虑。例如,细胞质的概念、组成部分(基质、细胞器)的关系、叶绿体的结构和功能等内容,可以在有关的学生实验中学习。

关于细胞质的教学,重点是讲述各种细胞器的结构成分、结构特点和主要功能。根据学生的接受能力,可对结构与功能相适应的特点,各种结构功能之间的联系,进行不同程度的分析。

在讲述线粒体时,要充分利用教材中的示意图,让学生注意观察线粒体的结构特点和它浸浴在细胞质基质中的状况。在分析线粒体外膜时,一方面要指出外膜使线粒体相对独立于细胞质基质;另一方面又要指出,通过外膜使细胞质基质与线粒体内部进行着物质交换。在分析线粒体内膜时,要注意使学生理解内膜的折叠增加了内膜的表面积,这有利于有氧呼吸酶系的附着,有利于有氧呼吸的化学反应大量地进行。

讲述叶绿体时,要在对叶绿体成分和结构特点的分析中,渗透出它与高效利用光能(如基粒中垛叠的囊状结构),完成光合作用一系列反应(如含光合作用的色素、酶)是相适应的。在教学中,可适当对比线粒体和叶绿体。

关于内质网的教学,要尽可能利用立体结构示意图,使学生正确理解内质网的结构特点和在细胞质中的状况。关于内质网的作用,一方面扩大了细胞内的膜表面积,形成了物质运输通道;另一方面与脂质、糖类和蛋白质的合成有密切关系。

在讲述核糖体时,要注意引导学生观察插图,知道有的核糖体附着在内质网膜的外侧,有的游离在细胞质的基质中,因此,核糖体和内质网是相对独立的两种细胞器。要指出核糖体无膜结构,它是合成蛋白质的场所(如果时间允许,还可以回顾氨基酸缩合成肽的知识)。如果学生条件较好,教学中可适当渗透出附着的和游离的这两类核糖体所合成的蛋白质的去向有所不同。附着在内质网上的核糖体合成的蛋白质进入内质网腔中,继续进行加工并被运输。

关于高尔基体的教学,要结合细胞结构图,说明它与内质网、细胞膜的相互联系,理解高尔基体对细胞分泌物的形成、加工和转运的作用。在植物细胞中,它合成的纤维素对细胞壁的形成有重要作用。

对于中心体和液泡的教学,不必扩展,有些作用可结合后面有关知识进行讲述。

本小节教学的总结,可以用动物或植物细胞的整体示意图,分析各种细胞器之间的结构联系和功能联系。

五、参考答案

复习题一、1.线粒体,内质网,染色质,高尔基体,中心粒。2.〔4〕高尔基体。3.〔2〕内质网。4.〔5〕中心体。5.〔1〕线粒体。

二、1.(C);2.(B);3.(C);4.(B);5.(A);6.(B)。

三、在叶绿体的3、4部分。

实验讨论题1.叶绿体在细胞质基质中不是静止不动的。呈椭球体形的叶绿体在不同的光照条件下可以运动,这种运动能够随时改变椭球体的方向,使叶绿体既能接受较多的光照,又不至于被强光灼伤。

2.叶绿体的形态和分布都有利于接受光照,完成光合作用。如叶绿体呈椭球形,它能够在不同光照条件下改变方向。又如,叶肉细胞中的栅栏组织,其中的叶绿体分布比海绵组织的多,这可以接受更多的光照。

3.细胞质基质中含有多种无机化合物和有机化合物,还有很多种酶。细胞质基质是活细胞进行新陈代谢的主要场所。植物细胞中细胞质的流动,有利于细胞内物质的运输和细胞器的移动,从而为细胞内的新陈代谢提供所需要的物质和有关条件。

六、参考资料

细胞质的概念广义地说,就真核生物而言,在细胞膜以内,除了细胞核以外的其他部分,都属于细胞质。但是狭义地说,细胞质是指细胞质的可溶相,即指除了细胞质中的细胞器和内含物以外的基质部分。这部分在光学显微镜下,看不出有任何定形的结构,是均匀透明的,所以称为透明质,也称为细胞液、细胞基质或细胞质基质。可是,细胞有许多复杂的运动现象,又启发细胞学研究者考虑到细胞质的结构可能不会这样简单。电子显微镜的使用,使我们对于细胞的超微结构有越来越深入的了解。在20世纪60年代,科学家发现细胞质基质是一种呈连续相的物质。

真核细胞和原核细胞的细胞质,包含着相同的组成成分:核糖体、RNA分子、球蛋白、酶等。细胞质内蛋白质和酶的含量占细胞的蛋白质总量的20%~25%。在细胞质中最重要的可溶性酶,是与糖酵解及与蛋白质合成中氨基酸有关的一些酶。此外,许多需要ATP参与反应的酶及可溶性转移酶,也存在于细胞质中。

紧贴在细胞膜下面的细胞质,被认为是一种高度异质的胶体系统。细胞学家早就发现细胞质有弹性和黏滞性,也看到布朗运动和细胞质川流运动。这就证明细胞质的结构不是始终如一,而是随着温度、日光、压力等环境条件而改变的。近些年来,利用电镜技术,尤其是高压电镜技术和生化、免疫技术,发现细胞质的确不是均一的,其中含有光学显微镜下看不到的超微结构。目前,细胞生物学家已经阐明:细胞质是一个错综复杂的、相互联系的、高度有序的网络结构。这些细胞质网络结构,可用“细胞质基质”这个专有名词表达。也就是说,细胞质基质这个名词,除包括组成细胞骨架的三种主要纤丝──微丝、微管和中间纤维,以及一个由纤丝桥所组成的相互交联的丝状结构──微梁系统(或微梁网格)外,还包括和它们有联系的蛋白质和水分。

细胞质的功能细胞质具有多方面的功能。但是,由于它本身太脆弱,以致生理学家至今不能用很好的方法来验证它的真正的生理功能。不过,毫无疑问,细胞质对细胞生命活动有着极其重要的作用。从生物学的角度和细胞质中的各种物质来看,它具有以下几方面的功能。

1.管制外来物质进入细胞内或排出细胞外的作用,以及调节细胞质的“水化”作用。

2.对于如鞭毛和纤毛等后成质的形成,以及对于细胞内含物的储藏具有重大作用。例如,蛋白质、脂肪粒、肝糖元、植物碱等多数集存在细胞质内。

3.为维持细胞器实体的完整性,提供所需要的离子环境。

4.供给细胞器行使功能所必须的一切底物。公务员之家,全国公务员共同天地

5.影响细胞的分化。例如在胚胎发育过程中,细胞质对于分化起着很重要的作用。这已经为实验胚胎学的大量事实所证实。

6.进行某些生化活动,如上面提到的糖酵解、核酸、脂肪酸和氨基酸代谢的某个阶段,需要依靠细胞质中处于相对游离状态的酶来完成。

细胞质流动在活细胞中,细胞质以各种不同的方式在流动着,包括细胞质环流、穿梭流动和布朗运动等,这些也同微丝和微梁系统的存在有密切的关系。

1.细胞质环流。是细胞质流动的一种形式。在液泡发达的植物(如黑藻、轮藻、伊乐藻)细胞中,细胞质成薄层沿着细胞膜以一定的速度和方向循环流动。这种不断地循环流动称为细胞质环流。环流的速度,伊乐藻是10μm/s,轮藻是50μm/s。普通植物细胞则是每秒几微米至几十微米。

2穿梭流动。穿梭流动是细胞质流动的另一种形式,它与环流不同,是向相反方向来回穿梭。由于流动方向在一定时间内来回交换,因此叫穿梭流动。绒泡菌是研究这种流动的最好材料。它是一种黏菌,是多核的细胞质团,没有细胞的分隔。黏菌的外缘是凝胶样的外质,核心是溶胶样的内质。在内外质中含有许多叶脉状的微细分支,在中央集拢在一起成为主脉,细胞质就从支脉向主脉流动(图2-5,1、2)。内质的流动速度很快,为1.3mm/s,比细胞质环流快得多。这样,绒泡菌一头的体积缩小,另一头的体积增大,长出伪足状的突起,就暂时停止流动(图2-5,3),随后就又开始逆向流动(图2-5,4、5),来回穿梭进行。

3.布朗运动。在活细胞中可以看到细胞质内的许多小颗粒在无规则地跳动着,这在暗视野显微镜下观察更为明显,叫做布朗运动。布朗运动的产生除了与微丝的存在有关外,还与微梁网格的收缩有关。

图2-5绒泡菌中细胞质的穿梭流动

1.2.细胞质从左向右流动3.右侧形成伪足突起,流动暂停

4.5.细胞质又向相反方向从右向左流动。箭头长度表示流动速度。

线粒体细胞的有氧呼吸主要是在线粒体内进行的。线粒体的内部结构,在光学显微镜下不能分辨,只有在电子显微镜下才能看清楚。线粒体由内外两层膜组成。外膜即界限膜,使线粒体与周围的细胞质分开,是各种分子和离子进入线粒体内部的障壁。内膜的不同部位向线粒体的中心腔折叠,形成嵴。这样就大大增加了酶分子附着的表面,并且把酶分子密集地包在线粒体里。内膜和外膜在化学成分和物理特性上都有显著的差异。例如,它们在蛋白质的含量,特别是在类脂的分布上是很不相同的。外膜比内膜的磷脂含量要高2~3倍;外膜的通透性也比内膜高得多。外膜的通透性高,为线粒体与周围细胞质之间进行充分的物质交换提供了条件。内膜的通透性差,可以使催化三羧酸循环的复杂酶系统保留在内膜的间隔中,从而保证细胞有氧呼吸的进行。线粒体膜上还具有小孔,这样,有氧呼吸所产生的ATP可以更容易地向线粒体外面扩散。

线粒体既然是细胞进行有氧呼吸的主要场所,那么,有关催化三羧酸循环、氨基酸代谢、脂肪酸分解、电子传递、能量转换、DNA复制和RNA合成等过程所需要的100多种酶和辅酶,都分布在线粒体的外膜上、膜内空间及内膜和基质中。这些酶和辅酶的主要功能是参加三羧酸循环中的氧化反应、电子传递和能量转换。

内质网粗面型内质网又叫做颗粒型内质网,常见于蛋白质合成旺盛的细胞中。粗面型内质网大多为扁平的囊,少数为球形或管泡状的囊。在靠近核的部分,囊泡可以与核的外膜连接。粗面型内质网的表面所附着的核糖体(也叫核糖核蛋白体)是合成蛋白质的场所,新合成的蛋白质就进入内质网的囊腔内。粗面型内质网既是新合成的蛋白质的运输通道,又是核糖体附着的支架。

滑面型内质网又称为非颗粒型内质网。滑面型内质网的囊壁表面光滑,没有核糖体附着。滑面型内质网的形状基本上都是分支小管及小囊,有时小管排列得非常紧密,以同心圆形式围绕在分泌颗粒和线粒体的周围。因此,滑面型内质网在切面中所看到的形态,与粗面型内质网有明显的不同。

滑面型内质网与蛋白质的合成无关,可是它的功能却更为复杂,它可能参与糖元和脂质的合成、固醇类激素的合成以及具有分泌等功能。在胃组织的某些细胞的滑面型内质网上曾发现有Cl-的积累,这说明它与HCl的分泌有关。在小肠上皮细胞中,可以观察到它与运输脂肪有关。在心肌细胞和骨骼肌细胞内的滑面型内质网,可能与传导兴奋的作用有关;在平滑肌细胞内,却发现它与Ca2+的摄取和释放有关。

核糖体核糖体是由核糖体的核糖核酸(符号为rRNA)和蛋白质构成的椭圆形的粒状小体,其中rRNA和蛋白质的比例为1∶1。蛋白质分子基本上排列于核糖体的表面上,rRNA分子被包围于中央。细胞内有的核糖体附着于内质网的外面,称为固着核糖体,与内质网形成上面所谈到的粗面型内质网;有的不附着于内质网上,称为游离核糖体,常见于未分化的细胞中。附着于内质网上的核糖体,附着的情况也不相同。在某些细胞中,核糖体均匀地附着于细胞质中某一部分的内质网上;有的却集中地附着于细胞质中某一部分的内质网上。

核糖体是细胞内合成蛋白质的场所。现在已知,附着于内质网上的核糖体所合成的蛋白质,与游离于细胞质基质中的核糖体所合成的蛋白质有所不同。附着于内质网上的核糖体,主要是合成某些专供输送到细胞外面的分泌物质,如抗体、酶原或蛋白质类的激素等;游离核糖体所合成的蛋白质,多半是分布在细胞质基质中或供细胞本身生长所需要的蛋白质分子(包括酶分子),此外还合成某些特殊蛋白质,如红细胞中的血红蛋白等。因此,在分裂活动旺盛的细胞中,游离核糖体的数目就比较多,而且分布比较均匀。这一点已被用来作为辨认肿瘤细胞的标志之一。

不管是附着的核糖体还是游离的核糖体,在进行蛋白质合成的过程中,常常是几个核糖体聚集在一起进行活动,这是由于信息核糖核酸(mRNA)把它们连串在一起。这样的一个功能单位的聚合体称为多聚核糖体。

高尔基体高尔基体位于细胞核附近的细胞质中,它的形状一般呈网状。在不同的生理情况下,可以转变为颗粒状、杆状或其他形状。在电镜下,高尔基体是一些紧密地重叠在一起的囊状结构。有些膜紧密地折叠成片层状的扁平囊,有些扁平囊的末端膨大成大小不等的泡状或囊泡状结构。

在有的电镜照片上,可以看到这些膜是与内质网相连通的,还可以观察到若干迹象,表明这些小囊泡可以连接于扁平囊,而成为扁平囊的一部分,扁平囊也可以在其末端部分脱落而形成小囊泡。另外,扁平囊也可以在囊腔中积累物质,逐渐膨大而形成大囊泡。可见,组成高尔基体的小囊泡、层状扁平囊和大囊泡三部分并不是固定的结构,而是相互有关系的,它们是高尔基体功能活动不同阶段的形态表现。

高尔基体在细胞内的位置和分布情况,与它在不同细胞内的功能有关。高尔基体的大小和在细胞内的数量,因细胞的类别和生理状况不同而有所不同。

高尔基体的主要功能有三方面。一是与分泌有关。早期根据光镜的观察,已有人提出高尔基体与细胞的分泌活动有关。后来,运用电镜、细胞化学及放射自显影技术更进一步证实和发展了这个观点。高尔基体在分泌活动中所起的作用,主要是将粗面型内质网运来的蛋白质类的物质,进行加工(如浓缩或离析)、储存和运输,最后形成分泌泡。当形成的分泌泡自高尔基囊泡上断离时,分泌泡膜上带有高尔基囊膜所含有的酶,还能不断起作用,促使分泌颗粒不断浓缩、成熟,最后排出细胞外。最典型的,如胰外分泌细胞中所形成的酶原颗粒。放射自显影技术证明,高尔基体自身还能合成某些物质,如多糖类。它还能使蛋白质与糖或脂结合成糖蛋白或脂蛋白的形式。在某些细胞(如肝细胞)中,高尔基体还与脂蛋白的合成、分泌有关。二是与溶酶体的形成有关。现在一般都认为初级溶酶体的形成过程与分泌颗粒的形成类似,也起自高尔基体囊泡。初级溶酶体与分泌颗粒(主要指一些酶原颗粒),从本质上看具有同一性,因为溶酶体含多种酶(主要是各种水解酶),都是蛋白质;与酶原颗粒一样,也参与分解代谢物的作用。不同处在于:酶原颗粒是排出细胞外发挥作用,而溶酶体内的酶类主要在细胞内起作用。三是高尔基体还有其他功能,如在某些原生动物中,高尔基体与调节细胞的液体平衡有关系。

高中生物教案范文篇10

1.初步掌握高倍显微镜的使用方法。

2.观察叶绿体的形态和分布。

3.通过在显微镜下的实际观察,理解细胞质的流动是一种生命现象。

二、教学建议

(一)用显微镜观察叶绿体实验的教学建议:

1.实验材料的选择。实验材料的选择,应以取材方便、制片简单、观察效果好为原则。藓类植物的叶薄而小,叶绿体清晰,可取整个叶制片,作为实验材料的首选对象。实验时,可选取葫芦藓或墙藓的叶作观察材料。

2.显微镜的使用。关于显微镜使用方法的指导,是学生做实验前教师讲解的主要内容。要求学生做好以下几点。

(1)将显微镜安放好显微镜放在操作者前方偏左,镜筒在前,镜臂在后。

(2)对光转动转换器,使低倍物镜对准通光孔(物镜前端距载物台约2cm);左眼注视目镜,右眼睁开;选用大光圈,弱光源时选用凹面镜。

(3)低倍镜观察将装片放在载物台上,使标本正对通光孔中心,用压片夹压住装片;转动粗准焦螺旋,下降镜筒至距玻片2~3mm处;左眼注视目镜内,反向转动粗准焦螺旋,当看到物像后再转动细准焦螺旋,直到看清细胞物像。移动装片,将观察物放在视野中心。

(4)高倍镜观察转动转换器,换上高倍物镜;调节细准焦螺旋,直到看清所要观察的物像。

3.观察程序的指导。观察时,教师应提醒学生先用低倍镜观察,再用高倍镜观察,最后绘制镜下叶绿体的形态和分布图。

4.讲解绘制生物图的要求。绘图的要求包括绘图的工具要求,以及绘制生物图的方法要求。如,图的摆放位置和大小,线条和点点,指示线、注字和图名,作者姓名和日期等。

5.条件许可的学校,最好每人使用一台显微镜,以便培养学生对显微镜的操作能力。

6.增加演示实验。如果条件允许,则可以增加“不同光照条件下叶绿体的形态变化”的演示实验,使学生了解叶绿体对不同光照条件的适应性。实验课前,在讲台前摆放3台显微镜,载物台上分别放着强光(200W灯泡照射5min)、弱光(25W灯泡照射10min)、黑暗处理过的3片葫芦藓叶的临时装片。让学生轮流观察,看清楚不同光照条件下叶绿体位置的改变。应该注意的是,如果用强光照射叶的装片,灯泡不能离装片太近(灯泡距装片应大于20cm),否则叶绿体会被强光灼伤而解体。

(二)用显微镜观察细胞质流动实验的教学建议:

1.继续强化高倍镜的操作训练。在观察叶绿体的实验中,对于显微镜的使用,是进行全面地训练和操作,而在本实验中应重点加强高倍显微镜的操作训练。

2.观察程序的指导。观察细胞质流动时,应向学生讲清首先要找到叶肉细胞中的叶绿体,然后以叶绿体作为参照物。学生观察时眼睛应注视叶绿体,进而观察细胞质的流动,最后,再观察细胞质的流动速度和流动方向。

3.指导学生寻找最佳观察部位。在学生观察之前,教师应告诉学生寻找靠近叶脉部位的叶肉细胞进行观察,此处细胞水分供应充足,容易观察到细胞质的流动,细胞质的流动方向可参见高中生物(必修)第一册教科书中实验二的插图。

4.可以增加演示实验。建议增加“不同外界条件下细胞质的流动情况”的演示实验。在讲台前摆放3台显微镜,分别是缺水(萎蔫)、光照(强光照射过)、化学刺激(质量分数为5%的盐酸刺激过)三种不同条件下黑藻叶的装片,让学生轮流观察细胞质的流动情况。要使学生了解,细胞质的流动不是一成不变的,而是在不同的外界条件下,流动速度不完全一样。

5.课前应检查实验材料,以便做到心中有数。观察细胞质的流动,理想的实验材料是黑藻。实验前,教师必须检查供实验用的黑藻叶片细胞质的流动情况,如果发现细胞质不流动,或者流动很慢,应立即采取措施,加速其细胞质的流动。方法有三种,可以任选一种:一是进行光照,即在阳光或灯光下放置15~20min;二是提高盛放黑藻的水温,可加入热水将水温调至25℃左右,再将黑藻放入其中培养;三是切伤一小部分叶片。

三、参考资料

观察叶绿体实验的原理简介高等植物的叶绿体呈椭球状,在不同的光照条件下,叶绿体可以运动,并改变椭球体的方向。因此,在不同光照条件下采集的葫芦藓,其叶内叶绿体椭球体的形状不完全一样。

观察叶绿体实验材料的准备实验用的葫芦藓必须提前准备。从阴面潮湿的墙根、林地、花房的花盆土表可以找到葫芦藓。将它连根铲起,带土栽在花盆内,放在阴面,要经常洒水,保持湿润。

观察细胞质流动实验材料的准备实验用的黑藻应该提前到池塘或小河中捞取,采集后放在实验室的养鱼缸中,让它继续生长。

黑藻是淡水沉水草本植物,根入泥,叶短,3~4片叶轮生(图2-6)。有冬芽,生小枝顶端,芽的苞叶卵状披针形至线形,排列紧密,可进行营养繁殖。夏季采集到以后,可以一年四季连续培养。春天时,其冬芽伸展,一个月之后,茎可伸出,并长出较多的叶。

观察细胞质流动的代替实验材料观察细胞质流动的材料,如果找不到黑藻,可用以下材料代替:

①紫鸭跖草雄蕊的花丝表皮毛;

②鸭跖草的蓝色花瓣,观察韧皮部筛管细胞中的细胞质流动;

③向日葵舌状花花冠的表皮;

④万寿菊管状花的花瓣表皮;

⑤新鲜大白菜内层叶片宽大中脉处的表皮;

⑥黄瓜嫩茎的表皮毛;

⑦小麦的根毛。

图2-6黑藻

1.植物体2.叶(放大)3.雄花

4.雌花5.种子

使用上述实验材料时,实验课前教师应该对实验用的植株浇足水分。如果是在野外采集的,则应将采集到的实验材料放在塑料袋内,扎紧袋口,以防止水分散失过快。在使用植物的表皮或表皮毛观察细胞质流动时,视野应调暗些。

其他实验材料的观察方法

1.小麦根毛细胞质流动的观察

(1)方法步骤

①剪下一段0.5~1cm的带有根毛的小麦根,纵剖为二。将剖面向下,放在载玻片上。

②加1滴质量浓度适宜的蔗糖溶液,盖上盖玻片,轻压盖玻片。

③在低倍镜下找到成熟区,选取1个根毛细胞,然后换用高倍镜观察。

(2)注意事项

①根毛细胞的细胞质无色透明,难于观察它的流动,因此需要采用缩小光圈或采用较弱光线进行观察。

②细胞质内有许多小颗粒随着细胞质流动,只要以细胞的其他相对静止结构作为参照物,就能辨认出细胞质的流动。其流动途径是从根毛尖端转向基部,然后回转,不断循环(图2-7)。

图2-7小麦根毛细胞质流动示意图

③剪下的小麦根应立即滴上质量浓度适宜的蔗糖溶液,以便维持其生活公务员之家,全国公务员共同天地力。或者预先在载玻片上滴1~2滴质量浓度适宜的蔗糖溶液,然后再放置实验材料。

④放上盖玻片以后,可以用凡士林涂在盖玻片的四周,以免水分蒸发导致蔗糖浓度提高,影响实验效果。

2.南瓜幼苗茎表皮毛细胞质流动的观察

①实验课的前3周,把南瓜种子种在盛有土壤的花盆内,放在温暖的地方,并保持土壤湿润。

②待种子萌发成幼苗后,用镊子撕下茎和叶上的表皮。

③把表皮放在载玻片的水滴里,盖上盖玻片。先用低倍镜观察,找到表皮毛细胞。

④在高倍镜下观察细胞质的流动方向(见图2-8)。

图2-8南瓜幼苗茎表皮毛细胞质的流动

(箭头表示细胞质的流动方向)

3.美洲鸭跖草雄蕊花丝表皮毛细胞质流动的观察

(1)方法步骤

①从花上取1枚雄蕊,摘去花药,迅速将花丝放入滴有质量浓度适宜的蔗糖溶液的载玻片上,盖上盖玻片。

②用手指轻轻压盖玻片,使花丝平贴。

③先用低倍镜找到花丝上的表皮毛,选定表皮毛上的1个细胞,换用高倍镜观察。

(2)注意事项