现代农业生物技术应用影响

时间:2022-03-28 08:25:00

现代农业生物技术应用影响

一、现代农业生物技术的风险

现代生物技术由一组新技术组成———基因组学、组织培养、微观繁殖、遗传标记辅助育种、基因移接和转基因[1]2,还包括分子生物学、生物信息学等。围绕现代农业生物技术的风险讨论主要集中于转基因作物的环境释放、遗传控制育种所带来的对环境的影响和人类健康的影响。转基因鱼、畜禽动物基因工程研究因为处于试验研究阶段,尚未有其产品引入自然界和人类的食物链中,公众的关注主要集中在伦理方面。(一)转基因及其产品的环境安全性转基因作物种植可能带来的某些环境外部性,由于具有不可逆转性,引起人们极大的关注。转基因作物在自然环境种植释放,因为自然生态系统的复杂性与开放性,即非实验条件下的不可控性,环境影响必然存在。但是我们不可能确切知道新生物体与那些自然生态系统中的已有生物体是否会发生相互作用,以及作用的后果又是什么,因此,对环境构成的风险非常难以评估。人们非常关注转基因作物在自然环境种植释放,是否会发生水平基因转移使标记基因漂移到非目标物种、与近缘物种异型杂交变成杂草,转基因植物的抗病毒基因是否会导致新的病原菌产生等等影响问题。水平基因转移(HorizontalGeneTransfer,HGT)是指遗传物质在两个不具有亲和性的有机体(供体与受体)之间转移。转基因作物发生HGT的可能性及造成的影响并不需要过多的忧虑,除非有充分的证据证明从植物到其它生物体的HGT造成了严重影响。事实上,自然生长的植物中遗传基因的流动是普遍存在的。所有的农作物在某些地区都有自己的亲缘植物,而如果两个物种的生长数量非常接近,则基因流动的现象就会普遍发生。目前被批准商业化生产的转基因植物中,大部分是以抗病、抗虫、抗除草剂、抗逆境为目标,这些具有特别遗传特性的转基因植物在特定环境下的生存能力明显强于普通植物,因而具有转化为不可控制杂草的能力。但是,遗传修饰作物与栽培种一样,转变成杂草的可能性都非常小[2]。“终结性技术”即遗传应用的限制技术(GURTs)选育的不育种子,不会污染基因库,因为这种特征不能传递,但是,不育种子的外源基因可能漂移污染其它植物,因为植物中遗传基因的流动是普遍存在的。农民如果留存不育种子繁殖的第二代种子来年种植,具体品种的遗传应用限制技术(V2GURTs)限制了第二代种子的繁殖能力,可能对农民造成严重的经济后果。病菌和害虫能快速适应新的抗性基因[3],但是没有证据表明转基因植物的种植可以造成新的病原菌和害虫的产生。抗虫作物或那些基因工程药物可能杀死非目标生物体(例如美洲产的一种褐色的大蝴蝶),甚至是有益的昆虫和真菌[4]。转基因Bt玉米毒死黑脉金斑蝶的幼虫可谓转基因作物短期不良反应的一个实例[5],据推测长期不良效应的发现正如六六六、DDT、PPA等药物的不良效应一样需要一定时间。尽管经调查有人指出,这项实验是有意不模拟自然环境所进行的非选择性实验。一些内生杀虫剂作物像紫云杆菌(Bacillusthuringienesis,简称Bt)作物(如Bt玉米、Bt棉花、Bt大豆、Bt马铃薯),导入了对杀虫剂进行编码的基因[6]186,诸如此类的抗病、抗虫等转基因作物的大量种植极大的减少了杀虫剂的使用量,可增加生物多样性。抗病、抗虫、抗除草剂、抗逆境等转基因作物的大量种植,在特定环境下的生存能力明显强于普通植物,可能会对本地普通植物造成侵害[7];抗除草剂转基因作物的种植,必将大幅度提高除草剂的使用量,从而加重环境污染的程度以及降低农业生物多样性;转基因作物在已有的7000多种粮食作物中所占比例虽小,然而,大规模种植势必减少农业生物品系的多样性。转基因作物对生物多样性的危害基本上是假定的,人们对食物的需求而将自然生态系统转换成农业生态系统是生物多样性所面临的最大威胁[8]。相对于发达国家对生态环境的过渡开采和浪费以及发展中国家人口数量给生态系统造成的巨大压力[9],转基因作物对生物多样性的影响并未造成严重后果。(二)农业生物技术及其产品对人类健康的风险目前的科学技术水平还不可能准确地预测一个转基因作物及其产品中的外源基因在新的生物体中会产生什么样的作用。科学家还不能令人信服地用已知的有关转基因食品的化学成分来预测转基因食品的生化或毒理学效应。一种转基因食品在化学成分上与其自然存在的对应食品相似,并不能够说明人类食用该转基因食品是安全的[10],因而转基因作物性食品的食用安全性问题受到公众的普遍关注。公众对转基因作物食品的食用安全性的担心与疑虑主要是:转基因植物食品中的外源基因的安全性;转基因作物中外源基因编码产物的安全性;转基因作物中的外源基因被摄人人体后,与动物或人类的肠道中的微生物群能否发生相互水平基因转移(HGT),进行基因交换的可能及其影响;转基因作物食品中抗生素标志基因编码蛋白是否会使食用者产生抗生素抗药性,以及外源基因、表达产物及其代谢产物的直接毒性、过敏性、抗药性等。传统科学界的大多数人不认为消费转基因食品对公众构成了潜在的危险。目前来讲,除了转巴西坚果基因大豆有致敏性,转GNA基因马铃薯的安全性有争议外,其它许多的转基因食品已被现在的研究结果证明是安全的,但转基因食品的长期效应有待探讨[11]。对转基因食品持安全态度的英国皇家学会证实并指出[12]:(1)转基因产品通常与它们的常规对应物是相同的,例如用转基因甜菜生产的食糖;(2)作为加工的结果,大多数转基因食品将不包含能存活的基因或DNA,因此,这些物质不能被传递;(3)当“外源”DNA在人的唾液里能存活20分钟、在人的胃里能存活8秒钟时,没有证据表明这样的DNA被结合本论文由整理提供

进人类细胞的遗传物质中了。……结果,人类和其他动物食用转基因食品是安全的。当然,也有持疑虑态度的专家。原中科院生物科学与技术局局长钱迎倩分析说,转基因的商业化只是最近几年的事情,而转基因生物对环境及人体健康的影响可能需要10年、20年甚至是40年才能观察出结果,危险也许是潜在的。国家环保总局生物安全管理办公室官员王捷,以另一种方式表示其对转基因作物及其产品的安全警示:“过去谁也不知道四环素有问题,等我们的牙黄了,就晚了。要知道,对于未来可能发生的事情,谁也说不好。”例如一种Bt基因的产物Cry9C,在称为StarLink的玉米中表达,被怀疑可能是一种潜在的过敏原[13]。美国环保局仅批准其用于动物饲料,禁止其用于食品生产。但是,2000年9月及随后进行的检测却发现,许多玉米食品中竟然含有StarLink。生产StarLink的玉米的美国阿凡迪斯公司,2002年3月为消费者的集体诉讼支付了900万美元。此外,为回收市场上可能含有StarLink的300多种食品,阿凡迪斯和相关保险公司支付了约10亿美元。2002年6月,英国《自然生物技术》杂志发表的一篇评论称,值得庆幸的是,目前还没有发现混有StarLink的食品影响消费者健康的情况。但如果这是一种用于生物制药的转基因品种混入人类的食物链,情况又会如何呢?[14]英国动物饲料咨询委员会的一项新近研究提出,转基因物质可能被传递给吃转基因饲料的动物[15],显示了这些基因可能在动物饲料的生产过程中经受住了加热程序。据此推测,人类吃下用这种饲料喂养的动物产品也可能吸收转基因物质,但是尚没有采取正式的科学测试来检验。同时,种植和食用转基因作物及其产品对人类健康和食品安全的也有积极意义。我们不应该忽略发展中国家因食物短缺所造成的人类健康问题,尼日利亚农业部长哈桑•阿塔姆在《华盛顿邮报》的一篇文章中这样写到:“我们不想因为有人错误地认为我们不了解生物技术的风险或将来的后果,就要我们放弃农业生物技术。……,我们不会因为有人认为他们比别人更懂得如何生活或者他们有权强加其价值观这类大错特错的观点,就放弃农业生物技术。残酷的现实是,如果没有农业生物技术的帮助,许多人将无法生存。”[16]此外,抗病、抗虫类转基因作物例如Bt玉米、Bt棉花、Bt大豆、Bt马铃薯等的大量种植,极大的减少了杀虫剂的使用量,由于农药使用量的减少,农民的健康状况也得到改善[17]。安全永远是相对的,绝对安全的食品根本不存在。因此,有理由相信公众对农业生物技术及其产品(转基因作物食品)的食用安全性的质疑在所难免,危险也许是潜在的,转基因食品是否具有有害作用如引起食物中毒,引发致癌、致畸和致突变,或产生过敏、营养不良和感觉不良等后果,需要长期的观察和科学检验才能得出结论。(三)农业生物技术及其产品的安全管理随着转基因生物国际贸易的不断发展,转基因生物安全性的管理从一开始就受到世界各国的重视,从事转基因研究和开发的国家各自均有比较完善的、以科学为基础的管理规则,这些制度的建立对转基因的研究和开发的健康而有序地发展起到了很好的作用。有关生物安全管理事务国际间的协调和国际统一法规也逐渐趋于达成,世界各国及国际组织制定规则的程序来确实保护人类健康与环境安全。联合国环境规划署(UNEP)和《生物多样性公约》秘书处组织制定了国际《生物安全议定书》,2001年1月,包括我国在内的113个国家(地区)在加拿大签署联合国《生物安全议定书》。其中明确规定,消费者有对于转基因食品的知情权,转基因产品越境转移时,进口国可对其实施安全评价与标识管理。2000年联合国粮农组织和世界卫生组织(FAO/WHO)了转基因食品潜在过敏性评估程序,2001年Inter2governmentalTaskForce提出了生物技术食品的一个特别法规,稍后,联合国粮农组织和世界卫生组织组织专家咨询委员会,整合了IntergovernmentalTaskForce提出的评估程序,公布了一个新的转基因食品潜在过敏性评估程序。FAO与WHO拟将转基因食品纳入国际食品法典的内容,规范转基因食品的安全管理;联合国工业发展组织(U2NIDO)、经济合作与发展组织(OECD)等则主要在生物安全评价和管理的规范程序和技术标准等方面发挥着积极的作用。目前各国在实验室安全方面,均制定了比较完善的指南和规范,而在转基因产品安全管理方面还没有统一的国际标准,在管理方式上各国间存在明显差异。根据监控原则和管理方式的不同,国际上主要有3种管理模式:以产品为基础的模式———以美国为代表,监控管理的对象应是生物技术产品,而不是生物技术本身;以工艺过程为基础的模式———以欧盟为代表,重组DNA技术有潜在危险,不论是何种基因、何类生物,只要是通过重组技术获得的转基因生物,都要接受安全性评价和监控;中间模式———包括澳大利亚、日本等国和许多发展中国家。20世纪90年代以来,美国、加拿大、澳大利亚、日本、新西兰、俄罗斯、瑞士、挪威、韩国以及欧盟国家陆续建立起比较完善的生物安全管理体系。发展中国家的生物技术发展和安全管理起步较晚,近年不少发展中国家急起直追,技术研发投入增加,立法管理进程加快。拉美的阿根廷、巴西、墨西哥,亚洲的印度、泰国、马来西亚、菲律宾、印度尼西亚、沙特阿拉伯、斯里兰卡,非洲的南非、埃及、尼日利亚、肯尼亚等,分别颁布了本国的生物基因工程法规。我国政府十分重视转基因生物安全管理问题。1993年12月份国家科委了《基因工程安全管理办法》,提出了转基因的申报、审批、安全控制。1996年7月份农业部了《农业生物基因工程安全管理实施办法》,要求对转基因生物要登记、审查。1999年国家环保总局了《中国国家生物安全框架》,提出了我国在生物安全方面的政策体系、法规框架,风险评估、风险管理技术准则,国家能力建设。2001年5月23日国务院公布了《农业转基因生物安全管理条例》,在这个条例里面,把农业转基因生物进行了定义,规定了对研究、试验的要求,要取得的安全证书;生产、加工,要取得生产许可证;经营,要取得经营许可证,要求在中国境内销售列入目录的农业转基因生物要有明显的标志,要标识;对贸易也规定了所有出口到中国来的转基因的生物以及加工的原料,都需要中国颁发的转基因生物安全证书,如果不符合要求,要退货或者销毁处理。农业部2002年1月5日颁发了《农业转基因生物安全评价管理办法》、《农业转基因生物进口安全管理办法》、《农业转基因生物标识管理办法》三个配套规章,加强我国对农业转基因生物实行标识管理。2002年4月卫生部了《转基因食品卫生管理办法》,也是对所有的转基因食品要求标识。这些规章制度保障了我国农业生物安全和食物安全。全球转基因作物种植面积从1996年的170万公顷增加到2005年的9000万公顷,全球转基因作物栽培国家达到了21个。来自澳大利亚经济学家的一项研究指出,估计到2015年,全球在转基因谷物、油菜籽、水果和蔬菜上将获得潜在利益2100亿美元。沈桂芳认为,按照目前的发展趋势,到2010年全球转基因作物种植面积将达115亿公顷,届时将会有30个国家的1500万农民种植转基因作物[18]。据国际农业生物技术应用机构统计和预测,在全球范围内,转基因作物的销售额2005年将达到80亿美元,2010年将达到280亿美元[19]。巨大的经济利益将影响不同的经济群体和世界经济格局。(一)对不同经济群体的收益影响现代农业生物技术能够产生巨大的经济利益。但哪些经济群体能够从中获得经济收益,或者所获得经济利益的比例大小,对此不同的研究者有不同的观点。一般而言,生产者通常是以利润为导向的市场参与者,主要考虑的是成本和收益问题。由于农业生物技术具有降低农业生产成本,改进农产品品质,增进农业产量和增加农民收人的优点,因此,通常情况下农民会采用生物技术。但是,在转基因农产品市场需求和技术采用成本不确定的情况下,他们不得不考虑技术的采用成本,与常规技术不同的是,生物技术将更多地涉及知识产权和私人垄断问题,可能增加技术的采用成本。现代农业生物技术的采用导致农产品生产成本的下降和投入使用的使用效率,进而导致农产品价格的下降,消费者将因价格的下降而得到好处,但这些技术也可能存在卫生方面的问题而增加消费者的健康成本。卡尔森等人估计种植Bt玉米能够减少杀虫剂的使用,每英亩平均节约成本2180~14150美元。他们估计美国农民从种植抗除草剂基因的大豆上可能获得的平均利润增长为每英亩5165美元[1]12。Fslck2Zepeda,Traxler和Nelson的研究发现,在1996年,美国的农场主从Bt棉花中获得大部分利益(59%),而基因开发商孟山都(Monsan2to)公司只获得21%,消费者得到13%,基因种子供应商DaltaandPineLand公司得到5%。他们还在1999年的研究中发现,在1997年的耐除草剂大豆的收益中,50%由农场主获得,21%由消费者获得,农业生物技术公司只得到22%[6]39。但也有不同的研究结果,是否所有的生产者都将获得这些经济利益尚属可疑。有研究表明,从1999年常规油菜籽和三种耐除草剂品种油菜籽的成本和总收入的对比中可以看出,虽然使用注入抗除草剂基因的加拿大油菜的除草剂费用较低,但是它们的种子成本较高。总的来说,由于产量低,发现注入抗除草剂基因的油菜籽品种的每英亩估计总收入较少[1]12。另一项关于生物技术大豆的研究表明,消费者和生物技术公司获得好处,但对农场主来说,由于单产增加导致价格下降,其好处被抵消了。一项关于Bt玉米的研究表明,Bt玉米种子的价格太高,除非农场主面临欧洲玉米钻蛀虫传染的概率较高且单产水平高于平均水平,否则生产效率的改善和减少农药使用所产生的效益就不能弥补其成本[6]40。还有许多利益是无法计算的。黄季等人的调查表明,在中国,由于使用转基因抗虫棉新品种,农民在农药喷药次数上减少67%,成本降低82%。尽管这个效益被新品种成本提高(转基因抗虫棉品种的种子要比非转基因棉花品种的种子价格高100%~250%)所抵消,但对农民健康成本(因喷洒农药农民经常中毒)而言则降低非常大,即农民因喷药次数的减少而降低了中毒几率(67%)[20]。(二)对不同地区的经济影响现有技术条件下获得批准被广泛应用的转基因作物,不仅使全球农业生产增产、增收,而且还减少农药用量,既降低了生产成本,又减轻了环境污染,具有明显的经济、社会和生态效益,但是国际利益分配有很大差异。2005年全球转基因作物种植面积达9000万公顷,美国国际农业生物基金会的报告说,从栽培面积上看,美国以4980万公顷遥遥领先,其次是阿根廷、巴西和加拿大,分别为1710万公顷、940万公顷和580万公顷[19],这四个国家占据了全球转基因作物种植面积91%的份额。目前转基因作物和技术的专利被发达国家的20多个大公司所垄断,作为农产品生产和出口大国,美国在生物技术的开发和应用上都走在世界前列,从中获取的利益是最大的。自1996年以来全球转基因作物的市场额逐年增加,估计2005将达到80亿美元,2003年美国种植转基因作物的生产者从中获得约19亿美元的经济利益,预计中国将在2010获得潜在利益约50亿美元。农业生物技术降低农业生产成本,使全球消费者以享受较低价格的形式获益,在农业生产中,食品真实价格的下降是全面技术变革的长期结果。事实上,依靠下游食品加工业和零售业的竞争,这些节省的成本以较低价格的形式被传递给消费者。寡头垄断的下游产业能从技术变革中获得增加的租金,结果消费者不能完全占有农场产出价格降低的好处。同时,消费者还从转基因产品(转基因“功能食品”、“强化营养食品”)的健康性、安全性、便利性以及品质性(比如改善口感、口味、色香)等方面获得潜在利益。显而易见,不同国家、不同地区的消费者因为转基因食品管制制度的不同,偏好的差异,信息对称性异质等因素获益情况是不同的。一方面消费者可以享受到农业生物技术带来的利益,另一方面消费者对生物技术产品的关注日益影响转基因商品的生产和贸易。

三、现代农业生物技术的国际贸易问题

转基因产品的贸易问题主要表现在各国之间的国际贸易壁垒上。转基因作物生产大国北美等国家出于维护本国利益,保护出口,认为转基因作物的安全性有保障,并坚持转基因产品在出口时无需经过进口国的批准;而欧盟、日本和大多数第三世界国家为了保护其本国农民的利益,则极力主张限制或禁止转基因产品的进口。国际贸易争端的实质是国家之间利益的对抗。各国之间复杂苛刻的农产品进出口技术法规、标准和质量认证制度,以及进出口商品包装、标识、检验、卫生、环保等要求,构成了更为隐蔽,更难应对的贸易技术壁垒。在农产品问题上,美国认为欧盟对转基因问题的过于谨慎,是保护主义者的惯用手法[21],世界贸易组织成为双方对抗的场所。《实施动植物卫生检疫措施协议》(SPS)和《技术性贸易壁垒协议》(TBT)是两个与转基因生物体问题密切相关的WTO协议,与贸易壁垒有关的SPS主要是为了保护人类、动植物的安全和健康,TBT主要解决一些与保护消费者有关的问题,例如欺骗。两个协议旨在阻止各国政府出于本国利益设置苛刻的贸易壁垒,同时,这些协议也是解决各国之间国际贸易争端的国际法律框架。(一)对日本的贸易影响众所周知,美国是日本大豆、玉米等农产品的主要供货国,日本每年进口大豆约450~500万吨(其中80%来自美国,中国仅占3%~5%)、玉米1600~1650万吨本论文由整理提供

(90%以上来自美国,中国仅占1%左右)。美国是世界上最主要的转基因食品生产国,其60%以上的加工食品含有转基因成分,70%以上的大豆、30%以上的玉米是转基因产品,日本从美国进口的农产品中极可能含有转基因成分。日本“标识法”的实施将直接影响国内转基因农产品消费,从而使日本食品公司转向从美国以外的其他国家进口非转基因农产品,由此有可能使美国对日本玉米和大豆出口减少。尤其是在日本进口的1600~1650万吨玉米中,有200~300万吨是直接供食用的,显然,日本有可能将这部分玉米的进口从美国转向其他国家。如据美国大豆协会日本代表处称,日本2001年的非转基因大豆进口量将猛增40%,达100万吨,印俄密(IOM)(指印第安那,俄亥俄和密歇根三个州)大豆将不再受欢迎。美国大豆协会预计印俄密大豆的进口量将从1999年的3615万吨和1998年的73万吨降至2万吨[22]。(二)对欧盟农产品贸易的影响据统计,由于欧盟施行严格限制转基因农产品的政策,2002~2003年度美国大豆对欧盟12国的出口销售合同量仅为1亿蒲式耳,较上年同期降低了6800万蒲式耳,也是1990年以来的最低值。由于欧盟传统上一直是美国的最大客户,所以出现这一现象令人关注。过去5年内,欧盟12国采购了美国大豆出口总量中的27%。截止到12月初,欧盟12国采购的美国大豆数量占到全年总量的52%[23]。然而,美国农业参赞的法国油籽产量及用量报告中,称法国继续倾向于在动物饲料中强制使用非转基因大豆。这一决定意味着巴西已经获得了法国大豆进口生意的大部分份额。法国饲料行业一直要求大豆和豆粕供应商对含有1%以上生物科技成分的产品进行标示。(三)对美国农产品贸易的影响根据美国农业部的最新年度出口销售报告数据,2002到11月21日,美国2002~2003年度大豆出口量达到757万吨,较上年同期的803万吨降低了5173%,完成了美国农业部全年出口目标2421万吨的31126%。目前已销售但是未装船的数量达到760万吨,低于去年同期的860万吨。2002年度的出口装船数据可以看出,从9月1日到11月中旬,美国大豆出口保持在十分强劲的水平上,仅仅比去年同期落后几个百分点,而如果美国农业部对全年度的出口预测成为现实,那么将会比上年降低近20个百分点[24]。

四、现代农业生物技术的知识产权问题

20世纪6O年代以来出现的“绿色革命”是生物技术在农业中应用的典范。正是依靠以先进高产的农作物品种和化肥、现代灌溉技术的引入为特征的绿色革命,给世界农业经济带来的进步,极大地改善了全球尤其是贫困、落后国家地区的食物供应,使大批人口解决了吃饭问题,基本避免了历史上长期困扰贫困国家和地区的饥荒威胁,使该地区人民的福利得到极大改善。农业研发在20世纪60年代的“绿色革命”时期,没有人对那些在研究过程中使用的基础育种资源、改良品种以及研究方法、数据和成果提出过知识产权的主张,这些资源被视为公共产品,人人都可免费使用。现在是全球范围重视知识产权的时代,无论是私营部门还是公共部门研发的现代农业生物科技都受到知识产权的保护,但是现代农业生物技术的知识产权保护已经突破了传统知识产权保护的范畴,不仅保护作物育种中的实验装备、材料和方法,还包括种质资源和基因组信息等的保护。知识产权能确保研发投资者从现代农业生物技术的开发和产业化中获得利益,加速现代农业技术创新;但同时专利、商标、作物育种者权利、研究材料转让协议、契约、许可证等一系列知识产权规则的引入,使得现代农业生物技术因为知识产权的制约而严重地阻碍后续的创新。发达国家和发展中国家对知识产权保护表现出明显分化的态势,发达国家拥有绝大多数的现代农业生物创新技术,它们强烈倡导知识产权保护,而且那里的知识产权保护力度大而有效;发展中国家认为知识产权应用的垄断对它们的发展进程是不利的[25],这些国家有很小的动力去执行知识产权保护,在一些发展中国家知识产权侵权现象相对严重。同时,由于不存在国际专利和国际商标等统一的知识产权体系,国度的不同,以及时效和管辖范围等因素,使得产权的保护成本非常高昂,也会出现法律问题和国际争端。几乎所有国家政府都制定和扩大了与作物创新相关的知识产权政策,同时,国际上,“保护作物新品种国际联盟”(UPOV)于1962年达成,这是第一个关于作物新品种知识产权的国际协议(其后分别于1972、1978和1991年三次修订),1995年世界贸易组织(WTO)制定的“与贸易相关的知识产权协定”(TRIPs)是规范WTO成员国之间知识产权保护协作的国际性协议。全球范围的国内国际知识产权体系正在建成并日臻完善。

五、结语

现代农业生物技术的发展使世界各国的农业发展和农业经济格局面临挑战与机遇。如果能够成功利用现代农业生物技术提供的机会,不但可以巩固绿色革命的成果,克服农业发展中存在的问题,而且可以顺利应付经济全球化带来的挑战。现代农业生物技术的应用,远未达到传统农业生产的范围和规模,其发展前景极为广阔,发展过程将是长久持续的,有关农业生物技术应用所产生的影响和问题,其争论和研究也将持续。

参考文献:

[1]詹姆斯•D,盖斯福德等.生物技术经济学[M].黄祖辉等译.上海:上海三联书店.上海人民出版社,2003.

[2]王俊杰等.转基因作物对环境影响的讨论[J].分子植物育种,2003,1(4).

[3]MCLNTOSHRA,BROWNGN.Anticipatorybreedingforresistancetorustdiseasesinwheat[J].Annu.Rev.Phytopathology,1997,(35):311-326.

[4]RISSLERJ,MELLONM.TheEcologicalRiskofTransgenicCrops[M].Cambridge:MITPress,1996.

[5]LOSEYJE,RAYORLS,CARTERME.Transgenicpollenharmsmonarchlarvae[J].Nature,1999,399:214.

[6]菲力普G•帕迪.食物的未来[M].温思美等译.北京:中国农业出版社,2002.

[7]RISSLERJ,MELLONM.PerilsAmidstthePromise:EcologicalRisksofTransgenicCropsinaGlobal本论文由整理提供

Market[M].Cambridge:UnionofConcernedScientist,1993.

[8]WorldBankCreatinganEnablingEnvironmentfortheSafeUseofBiotechnology,Washington,D.C.:WorldBank,1995.

[9]SERAGELDINI.WorldPovertyandHunger2theChallengeforScience[J].Science,2002,296:54-58.

[10]陈松等.转Bt2基因抗虫棉棉籽安全性评价———大鼠、鹌鹑毒性试验[J].苏农业学报,1996,12(2):17-22.

[11]魏伟等.转基因食品安全性评价的研究进展[J].自然资源学报,2001,(2).