复合材料论文十篇

时间:2023-03-27 09:12:42

复合材料论文

复合材料论文篇1

1学校方面

①毕业设计时间短,与就业实习时间有冲突。高职复合材料专业按人才培养方案将毕业设计安排在第五学期,共八周时间。但这段时间也正是毕业生找工作,签订就业协议的时间。很多学生一旦找到了合适的岗位后,便立即与用人单位签订合同,出去顶岗实习,例如12级专业就有20名左右学生与菲舍尔航空部件公司签订就业协议,提前进厂顶岗实习。学生不在学校,这给毕业设计指导带来了很多的阻碍,指导教师只能通过电话、短信、邮件等方式和学生进行联系,无法进行面对面指导与交流,论文指导效果非常不好。有些学生离校后更换手机号码,不主动和指导教师联系,造成教师根本无法联系上指导学生,更不要谈就论文进行定期指导了。

②开展毕业设计的实践条件不足。毕业设计的选题大致为复合材料成型与胶接两个方向,学校虽然有一定的复合材料的成型和胶接的实验实训条件,但由于场地小,设备缺乏,无法满足专业学生的毕业设计要求,因此学生的毕业设计完成大多是参考相关文献进行工艺设计,只是理论上的分析,不仅学生完成困难,而且没有具体的工艺实训过程操作,内容空洞。

2教师方面

①师资匮乏,教师指导压力大。指导教师相对于学生的数量严重不足,教师指导压力大,无法保证对每位学生毕业设计进行有效的指导。毕业生忙于就业和实习,对于毕业设计不上心,加之高职学生基础薄弱,专业论文撰写的能力不强,所以老师指导起来更是压力倍增。教师在指导毕业设计同时还要完成相对较多的教学任务,往往会精力分散,指导学生又多,导致指导效果不佳。

②选题理论化,部分与生产实践脱节。虽然专业教师均具备硕士学位,专业理论水平高,但多半缺乏企业工作经历,不能及时准确把握企业动态和职业岗位的需求,因此在毕业设计选题上很多老师多半采取由学生自主选择毕业设计课题或让学生参与自己的立项科研课题,而未考虑学生职业岗位的需求。因此选题理论化,与生产实际脱节。

3学生方面

①对于毕业设计积极性不高。在毕业设计期间,很多学生忙于找工作和提前进入企业实习,对于毕业设计积极性不高,得过且过。学生常常不能按时完成老师布置的毕业设计的选题和资料搜集任务,也不能参加老师定期的指导会议。对于后期的论文修改,也不能及时认真修改,很多学生都是随意修改下,就交上来,态度不认真。还有部分同学很难联系上,对于毕业设计任务置之不理。

②搜集、整理资料能力差。撰写毕业设计首先应搜集相关专业资料阅读,并进行分析和整理,随后才能开展毕业论文的撰写。但很多学生搜集网络资料的能力非常差,大多数学生只会使用简单常用的搜索引擎,对于相关论文数据库的使用和信息检索非常陌生。同时,学生资料整理能力也有限,只会将查到的资料东拼西凑、无序堆积,缺乏逻辑性和前后的连贯性。

③毕业设计撰写能力差。毕业设计的撰写指导教师只起引导作用,主要给出资料搜集任务和对论文的修改意见,论文主体是由学生完成。大多数学生撰写毕业设计能力较差,在撰写毕业设计茫然一片,不知道如何编排结构,如何进行分层分析,逻辑推理。只是对搜集到的相关资料进行拼凑,论文内容逻辑混乱,前后层次不明,不连贯,读起来一头雾水。有部分学生内容与题目基本没关系,论文格式更是五花八门,错误百出。

二提高毕业设计质量的途径

1调整毕业设计时间

提前布置毕业设计任务条件允许的情况下,可以把毕业设计任务提前到第四个学期的期末,在学生参加暑期顶岗实习前,进行毕业设计工作动员和任务预分配工作。要求学生在顶岗实习期间,结合自己实习的相关工作拟定毕业设计课题范围,在相关专业岗位认真将其工艺流程、参数等进行详细记录的任务,并要求学生完成实习岗位工艺的相关科技文献查询任务,开学以书面报告形式上交给指导教师。这样为学生后续毕业设计完成积累了素材,完成毕业设计也会顺手很多。

2重视毕业设计选题

注重与生产实践相结合毕业设计的选题应在理论深度上降低要求,注重其技能性和实用性。学生可在顶岗生产实习的过程中自主选择适合工作岗位的课题。由于学生所选课题紧贴工作岗位,有些甚至可能是单位急需解决的问题,学生认真思考和亲手操作过,对于其中的工艺流程和质量管理过程非常熟悉,因此学生的积极性会提高,参与性较强,毕业设计质量会大幅提高。比如2010级部分暑期在西安航天复合材料研究所实习的同学,选择缠绕和模压等与其工作相关的成型工艺作为毕业设计选题,其毕业设计就完成的非常不错。

3专兼职指导教师合作

团队指导毕业设计面对师资力量匮乏,有经验、有资历的指导教师人手不足的情况,我们应充分利用校外实训基地、顶岗实习单位的资源,采取激励制度,扩宽教师聘请的渠道,鼓励和吸引技术专家工程技术人员、技师等具有丰富实践经验的技术骨干到校担任毕业设计指导工作。这些技术人员与我们的专职教师组成团队,共同指导毕业设计工作,这样既缓解了指导教师短缺的矛盾,又弥补了校内指导教师在实践方面的不足。另外,部分提前就业实习的学生可自主选择所在就业实习单位具有高级职称的技术人员作为指导教师,这样在做毕业设计时,指导教师就在身边,可随时指导,提高其解决实际问题的能力,也会避免老师与学生沟通障碍的问题,大大提高毕业设计指导效率和毕业设计质量。

4加强对毕业设计过程的监管

学校和系部对学生的毕业设计环节应加强监督管理,定期抽查,体现对毕业设计环节的重视。教研室定期组织指导教师对学生的毕业设计情况进行检查并将各组检查情况上报教研室。定期召开会议对各组指导情况及检查中存在的问题进行探讨,并给出下一阶段指导工作的任务和具体要求。另外还可开展教师和学生的互评活动,要求教师根据学生的表现给学生打分作为最后毕业设计总评的一部分;学生也可以根据教师的指导情况给教师评分,作为对教师教学效果评价的一部分,这样给学生增加了压力,给教师增强了责任心。与此同时,要严把答辩关,对于审查教师和评阅教师共同认定合格的论文才能进行答辩,并要求每位同学必须现场答辩,答辩过程中,论文的质量和现场表现均要纳入到答辩成绩中。

5毕业设计考核评价过程化

将学生平时参加组内讨论会情况、资料搜集整理工作情况、论文进度汇报工作情况、论文质量、答辩表现情况均纳入毕业设计考核中,并根据相应的项目给出合理的分数。毕业设计的考评最大限度反映学生的专业知识和综合素质水平,也使毕业设计考核工作更加合理和公平化。

三结语

复合材料论文篇2

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。

从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

树脂基复合材料的增强材料

树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。

1、玻璃纤维

目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。

2、碳纤维

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。

3、芳纶纤维

20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。

4、超高分子量聚乙烯纤维

超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。

5、热固性树脂基复合材料

热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。

1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。

热塑性树脂基复合材料

热塑性树脂基复合材料是20世纪80年展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。

高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。

滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。

云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。

我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。

我国复合材料的发展潜力和热点

我国复合材料发展潜力很大,但须处理好以下热点问题。

1、复合材料创新

复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。

2、聚丙烯腈基纤维发展

我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。

3、玻璃纤维结构调整

我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。

4、开发能源、交通用复合材料市场

一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。

5、纤维复合材料基础设施应用

国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。

6、复合材料综合处理与再生

复合材料论文篇3

复合材料结构与性能是针对复合材料与工程专业大四学生开设的一门专业必修课,其内容涉及树脂基体、增强材料、增强材料的铺层和复合材料的夹层结构等多个方面,是一门理论联系实践应用、基础知识和科学发展前沿并行的课程。我们从充分利用信息技术、理论联系实际、启发式教学和考试方式多元化等多方面进行了课程改革和实践,以提高学生的学习兴趣和创新能力。

[关键词]

课程改革;课程实践;启发式;教育

复合材料结构与性能是本校针对复合材料与工程专业大四学生开设的一门专业必修课程。本课程是在学生学完了材料学概论、树脂基复合材料、复合材料工程实验等专业课程之后,为进一步拓宽学生的专业知识面、培养学生综合知识的运用能力而开设的,目的是培养其在复合材料原材料的选择、改性、结构设计方面综合运用知识解决实际问题的能力。复合材料结构与性能的教学内容包括复合材料概述、树脂基体材料结构与性能、高性能增强材料、增强材料铺层结构与性能及复合材料夹层结构等。复合材料概述部分重点介绍复合材料结构所包含的三个结构层次和复合材料的发展及应用近况;树脂基体材料部分主要介绍聚合物分子结构对性能的影响及基体材料的最新研究进展,让同学们通过学习掌握分子结构设计原理,初步具备从性能角度出发筛选合成原料的能力;增强材料铺层结构与性能和复合材料夹层结构部分突出复合材料结构的可设计性,根据复合材料结构件的受力情况,介绍增强材料铺设方式设计和夹芯材料选择的理论依据。不同于大学基础理论课,大学专业课的课堂教学内容必须紧跟本学科技术的发展。课堂教学中,教师在介绍完基础理论知识后,一定要配合实际的生产应用案例对其进行应用说明,这样有利于学生理解和掌握此知识点,并能通过实际的应用案例理解单纯追求某一性能指标是没有意义的,实际应用过程中应考虑工艺性能、应用性能、节能环保等综合因素。该课程为新开课,在教学内容、教学素材、教学方法等方面还需要进一步完善和改革,以适应复合材料现代科学技术的飞速发展。

一、充分利用信息化资源,丰富教学内容

在教学过程中,我们充分利用信息化资源、信息化技术来辅助教学,丰富教学内容,利用多媒体技术进行高密度的知识传授,增大教学信息量,并借助图片、动画、视频等媒介,增强学生的理解力,加深他们的记忆。[1]我们在传统的PPT中加入实物图片、工艺图片、三维设计动画、复合材料生产视频等,以丰富教学内容,把学生关心的一些复合材料应用领域的相关知识(复合材料原料、工艺及应用等)直接向学生演示出来,从而与文字讲义相呼应,给相对枯燥的教学注入兴趣和活力。多媒体教学(如制作动画、录像、图片和三维模型等)将原本抽象的、不易理解的复合材料多相结构生动、形象地展现出现,便于学生理解和记忆,加深对复合材料结构的理解,深层次理解复合材料结构对性能的影响。我们在查阅大量国内外文献的基础上,编写了适合本课程教学特点的电子课件,并根据需要采用大量生动、形象的工艺流程图介绍复合材料的生产工艺,以实物图片介绍复合材料的应用领域,采用动画、视频的形式介绍复合材料不同层次的结构及结构设计对性能的影响。对于较难理解的章节,采用模型或模拟辅助教学可以提高教学效果。为了让学生较好地了解复合材料领域的发展,教师需要密切关注该行业国内外的发展动向,及时查阅相关的文献资料,获取与国际接轨的最新知识、先进教材和信息。教师需要适时地参加国内外复合材料展览会,对国内外参展公司的展品、设备和技术图片进行拍照、录像并整理,将其融入课程内容;还可以参加复合材料相关的学术研讨会,密切关注复合材料领域的新技术、新工艺的发展和应用,及时更新本课程的教学内容。

二、授课内容注重理论与实践相结合

复合材料结构与性能是一门实用性较强的课程,单纯以文字的形式介绍复合材料结构与性能,特别是复合材料的夹层结构,很难介绍清楚,学生也很难想象,难以理解。因此,教学中一定要理论联系实践,以案例的形式讲授知识,如以风力发电机叶片、雷达罩、飞机机翼的结构为例,分别介绍其选材、结构,并解释原材料选择原因、结构设计的原理、性能特点、国内外的技术差距等。作为教师,将自己科研工作的实际应用案例加入课程讲授,理论联系实际,丰富课程内容的实用性,是非常必要的。不同高校复合材料专业的研究领域、研究特色不同,有的高校侧重于增强材料的研究与开发(如东华大学),有的高校重点研究复合材料结构件的设计制造(如武汉理工大学),而本校复合材料专业侧重于高性能树脂基体材料的研究与开发。在本课程的讲授过程中,我们将本校树脂基体方面取得的研究成果按相应类别穿插在课程内容中,如将耐腐蚀的乙烯基酯树脂、高残炭酚醛、脂环族环氧树脂、高性能芳炔树脂、高性能透波树脂等内容加入课程,分析其结构与性能特点。我校在复合材料增强材料、增强材料的铺设方式、复合材料结构的设计方面开展的研究工作较少,如果要想在这几章内容的教学中联系实践,教师需要做很多资料收集工作,特别是针对增强材料铺设方式和夹层结构部分,需要到相应的研究单位、生产单位进行调研,制作相应图片、三维模型、动画及视频,以丰富教学内容,便于学生理解。[2]

三、改进授课方式,采用启发式教学,让学生根据自己的兴趣点进行自主学习

复合材料结构与性能是复合材料专业大四学生的专业必修课,他们在此之前已经学完了大部分的专业课程,已基本掌握了复合材料的专业知识。本课程的目的是进一步拓宽学生的知识面,培养学生的创新思维,实现与毕业课题研究、社会工作的衔接。因此,教学中应该改变以往的“老师讲、学生记”的方式,鼓励学生运用前面学过的专业知识去思考,激发创新思维,从中获得运用知识解决问题的成就感。教师可以提出现在行业中的难题,让同学们通过查找资料寻找解决方法,发挥大学生精力旺盛、创新性强的特点。[3-4]这也对教师提出了要求:要紧跟本学科的发展,与复合材料相关企业建立密切联系,了解本专业新型的原材料、成型技术、成型设备及新型制品结构。在复合材料概述中介绍新型的复合材料时,同学们对“自修复复合材料”非常感兴趣,但课上仅仅介绍了“自修复复合材料”的设计原理和性能特点及其在航天领域中的应用前景,教学中若能够以实物图片展示此材料的使用案例,以录像展示生产工艺过程,并提出应用过程中有待解决的问题,则可以更生动、具体地体现该材料的结构与性能的关系。我们采用了启发式教学方法,建立教师和学生间双向互动的课堂气氛。教师采用提问的方式启发和调动学生的主观能动性,让学生对问题进行思考;当堂课不能解决的问题,则要求学生课后查找资料,以小论文的形式提交解决方案;鼓励学生探索科学前沿,激发学生对科学研究的兴趣。比如我们给学生留的课后作业为“你认为最有发展前景的复合材料是哪种类型?解释其原因”和“热固性树脂复合材料和热塑性树脂基复合材料的优缺点及其发展趋势”。课余时间,学生们根据自己的兴趣爱好去查找相关的资料,了解该类复合材料的结构、性能、应用及发展情况。这样不仅能够拓展学生的知识面,还能够激发其对复合材料科研的兴趣。[5-6]

四、考核方式多元化,培养学生思考问题、解决问题的能力

复合材料专业课程大多采用闭卷考试的方式进行考核,考试形式重于内容,考试分数重于能力,平时认真听课、认真思考的同学考试的分数倒不一定比背讲义、背课后题的同学高,这样打击了应用能力较强的同学的学习积极性,也与本课程的培养方案相悖。复合材料结构与性能是大四上半学期的专业必修课,是理论与实践相结合的一门课,旨在引导学生运用所学知识发现实际生产中的问题并解决问题,传统的靠知识点记忆的考核方式显然已不适用于本课程,课程改革也应在考核方法上有所体现。根据知识点的不同,本课程宜采用多元化的方式对学生进行考核。重要的概念、原理、工艺、聚合物结构及性能等要求学生掌握的知识点可采用闭卷考试,而不同类型复合材料的性能特点、发展及应用方面的知识是动态发展的,可以采用开卷考试的方式。这样学生可以在课下查阅大量的文献资料,详细了解复合材料的发展趋势,激发学习兴趣,拓展专业知识面。对于综合知识的运用,即从选择原材料、成型工艺选择、增强材料的铺设方式、夹层结构设计等方面设计某复合材料结构件,则采用小论文的形式考核,如设计轻质高强的工字梁结构。多元化的考核方式可以使学生成为学习的主体,有利于调动学生的积极性,并培养学生综合运用知识的能力。我们通过教学题材的更新、教学内容的多样化、教学方法和考核方式的改革,力争从教师讲授向学生在老师的启发下自主学习的模式转变,从而达到提高学生学习主动性、激发学生创新性的目的。课程改革和创新需要在实际教学过程中摸索,我们将结合复合材料新技术的发展,继续探索复合材料结构与性能教学新模式。

作者:宋宁 侯锐钢 周权 陈麒 王帆 方俊 倪礼忠 单位:华东理工大学材料科学与工程学院特种功能高分子材料及相关技术教育部重点实验室

参考文献:

[1]赵洪凯,肖力光,刘亚冰,等.《复合材料》课程建设与教学研究[J].广州化工,2010,38(10):229-230,236.

[2]邓洪.材料化学专业《复合材料》课程建设与教学研究[J].中南林业科技大学学报(社会科学版),2009,3(3):142-144.

[3]曹尤,王丽华,谷亚新.具有土木建筑特色的聚合物复合材料课程建设[J].沈阳建筑大学学报(社会科学版),2012,14(3):326-328.

[4]杨晓洁.“英特尔”未来教育与课改理念的融合———《复合材料》教学设计与反思[J].教育科研论坛,2010(7):56-57.

复合材料论文篇4

关键词:热膨胀本征应变,三相胞元,Eshelby-Mori-Tanaka方法,热膨胀系数

 

1 引言

颗粒性复合材料由于其优异的性能在工程实际中得到广泛应用[1],但是在高温条件下工作的复合材料构件不可避免地产生热膨胀,导致结构尺寸发生变化而产生热变形,过大的热变形会导致结构破坏,这就要求材料具有很强的高温稳定性和低的热膨胀系数。而对复合材料的热膨胀系数进行预报是细观力学界研究的重要内容之一,也是对材料进行热分析的基础。当前,对于复合材料热膨胀系数预报多见于单向或长纤维复合材料[2-5],而对于颗粒性复合材料研究较少[6]。姚占军等人利用二相胞元法预报了颗粒增强镍基合金复合涂层的热膨胀系数,但其所建立的模型中并未考虑界面因素影响[8]。

本文基于细观力学理论建立了包含脱粘界面在内的复合材料四相模型,如图1所示;将颗粒夹杂、脱粘界面和基体壳简化为椭球三相胞元;根据Eshelby- Mori-Tanaka方法推导得到颗粒夹杂和脱粘界面的热膨胀本征应变,进而求出三相胞元的热膨胀系数;考虑到三相胞元在复合材料中随机分布,应用坐标变换公式得到复合材料平均热膨胀应变,进而求得复合材料的热膨胀系数。

2 热膨胀本征应变

取出一个三相胞元如图2所示,设三相胞元、颗粒夹杂以及脱粘界面体积分别为V为V1为V2,颗粒夹杂和基体的弹性常数分别为L1和L0,热膨胀系数分别为和。论文大全,三相胞元。

当温度变化ΔT时,由于基体和颗粒夹杂热膨胀系数失配而产生热应力为

(1)

式中,为颗粒与裂纹相互作用引起的扰动应变。

利用Mori-Tanaka方法和Eshelby等效夹杂理论可知颗粒中应力为:

(2)

其中,

(3)

式中,为是基体与颗粒的应变差值,是颗粒的等效本征应变,是基体和颗粒热失配应变,

(4)

此处

(5)

由于颗粒各向同性,我们知道

(6)

假设脱粘界面中存在应力,其弹性常数为,则根据式(2)得到:

(7)

(8)

其中,为脱粘界面与基体的应变差值,为脱粘界面的的Eshelby张量[7]。论文大全,三相胞元。论文大全,三相胞元。

实际上三相胞元脱粘界面处不存在应力,即,因此有

(9)

根据三相胞元内部扰动应力自平衡条件:

(10)

这里将(1)、(2)式代入(10)式得

(11)

式中,

将(3)和(11)式代入到(2)式得

(12)

上式,

其中,

将(11)和(12)式代入到(9)得到

(13)

式中

3 三相胞元等效热膨胀系数

体积为V的三相胞元的平均应变可以借助总量平衡的方法得到

(14)

将(3)、(8)和(11)式代入(14)得到

(15)

将(12)和(13)式代入(15)得到

(16)

式中,

矩阵K为3×3阶对称矩阵,可写成如下形式

(17)

式中Ki由颗粒和脱粘界面的Eshelby张量以及基体和颗粒的弹性常数确定。论文大全,三相胞元。

根据(16)和(17)可知

(18)

由此可得到三相胞元的热膨胀系数为:

(19)

4 复合材料的有效热膨胀系数

假设三相胞元椭球的三个主半轴长为,三相胞元椭球形颗粒为横观各向同性材料,其中为材料的对称轴,并且。论文大全,三相胞元。三相胞元颗粒在复合材料中随机分布,并设轴与x,y,z轴分别成,,角。

当无限大体内部温度改变时,单个三相胞元颗粒产生的热膨胀应变为:

(20)

再由应变换轴公式知单个三相胞元颗粒在坐标轴x,y和z方向的热膨胀应变为:

(21)

因为三相胞元颗粒在复合材料中随机分布,材料的平均热膨胀应变为所有颗粒的热膨胀应变关于随机后的均值,取分布函数为,则有

(22)

经积分得

(23)

由上式可看出复合材料为各向同性,进而求出复合材料的有效热膨胀系数为

(24)

图3给出含有脱粘界面体积分数分别为0.03%、0.05%和0.07%时,复合材料有效热膨胀系数随颗粒含量变化曲线。从中可以看出,复合材料有效热膨胀系数随着颗粒含量的增加而减小,主要因为颗粒的热膨胀系数大于基体的热膨胀系数,其含量越大,对复合陶瓷的热膨胀系数影响也越大;另外,脱粘界面含量越高,热膨胀系数也越小,因为复合材料在受热膨胀时,微裂纹存在会降低颗粒对基体的影响,满足一般规律。

图4给出含界面体积分数分别为0.03%、0.05%和0.07%时,复合材料有效热膨胀系数的尺度效应。论文大全,三相胞元。从中可以看出复合材料热膨胀系数随颗粒直径增加而减小,因为颗粒的热膨胀系数大于基体的热膨胀系数,直径越大,单个颗粒的影响也大。

5结论

1)本文基于细观力学方法建立了包含脱粘界面在内的复合材料四相模型,将颗粒夹杂、脱粘界面和基体壳简化为椭球三相胞元,并根据Eshelby-Mori-Tanaka方法得到颗粒夹杂和脱粘界面的热膨胀本征应变,推导出三相胞元的纵向和横向热膨胀系数;

2)根据三相胞元的方位随机性,结合应力应变换轴公式确定复合材料平均应变,进而求得复合材料热膨胀系数;

3)数值结果表明:随着颗粒夹杂含量增加,复合材料有效热膨胀系数会减小;另外,复合材料有效热膨胀系数具有较强的尺度效应,随着颗粒直径的增加,热膨胀系数会降低。

参考文献

[1]Wang Junying, Ni Xinhua, Yang Qizhi.Study of thermal fatigue resistance of a composite coating made by a vacuumfusion sintering method[J]. International Journal of Plant Engineering andManagement 2003,8: 60-64.

[2]Z Haktan Karadeniz, Dilek Kumlutas. Anumerical study on the coefficients of thermal expansion of fiber reinforcedcomposite materials[J]. Composite Structures, 2005, 55(1): 1-10.

[3]孙志刚,宋迎东,高希光,高德平.细观结构对复合材料热膨胀系数的影响研究[J].应用力学学报, 2004,21(2):146-151.

复合材料论文篇5

本书包含了大量的论题,向我们展示了不同领域的先进复合材料的研究和发现,尤其是在航空航海领域甚至是在陆上的应用。

本书共分为5章:1.简介,后4章是主题论文合集:1.前言,简要介绍金属及材料学会年会及成书的原因;2.复合材料的加工和设计,论题包括(1)10%铝基飞灰复合材料的形变特性在空间航空中的应用;(2)B4C在铝基复合材料中对机械性能和耐腐蚀性上的影响;(3)细菌纤维素对β相聚偏二氟乙烯的相稳定增强研究;(4)合成复合TaCTaB2粉末;3.复合材料的微观结构和相图表征,论题包括(1)激光沉积原位TiC增强镍基复合材料:微观结构和摩擦学性能研究;(2)挤压浸透法生产微石英增强铝合金金属基复合材料;(3)混合金属功能梯度复合材料的挤压浸透法技术生产和表征;(4)磁性记忆合金NiCo40+xAl30-x\[X=0、3、6、10\]的微观结构和机械性能;(5)金属基复合材料的定向凝固;4.材料的机械性能的发展,论题包括(1)一种高机械性能的金属纳米复合材料:NbTi纳米线和NiTi基复合材料的反常热膨胀; (2)复合材料数据融合无损检测技术对累计损伤进行定量;(3)计算预测玻璃态聚合物和热固塑料的机械性能;(4)多尺度表征SiC/SiC复合材料;(5)用于航空的铝基金属复合材料在加工中的断裂韧性和损伤力学研究;5.复合材料的界面和粘结,论题包括(1)连续纤维增强陶瓷铝基复合材料的多尺度建模;(2)冲击检测在评价复合材料层合板弱键中的发展;(3)用等离子体处理高分子纤维来增强织物复合材料层合板的机械性能;(4)1758K下钛铝合金对TiCx的润湿性研究;(5)用于汽车工业的金属聚合物金属三明治结构的成形极限图。

本书适合材料化学、固体物理、建筑学专业的研究生阅读,同时对从事复合材料研究工作的工程师、科学家和技术人员能够开阔视野,同时储备一些如何根据不同应用领域来选择和使用先进复合材料的相关知识。

复合材料论文篇6

[关键词]聚合物基复合材料 航空航天 创新型人才 教学实践 考核方式

中图分类号:G642.0; TB332 文献标识码:B

先进聚合物基复合材料由于质量轻、强度高,已成为航空航天等领域具有战略性的关键材料之一,近年来其应用、科学与技术呈现出突飞猛进的发展态势[1,2]。2006年1月国家提出了在2020年建成创新型国家,实现科技发展成为经济社会发展有力支撑的建设目标,其中培养和造就创新型人才,特别是创新型工程科技人才是重中之重[3,4]。

以往的教学方式,注重基本概念、基本理论和基本技能的讲授,考核也主要是闭卷答题,对学生关于知识结构的系统性和在实践中自觉运用知识的积极能动性引导不足,不利于培养学生的独立性、实践性和创新性意识。针对这一问题,笔者所在的北京航空航天大学复合材料团队结合50多年的教学科研经验和体会,就如何适应创新型国家战略发展需求,培养高素质的复合材料创新人才问题,开展了《聚合物基复合材料及其成型工艺》课程改革。其中课程考核是教学活动的重要环节,对引导和促进学生潜能、个性和创造性等的培养具有重要作用。

考核方式的改革

聚合物基复合材料是一门诞生于上世纪50年代的新兴工程学科方向课程,相对于传统材料,它的理论、方法及技术处于不断更新与发展阶段,同时该材料涉及的学科知识很广,包括高分子物理、高分子化学、物理化学、有机化学、材料测试方法、材料力学等,具有多学科交叉融合、知识更新快、应用性强等特点。因此,在教学大纲的指导原则下,结合复合材料学科方向的以上特点,首先确定了《聚合物基复合材料及其成型工艺》课程考核方式改革的核心内容。选取先进聚合物基复合材料在航空航天应用中的四种典型案例,引导学生依据所选对象的结构、使用等设计要求[5],综合分析其原材料选择、工艺制订和性能分析各环节,强化学生对专业知识和技术的融会贯通理解能力,提升运用所学知识分析、解决实际问题的能力。

1.改革内容

在原有教学内容基本讲授完毕后,对应于课堂讲授的重要知识点,以复合材料在飞行器结构上的典型应用为实例,对其应用情况和结构特征进行综合评述,然后让学生自由选择一个实例,通过课外自学、资料调研、小组讨论等途径,对原材料选择、制备工艺设计、性能测试评价三个方面进行细致分析。在此基础上,应结合工程实际考虑结构应用的可靠性、材料质量的稳定性、表征分析的有效性和完备性,以及成本效率等因素,对所选材料、工艺和性能指标等进行可行性论证和评价。

首先让学生形成2~3人的小组,利用课余时间根据所选择的实例进行文献调研,每个人调研的内容应各有侧重点,然后进行讨论和汇总,撰写可行性论证报告,该环节在一周内完成。然后教师对报告进行评阅,总结报告存在的问题。最后教师在课堂上对所涉及的应用案例进行点评和讲解,对比较集中的问题进行分析,并挑选报告撰写的比较优秀的小组在课堂上阐述撰写的思路和过程。

撰写形成的典型复合材料应用可行性论证报告是考核学生综合运用知识能力的主要依据,其内容应包括:(1)复合材料结构使用要求及国内外应用情况;(2)复合材料原材料选择;(3)复合材料制造工艺设计与制造方案评估;(4)复合材料关键性能测试及评价。报告内容的安排上要求具有条理性和逻辑性,给出选定材料和方案的分析判定依据,并要求具有可操作性。在报告格式上要求符合学术规范,适当引用参考文献。

2.可行论证报告考核要求

依据先进聚合物基复合材料近年来的前沿发展和国家需求,结合笔者所在教学科研团队已有基础和优势经验,突出航空航天特色,在课程改革中选定:大型客机机翼上下壁板及中央翼盒上下壁板、超音速飞机机翼纵横加筋壁板、大型客机机头雷达罩及升降舵壁板、卫星主承力筒等作为研究对象。学生依据所选结构对象的应用要求,就原材料、工艺和性能展开可行性论证分析,形成报告。报告的具体考核要求如下:

(1)复合材料典型应用案例分析:阐述所选对象的结构形式、承载要求、功能特性、使用环境等;

(2)复合材料原材料选择:主要对增强体、树脂基体、夹芯材料等的主要类型、工艺及性能特点及其匹配关系进行对比分析,按照性能满足应用要求的原则,同时考虑工艺和成本因素,初选出几种材料体系;

(3)复合材料制备工艺设计:依据材料工艺性表征评价方法,分析所选结构对象的可制造性,主要包括工艺方法对所选对象结构形式的制造质量控制难度和制造周期两个方面,结合材料体系的物理化学行为分析,确定成型、固化方法、工艺流程,对比不同方法在制造质量稳定性、结构灵活性、实施成本、批量适用性等方面的特点,再详细分析工艺参数、工装设备、缺陷控制等因素,确定工艺优化方案;

(4)复合材料性能测试评价:结合复合材料结构服役特点和设计要求,针对所选材料体系组成和各向异性特征,确定复合材料的力学、功能、环境使用性能等的测试方法与评价指标;

(5)论证报告结论:综合分析所选材料体系、工艺方案及性能指标的科学性、关联性和工程可实施性,对于可能存在的难点或关键问题给予评述,并提出分析和解决的方法。

改革效果与体会

针对学生撰写的报告,教师依据学生对所学知识的掌握、运用能力,以及分析、阐述问题的逻辑性和科学性进行评分,占总成绩的30%,选出优秀报告作为范例,并总结学生在分析中存在的问题,在课堂上对所涉及的应用案例进行点评和讲解,使学生深入理解所学知识之间的关联性和贯通性,培养学生运用知识分析、解决问题的自觉性和主动性。

通过两年的教学改革和实践发现,这种考核方式有效激发了学生的自主学习兴趣,不仅学生的团队合作能力、发散思维、逆向思维能力、文献调研能力、沟通表达能力、随机应变能力等方面得到了培养和提高,而且学生养成了主动学习和互动学习的良好习惯。从可行性论证报告的成绩看,两年中优和良的总比例占到了70%~90%,说明了学生的认真态度和积极性。通过与学生的座谈,了解到学生对考核方式的改革反映良好,认为该环节对课堂知识的理解和运用起到了很好的促进作用。这一考核方式改革导向,使学生对复合材料基本知识的理解变得生动和深刻,提高了在实践中运用所学知识分析、解决问题的综合能力,并且利于学生掌握知识点的内在关联和约束作用,以及对知识体系的有机性理解与融会贯通,是一种创新型工程科技人才培育的考核新模式,为“两领”人才成长及其素质提升提供了有益的探索。

另外,通过学生反馈和论证报告的总结评述,教师可掌握课堂教学效果,便于改进教学方法,更新教学内容,提高素质教育的教学质量。同时可以更客观地评价学生的综合能力,判断学生的学习效果,使教和学两者得到有机结合。显著提高了学生将理论知识与工程实践相结合、专业知识与专业技能相贯通的学习意识,培养和增强学生的自主学习、综合分析,以及运用知识解决问题的创新能力。

根据已有的改革成果和体会,下一步准备结合复合材料技术和应用的最新发展趋势,丰富典型实例中涉及的内容,不局限于复合材料在航空航天领域的应用,而扩大到能源、交通、建筑等方面,如大型复合材料风电叶片、复合材料车身、复合材料船体等,从而进一步扩展学生思路,丰富教学内容。

参考文献:

[1]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009:424-431.

[2]陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展,2009,28(6):2-12.

[3]中国工程院“创新人才”项目组.走向创新——创新型工程科技人才培养研究[J].高等工程教育研究,2010,(1):1-19.

[4]潘云鹤.论研究型大学工科学生的能力培养[J].高等工程教育研究,2005,(4):1-4.

复合材料论文篇7

关键词: 复合材料 碳纤维 混凝土结构加固 疲劳寿命

Abstract: carbon fiber reinforcement concrete structure is a kind of high efficient, has broad application prospects of the reinforcement technology, relates to material science, mechanics, structural engineering and other fields of knowledge. This paper combines Beijing high-speed bridge repair and reinforcement example, single from the mechanics of composite material fatigue life analysis method.

Key words: composite material of carbon fiber reinforced concrete structure fatigue life

中图分类号:TU37文献标识码:A 文章编号:

在对济广高速高架桥的检测中发现该桥存在较多病害,上部结构梁底出现了较多裂缝。经山东省交通规划设计院、山东高速检测咨询中心等有关部门现场查看,确定对预应力混凝土连续板、钢筋混凝土连续刚构、预应力混凝土等截面连续刚构出现的裂缝进行封闭处理并粘贴碳纤维,提高其抗弯承载力。

1 碳纤维材料在桥梁加固中的应用

对于混凝土桥梁的抗弯加固,目前常用的方法有增大截面加固、粘贴钢板加固、体外预应力加固、粘贴纤维复合材料加固等。这些加固方法各有优点,同时也有不足之处。加大截面加固能有效提高结构的刚度和承载力,但施工周期长,增加结构自重,减小桥下使用空间;粘贴钢板加固对结构刚度提高明显,但钢板具有容易腐蚀耐久性差的缺点,且使用的结构胶往往因老化产生粘结破坏;体外预应力加固对刚度和承载能力提高明显,但锚固端受力很大不容易控制,且施工繁琐,加固成本较高。粘贴纤维复合材料加固,即采用粘结剂将碳纤维片材附着于结构损伤的表面,使一部分荷载透过胶层传递到碳纤维片材上,从而降低受损结构处的应力作用,进而控制裂纹扩展速率以达到制止裂缝扩展的作用,最终使结构使用周期得以延续。纤维材料由于自重轻,抗拉强度高,抗腐蚀能力强,提高最大承载力明显,但对刚度提高不大。

在粘贴钢板和粘贴碳纤维布桥梁加固中,我们通过对碳纤维复合材料和钢筋进行比较可看出两者的优劣。碳纤维复合材料初始缺陷损伤尺寸比金属材料大,例如纤维断开、基体开裂、纤维与基体脱胶、层间局部脱离等,但疲劳寿命比金属长,同时碳纤维复合材料疲劳损伤是累积的,而且有明显的征兆,金属材料损伤累积是隐蔽的,破坏有突发性。金属材料在交变载荷作用下往往出现一条疲劳主裂纹,它控制最后的疲劳破坏。而碳纤维复合材料往往在高应力区出现较大范围的损伤,疲劳破坏很少由单一的裂纹控制。总的来说,碳纤维复合材料抗疲劳破坏的性能比金属材料好很多。

2 疲劳特性

2.1碳纤维布加固混凝土梁后,在疲劳荷载作用下,碳纤维布能够明显降低加固梁中的箍筋应变。对于完好加固梁,粘贴碳纤维布后,箍筋应变减少达到40%-50%;对于损伤的加固梁,箍筋应变减少达到20%-40%。

2.2随着疲劳次数的增加,碳纤维应变不断增大,且单纤维布用量越大,其应变越小。粘贴40mm碳纤维布加固梁相对于粘贴20mm碳纤维布加固梁,碳纤维应变减少10%-40%。

2.3碳纤维和箍筋应变均在疲劳前10万次增长较快,几乎达到应变的70%-90%,其后增长趋于稳定,这与疲劳损伤的一般规律是一致的。

2.4在疲劳荷载作用下,碳纤维布能够限制斜裂缝的发展,增强结构疲劳抗剪能力。

2.5碳纤维布加固钢筋混凝土梁后,在受荷过程中相互作用,各材料应力相互调整,各材料相互作用和应力的相互调整将直接影响碳纤维布在不同受荷阶段的发挥水平。

3 碳纤维疲劳损伤机理

单向复合材料正铀拉伸疲劳时,基体内首先形成横向裂纹,当局部纤维断裂时形成裂纹扩展、界面脱胶、由纤维损伤引起基体裂纹增长和纤维桥联.也可形成它们的组合情况。图1和图2分别表示单向复合材料正轴拉伸疲劳基体损伤和纤维损伤的几种型式。单向复合材料正轴拉—拉疲劳纤维断裂的情况如图3所示。

图1单向复合材料正轴拉伸疲劳基体损伤

(a)分散裂纹限于基体内 (b)局部纤维断裂,裂纹扩展,界面破坏

图2单向复合材料正轴拉伸疲劳纤维损伤

(a)纤维断裂引起界面脱胶(b)纤维断裂引起基体裂纹增加

(c)纤维桥联基体裂纹

图3单向复合材料正轴拉伸疲劳纤维断裂

4碳纤维疲劳寿命预测

疲劳寿命预测有三种理论模型:

4.1疲劳裂纹扩展速率线弹性断裂力学认为决定疲劳裂纹扩展的是应力强度因子的幅值 ,Paris由此得出下列公式

其中 为疲分裂纹扩展速率,C为材料常数,n为扩展指数。

此公式是针对金属材料疲劳裂纹扩展的,它对复合材料基体(树脂等)和短纤维复合材料也适用,但是对于其它连续纤维增强复合材料.预制了裂纹的试件在疲劳过程中并不以主裂纹扩展而是以损伤区扩展而发生破坏。对于无预制裂纹的试件更是以损伤形式扩展,因此,用疲劳裂纹扩展的方法预估寿命是困难的。

4.2 累积损伤理论Miner从数学上定义,材料在应力水平 下的疲劳寿命为N周,当在此应力水平下受载n周时,材料损伤为D=n/N,显然 时材料破坏。在变化幅值应力作用下,Miner的线性累积损伤理沦认为,当

时材料发生破坏,式中表示在第i个应力水平 作用的应力循环周数, 为该应力水平下疲劳寿命周数, 表示对整个过程中所有 水平对应的周数求和。如已经测得材料的S-N曲线以及载荷谱,则可预测何时发生破坏。某些实验表明复合材料不完全遵守这一规律,当应力由低变到高时, 往往小于1;而应力由高变低时, 常在大于1时发生破坏,因此有人提出非线性累积损伤理论, 等加以修正。

4.3 剩余强度理论由式 可知,材料损伤随疲劳周数增加而发展,材料内在缺陷发展而破坏,它取决于载荷和环境等外因。此外,结构破坏的临界荷载随裂纹长度和损伤D增大而降低。剩余强度理论认为:在外在交变载荷作用下由于损伤D增大,材料强度由其静强度R(0)下降到剩余强度R(n),一旦外加载荷峰值 达到R(n),材料便发生破坏。利用此理论预测疲劳寿命,还需了解损伤D的演变规律及剩余强度与损伤的关系,目前这一理论尚在进—步研究中。

总之由于复合材料的复杂性和性能的分散性,其疲劳问题受多种因素影响也非常复杂,本文列出的计算分析方法还有待实践修正,需继续总结研究。

参考:1、《混凝土加固设计规范》GB50367-2006

2、《碳纤维片材加固混凝土结构技术规程》【S】CECS146:2003

复合材料论文篇8

关键词:复合材料三角形夹芯桥面板;面外等效弹性常数;有限元分析

引言

FRP夹芯桥面板具有高的比强度和比刚度、优良的隔音隔热效果以及好抗冲击性,而且能发挥FRP复合材料轻质高强和可设计性的优点。近年来,FRP复合材料夹芯桥面板结构逐渐由海洋、航空工程领域发展到桥梁工程等领域,越来越受到人们的青睐。对FRP复合材料夹芯桥面板结构进行有限元分析时,在保证精度的前提下,为了节省计算工作量,一般将FRP复合材料夹芯桥面板夹芯层等效成各向异性的层合板,因此需要确定其等效弹性常数。现阶段对夹芯结构等效弹性常数的研究手段主要包括理论分析、数值模拟和实验验证。例如:2005年Q.H.Cheng等[1]应用有限元方法结合理论分析,推导了各类金属芯层的等效弹性常数公式;2010年王青伟等[2]在考虑伸缩变形情况下,对王红霞[3]的等效弹性常数公式进行了修正,并通过ansys软件的计算验证其具有较高的精度;2013年Giorgio Bartolozzi等[4]采用timoshenko梁理论,考虑了夹芯层的剪切变形,得到了更加精确的结果;

在对FRP复合材料夹芯结构等效弹性常数进行研究时,大部分学者忽略了面板对夹芯层的影响,如Overaker等[5]学者研究夹芯桥面板夹芯层的面外等效弹性常数时,未考虑面板的约束效应,得到的等效弹性常数与实验结果相差较大。本文考虑FRP复合材料三角形夹芯桥面板面板对夹芯层的约束作用,研究了FRP复合材料三角形夹芯桥面板的等效弹性常数。根据能量法推导了夹芯桥面板夹芯层的等效弹性常数公式;依据等效弹性常数公式,将夹芯层等效成正交各向异性的单层板、FRP复合材料三角形夹芯桥面板等效成复合材料层合板,通过有限元软件abaqus,分别建立3维实体模型和等效模型,进行分析和比较。

1 选取模型

考虑FRP复合材料三角形夹芯桥面板面板对夹芯层的约束作用,选取图1.1所示结构进行分析。假设等效前后的夹芯层都处于两端z向(y向)均匀拉伸状态,可以发现图1.1结构的变形呈反对称,本文对结构进行进一步的简化,选取图1.1结构的1/2模型进行分析,如图1.2所示,其中节点处的角位移、水平位移和竖向位移分别为U12、U1和U2。并假设在承受荷载时,面板远离肋板的端部没有z向转角。

夹芯层

肋板

上/下面板

图1.1三角形夹芯桥面板以及坐标系

图1.2 模型的选取

2 FRP复合材料三角形夹芯桥面板夹芯层等效弹性常数公式的推导

FRP复合材料三角形夹芯桥面板夹芯层等效弹性常数推导过程所采用的模型如图1.2所示,其中:p为三角形夹芯层边长的一半,θ为肋板与面板的夹角,l为肋板长度的一半,tc和tt(b)分别为肋板厚度以及上(下)面板厚度,E2=E3,G23分别为FRP复合材料夹芯桥面板面外弹性模量和面外剪切模量,E1,G12= G13分别为FRP复合材料夹芯桥面板面内弹性模量和面内剪切模量,υ12,υ13,υ23分别为FRP复合材料夹芯桥面板12,13,23方向的泊松比(其中1方向为FRP复合材料夹芯桥面板拉挤方向即纤维方向,2,3方向为FRP复合材料夹芯桥面板横向即垂直纤维方向)。

假设等效后模型x,y,z方向的弹性模量分别为Exeq、Eyeq和Ezeq,主泊松比为υyxeq、υzxeq、υzyeq;xy面、xz面以及yz面的剪切模量分别为Gxyeq、Gxzeq和Gyzeq,将FRP三角形夹芯桥面板夹芯层等效成各向异性单层板,需要以上9个独立的等效弹性常数,其中等效面外弹性常数Eyeq、Ezeq、Gyzeq、υyzeq对FRP复合材料夹芯桥面板性能影响最为显著。先前对面外等效弹性模量的研究包括Isaksson和Nordstrand,Isaksson通过结构的应变能来推导面外等效弹性模量,Nordstrand则通过结构的变形来推导面外等效弹性模量,与两者相反,本文通过能量法来分析,推导FRP复合材料夹芯桥面板面外等效弹性模量。下面以z向等效弹性常数公式为例进行推导。

假设结构处于z向均匀的拉伸状态,等效前后的z向总应力不变,为了方便计算,取F=σzp=1。在F作用下,为了考虑面板对肋板的变形约束作用,须满足面板与肋板变形协调。本文采用能量法中的位移法对图1.2所示结构进行分析。该结构的基本未知量为节点处的角位移U12、竖向位移U1和水平位移U2,采用的基本体系如图2.1所示,当原结构受到荷载作用时,总有一组U12、U1和U2可以使基本体系的变形还原到原结构的变图2.1基本体系

形。图2.2为在U12=1作用下基本体系的弯矩图,然后对节点进行单独分析。该节点需满足竖向、水平受力以及弯矩平衡,由此可得:

图2.2 U12=1时基本体系的受力

根据能量法,可得等效水平位移:

(2.1)

等效竖向位移为:

(2.2)

z向等效弹性模量为:

(2.3)

同理,可得:

(2.4)

可以发现:文献[3]的面外剪切弹性常数与本文的结果一致,这同时说明在本文模型下面板约束对外剪切弹性常数的影响很小。

3算例分析

为了分析FRP复合材料三角形夹芯桥面板FBD600的结构性能,采用实体结构建立有限元模型,具体尺寸如图3.1所示。考虑到实际当中,桥面板由若干个FRP复合材料桥面板胶接而成,为了方便建模以及计算,忽略面层中胶层,简化模型小圆角,其它位置建模可通过节点偏置与实际结构保持一致,简化后截面如图3.2所示,不难发现,简化后的模型即为之前研究的复合材料三角形夹芯板,故用此产品进行算例分析和验证。

图3.1 FBD600的具体几何尺寸图3.2简化之后的模型

根据上文所得的结论,将FRP复合材料三角形夹芯桥面板的夹芯层等效成正交各向异性的单层板、FRP复合材料三角形夹芯桥面板等效成3层的层合板,通过有限元软件abaqus分别进行建立实体模型以及等效模型,然后将两者进行对比分析。FRP复合材料三角形夹芯桥面板有限元模型几何尺寸为:1500mm×1000mm×225mm,面层和肋板的夹角为60°。结构上/下面板以及夹芯层均采用T300/1034-C复合材料,具体材料属性参考表3.1,FRP复合材料三角形夹芯桥面板3维实体模型如图3.3。

表3.1T300/1034-C复合材料材料属性

Ex

Ey

Ez

vxy

vxz

vyz

T300/1034-C

146800

11400

11400

0.3

0.3

0.45

Gxy

Gxz

Gyz

6900

6900

4600

图3.3推导FRP复合材料三角形夹

芯桥面板3维实体模型

图3.4y方向反力-位移曲线

图3.5z方向反力-位移曲线

由图3.4~3.5可以看出,面板对夹芯层2个方向的约束效果并不一致,但是都不同程度地提高了夹芯层的刚度。与z向等效弹性模量比较,面板对y方向的等效弹性模量影响更大,并且高出了几倍,这是因为肋板对面板的相互制约作用,芯层对面板存在支撑作用,从而面板对肋板存在很大的水平位移约束。从图3.4看出,三条直线都比较接近,因为不管是x向拉压或者y向拉压,起主要作用还是上/下面板,可以看出,本文推导的等效弹性常数公式表现出更大优势。图3.5表现出三条直线的差距很大,因为在z向拉压作用下,夹芯层刚度较上/下面板刚度小很多,起主要作用的是夹芯层,综上所述,本文的结论更加贴近实际情况。

2.5 小结

本章的主要内容包括:

(1)根据能量法和梁理论,推导了考虑面板约束的FRP复合材料三角形夹芯桥面板夹芯层的面外等效弹性常数公式,并通过有限元模拟及与文献[3]对比,发现面板约束对芯层板的面外等效弹性模量影响显著,但对等效面外剪切模量的提高并不显著;

(2)FRP复合材料夹芯桥面板在x,y单向拉伸或压缩作用下,起主要承载作用的是上/下面板;FRP复合材料夹芯桥面板在z向拉伸或压缩作用下,起主要承载作用的是夹芯层,故夹芯层的面外等效弹性模量计算公式和面外等效剪切模量计算公式的精确度尤为重要,根据算例分析和其他文献结果对比,本文所得的结论更加更为精确;

参 考 文 献

[1]Q.H.Cheng. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J].Composite Structures74(2006)226-236.

[2] 王青伟. 三角形桁架夹芯层等效弹性常数研究和夹芯板参数优化设计[J].特种结构2010,27(5).

[3] 赵剑. 蜂窝夹芯结构面内等效弹性常数与等效导热系数研究[M],全国复合材料力学研讨会,2007.12.21-25.

[4]王青伟. 三角形桁架夹芯层等效弹性常数研究和夹芯板参数优化设计[J].特种结构2010,27(5).

复合材料论文篇9

关键词:道路工程;沥青混合料;混杂纤维;增强机理

中图分类号:U414文献标识码:A 文章编号 :

Abstract:With the increase of the traffic and axle load ,the traditional asphalt pavement is subjected to the severe test for the early disease.Extensive research have been undertaken to solve the problem at home and abroad. Mixing reinforcing fibers in the asphalt mixture is a new and effective approach attracting widespread concern, which promotes the application of hybrid fiebrs made up of two and more kinds of single fiber. Undoubtedly, it is of great significance to make certain the reinforcement mechanism of hybrid fiber-reinforced asphalt mixture to enhance the performance of asphalt mixture and conduct the pavement structure design of hybrid fiber asphalt pavement. Based on the previous research achievements, further research ideas are proposed in view of existing problems.

Key words: road engineering; asphalt mixture; hybrid fiber; reinforcement mechanism

1 引 言

沥青路面是我国目前高等级路面最主要的结构形式,但随着交通量及轴载的增大,出现了高温车辙、低温开裂、水损坏及疲劳损伤等早期病害[1、2]。为有效解决这一问题并提高沥青路面的使用品质,在沥青混合料中掺加新型增强纤维成为一种新途径。纤维沥青混合料是典型的复合材料,其力学性能和损伤破坏的规律不仅取决于各组分材料的性能,还取决于细观结构特征,如纤维的体积率、分布规律、形状及界面性质等[3]。目前研究最多、应用最广的仍是单一尺度和单一品种的纤维增强[4],而通过掺入混杂纤维以改善沥青混合料整体性能及其增强机理的研究鲜有报道。混杂纤维是由两种或两种以上的单种纤维层相间形成的复合材料,在掺配合理的情况下可在不同尺度和性能层次上相互激发,取长补短,弥补单一纤维增强作用有限的不足,对改善和提高具有多组分、多相、多尺度层次结构特性的沥青混合料的性能具有重要作用。

然而,目前针对混杂纤维增强沥青混合料性能的研究较少,部分进行的也往往偏重于宏观角度的唯象研究,忽略了其复杂的细观结构,所得到的试验成果又往往囿于材料本身和混合料结构的复杂性,难以量化混杂纤维沥青混合料细观增强机理与宏观力学行为间的联系。因此,研究混杂纤维对沥青及沥青混合料的增强作用机理,合理选用各种纤维材料、提高混杂纤维沥青混合料的性能及进行混杂纤维沥青路面的结构设计具有重要的现实意义。

2概 述

国内外许多关于纤维沥青混合料性能的研究表明掺入纤维后可改善混合料的使用性能[5-9],而且由于施工工艺简单,无需增加额外设备,具有广阔的应用前景。这促使一些研究者为进一步研究纤维沥青混合料的作用机理而进行了探讨[10-14],认为纤维的作用主要表现为:①纤维的吸附作用,使纤维与沥青接触形成巨大的浸润界面,起着连接两相并传递、缓冲两相间的应力,乃至影响整个纤维沥青材料物理和力学性能的关键;②纤维的稳定、增粘作用,一方面增大了结构沥青的比例,使沥青膜处于比较稳定的状态,另一方面提高了沥青胶浆的粘结力,保证沥青混合料的整体性;③数以万计的单丝纤维在沥青混合料中呈三维网状分布,约束了混合料内部缺陷或裂纹的进一步发展,增加了材料的破坏强度,起到“加筋”作用;④纤维的增韧、阻裂作用,不仅增加了沥青混合料的抗变形能力,而且对裂纹的扩展起到阻滞作用,维持沥青混合料多相体系的稳定性。

以上研究虽一定程度上阐述了纤维对沥青混合料性能的改善作用,但无法量化纤维沥青混合料细观增强机理与宏观力学行为间的联系。目前,针对纤维增强沥青混合料作用机理主要有如下几种观点:

2.1界面理论

界面理论认为在复合材料中,纤维与基体通过界面粘接在一起。它区别于传统材料的一个重要特点是依靠不同的组分材料分散和承受载荷,组分材料之间的相互作用和兼容性对复合材料的性能有十分重要的影响[3]。纤维沥青混合料中各相材料是通过各相间的界面结合(固-固界面、固-液界面等) 而成为整体的, 界面结合作用的强弱与各相形成的界面自由能的大小关系密切, 纤维的加入便改善了传统沥青混合料中各相界面的作用效果[12]。

2.2 复合材料理论[12、15、16]

复合材料理论认为纤维沥青混合料是一种多相体系, 组成纤维沥青混合料的各种材料均为一相, 其性能就取决于各相的相互作用行为和各相的体积率以及各相的几何特征(尤指其界面特性) 与各相自身特性。其多相复合材料可由不同的相相复合得到。该观点不仅便于采用各复合材料模型来分析研究材料的组成、结构与其性能之间的关系; 还可以直接使用复合材料的混合率规律或其修正式对材料性能进行预测。

2.3 断裂力学理论

断裂力学承认材料或结构本身总是存在裂纹或类裂纹缺陷,是专门研究材料或结构体系传布或扩展规律的一门新兴学科。细观结构上,脆性材料的开裂破坏与内部裂纹的形成、扩展等内在过程相关。一些学者将现代断裂力学理论应用于复合材料增强机理分析,提出了相关断裂模型[17-19]:①应力强度因子模型;②能量模型;③增韧力学模型;④纤维间距增强理论。

2.4 结构层次理论

复合材料论文篇10

关键词: 化学固化复合树脂;光固化复合树脂;对比研究

中图分类号:R782 文献标识码:B 文章编号:1004-7484(2012)06-0019-02

复合树脂材料是一种新型齿科材料,对治疗前牙体缺损、牙釉质发育不全、四环素牙、氟斑牙、死髓牙等变色牙是一种理想的美容齿科材料[1-2]。当前复合树脂材料按固化方式分类主要有三种:①化学固化型。②光固化型。③光-化学固化型。本文回顾性分析2002年2月至2012年2月期间于我院选取复合树脂材料进行前牙美观缺陷的150患者资料,现报告如下。

1 资料与方法

1.1一般资料

随机选取2002年2月至2012年2月期间于我院进行前牙美观缺陷的150患者,共有患牙300颗,年龄16岁至60岁,根据患者自愿分为两组,各75例。观察组即化学固化复合树脂组,患牙160颗;对照组即光固化复合树脂组,患牙140颗。

1.2方法

对150例患者300颗患牙牙面进行清洁、去净腐质并磨除病损周围牙体组织,使修复体和牙面形成自然和谐的衔接面,增加修复体的固位性,牙断缘或边缘磨成斜面,用倒锥钻修成几处倒凹。观察组采用化学固化复合树脂进对患牙进行美容修复;对照组采用光固化复合树脂对患牙进行美容修复[3]。

2 结果

通过对患者采用不同的复合树脂材料进行前牙美容修复,并对患者术后满意度和术后1年后患牙疗效进行调查分析,详细情况如表1所示。

3 结论

通过调查分析,两组患者通过采用不同的复合树脂材料对患牙进行美容修复后,其观察组患者满意度为90.6%,对照组为80.%,观察组术后1年后患牙疗效很好的为86.2%,对照组为66.7%,可以看出,观察组不论是在患者术后满意度还是术后1年后患牙疗效方面均明显高于对照组,对此化学固化复合树脂较光固化复合树脂作为前牙美容修复材料,疗效好,更受患者喜爱。

3.1两种复合树脂材料的化学性质

①化学固化复合树脂在复合材料成型时,由预浸料铺叠、纤维缠绕等根据树脂的化学结构和复合材料的性能要求选用固化剂,使固化过程可多种温度下完成。②光固化复合树脂为单糊剂组分,使用时不需调搅。颜色和透明度与天然牙相似,化学稳定和色泽稳定。

3.2化学固化复合树脂作为前牙美容修复材料的作用

任何材料用于牙齿美容修复在很大程度上取决于医生的临床经验、对材料的了解以及良好的操作技术等,化学固化复合树脂美容修复患牙也不例外。医务人员运用化学固化复合树脂做出逼真的修复体,再将天然牙体组织的光学特性运用到现代复合树脂系统中,分层树脂充填技术和全瓷修复一样能够让人们对修复的效果有所预见,并能使患者在短期内改变面部形象,所以我们认为化学固化复合树脂美容修复治疗是微创的、简便的、快捷、经济的且安全和高效的治疗方法,是部分前牙美观缺陷患者的首选治疗方案[4,5]。

综上所述:近年来,随着社会经济的不断发展,人们生活水平的不断提高,其各类牙齿问题也随之出现,于此同时,人们对自身形象要求也逐步提高。结合我院口腔科就诊患者情况分析,大多患者特别是年轻人,他们为了达到理想的效果,对换牙修补的美容效果也越来越高,对牙齿修复材料的选取也很挑剔。但是如果想让患牙修补后达到理想的美容效果,还得必须根据患牙的情况来对应选取适当的材料,这样美容和修复的效果才好。

参考文献

[1] 祝康.金属烤瓷牙修复96例临床观察[J].中国医学创新.2012(07):78~79.

[2] 单保忠,韩友群,马缨卫,马峰,房建宏.全牙列颌垫治疗年轻恒牙根折的临床观察[J].中国医学创新.2011(26):152~153.

[3] 林嘉旭.临界正畸患者不同处理措施对牙硬组织变化的研究[J].中国医药导刊.2011(01):83~84.