影像学十篇

时间:2023-04-08 14:37:29

影像学

影像学篇1

【关键词】比较影像学;医学影像学;教学

影像诊断学目的在于让医学生了解影像诊断中各项检查方法的基本原理,掌握常见疾病的影像学表现特点及在临床工作中的正确应用。近年来影像诊断技术飞速发展,新技术、新序列不断推出,但每种检查方法都有各自的优势与不足。在临床实践过程中,大多疾病诊断是通过多种影像手段协同完成的,这种多元化的影像诊断模式,形成了一种新的影像学教学方法——比较影像学(comparativeimageology,CI)。比较影像学是将同一疾病不同检查方法的影像特征相比较、将不同疾病间影像图像的异同之处相比较、将形态影像与功能影像相比较、将不同影像诊断方法的时间-经济效价比相比较,同时,将疾病的影像表现与临床、解剖、病理相结合,进而综合比较,它是一种能使学生了解各种影像学检查手段合理组合与使用的新型教学模式[1]。笔者在临床专业本科生的理论授课及带教实习过程中,运用了比较影像学教学法,现将应用体会总结如下:

1我国医学教育的教学模式

当今世界通用的医学教育体系大致分为“学科型”、“问题型”、“器官系统型”三种模式[2]。以学科为主的课程体系仍是我国主要的教学模式,将教学分为医学基础课、临床专业课和见习实习三个阶段。此类教学法优势在于兼顾了医学教育的基础性、应用性和系统性,方便教学的实施和管理;劣势在于各学科间缺乏横向对比、纵向联系,教与学易脱节,学生被动接收、被动记忆,虽然培养出来的学生成绩优异,但常常出现临床思维锻炼不足,在实际工作中因缺乏分析问题、解决问题的能力而无法胜任工作。在全球医学教育改革的大背景下,我国也在积极地进行探索及改革,以问题式学习教学法、案例教学法、标准化病人临床教学等国际流行的教学方法在部分院校实施了探索性的开展,依据具体的教学内容采用多样化的教学方式,充分调动学生的主观能动性。在影像诊断学教学中,引入比较思维模式,以期学生的知识储备、整合能力能尽快跟上对临床医生要求日益增高的社会发展需要,在有限的教学时间内加深学生思维的深度,以利于提高学生思考推断、综合分析能力,为今后开展临床工作打下良好基础。

2比较影像学在医学影像学教学中的可行性

图像存储与传输系统(picturesarchivingandcommunicationssystem,PACS)的临床应用,为比较影像学教学法提供了方便条件。以数字信息对影像学图像进行保存、管理、传送、读取,同时医院信息管理系统(HIS)的联网为每位就诊患者建立了唯一的身份标识号码(ID号),患者的全部资料信息,包括影像学图像及报告、血液学检查结果、临床资料等,影像科医生可以随时调阅参考。PACS系统具有图像质量高、信息完整、传送迅捷、实时共享的优点,辅助实现了影像学各分支间的横向联系。

3比较影像学在医学影像学教学中的作用

3.1学生更全面系统的掌握影像学知识

影像技术的不断进步使影像诊断从早期单一的X线成像发展为计算机X线断层扫描(CT)、磁共振成像(MRI)、彩色多普勒超声成像、核医学成像等多元化的影像技术手段,放射诊断学也随之演变成为医学影像学[3]。目前医学影像学的教学主要是按照各组织系统介绍成像方法、正常及异常影像学表现,讲授过程中辅以示教典型病例影像图像,但较少涉及其他相关影像学表现,此类教学法不利于学生对不同影像手段进行系统了解。医学生是未来工作在一线的临床医生,对各类检查方法的全面掌握关系到日后是否能够正确选择并应用最有效合理的疾病诊断检查方法。因此在教学过程中,应注意比较教学法的应用,向学生详细介绍各种诊断方法的利弊。比如在腹部消化系统疾病的授课中,对于肝脏疾病,超声检查安全无创、费用低廉,具有可重复性,是肝脏疾病的首选检查方法,特别是对肝脏囊性病变具有较高的价值;而在肝脏实性占位性病变如肝癌的诊断及鉴别中,多排螺旋CT是临床上最常用的检查手段,其多方位重建模式及CT血管造影(CTA)检查在肝癌的定位定性方面具有重要价值;MRI是通过利用磁共振现象从人体中获得电磁信号,并重建信息的一种成像方式,对肝脏疾病也可很好的显示,特别是在超声、CT对疾病鉴别困难时,MRI可提供更多有价值的病变信息。又如冠状动脉造影(CAG)是目前诊断冠状动脉狭窄闭塞性病变的金标准,但其不能反映心肌局部的血流灌注与心肌细胞的活性,而单光子发射计算机断层成像术(SPECT)心肌灌注显像不仅可以诊断有无心肌缺血,而且还能判定缺血是否可逆以及冠状动脉的贮备功能,部分冠心病患者CAG结果正常,而心肌灌注显像却显示异常[4];冠状动脉CTA检查是一种无创的检查手段,可以较准确的判断病变有无及程度,需要进一步确诊或治疗者再进行冠脉造影检查,从而避免过度使用价格昂贵、有创性的冠脉造影检查。因此每种影像学检查手段在疾病的诊断中都有各自的优势及不足,在教学中比较一种疾病的不同成像技术及检查方法的优劣有利于学生全面认识、掌握疾病诊断。

3.2学生更准确地进行诊断和鉴别诊断

疾病的影像学表现具有多样性,临床诊断过程中,经常会遇到异病同影或同病异影的情况,学生学习困难,往往对这种现象不知所措。应用比较影像学的方法,将影像学表现相似的不同疾病图像进行比较,列出它们的异同点,同时介绍每个疾病的特征性表现,引导学生运用比较性思维,系统认识图像所反映的疾病的病理改变,增加学生疾病诊断能力及鉴别能力。因此在医学影像教学中介绍疾病的某种影像学表现时,同时适当介绍该疾病的其他影像学表现,归纳同一疾病在不同影像表现间相同及相异,从解剖、病理等基础医学角度,分析各影像出现的原理,此类教学法即满足了深度又兼顾了广度,有利于提高学生整体学习能力、知识水平及举一反三的能力,从而增强教学效果。

3.3学生更合理地选择影像检查方法

影像检查的基本原理相对枯燥、抽象,授课难度较大,学生不易理解,难以引起学习兴趣。教师讲解过程中如果采用比较教学法可使学生了解不同影像检查方法在行业领域中的地位及价值;相对容易掌握不同影像设备的成像原理、应用范围、优势及局限性;引导他们思考临床工作中对不同疾病首选和配伍的影像检查方法[5]。放射学前辈们从实践中积累经验,总结出了一些针对特定疾病首选的影像学检查方法[6],如骨关节外伤性病变首选普通X线平片,必要时行CT进一步检查;颅脑外伤,出血性脑卒中患者首选CT检查;脊柱脊髓病变首选MRI检查;胆管、尿路梗阻先考虑磁共振胆胰管造影(MRCP)检查;而超声检查无创、价廉,在实质脏器病变、软组织、小器官病变、妇科病变、胎儿健康筛查方面诊断准确率高,是首选检查方式。各种影像检查价格、特点各异,X线、超声、CT价格相对低廉,特别是在进行疾病的初步筛查及急诊患者广泛应用,并被广大患者及临床医生所接受;MRI序列齐全,可兼顾形态学及功能检查,但价格略显昂贵;正电子发射型计算机断层显像(PET)可检查全身骨骼、软组织病变,尤其近年来PET/CT、PET/MRI一体化检查的推进,在神经系统病变等方面较传统影像检查手段优势更为明显,但价格昂贵且具有放射药物辐射风险。因此,比较影像学不仅是要学生们了解各类影像检查在诊断疾病中的不同价值,更重要的是帮助他们在今后的临床工作中能为患者选择更准确的影像检查方法打下坚实基础。

4应用比较影像学教学法时教师应注意的问题

医学影像学是一门发展迅速的应用性学科,在实际教学中引入比较影像学方法会给从事影像学教学的教师提出更高的要求。首先,作为影像医学授课教师不但要具备全面的影像医学专业知识,包括X线、CT、MRI、超声、核医学,还必须具备较丰富的临床及病理等相关知识,并将这些知识融会贯通。其次,在教学过程中教师还要明确进行比较的目的和意义,有计划地准备相关影像学资料,重点突出。受课时所限,对于在临床上应用价值不大或已被证实不适用于当今诊断要求的技术内容,教师授课时只做简单介绍,这样既可以减轻学生学习压力又能突出教学重点[7]。最后,教师在教学过程中应全面的比较分析各种影像检查手段的特点、优势与不足,根据疾病特点总结不同疾病首选的影像诊断方法,使学生加深对疾病的认识,培养综合分析能力,从而达到提高医学影像学科教学质量的目的。综上所述,将比较影像学应用到医学影像学教学工作中,利用其比较性、综合性等特点,将有助于学生更全面系统的掌握影像学知识,更准确地诊断和鉴别诊断疾病,同时也有助于学生成为临床医生后,更合理地选择影像检查方法。希望我们的教学经验对各医学院附属医院、教学医院更新教学观念,建立适应时展要求的医学生培养机制做出绵薄的贡献。

参考文献

[1]吕富荣,吕发金,肖智博,等.医学影像学教学中比较影像学的重要性[J].医学教育探索,2009,8(2):177-178.

[2]张传标,路学一.当前国内外医学教学改革的现状比较分析[J].医学教育管理,2015,1(3):174-178.

[3]关泓.比较影像学在医学影像学教学中的应用[J].包头医学院学报,2011,27(3):111-113.

[4]谭天秩.临床核医学[M].2版.北京:人民卫生出版社,2003:324-452.

[5]倪雪君,成建萍,谢阳桂,等.比较影像学在超声诊断临床教学中的应用[J].交通医学,2012,26(5):513-514.

[6]高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80.

影像学篇2

关键词:医学影像学;教学;比较影像学;重要性

一、引言

随着信息技术的发展,医学影像学也从传统X线诊断逐渐发展成为当今计算机断层扫描显像(CT)、B型超声波、磁共振(MRI)以及核医学影像四大影像技术为基础的医学影像学综合学科。在该种背景下,传统的教学模式显然已经不能满足当前影响专业教学需求,比较影像学作为一种全新的教学模式,开始在临床教学中逐渐获得了广泛的应用,而且发挥出了巨大的作用。本文正是基于该种背景,从比较影像学的相关理论入手,仔细对比较影像学在医学影像学教学中的具体应用及其重要性进行了探讨。

二、比较影像学的相关理论

1.比较影像学概念。比较影像学是近些年随着信息科技的发展而逐渐兴起的一种全新的影像诊断模式,其临床教学模式主要是基于医学影像学基础上,在临床应用的角度之下,将生理学、解剖学、病理学、临床各个学科以及医学影像技术学等多个学科结合在一起,使多种学科以医学影像学为中心组成一个有机的“生物链”进行综合教学的方法。

2.比较影像学的发展。随着计算机技术的发展,计算机断层扫描显像(CT)、B型超声波、磁共振(MRI)以及核医学影像一起组成了当今医学四大影像手段,它们在功能性成像以及形态学检查方面的应用相对已经十分成熟,而且在临床实践中获得了广泛的应用。但是随着目前各类新的医学功能分子影像层出不穷,如各类组合型一体化设备SPECT/CT、PET/CT、CAT等广泛应用,逐渐体现出了生物医学影像开始出现由分散逐渐走向融合的主流趋势。在该种背景下,比较影像学的出现及其发展开始成为了必然。

3.比较影像学教学法的必要性。在传统的医学影像学教学模式之下,教师往往在讲授某种影像学技术时,总是放大该种技术的优势而忽视其他技术的特长,久而久之就会让学生产生疑惑,或者造成学生的片面之感。因此,教师在讲授医学影像学课程时,需要注意对比较教学法的应用,向学生讲清各种诊治方法的不足和优势,这也是比较影像学教学法应用的必然和必要性。

4.比较影像学的应用模式。在现代医学影像学的比较影像学教学模式中,首先应该通过专题讲座让学生真正明白和理解比较影像学的基本方法和概念,然后以多组病例为切入点对具体的方法进行讲授,最后在实际的工作中,尽量多和学生一起应用比较影像学的方法对疾病进行诊断。

三、比较影像学在医学影像学教学中的重要性及其应用

1.满足了现代医学影像学的发展需求。在传统的医学影像学教学中,教师往往都是按照教材的顺序依次对各个组织系统的成像原理、成像方法、正常和异常影像的表现等进行讲解,而对于其他影像学的表现很少涉及,显然学生很难从整体上对疾病的认识进行把握,同时对各种医学影像学的诊断手法也缺乏系统的认知。目前,随着各种成像设备的横空出世,比如三维后处理软件工作站等,使得影响图像质量和检查范围不断得到提升。在这种情况下,传统的教育模式显然无法满足学生在未来的临床工作需求。因此,在授课中加入其它医学影像学的表现,并对图像之间的差异进行比较,能够显著提升医学影像学的教学效果,满足现代医学影像学的发展需求。

2.疾病的全面、多角度分析。应用比较影像学可以向学生更加全面以及多角度地对疾病进行了解,一般情况下在对某种疾病的影像学表现时,适当地结合其他影像学技术进行展现,能够通过比较来找出该种疾病在不同影像表现间的相似和不同之处。从而在各种影像表现所反映的解剖、病理、生化等信息间的联系的基础上,有针对性地解析为什么会出现该种影像,比较适合于学生在本质上对疾病的成因、发展和预后进行了解。可以说,每种医学影像学在疾病的诊断中都有着各自的优势和不同,学生能够学习和掌握同一种疾病的不同成像技术和检查方法下的图像特征,有利于从全面和多角度下对疾病进行分析。

3.提高了学生的临床实践能力。随着现代化医学影像学学科的发展,学生在实习时面对的内容一般情况下是非常多的,其往往在面对CT、MRI、普通X射线以及超声等各种影像学诊断手段时显得无从下手,即使当时掌握了,随着时间的推移仍然被遗忘,从而不得不回到岗位后再重新学习。而比较影像学将从根本上为此类问题的解决提供了一种良好思路,学生在比较影像学的教学手段之下,可以对各种不同医学影像手段进行横向的比较,在此基础上还可以实现举一反三、触类旁通,从而有效提升了临床教学的效果,从而建立起了影像专业整体框架,能够认识到影像专业的发展方向,使其对将来走向工作岗位充满信心。

4.比较影像学的具体应用内容。一般情况喜爱,比较影像学课程的主要内容可以归纳为如下两个方面,其一是对各种医学影像学自身发展的纵向比较:(1)影像设备的进步、更新和与之相联系的新技术的采用,这些进步给临床带来的益处;(2)显像剂的发展史及与之相联系的新技术的采用;(3)介入显像的发展史以及有针对性地解决的临床问题;(4)从各影像学各自的纵向发展史中找出共性和规律,以预测今后的发展。

其二是对各种医学影像学技术的横向比较:(1)各种医学影像学技术的原理、方法、适应疾病、诊断效能以及优缺点等;(2)各种医学影像学技术的准确度、灵敏度以及特异性;(3)同一患者各病程的影像学比较;(4)各种医学影像学技术的性能及成本比较;(5)创伤性及其不良反应;(6)各种医学影像学技术在疾病决策方面的比较,通过比较提出对某一疾病检查的优选方案。

四、结语

总之,医学影像学作为当今发展迅速的一门医学学科,分散和融合必定会成为未来的主流趋势,这也是比较影像学教学方法应用的必然性,从而为未来培养出高素质医学影像综合人才的奠定重要基础。

参考文献:

[1]胡芳,王志强,罗红缨,李涛,张盛甫,刘晨. 比较影像学结合CTM在医学影像学实践教学中的应用[J]. 湘南学院学报(医学版),2013,01:71-73.

[2]王少雁,王辉,李佳宁,冯方,陈素芸,吴书其,傅宏亮. 比较影像学与PBL教学模式改革在核医学住院医师规范化培训中的应用[J]. 教育生物学杂志,2013,04:294-297.

[3]杨欣,孙鹏,李丹,潘宁,王薇,卢晓潇,郑春梅,曹霞. 比较影像学在超声教学中的应用研究[J]. 黑龙江医药科学,2009,05:20.

影像学篇3

关键词: 高职 医学 影像物理学 教学探讨

近十几年来,大型医学影像设备的迅速发展,极大地提高了诊断治疗水平。随着社会对医学影像专业人才的需要愈加迫切,国内众多本科医学院校都设置了医学影像专业。而随着我国社区医疗的发展,填报高等职业技术学院医学影像专业的学生人数不断增加。以湖北职业技术学院为例,影像专业学生录取人数由每年一个班提高到两至三个班。不论各院校侧重培养高学历医学影像临床诊断专业人才,还是侧重培养高学历医学影像工程技术人才,在专业课程设置过程中,都强调了开设医学影像物理学基础(以下简称影像物理学)这门课程的重要性和必要性。有些本科院校还在临床医学专业开始开设影像物理学为选修课程,目的就是让临床医师具备医学影像的基础理论知识,为将来后续专业课程――医学影像诊断学或医学影像学的开设提供必要的理论基础。

1.高职医学院校影像专业课程设置现状

以湖北职业技术学院为例,高职医学院校影像专业现在招收高中文科和理科学生及中职生。在课程开设上,只在大学一年级开设医学电子学基础这一门理工科课程,相关高等数学知识缺乏,学生的数理基础比较薄弱。医学影像物理学基础是一门交叉学科,又是一门非常重要的专业基础课。教学目的是让学生掌握医学成像理论的物理学基本原理、规律;了解医学成像的物理理论知识;为深刻理解成像过程,评价图像,以及读识图像、挖掘图像蕴藏的生物信息奠定基础。这就需要一定的高等数学、核物理学、量子物理、超声波物理等许多知识来做铺垫。当然更多需要成像技术的相关基础知识。面对这些必要的知识,影像专业高职生在有限的时间、有限的学时里是完成不了的,这是事实。其实,影像物理学是伴随影像专业的建立而诞生的一门新课程,在国内存在尚不足十年。因此,从教材到教学,各校都处于摸索前进的阶段。如何让高职生在无基础的前提下有效学习该门课程,我将自己在几年教学过程中的教学体会写出来,与大家共同探讨。

2.提高教师的专业素质,必须树立专业思想

由于缺乏相关师资力量,目前各院校影像物理学的教学任务大都由物理学教研室的教师承担。但是,物理学和影像物理学两门课程的专业性质差别很大,前者为理科基础课,后者为专业基础课。从事影像物理学教学的教师必须具备一定的医学专业知识,具备较高的专业素质,教学必须树立专业思想,才能将物理学知识和影像学知识有机结合起来,增强学生的学习兴趣,提高该课程的教学质量。因此,授课教师应加强自身专业素质,利用临床进修的机会学习影像知识和实际技术,尽力做好教学工作。

3.教学过程中必须恰当把握知识的深度

影像物理学是先期开设影像专业院校的教学工作者在教学过程中逐步完善而建立的。它是将高等数学知识、物理学知识、成像理论,计算机技术等知识应用于超声成像技术、X-CT成像技术、同位素成像技术、磁共振成像技术中的一门交叉学科。知识的起点很高,学生学习起来有一定的难度,在教学过程中应恰当把握教材知识的深度,讲解需深入浅出,通俗易懂。比如超声场的描述部分,涉及较多的高等数学知识,在教学过程中应注意引导学生注重理解场的分布性质、描述场的量的物理意义,等等,尽量避免学生由于数学知识少而降低对该课程的理解和学习兴趣。磁共振部分,学生需要具备一定的原子核物理、量子力学知识才能准确理解核自旋的能级、跃迁等概念和现象。在教学中应注意搜集一些资料,尽量用较通俗的、经典的、宏观假说进行解释,增强学生对微观世界的感性认识。

4.注意把握影像物理学原理与成像技术、影像设备学有关知识的权重关系

X-CT成像、超声成像、同位素成像、磁共振成像每一部分都有两项主要内容:物理基本原理和成像基本原理。在教学过程中应把主要精力放在讲解物理学基本原理上,这是毫无疑问的,这也是物理专业毕业的教师最容易做到的,但学生的学习兴趣往往集中在成像原理上,对涉及的成像技术、成像设备等知识更表现出浓厚兴趣。虽然成像技术和成像设备在后期专业课程的实践教学中会详细讲解,在这里我们对这部分做简要的介绍,以收到良好的教学效果。这些年来,我校历届学生都表现出对影像物理的极大学习兴趣。这与我们的教学方法有一定的关系。

5.注意提高学生对知识的感性认识

影像物理学各部分知识都是比较抽象的,学生普遍觉得难懂难学。因此,通过各种手段提高学生对知识的感性认识,能对学生的学习起到事半功倍的帮助作用。在教学过程中,我们将陀螺进动实验给学生做演示,讲解原子核中核子的自旋与自旋磁矩的相关知识;借助于声波的传播与反射知识对超声测量实验进行详细讲解;分配一定的学时带领学生到附属医院相关科室参观学习。邀请超声,CT临床诊断教师和技术教师给学生当场讲解仪器的原理、操作方法,以及诊断等,使学生对课堂上学到的知识有一个感性认识,加深理解,收到了很好的效果。

6.实现教材的多层次、立体化

由于该课程属于应用型的知识,学起来难度更大,我们进行了教材的多层次、立体化尝试。课程是教材的基础,教材是课程的载体,教材中要融入现代化的教学技术,实现多样化、配套和协调化。我们的做法是:文字教材与现代多媒体手段紧密结合。

教材体系包括:(1)传统的纸质教材《医学影像物理学》(人民卫生出版社出版);(2)教师授课用的独创的电子教案,其中配以大量的自制和临床实拍图片和自己研发的动画,并提出学生思考的问题;(3)辅助学生自学和研究的学习软件,如《CT与磁共振成像原理》CAI课件(人民卫生电子音像出版社公开出版发行,被列入“十一五”国家重点电子出版物);(4)网页形式课件2部。初步形成了多形态、多用途、多层次的教学资源和多种以教学服务为目的的结构性配套教学出版物的集合。

总之,影像物理学是一门新课,只有不断摸索,不断总结经验,逐步改进教学方法和手段,才能增强教学效果。通过几年来的努力,一方面学生看到了现在所学的就是将来所用的,提高了学习基础课的兴趣,另一方面学生培养了学习能力,同时对后续课程“医学影像诊断学”的学习奠定了基础。

参考文献:

[1]侯淑莲,李石玉,马新超等.关于医药学院校物理课程的思考[J].大学物理,2005,24,(5):53-56.

[2]包尚联,唐孝威.医学物理研究进展[J].自然科学进展,2006,16,(1):7-13.

影像学篇4

【关键词】医学影像技术;医学影像诊断;关系

abstract: for the sake of the development of medical or medical research, medical image use non-intrusive manner to acquire the image of part of a person's body. The technique and processing procedure provide reference frame for clinical disease diagnosis. This article deeply analyze the relationship between medical imaging technology and medical image diagnosis, which point out the importance of medical imaging technology in clinic applications from the point of independence and complementarity. Moreover, I look far ahead into the future of medical imaging technology.

Key word: medical imaging technology; medical diagnostic image;relationship

引言

医学影像是涵盖X 线片、超声、CT、核磁共振、介入等多个不同门类的一门新兴医学技术,自1895年伦琴发现X 线片以来,医学影像技术得到迅速发展,在此之前,医生除解剖外,只能依靠触诊了解患者体内情况,但解剖与触诊均具有一定风险。因影像成像原理及采用的检查方法存在明显区别,检查范围也各不相同,且还突出了检查技术。因此,影像技术对于影像诊断具有较强的依赖性,逐渐从根据某一形态变化而诊断向功能、形态、代谢等改变的综合诊断体系方向演变。

一、医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关心。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、CT、MRI 等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

二、医学影像技术与医学影像诊断的专业独立性

在当前医学影像技术临床应用中,对于专业医师的要求较高,主要包括:第一,要求了解与掌握CT、核磁共振、超声医学及常规放射学等方面的专业操作技能与相关理论知识;第二,了解并掌握有关电子学、基础医学及临床医学等方面的理论知识;第三,在疾病诊断过程中,对各类影像学诊断技术的应用情况及主要作用有一定的了解;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

在当前医学影像诊断应用方面,对于专业医师的要求主要有以下几个方面:第一,熟练掌握现代医学影像学、基础医学及临床医学等方面的专业性知识;第二,在对临床疾病患者的诊断过程中,对多种影像诊断技术熟练应用;第三,能够深入了解并熟悉与医学影像方面相关的临床技术及知识;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

医学影像技术主要是为临床疾病的影像学诊断提供科学的参考依据,并且能帮助专业医师获得准确可靠的影像学信息与知识,从而为疾病的诊断及治疗提供极为关键的依据。医学影像诊断工作则主要是为了对医学影像技术中提供的各方面信息作出观察与分析,并对这些信息进行归纳与总结,从而得出最为客观、公正的影像学诊断结论。

三、结束语

综上所述,医学影像技术与医学影像诊断互为一个整体,前者离不开后者的支持,而后者在临床中的应用效果则依赖于后者。医学影像诊断技术在临床应用过程中与医学影像诊断相互促进、相互制约。因此,医学影像技术工作人员和影像诊断人员应当严格依据相关标准执行质量控制及质量管理,逐步提升临床医疗诊断效率及水平,在进一步减轻患者就诊痛苦的同时,将医学影像学的临床应用价值充分发挥出来。

【参考文献】

影像学篇5

转化医学(translationmedicine)是近年国内外医学领域流行的一个新概念,2003年美国国立卫生研究院正式提出“转化医学”概念。它以人的健康为本、以重大疾病为研究出发点、以促进科学发现转化成医疗实践为宗旨。其主要目的是打破基础医学与临床医学领域固有的隔阂,搭建两者间的桥梁,使日新月异的基础医学研究成果转化为改善人类健康的防治措施[3]。因此,转化医学本质上是一个双向开放、往返循环、持续向上的研究过程[4,5]。转化医学理念已逐渐成为世界医学研究领域的共识,其应用有利于推进临床医学更好、更快速地发展。

2肿瘤影像医学教学的现状

肿瘤影像学是医学专业中较为特殊的一门学科,其教学主要包括肿瘤医学影像诊断和肿瘤医学影像技术两方面。肿瘤医学影像诊断的教学模式比较成熟,主要注重临床常见肿瘤的诊断及鉴别诊断。但肿瘤医学影像技术教学则较为欠缺,尤其是对肿瘤影像新技术的研发、功能拓展、临床医学与工程技术结合及运用等方面的授教还较为薄弱。目前肿瘤影像医学教学工作主要存在以下问题:①传统的肿瘤影像医学教学授课的模式过于单一,跨学科联系较少,不利于学生创新思维的培养。②现行课程安排中有关学习方法、获取知识手段的课程较少,不利于学生综合素质的培养。③缺乏理论联系实践的教学方法,单纯从理论和阅片等教学手段难以让学生对肿瘤影像表现与临床特征之间的关系进行系统地理解。④教学内容陈旧。该学科知识更新快,教材、教案等教学内容和方法不足以满足临床工作的需求[6]。⑤学生技术研究能力的培养与临床实际应用能力脱节。肿瘤影像医学教育要求培养既会诊断又会技术研究,既有转化理念和能力又有肿瘤影像学基础知识与临床实践经验的综合型人才。因此,开展转化医学教育尤为必要,它是当前培养综合型人才最有效的途径之一。提倡“从实验桌到病床旁”的转化医学教学理念在肿瘤影像医学教学中的应用具有重要的现实意义。

3转化医学教育理念在肿瘤影像医学教学中应用的意义

3.1促进肿瘤影像医学教学多学科的合作

不同学科、不同思想、不同理念的相互碰撞有利于创新思维的产生,而一个学科的发展壮大,也需不断加强不同学科间的知识与技术合作,加强学科的交叉与融合。因此建立肿瘤影像学、基础肿瘤学、工程技术学、物理学等多学科的科研小组,让各组组员发挥各自的专业优势,形成多学科交叉研究,通力合作及协调发展,形成纵横交错的综合体系,才有望实现肿瘤影像医学的可持续发展[7]。转化医学教育强调理念的改变,它打破以往的单一学科或有限合作的教育模式。首先为学生提供一个学科交叉的开放式研究平台,鼓励将物理工程实验室发现的有意义的成果转化成能为临床提供实际应用的手段,有效将肿瘤的基础研究成果转化到临床实践中,同时也对肿瘤影像征象进行基础研究。其次,不同的影像成像手段各有优劣,将彼此的优势互相融合已成为医学影像设备研发的潮流。转化医学教育对这一潮流的发展具有重要的推动作用,从而进一步为肿瘤的诊断提供更多的成像手段,有利于肿瘤的诊断及鉴别诊断。如在既有的CT、MRI、PET、B超等设备的基础上研发PET-CT、PET-MRI或将几种成像设备融合的机器。多学科交叉研究的平台具有稳定而强大的效果,所形成的多学科介入机制能够满足临床及基础研究的需求。

3.2为肿瘤影像医学教学搭建理论与实践的桥梁

转化医学理念的应用一方面能增强肿瘤医学影像学专业的学生加深对临床知识的重视和理解,另一方面也为临床医技人员提供进入实验基地探索基础研究的机会。以转化医学理念为指导,重视从临床中凝练课题,可以培养医学生一切从实际出发的意识,自觉做到理论联系实践,使基础研究与临床应用相结合[8]。如肿瘤医学影像学专业的学生在临床实践过程中发现某种肿瘤具有相同的影像征象,但是纯粹的临床实践无法为其提供相应的基础理论支撑依据。转化医学理念主张临床医生与研究员密切合作,提倡由临床医生仔细观察肿瘤的影像特征,将相关信息提供给基础研究员,再由基础研究员对此进行研究,进而将科研成果反馈到临床,为临床提供有力的依据,通过探究性研究达到解决临床问题的目的,从而提高医疗总体水平。

3.3有利于培养学生的团队精神

转化医学理念的应用为肿瘤影像学专业的学生提供了多学科合作的机会,让学生在学习过程中不断提高与他人进行沟通交流的能力,并在交流过程中获得多种学习方法,从而提高自身的综合素质[9]。如肿瘤影像学专业的学生在学习X射线、CT、MRI、PET、B超检查等的成像原理时,可与物理学专业的学生合作学习。通过观摩物理学专业学生的操作,共同探讨相关问题以获得深层次的实验体验,从根本上理解相关概念及原理,将枯燥、深奥的理论学习转化为有趣且自主参与的实验操作。另外,通过与其他学科学生的交流,可进一步培养肿瘤影像学专业学生的团队精神,培养适应学科发展所需的医学影像技术工程师,塑造能灵活将基础研究与临床实践融为一体的专业人才,构建合作融洽的专业团队。

3.4有利于培养具有转化医学理念和能力的学生

肿瘤影像医学蓬勃发展,临床应用技术不断更新,而现有的教材、教案等教学内容和教学方法却停滞不前,不利于医学生第一时间掌握肿瘤相关研究新进展及新技术。许多学生毕业后开始到临床一线工作,在实际工作中遇到相应的技术问题时,常常无法到实验室通过相关研究来解决当前技术的缺陷,不利于技术的改进与发展。转化医学的应用一方面为肿瘤医学影像技术研究人员熟悉和参与临床工作创造了条件,鼓励学生到临床进行实践,让学生在相关教材内容还未能及时更新的情况下,通过到临床实践仍能及时掌握最新的技术。另一方面,为学生参加工作后再次进入实验室进行技术研究打下铺垫,真正做到将临床影像医学的应用与工程医学授课有机结合,有利于培养具有肿瘤医学影像诊断能力和肿瘤医学影像技术研发能力的综合型人才。

4结语

影像学篇6

影像解剖学基础 三角部骨折是指颌、面、颧骨结合部即眼眶下缘、眼眶外侧壁和颧弓部的骨折,此处一旦发生骨折,容易导致向三个方向突出形成三个角(图1a,b),所有也称三角部骨折(Tripod fracture)。

颧骨外表接近菱形,向上与额骨突起连接,前下方与上颌骨的颧突相结合,在外后方颞骨隆突部与颞骨连接形成颧骨弓。内侧与蝶骨大翼连接,并与眼眶和颞窝分界。颧骨体位于前方,而颧骨弓向外隆起很容易受到外力损伤,是颌面部骨折最常见的部位,发生率仅次于鼻骨骨折[1]。

在颌面部中线偏外侧的外伤中,常见眼眶外侧壁、上颌骨和颧骨的单纯性或复合性骨折,后者也称上颌颧骨复合性骨折(zygomatico-maxillary complex)。当颧骨和周边骨骼结合部附近的多处骨折,如眼眶外侧壁、上颌骨颧部和颧骨弓这三个部位的骨折并且有分离时,我们称之为三角骨折(图2a,b)。颧骨、上颌骨骨折有时可伴有上颌骨和颧骨隆突骨折,此时容易与三角骨折相混淆,所不同的是在三角骨折的内侧可见骨折线(图3a,b)。三角骨折中的骨折线,是从眼眶外侧壁(颧骨额骨缝、颧骨蝶骨缝)向眶下裂走行,从眶下孔附近的眶底部通过颧骨上颌窦结合部的上颌窦前缘下降,甚至沿着上颌窦前部上行达眶下裂。颧骨弓是最簿弱的部分,尤其是在颧骨颞骨缝后1.5cm处最容易发生骨折,由于颧骨骨膜与颞骨筋膜连接,所有此处一旦骨折多不会发生骨片分离和移位,但是骨片很容易向内侧、向下方移位和旋转。

临床应用 眶下神经损伤是三角骨折最常见的并发症,发生率高达94.2%,临床主要表现颊面部、上唇、牙龈部的感觉障碍,其他还可合并眼球运动障碍、咬合不全和张口困难等。

在颌面部外伤的诊断中,CT发挥着重要的作用,X线平片检查几乎可以省略。特别是多层螺旋CT除横断面显示骨折外,还可以进行多平面重建(multiplanar reconstrution, MPR),从不同的断面来显示骨折线、游离骨片、骨折端的错位等直接征象,同时对周围软组织损伤、血肿和气肿等间接征象也显示的十分清楚。另外,还可以对骨折的变形和复杂错位进行曲面重建和三维重组,为临床整复治疗和术后评价提供重要信息[2,3]。

临床上颌面部外伤很常见,当X线和CT扫描发现眼眶外侧壁、上颌颧骨和颧骨弓这三个部分骨折并骨片分离时,就应想到并可以诊断为三角骨折(trimalar fracture)。颌面部的骨折比较复杂,而且常为多发性。因此,这就需要我们在读片时,不仅要注意观察骨折的直接征象,同时还要善于发现各种间接征象,以便达到更精确的诊断。

头颅面骨磨玻璃样征象

影像解剖学基础 在头、面、颈部X线平片和CT平扫的骨窗中,可见膨胀性骨质改变和骨密度不均匀增高,称为磨玻璃样征象(Ground glass appearance),这是骨纤维异常增殖症的特征性表现(图4)。影像学表现取决于纤维性组织和骨组织所占的比例。平片可见骨骼膨大和变形,多数病变的分界不清楚,骨内密度不均匀增高呈磨玻璃样表现(图5a,b)。骨皮质变簿但是完整,在颌面骨则形态不规则,单纯X线平片诊断往往困难。CT平扫可以清楚显示病变内部的结构,并可分为磨玻璃型(56%)(图6a,b),致密型homogenously dense pattern(23%),囊状型cystic variety(21%)(图7a,b)三种类型,这些在CT扫描中都有比较特征性的表现,诊断一般比较容易。MRI主要表现为各种信号异常的变化,T1WI呈低~等信号,T2WI呈低~高信号。

临床应用 骨纤维异常增殖症是原因不明的骨骼发育不良性疾病,好发于年轻人,具有发病缓慢的倾向。病变可分为单骨性(70%~80%),多骨性(20%~30%)和McCune-Albright综合征(3%~10%)。其中单骨性约20%~25%,病变多发生在头、面、颈部骨骼,尤其好发于上、下颌骨。

临床主要表现为局部无痛性肿胀,随着病变的增大可出现面部变形(狮子面孔leontiasis ossea)和上、下颌咬合不全。可有鼻塞和副鼻窦炎症表现,如果压迫血管和神经,可出现头痛和视觉异常等症状。约1%以可恶性为骨肉瘤和纤维肉瘤等,并且好发于多骨性病变的患者[4]。治疗上没有什么具体的方法,多数主张一旦确诊需要密切动态观察,当变形进展迅速则应该想到有恶性变的可能,要及时采取外科手术切除或其他治疗方法。

当在头、面、颈部X线平片和CT平扫中,发现骨骼膨胀性改变和骨质密度增高时,提示为磨玻璃样征象。如果在彭大的骨骼内,骨质密度明显增高而且几乎无任何结构,应高度可疑骨纤维异常增殖症。虽然磨玻璃样征象是骨纤维异常增殖症比较特征性的表现,但并非所特有,也可见于头、颈、颌面骨的其他病变,诊断比较困难,因有很多病变都有类似的表现,如骨化性纤维瘤,骨瘤,骨骼肉芽肿,骨内髓膜瘤等,因这些病变有时与本病变的表现相类似,尤其是骨化性纤维瘤和良性纤维性骨病变有时仅仅从影像学很难鉴别。另外,由于本病的血供丰富,在增强CT中可见明显的强化,所以增强CT应该注意与其他骨、软骨肿瘤相鉴别[5,6]。

参考文献

1. 郭祥彬.多层螺旋CT骨重建对鼻骨骨折的诊断价值.中国CT和MRI杂志,2004,2(1):56-57.

2. 张修风,黄志鹏,陈松清.多层螺旋CT在鼻区骨折的诊断应用:附58例报告.中国CT和MRI杂志,2006,4(1):42-43.

3. 张伟雄,卿安蓉,陈国栋.多层螺旋CT三维重建在颌面骨折中的应用.中国CT和MRI杂志,2004,2(4):16-18.

4. 刘鹏,王成林.多部位多发性骨纤维异常增殖症1例.罕少疾病杂志,2007,14(5):63-64.

影像学篇7

1 医学影像融合的必要性

1.1 影像的融合是技术更新的需要 随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。

1.2 影像的融合弥补了单项检查成像的不足 目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。

1.3 影像的融合是临床的需要 影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。

2 医学影像融合的可行性

2.1 影像学各项检查存在着共性和互补性为影像的融合奠定了基础 尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。

2.2 医学影像的数字化技术的应用为影像的融合提供了方法和手段 现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。

3 医学影像融合的关键技术

信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。

图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的一些参数,它被广泛应用于放射治疗和立体外科学[3];(2)表面相合(SFIT)法:SFIT法又称头和帽法。其原理:所有融合影像上可识别的同一解剖结构表面之间的均数平方根(RMS)距离最小,其中,可用手工或半自动的边缘探测规则从每种影像的一系列图片得到的器官外部轮廓就是表面;头代表从较高分辨率影像中获得的表面模型;帽子代表从较低分辨率影像中获得表面的一系列独立的点[4];(3)空间力矩配对:协调中心点和主轴(PAX),使PAX惯性力距最小,融合时包括计算偏心和旋转以协调PAX和比例[5];(4)交叉相关法:此法基点是两种影像的相关系数值最大(接近)。主要用于同一种显像方式影像的融合[6]。以上4种融合方法可分为两大类:(1)前瞻性融合法:在显像采集时使用特别措施(如协调器具,外部标志等);(2)回溯性融合法:在显像采集时不采取特别措施。

近年来,有学者从另外的角度将融合技术归纳为单模融合、多模融合和模板融合[2]。(1)单模融合:是指将同一种影像学的图像融合,多用于治疗前后的对比、疾病的随访观察、疾病不同状态的对比、运动伪影和设备固有伪影的校准等方面;(2)多模融合:是指将不同影像技术的图像进行融合,包括形态和功能成像两大类,多模图像融合主要是将这两类成像方法获得的图像进行融合,其意义在于克服功能成像空间分辨率和组织对比分辨率低的缺点,发扬形态学成像方法各种分辨率高、定位准确的优势,最大限度地挖掘影像学信息,直接进行不同成像方法之间的比较,多用于神经外科定位手术、制定治疗计划等方面;(3)模板融合:是指将患者的图像与模板(解剖或生理图谱等)图像融合,这种方式也适用于不同患者的图像融合,主要用于正常结构的统计测量、不同患者同一类病变的比较、监测生长发育和衰老进程等方面。

4 医学影像融合的临床价值

利用计算机技术对获取的影像信息进行处理,并将其成果应用于临床已成为现代医学影像学发展的主要方向。通过影像的融合,将多项检查成像进行综合分析、处理,再现出全新的、高质量的影像,对于临床的价值主要体现在3个方面:(1) 对影像诊断的帮助:融合后的影像能够清晰地显示检查部位的解剖结构及毗邻关系,有助于影像诊断医生全面了解和熟悉正常组织、器官的形态学特征;通过采用区域放大、勾画病变轮廓、增添病变区伪彩色等手段,能够增加病变与正常组织的差异,突出显示病灶,有助于诊断医生及时发现病变,尤其是早期不明显的病变和微小病变,避免漏诊;在影像中集中体现出病灶在各项检查中的典型特征,有助于诊断医生做出更加明确的定性诊断,特别在疑难疾病的鉴别诊断中,作用更为显著[7]。(2) 对手术治疗的帮助:在影像的融合中,采用了图像重建和三维立体定向技术,充分显示出复杂结构的完整形态和病灶的空间位置,同时清楚地显示出病变与周围正常组织的关系;对于临床制定手术方案、实施手术以及术后观察起了重要作用[8]。(3) 对科研的帮助:影像的融合集中了多项检查的特征,同时体现了解剖结构,病理特征,以及形态和功能的改变,并对影像信息做出定性、定量分析,为临床进一步研究疾病提供了较为完整的影像学资料。

5 医学影像融合的应用前景

目前,图像融合主要应用于体层成像。随融合技术的不断发展,其在非体层成像方法中的应用逐渐增多。已有研究将血管内超声与二维X线血管造影图像进行融合,认为融合图像能克服超声显示冠状动脉形态的局限性、准确重建出血管的解剖结构、反映血管的真实弯曲[9]。

以医学成像技术为基础,结合影像诊断、影像导航、介入治疗和外科等学科所形成的计算机辅助科学是计算机在医学应用新的发展方向。图像融合技术有助于计算机辅助科学的成熟,特别是三维图像融合的研究与开发。

随着PACS在医院逐渐推广应用,为多种影像学技术的综合应用提供了广阔空间,加速了图像融合的发展。有人利用图像融合建立自动识别警告系统,校正PACS进行图像存储及归档的错误[10]。

远程医学是网络时代产物,是实现医学资源全球共享的方式。图像融合在远程医学中有广阔的应用前景。如进行远程手术,将多模图像融合成多参数、仿真人体模型,配准到术中真实器官上,可有效指导制定远程手术计划,有助于顺利实施手术[11]。

综上所述,医学影像的融合是利用计算机技术将多项检查成像的特征融合在一起,重新成像;影像融合既保留了原有的后处理技术,又增添了新的内容;它是信息融合技术、数字化技术、计算机技术等多项技术的综合和在医学影像学应用的深入和扩展。医学影像的融合将会带动医学影像技术的又一次更新,并将是影像医学新的发展方向。

【参考文献】

1 康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.

2 Hill DL.Medical image registration.Phys Med Biol,2001,46:R1-R45.

3 Liehn JC,Loboguerrero A,Perault C,et al.Superimposition of computed tomography and single photon emission tomography immunoscintigraphic images in the pelvis:validation in patients with colorectal or ovarian carcinoma recurrence.Eur J Nucl Med,1992,19:186-194.

4 Turkington TG,Jaszczak RJ,Pelizzari CA,et al.Accuracy of registration of PET,SPECT,and MR images of a brain phantom.J Nucl Med,1993,34:1587-1594.

5 Alpert NM,Bradshaw JF,Kennedy D,et al.The principal axis transformation:a method for image registration.J Nucl Med,1990,31:1717-1722.

6 Bacharach SL,Douglas MA,Carson RE,et al.Three-dimensional registration of cardiac positrom emission tomography attenuation scans.J Nucl Med,1993,34:311-321.

7 丁里,朱之庄,武绍远,等.标准化神经影像融合技术及临床应用研究.中国医学影像技术,2000,16(2):88.

8 汪家旺,罗立民,舒华忠,等.CT、MRI图像融合技术临床应用研究.中华放射学杂志,2001,35:604.

9 Cothren RM,Shekhar R,Tuzcu EM,et al.Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography.Int J Card Imaging,2000,16:69.

影像学篇8

关键词:数字图像处理;X射线;Matlab;医学影像

中图分类号:TP312 文献标识码:A 文章编号:1007-9416(2017)02-0167-03

1 引言

X射线的波长短,透射力强,具有感光和荧光作用,现代医学中,X射线检查对医学诊断有重要参考价值。人体的骨骼、器官密度、厚度不同,当X射线通过人体时,在荧光屏上形成灰度不同的图像,密度大的部位图像灰度大,密度小的图像灰度小[1]。医生根据X射线影像结合患者自述症状及诊断经验即可制定治疗计划。骨骼对X射线的吸收比肌肉对X射线的吸收强得多,1895年,伦琴利用X射线拍摄出历史上第一张X光片[2-3]。

由于 X 射线曝光不均匀、环境照度低,使得经图像信息输入系统获取的源图像中含有各种各样的噪声与畸变,降低了图像的品质,大大影响图像的质量,容易造成对病变器官的漏诊与误诊。采用图像增强的方法对图像进行改善,将图像中感兴趣的特征有选择地进行突出,并衰减不需要的特征,可以突出组织间的对比度、边缘轮廓。

随着计算机技术的发展,Matlab在图像处理方面的优势逐渐显现。其在仿真模拟、图形处理、大数据计算方面的功能特别适用于医学影像处理,开放式的编程环境及扩展功能为它的发展奠定了基础。其自带的工具箱含有大量图像处理函数,避免了使用者重新设计冗杂的程序,简化了工作流程,利用其实现医学影像处理和病理分析,具有深远的医学价值。

2 图像处理方案设计

2.1 预处理

图1为待处理的原始图像,其灰度过大,边界不清晰。首先将原始彩色图像转换为黑白图像,将三维RGB彩色图像压缩为一维黑白图像,处理后的图像大小为原图像的三分之一。

对像源灰度值进行扩展可以增加动态范围、扩展对比度,从而提高图像的清晰度。对比度增强可以改变图像灰度的动态范围,改变0-0.5灰度值的像素,将其灰度值扩展为0-1。使用Matlab工具箱中的imadjust (I,[low_in; high_in],[low_out; high_out])指令,将输入图像中low_in值映射到输出图像中的low_out值 、high_in值映射到输出图像中的high_out值 , 并将 low_in与high_in间的值进行线性缩放。

待处理的图像命名为“Image.jpg”存于E: \文件夹下。A为原始图像,B为黑白图像,C为经过对比度增强的图像。Matlab程序如下:

A=imread('E:\ Image.jpg');

B=rgb2gray(A);

C=imadjust(B,[0,0.5],[]);

图2为预处理后的图像。

2.2 巴特沃斯高通滤波

图像的细节、边缘主要位于其高频部分,图像的模糊主要是由于其高频成分比较弱。采用巴特沃斯高通加强滤波处理图像,提取D像中边缘灰度值变化率大的部分,对图像进行锐化处理,是为了消除模糊,突出边缘。

巴特沃斯高通加强滤波器的传递函数为:

其中,

表示频率(u,v)至滤波器中心(u0,v0)的距离[4]。

用巴特沃斯高频加强滤波处理,可以弥补高频信号,即在原传递函数上加上一个大于0小于1的常数。程序中,取特征值a=1.5,b=0.5。Matlab不支持图像无符号整型的运算,因此要先将上一步通过预处理的图像转换数据类型,每点进行傅里叶变换。计算傅里叶变换后的数据大小,并取整,便于后续传递函数的运算。选定截止频率d0和阶次n后,按照传递函数进行运算,经滤波后再进行傅里叶反变换,图3为滤波后的图像。

Matlab程序如下:

D1=double(C); % 数据类型转换

D2=fft2(D1); %采用傅里叶变换

D3=fftshift(D2); %数据局陈平衡,将FFT的DC分量移到频谱中心

[M,N]=size(D3);

n1=floor(M/2);

n2=floor(N/2);

d0=20; %截止频率为20

n=2; %阶次为2

for i=1:M %巴特沃斯高通滤波

for j=1:N

d=sqrt((i-n1)^2+(j-n2)^2);

if d==0

h=0.5;

else

h=1.5/(1+(d0/d)^(2*n))+0.5;

end

D4(i,j)=h*D3(i,j);

end

end

D=ifftshift(D4);

D=uint8(real(ifft2(D)));

2.3 中值滤波

中值滤波的基本原理是将数字图像中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近真实值,以此消除孤立的噪声点。本文中选用3*3平滑模版滤波,使其变得均匀。

Matlab程序实现:G=filter2(fspecial('average',3),D)。

Matlab工具箱中自带的(type,para)函数用于建立预定义的滤波算子,type为滤波算子的类型,本文中选定average做均值滤波;para为参数,本文中选定3*3。将经过巴特沃斯高通加强滤波处理的图像加到进行过对比度增强的图像中后,图像变得清晰。处理后的图像再进行一次3*3平滑模版滤波,使其变得均匀,图4为处理后的图像。经过高通滤波能够提取出高频信号,削弱低频信号,将此时的图像叠加到经过预处理后的图像2中,既能获得边缘锐化的高频信号,又保留低频信号,如图5所示。

2.4 同态滤波

同态滤波把灰度变换和频率过滤结合起来,将图像的照度反射率模型作为频域处理的基础,通^压缩亮度范围和增强对比度改善图像的质量。使用这种方法可以使图像处理符合人眼对于亮度响应的非线性特性,避免了直接对图像进行傅立叶变换处理的失真[4]。

高斯型高通滤波器的传递函数为:

rh表示高频增益,rl表示低频增益,利用常数c控制滤波器函数斜面的锐化,当rl1时,减小低频并且增强高频,动态范围被压缩,对比度增强。利用Matlab实现时,首先转换数据类型,然后进行傅里叶变换,便于在频域内对高频信号和低频信号分别处理,选定高频增益为2、低频增益为0.5、常数c为4、截止频率为10,利用双重循环实现传递函数的运算,再进行傅里叶反变换。处理后的图像再进行一次3*3平滑模版滤波,使其变得均匀。图6为处理后的最终图像。

Matlab程序如下:

H=double(H);

f=fft2(H); %采用傅里叶变换

g=fftshift(f);

[M,N]=size(f);

d0=10;

rl=0.5;

rh=2;

c=4;

n1=floor(M/2);

n2=floor(N/2);

for i=1:M

for j=1:N

d=sqrt((i-n1)^2+(j-n2)^2);

h=(rh-rl)*(1-exp(-c*(d.^2/d0.^2)))+rl;

g(i,j)=h*g(i,j);

end

end

g=ifftshift(g);

g=uint8(real(ifft2(g)));

3 结语

Matlab集成了多种图像处理的工具箱,将复杂变换利用自带函数得以实现。在实际使用中,应根据不同X射线光片的灰度范围、拍摄亮度、不同骨骼布局适当的调整函数参数,如高频增益、低频增益、截止频率等,同时可将此数据存入数据库,在后续研究中以调用和参考。将Matlab应用于医学影像图像处理,通过对比度增强、傅里叶变换、滤波等处理,优化了图像质量,提高了诊断效率。

参考文献

[1]汪宁宁,金奎东,季宏波,陈秀芳,李莉,姜华.浅析X射线在医学影像诊断领域的发展及应用[J].中国卫生标准管理,2015,(14):167-168.

[2]罗述谦.X射线成像技术在医学中应用[J].物理,2007,(08):602-608.

影像学篇9

近20年来由于计算机技术的发展与应用,各种影像设备的不断更新和信息化技术的大量应用,医学影像在医疗实践中的地位和影响日益提高,医学影像科正在发展壮大,包罗万象,成为名副其实的“大科室”。内涵是医学影像学科可持续发展的核心动力,也是学科建设不容忽视的重要组成部分。学科建设如果缺乏内涵,就会缺少外延,失去生命力,抓内涵建设最终能促进科室的良性发展,有效地提高医学影像学科的核心竞争力。本文针对医学影像科目前存在的问题,仅就如何加强学科的内涵建设提出几点想法。

1 学科内涵建设,人才是根本

人才是学科发展的的最根本因素,也是学科内涵建设的重头戏[1]。人才的培养应该采取两条腿走路,一是引进高层次人才,二是加强在职人员继续教育。在人才培养方面,通过新理论、新知识、新技术、新方法的学习,更新和提高医务人员的知识层次,培养其综合素质和能力。在科室管理工作中,应正确处理专业工作中“专”与“广”的关系。本着“人本”思想,在安排工作人员掌握所有的检查手段及诊断知识的前提下,要根据专业有所侧重,这样才能融合各种技术和知识,成为具有横向知识结构的专门人才,成为一名真正的医学影像科医生[2]。同时鼓励在职人员通过自学考试等方式来提高学历,充分发挥老同志和中、高级职称人员的传、帮、带作用,尽可能地缩短年轻同志的培训时间,促使年轻的专业技术人员早日成才,不断地提升科室的学术水平、学术地位,从而有力支持和促进医院各临床专业的发展,充分体现医学影像为临床、为病人服务的宗旨。只有这样才能使医学影像学科在医院发展中占据有利位置。

2 学科内涵建设,素质是保证

科室专业技术人员文化和业务素质是搞好科室内涵建设的保证。没有一支高素质的队伍,再先进的管理模式和先进设备也无法发挥作用[1]。受市场经济大环境的影响,各行各业均受到不同程度的冲击,医学影像科也不例外。要使工作人员具备良好的思想作风,高尚的职业道德,具备爱岗敬业精神,推行“人本管理”是有效地办法。要通过各种具有人情味的措施和“以科为荣,爱科如家”的实践,提高工作人员的自我管理水平,让工作人员充分发挥自已的长处,克服自身不足,以各种知识充实自我,完善自我,找到个人利益与集体利益的最佳结合点,最终使个人的目标和科室的目标达到和谐一致,使他们能在岗位上精力旺盛、干劲十足的工作,从而使科室管理轻松自如。加强业务素质,首先要坚持以职责制度规章化、常规操作规范化、质量控制标准化为基础。要求年轻人全面掌握医学影像技术,对中、高级职称的人员相对固定在他本人有较强能力的某一岗位上,发挥其核心骨干作用。坚持通过评片制度、诊断报告审签制度,通过加强横向联系,坚持随访制度等多种渠道,提高医学影像科的整体诊断水平。

3 学科内涵建设,质量是基础

医院从事的是一种高风险的事业,医疗过程中稍有偏差,就会对生命造成危害[3]。因此对于医疗工作来说,质量就是生命。医学影像科作为医技科室,处在临床二线,医学影像科的基本职责是得到清晰的医学图象、准确合理地提出诊断报告并有效地将报告交给患者本人、家属或指定的人员。医学影像科的服务对象既要面向临床科室又要面向病人,既要面向医院又要面向社会,工作质量影响范围大。严格执行各项规章制度和操作常规是提高工作质量最基本的措施,要使医学影像科每个工作人员都意识到:规章制度是我们行医的规矩,它是在长期的医疗实践中通过一个个血的教训换来的,只有严格按照规章制度办事,才能保证医疗质量。医技人员应认清各自的职责,严格按操作规程操作,防止因违反操作规程而导致责任事故发生。工作中做到在登记编号预约时查,检查时查,发报告时查,要对姓名、对性别、对年龄、对临床症状体征与申请检查部位是否相符、对造影病人是否有造影剂过敏试验阴性记录,对申请部位与实际检查部位是否相符,发现问题及时与临床医师联系,协调解决。坚持集体阅片制度,加强对影像资料及其它医疗文书的管理。同时要不断提高医技人员的业务水平,减少漏诊、误诊,打牢保证医疗质量的基础。更要在业务建设中坚持以职责制度规章化、常规操作规范化、质量控制标准化为基础,才能全面提高诊疗质量。

4 学科内涵建设,服务是核心

在医学影像科进行的所有检查和治疗,直至检查报告送到患者手中,医技人员与患者接触较少。有同志认为优质服务在医学影像科可有可无,只要把片子照好就行。服务是医疗行业固有的基本性质之一,科学内涵建设强调的质量,对于社会来讲主要是医疗服务质量,服务是学科内涵建设不可忽视的业务职能要素,服务精心对于医疗服务整体质量的影响与医术精湛的影响同样巨大,直接影响患者对学科的形象以及对医院整体质量的感受和判断[4]。医学影像科的内涵建设的核心内容应该包括两个服务理念:一是以优质技术服务于临床患者,二是以优质技术服务于临床科室。医学影像科集中了医院大部分高价值医疗设备,工作上虽然不象临床一线直接治疗病人,但我们是医院的一个窗口,任务就是为临床提供合格的影像资料和有价值的诊断报告,工作的目的就是让临床满意、患者放心。工作中要以加强医德医风建设、提高医疗服务质量为突破口,树立高尚的职业道德,努力提高医疗技术和服务保障水平。在“一切为了病人,为了病人一切,为了一切病人”的服务宗旨指导下,想尽千方百计提高影像检查的及时性,准确性,尽力为患者、为临床提供方便。

总之,通过加强在医学影像科的内涵建设,促进科室全面建设工作的开展,就是要让医学影像科的不均衡的工作任务、众多的大型设备、相对较多的亚专业等诸多因素达到合理调配。紧跟国内外先进技术,重视内涵建设在科室建设中的作用,创建学习型科室,建立科室特色,促进医学影像科各项工作的全面发展。

参考文献

[1] 吴惠毅,谈 笑.论检验学科的内涵建设与发展[J].临床检验杂志,2002,20(特刊):118-119.

[2] 徐 伟,冯代群,易继权.加强“人本管理”,促进放射科工作的全面进步[J].现代医药卫生,2008,23(4):610-611.

影像学篇10

【摘要】 为弥补解剖结构图像(CT, MRI, B超等)和功能图像(SPECT, PET等)的各自不足,医学图像融合技术应运而生,并且有了较大发展. 本文从三方面综述了近年来有关医学图像融合技术研究的最新进展,认为在医学影像设备的发展中,功能图像和解剖图像的结合是一个发展趋势,在肿瘤的精确定位、早期检测和诊断中将发挥重要的作用.

【关键词】 诊断显像;图像融合

0引言

医学影像学是临床诊断信息的重要来源之一. 根据医学图像所提供的信息内涵,可将医学影像分为两大类: 解剖结构图像(CT, MRI, B超等)和功能图像(SPECT, PET等). 这两类图像各有其优缺点: 功能图像分辨率较差,但它提供的脏器功能代谢信息是解剖图像所不能替代的;解剖图像以高分辨率提供了脏器的解剖形态信息(功能图像无法提供脏器或病灶的解剖细节),但无法反映脏器的功能情况.

目前这两类成像设备的研究都已取得了很大的进步,一方面,双方都在逐步弥补自身弱点,如MR的功能成像开发以拓展其功能,SPECT, PET新型晶体开发以增强自身的空间分辨率;另一方面,双方均在不断地增强自身强项,如MR开发不同新型成像序列,CT的螺旋层数不断增加,PET的晶体数目越来越多. 这使得各自图像的空间分辨率和图像质量有很大的提高,但由于成像原理不同所造成的图像信息局限性,使得单独使用某一类图像的效果并不理想,且进展缓慢,往往事倍功半. 由于上述原因,医学图像融合技术应运而生[1].

1图像融合(image fusion)技术的内涵

图像融合是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理[2]. 简单来说,医学图像融合就是将解剖结构成像与功能成像两种医学成像的优点结合起来,为临床提供更多、更准确的信息. 其最终结果是1+1>2.

20世纪90年代以来,医学图像融合技术随着计算机技术、通讯技术、传感器技术、材料技术等的飞速发展而获得重大发展,经历了异机图像融合和同机图像融合两个阶段.

2异机图像融合

2.1异机图像融合的研究内容在同机融合显像设备没有出现以前,图像融合的研究仅限于异机图像融合. 最初其研究内容仅限于相同或不同成像模式(imaging modality)所得图像经过必要的几何变换,空间分辨率统一和位置匹配后,进行叠加获得互补信息,增加信息量. 而现在,异机图像融合的研究范围包括: 图像对位、融合图像的显示和分析,利用从对应解剖结构图像(MRI, CT)获取的先验信息对发射型数据(SPECT, PET)做有效的衰减校正、数据重建等[3].

2.2异机图像融合的基本方法按图像融合对象的来源可分为同类图像融合(innermodality,如SPECTSPECT, CTCT等等)和异类图像融合(intermodality,如SPECTCT, PETMRI, MRICT, MRB超等). 按图像融合的分析方法可分为同一患者的图像融合、不同患者间的图像融合和患者图像与模板图像融合. 按图像融合对象的获取时间可分为短期图像融合(如跟踪肿瘤的发展情况时在1~3 mo内做的图像进行融合)和长期图像融合(如进行治疗效果评估时进行的治疗后2~3 a的图像与治疗后当时的图像进行融合). 临床工作人员根据自己的研究目的不断设计出更多的融合方式.

2.3异机图像融合的主要技术图像融合的步骤大致为: 特征提取,设计误差评估方法,对图像数据进行处理使误差最小,将变换后的图像数据进行对位和综合显示,分析综合数据. 其中对位技术是图像融合的关键和难点[4].

2.3.1特征提取特征提取可分为内部特征提取和外部特征提取内部特征主要是人体解剖结构特征,如颅骨、脊柱、胸骨、肋骨、关节;膈下软组织,如脾、肝、肾等等. 外部特征是为进行融合处理而特制在两幅图像上均可见的体表标记物. 据文献报道使用的外标志物有进行脑图像融合的头罩、牙环,胸部、腹部图像融合采用的背带,四肢图像融合采用的支架,甚至颅骨嵌入螺钉等等. 采用内部特征的优点是不需要对患者做预处理,可进行多次融合方法分析,缺点是难以实现融合自动化处理,需要人工干预,融合的精确性往往与经验有关. 外部特征的优点是特征明确,易于进行计算机自动处理,缺点是预处理复杂,并且由于体位而引起的脏器与体表标记之间的位移误差难以避免.

2.3.2误差评估方法常用的有基于相似度的误差评估方法(以相似度最大为最优)和基于距离的误差评估方法(以距离最小为最优).

2.3.3图像处理图像预处理: 对于有条件的图像进行重新断层分层(reslice)以确保图像在空间分辨率和空间方位上的大体接近. 几何变换: 主要包括尺度变换、平移、旋转等.

2.3.4图像的对位将处理好的图像按误差最小的原则进行对位. 按外部特征进行对位的方法以两幅图像上的特征点配准为对位成功. 按内部特征进行图像对位法主要有两种:图像分割配准和像素特征配准[5].

图像分割配准法分为曲线法和表面法,在目前实际应用中较多采用. 因分割算法通常是半自动的,需人为参与,其配准的精度受限于分割的精度. 理论上此法可用于全身各部位的配准,但现在常用于神经系统成像和矫形外科成像. 曲线法是将一些具有几何特征的线条(如脊线)或栅格提取出来进行配准. 但是,曲线法要求图像有较高分辨率,以便提取几何特征. 表面法的代表算法是“头帽法”: 从一幅图中提取一组轮廓点作为“帽子”,从另一幅图中提取表面模型作为“头”,然后使用Powell搜索算法(使帽点和头表面间的距离平均平方和最小)来确定变换关系. 采用表面匹配技术可以对SPECT和PET的心脏图像进行了对位融合.

表面配准算法不仅用于3D刚性(rigid)变换,而且可用于3D弹性(elastic)变换,从而为一些组织器官的配准,如心脏、肝脏、肺等,提供了可能性. 但这种方法与其他基于组织分割的算法一样,配准精度受限于组织分割的精度. 近年来,由于分割算法的复杂程度降低、自动化程度提高以及斜面匹配技术在计算距离变换上的优势,此法被普遍应用. 表面配准法主要应用于PETMR图像的配准,由于SPECT图像的边界模糊,不宜使用此法. 像素特征配准法[6]: 像素特征配准法与其他内部特征配准方法不同之处在于,他是以图像灰度为配准依据,不需要对图像原始数据进行预归纳或预分割,其常用算法有主轴矩配准、全图像信息配准和图谱法配准. 主轴矩配准: 是将图像灰度内容转换为数量和方向的几何表示. 目前大多是从零阶及一阶矩中计算出图像的质心及主轴,再通过平移和旋转使两幅图像的质心和主轴对齐,达到配准目的. 此法对于数据缺失比较敏感,细节丢失或形状的病理性改变均会影响配准结果. 但此法实现了自动化,且十分快捷,易于移植,目前多用于粗配准. 全图像信息配准: 是在配准全过程中使用全部图像信息,使用的算法有区域相似性测量法、最大互信息法、相关法、联合熵法、条件熵法等. 此方法适用性最广,它不象其他内部特征法那样需先进行灰度图像的信息压缩提取,而是在配准过程中利用所有可获得的信息. 图谱法: 用于患者间的图像配准同一解剖结构的形状、大小、位置都会因解剖和生理上的个体差异有很大不同,这就使患者间的图像配准问题成为当今医学图像分析中的最大难题. 因此就要有一个详细标记人体各个解剖位置的标准化图谱. 用图谱法对两个患者的PET或MRI图像进行比较时,首先把二者的图像都映射到一个标准化的图谱空间去,然后在此空间中进行比较. 使用内部特征定位不需外加定位装置,但要求两幅图像要有相似结构或共同体位特征才可进行匹配. 定位的精确度是由具体的算法来决定的.

2.3.5融合数据的分析以某种算法将融合图像数据综合显示并做定量分析. 有些影像学工作者提出了如融合图像中像素CT值/SPECT计数等数值分析方法,但由于图像融合技术研究时间较短,各种融合数据对临床的指导意义有待进一步检验确定.

融合图像有多种直观的显示方法. 常用的有断层显示法和三维显示法. 融合图像的显示往往以某个图像为基准,该图像用灰度色阶显示,另一个图像迭加在基准图像上,用彩色色阶显示[7]: ① 断层显示法: 对于某些(得到原始数据)图像融合,可以将融合的三维数据以横断面、冠状面和矢状面断层图像同步地显示,便于观察者进行诊断. 这是融合图像最常用的显示方法. 这种显示要求观察者对于图像三维层面的特征有丰富的经验; ② 三维显示法: 将融合的三维数据以三维图像的形式显示使观察者可更加直观地观察病灶的解剖位置,在外科手术设计和放疗计划制定中有重要的意义.

2.4异机图像融合的现状目前对于刚性组织的对位已基本解决,如脑部异机图像融合[8],而对于非刚性组织(如腹部)的对位有待进一步研究. 因此在图像对位技术上目前尚未找到一种确保完全、通用、有效的方法.

3同机图像融合

同机图像融合是伴随着同机显像设备的发展而发展的. 1991年,Hasegawa等[9,10]人首先提出了同机图像融合设备的设想. 1999年,通用电器公司(GE)推出了全球第一台医用同机图像融合设备Hawkeye,它将XCT球管、探测器及放射性核素探头装在同一旋转机架上,患者可同时进行CT和SPECT检查. 得到的X线图像不仅可以用来与SPECT图像进行融合,还可以通过不同软组织及骨骼对X线与γ光子的不同衰减比例因子,由CT值计算线性衰减系数,进行SPECT的衰减校正. 由于这一台划时代设备的出现,使得图像融合技术发生了根本性的变化.

由于图像融合设备显像过程中,患者同时进行两种不同的检查,其体位变化由计算机精确控制,且不同显像间的时间间隔非常短暂,从根本上解决了异机图像融合中的最大难题:对位技术的准确性. 在CT与SPECT图像融合的领域内,它具有了所有异机图像融合的优势,而且实现过程更为简单,并广泛应用于临床医学的各个领域[11]. 因此,这一设备从产生之日起,就对影像医学特别是影像核医学产生了革命性的影响. 目前已广泛应用于国内、外影像医学临床诊断.

在Hawkeye之后,GE公司、西门子公司及飞利浦先后推出了第二代图像融合设备: PET/CT[12],其功能在Hawkeye基础上更进一步,定位更加准确,诊断准确性进一步提高. 目前国内有此设备十余台.

相比PET/CT,PET/MR的研究更加令影像医学工作者期待. PET/MR除具有所有PET/CT的优点外,还可以提供更多的软组织信息,其提供的组织信息可应用于高精度的PET图像衰减校正,从而进一步提高图像质量和空间分辨率. 目前,美国将PET晶体置于MR内部,已研制出一种新型的PET/MR,并已获得了大鼠脑部同机融合图像[13],相信PET/MR很快将进入临床.

4展望

总之,在医学影像设备的发展中,功能图像和解剖图像的结合是一个发展趋势,而图像融合的潜力在于综合处理应用这些成像设备所得信息以获得新的有助于临床诊断的信息[14],在肿瘤的精确定位、癌症的早期诊断和治疗中发挥重要的作用. 随着功能成像设备和解剖成像设备杂交技术的出现,图像融合技术将得到进一步的发展,给临床诊断带来一场新的变革.

参考文献

[1] Davide W, Simon R. Combining anatomy and function the pathto image fusion [J]. Eur Radiol, 2001;11:1968-1974.

[2] 蒋长英. 什么是“医学图像融合”[J]? 抗癌,2003;(1):36-37.

[3] 张孝飞,王强. 医学图像融合技术研究综述[J]. 广西科学,2002;9(1):64-68.

[4] 刘敬华,钱宗才. 医学图像融合技术及其应用[J]. 医学信息医学与计算机应用,2002;15(5):258-259.

[5] 俞亚青,田学隆,闫春红. 医学图像配准方法分类及现状[J]. 重庆大学学报(自然科学版),2003;26(8):114-118.

[6] 姜庆娟,谭景信. 像素级图像融合方法与选择[J]. 计算机工程与应用,2003;39(25):116-120.

[7] 唐庆玉,王宇. 医学图像融合显示的几种方法[J]. 中国医疗器械信息,2002;8(3):14-15.

[8] Ferroli P, Franzini A, Marras C, et al. A simple method to assess accuracy of deep brain stimulation electrode placement: Preoperative stereotactic CT + postoperative MR image fusion [J]. Stereotact Funct Neurosurg, 2004;82:14-19.

[9] Hasegawa BH, Stebler B, Butt BK, et al. A prototype highpurity germanium detector system with fast photoncounting circuiry for medical imaging [J]. Med Phys, 1991;18:900-999.

[10] Lang TF, Hasegawa BH, Liew SC, et al. Description of a prototype emissiontransmission computed tomography imaging system [J]. J Nucl Med, 1991;33:1881-1887.

[11] Schillaci O. Functionalanatomical image fusion in neuroendocrine tumors [J]. Cancer Biother Radiopharm, 2004;19:129-134.

[12] Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: A hardware approach to image fusion [J]. Semin Nucl Med, 2003;33:193-204.