机械手设计十篇

时间:2023-03-31 09:04:10

机械手设计

机械手设计篇1

关键词:萝卜采收;机械手;机械设计;控制设计

中图分类号:S225.92 文献标识码:A 文章编号:0439-8114(2015)09-2248-04

目前,中国农业机械化对农业生产的贡献率仅为17%,与发达国家存在很大的差距[1]。加速农业现代化进程,实施精确农业,广泛应用农业机器人,以提高资源利用率和农业产出率,降低劳动强度,提高经济效率已成为现代农业发展的必然趋势[2,3]。果蔬的采收方法有手工采收、机械辅助采收和机械化采收3种[4,5],世界萝卜的总产量为4 900万t/年,其中中国680万t/年,国内的采摘作业基本上都是手工进行的,收获作业劳动强度大。随着农业设施的发展和作业机械化的要求,对萝卜种植模式要求也越来越高,种植、管理和收获的劳动量也越来越大,亟需研究开发果蔬收获机器人,实现果蔬的机械化、自动化与智能化收获[6,7],为此,通过对萝卜种植与采收情况的调研,设计了一款萝卜采收机械手,以期为萝卜的自动化采收打下一定的基础。

1 萝卜采收机总体设计

根据萝卜采收过程的特殊性,为了提升萝卜采收的工作效率,所设计的是一种农业机械中的收获机械手,由执行系统、驱动系统和控制系统组成,其组成示意图如图1。

2 萝卜采收机械手关键部位机械设计

萝卜采收机械手的关键部位主要包括:1)手爪部位。手爪部位的主要工作是对萝卜进行抓取,为了减少手部由于惯性带来的不平稳性,此部位采用回转的形式,而手爪只用两根手指代替;2)手腕部位。手腕是连接手爪部位和手臂部位的关键地方,其主要工作是调整萝卜的方位,使萝卜被抓的时候可以进行摆动和回转,辅助萝卜采收过程的连贯性;3)手臂部位。手臂部位的主要作用就是支承,在采收过程中带动其他部件运转,并按照采收要求将萝卜搬运到指定的位置,设计时只需要实现手臂部位的升降与摆动即可。此次设计机械手应实现的功能:萝卜的挖掘、被挖掘的萝卜转移到指定位置,图2为机械手的机构形式简图。

2.1 机械手基本技术参数的选定

由于萝卜生长的自然环境决定了萝卜采摘过程中所需要的拔取力,故需要对不同地方生长的萝卜进行采收力的测定。把细绳系在萝卜的茎叶或者根茎部位,细绳的末端连接计力器材,多次读取并记录最大拉力。图3为湖北省长阳和沙洋两个地区分组测试萝卜拔取力的试验结果,现取5组数据平均值F=80 N,萝卜重量约为0.5kg,故重力G=5 N,摩擦系数f=0.2,夹紧力N=0.5 G/f,得N=12.5 N。

机械手手臂上下行程为500 mm,手腕旋转角度90°,手臂旋转角度90°,按照循环步骤安排确定每个动作的时间,从而确定各动作的运动速度。各动作的时间分配要考虑多方面的因素,包括总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等[8],此次设计各动作依序进行,为保证萝卜的质量必须限制采摘速度及加速度,采摘速度初步定在小于1 m/s,此速度由各关节液压缸流量控制保证。

2.2 机械手末端执行机构的设计

手部是用来直接握持萝卜的部件,由于被握持萝卜的形状、尺寸大小、重量、表面状况等的不同,根据实际要求,设计采用夹钳式的手部结构。夹钳式手部结构由手指、传动机构和驱动装置三部分组成,它对抓取各种形状的物体具有较大的适应性,常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或放松[9]。由于抓取尺寸约为90 mm×240 mm的圆柱体,故采用夹钳式平面指形结构较为合适。

设计中机械手手爪在夹持萝卜时,其夹握力分析简图如图4。为了增大夹握力,采取以下两种方法:①设计铲刀角度170°,以增加手指和萝卜的接触面积;②增大手指和萝卜间的摩擦系数,为此采用较宽手指与萝卜接触,故此处f取0.2,将上述数值代入得:

N=■G=■×5=12.5N 公式(1)

式中,N为夹持萝卜时所需要的握力;G为工件重量转化的重力; f为摩擦系数。

考虑到在传送过程中还会产生惯性力、振动以及受到传力机构效率等的影响,故实际握力还应按公式(2)计算[10]:

N实≥N・■ 公式(2)

式中,η为手部的机械效率,一般取0.85~0.95;k1为安全系数,一般取1.2~2.0;k2为工作情况系数,主要考虑惯性力的影响,按公式(3)估算[10,11]:

k2=1+a/g公式(3)

其中,a为抓取工件传送过程中的最大加速度,g为重力加速度。

若取η=0.9,k1=1.5,k2按a=g/2计算,k2=1+a/g=1.5,则

N实≥N・■=12.5×■≈32 N 公式(4)

2.3 机械手腕部位的设计

机械手腕与机械手臂连接在一起,手臂运动结束后调整手腕的位置状态,以此来提高萝卜采收过程的拔取率。手腕部位的机械结构设计应该力求扎实紧凑,且转动惯性小。手腕也是末端执行部位与机械手臂之间的桥梁,处于手臂部位的前端,手爪的末端,因此其承受载荷的性能直接关系到萝卜的采收过程,在设计的过程中还要考虑其机械强度与刚度,并且要让其布局合理。结合设计要求,设计出腕部位的结构如图5,其为典型腕部结构中具有一个自由度的回转缸驱动的腕部结构,直接用回转液压缸驱动实现腕部的回转运动。

2.4 机械手臂部位的设计

机械手的手臂部位是实现机械手末端手爪进行大尺度位姿变换的关键部件,即把末端手爪部分移动到空间的指定地点。手臂部位的驱动形式主要有液压传动式和机械传动式两种,由于手臂部位的大尺度工作范围,以及工作中也需承受腕部和手爪部位的动力载荷,而且其姿态调整的灵活性影响到机械手的定位精度,因此手臂部位采用液压回转缸的形式实现手臂的大尺度旋转动作,如图6所示的手臂结构,采用一个回转液压缸,实现小臂的旋转运动。从A-A剖视图上可以看出,回转叶片用键和转轴连接在一起,定片和缸体用销钉和螺钉连接,压力油由左油孔进入和右油孔压出,以此来实现手臂部位的旋转。

3 萝卜采收机械手液压驱动系统设计及PLC控制设计

3.1 液压驱动系统的设计

从萝卜采收的工艺过程可以得出,机械手运动的时候液压系统中液压油的压力和流量不需要太高,设计使用电磁换向阀的液压回路可以较好地提高采收过程的自动化程度。从降低供油压力的角度来分析,机械手的液压系统可以采用单泵供油,而手臂部位的旋转和位姿的调整等相关机构采用并联供油。为了防止多缸的运动系统在运动的过程中产生干涉和保证运动过程中实现非同步运动或者是同步运动,油路中的换向阀使用中位“O”型换向阀,夹紧缸换向选用二位三通电磁阀,其他缸全部选用“O”型三位四通电磁换向阀[12,13]。机械手臂位姿调整的过程中要求行程可变,在液压缸的起动和停止的过程中也需要缓冲,但由于回转缸内空间狭小,且回转缸为小流量泵供油,故本系统没有在回转缸换向回路中采用缓冲回路,仅在大流量直动液压缸中采用缓冲回路。

在上述主要液压回路定好后,再加上其他功用的辅助油路(如卸荷、测压等油路)就可以进行合并,完善为完整的液压系统,并编制液压系统动作循环及电磁铁动作顺序表,其中液压原理图如图7。

3.2 PLC控制设计

为了让机械手工作时可靠且有较强的稳定性,控制部分的设计思路是让该机械手的部件顺序动作,所以,在任一时间该机械手都只有一个部件被驱动,而各个部件的运动方式和运动范围都是受其结构限制的[14,15]。PLC的状态流程简图如图8所示,机械手在自动运动状态时每一个周期需要完成以下动作:萝卜采摘开始时,机械手被设定在准备状态,第一步为手臂下降;下降完成后,手爪扎入地下指定深度,进行第二步手爪夹紧;为完成挖萝卜动作,手腕带动手爪及萝卜旋转90°;完成上述动作后,机械手臂向上提升完成拔去动作;手臂摆动90°,以实现对萝卜的转移;最后手臂回摆,手腕回摆,机械手回到初始状态。

4 小结

通过对机器人技术及机械手结构的分析,对萝卜采收的过程进行了研究,确定萝卜采收机械手的整体方案结构,设计萝卜采收机械手的关键结构。萝卜采收机械手能配合萝卜采收机依次完成萝卜的拔取、翻转、转位等动作,但该机械手在结构及工作性能的稳定性方面还需在田间进行试验,控制方案有待根据不同地区的种植情况进行优化。

参考文献:

[1] 方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.

[2] 何 蓓,刘 刚.果蔬采摘机器人研究综述[A].中国农业工程学会学术年会论文摘要集[C].北京:中国农业工程学会,2007.

[3] 赵 匀,武传宇,胡旭东,等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.

[4] 高焕文.农业机械化生产学(上册)[M].北京:中国农业出版社,2002.

[5] 李宝筏.农业机械学[M].北京:中国农业出版社,2003.

[6] 刘小勇.番茄收获机械手机构分析及双目定位系统的研究[D].哈尔滨:东北农业大学,2006.

[7] 李增强,章 军,刘光元.苹果被动抓取柔性机械手的结构与分析[J].包装工程,2011,32(15):14-17.

[8] 李建新.可编程序控制器及其应用[M].北京:机械工业出版社,2004.

[9] 姚璐璐.陆地钻机立柱式钻杆排放系统设计[D].兰州:兰州理工大学,2012.

[10] 陈 红.气动机械手系统设计[D].长春:长春理工大学,2010.

[11] 天津大学《工业机械手设计基础》编写组.工业机械手设计基础[M].天津:天津科学技术出版社,1985.

[12] 王 敏,王 华.PLC在液压实验台上的应用及仿真程序设计[J].长春工程学院学报(自然科学版),2002,3(3):57-59.

[13] JIMENEZA R,CERES R,PONS J L. A survey of computer vision methods for locating fruiton trees[J]. Transactions of the ASAE,2000,43(6):1911-1920.

机械手设计篇2

关键词:机械手;PLC;液压伺服定位;电液系统

目 录

第1章 前言............................................................. 1

1.1 选题背景. 1

1.2 设计目的. 1

1.3 发展现状和趋势. 1

第2章 机械手各部件的设计. 3

2.1机械手的总体设计. 3

2.1.1 机械手总体结构的类型. 3

2.1.2 具体设计方案. 4

2.2机械手手爪结构的设计. 4

2.2.1 设计要求. 4

2.2.2 驱动方式. 5

2.2.3 典型结构. 5

2.2.4 具体设计方案. 6

2.3机械手手腕结构的设计. 7

2.3.1 手腕结构的设计要求. 7

2.3.2 具体设计方案. 7

2.4机械手手臂构的设计. 8

2.4.1 手臂结构的设计要求. 8

2.4.2 具体设计方案. 8

2.5机械手腰座结构的设计. 9

2.5.1 腰座结构的设计要求. 9

2.5.2 具体设计方案. 9

2.6机械手的机械传动机构的设计. 10

2.6.1 传动机构设计应注意的问题. 10

2.6.2 常用的传动机构形式. 10

2.6.3 具体设计方案. 11

2.7机械手驱动系统的设计. 12

2.7.1 常用驱动系统及其特点. 12

2.7.2 具体设计方案. 12

2.8机械手手臂的平衡机构设计. 12

2.8.1 平衡机构的形式. 12

2.8.2 具体设计方案. 13

第3章 理论分析和设计计算. 14

3.1电机选型有关参数计算. 14

3.1.1 有关参数的计算. 14

3.1.2 电机型号的选择. 16

3.2液压传动系统设计计算. 18

3.2.1 确定液压系统基本方案. 18

3.2.2 拟定液压执行元件运动控制回路. 19

3.2.3 液压源系统的设计. 19

3.2.4 绘制液压系统图. 20

3.2.5 确定液压系统的主要参数. 21

3.2.6 计算和选择液压元件. 26

第4章 机械手控制系统的设计. 28

4.1系统硬件设计. 28

4.1.1 操作面板布置. 28

4.1.2 工艺过程与控制要求. 28

4.1.3 作业流程. 29

4.1.4 控制器的选型. 30

4.1.5 控制系统原理分析. 31

4.1.6 PLC外部接线设计. 31

4.1.7 I/O地址分配. 32

4.2系统软件设计. 33

4.2.1 控制主程序流程图. 33

4.2.2 控制程序设计. 34

结论. 51

致谢................................................................52

参考文献.......................................................... 53

第一章 前言

1.1选题背景

由于工业自动化的全面发展和科学技术的不断提高,对工作效率的提高迫在眉睫。单纯的手工劳作以满足不了工业自动化的要求,因此,必须利用先进设备生产自动化机械以取代人的劳动,满足工业自动化的需求。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。

1.2设计目的

目前,我国大多数工厂的生产线上数控机床装卸工件仍由人工完成,其劳动强度大、生产效率低,而且具有一定的危险性,已经满足不了生产自动化的发展趋势。为了提高工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代机械行业自动化生产的要求,针对具体生产工艺,结合机床的实际结构,利用机械手技术,设计用一台上下料机械手代替人工工作,以提高劳动生产率。本机械手主要与数控机床组合最终形成生产线,实现加工过程的自动化和无人化。

1.3发展现状和趋势

目前,国内外各种机械手和机械手的研究成为科研的热点,其研究的现状和大体趋势如下:

一.机械结构向模块化、可重构化发展。

二.工业机械手控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,结构小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性,而且维修方便。

三.机械手中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,还引进了视觉、听觉、接触觉传感器,使其向智能化方向发展。

四.关节式、侧喷式、顶喷式、龙门式喷涂机械手产品标准化、通用化、模块化、系列化设计;柔性仿形喷涂机械手开发,柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发;

五.焊接、搬运、装配、切割等作业的工业机械手产品的标准化、通用化、模块化、系列化研究;以及离线示教编程和系统动态仿真。

总的来说,大体是两个方向:其一是机械手的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,性价比高,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。

第二章机械手各部件的设计

2.1机械手的总体设计

2.1.1机械手总体结构的类型

工业机械手的结构形式主要有四种:直角坐标结构,圆柱坐标结构,球坐标结构和关节型结构。各结构形式及其相应的特点,分别介绍如下:

1.直角坐标机械手结构特点

直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1.a。由于直线运动易于实现全闭环的位置控制,因此,其运动位置精度高,但此种类型机械手的运动空间相对较小,如要达到较大运动空间,则要求机械手的尺寸足够大。直角坐标机械手的工作空间为一空间长方体,主要用于装配作业及搬运作业。直角坐标机械手有悬臂式,龙门式,天车式三种结构。

2.圆柱坐标机械手结构特点

圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1.b。其工作空间是一个圆柱状的空间。这种机械手构造比较简单,精度相对较高,常用于搬运作业。

3.球坐标机械手结构特点

球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1.c。其工作空间是一个类球形的空间。这种机械手结构简单、成本较低,但精度不很高,主要应用于搬运作业。

4.关节型机械手结构特点

关节型机械手的空间运动是由三个回转运动实现的,如图2-1.d。相对机械手本体尺寸,其工作空间比较大,动作灵活,结构紧凑,占地面积小。此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业。关节型机械手又分为水平关节型和垂直关节型两种。

2.1.2具体采用方案

如图2-2所示机械手模拟工作布局图,根据实际操作的需要,该机械手在工作中需要3种运动,其中手臂的伸缩和立柱升降为直线运动,另一个为手臂的回转运动,因此其自由度数目为3,综合考虑,应选择圆柱坐标机械手结构,其结构简单,工作范围相对较大,且有较高的精度,满足设计要求。

2.2机械手手爪结构设计

2.2.1设计要求

手爪是用来进行操作及作业的装置,其种类很多,根据操作及作业方式的不同,分为搬运用、加工用、测量用等。搬运用手爪是指各种夹持装置,用来抓取或吸附被搬运的物体;加工用手爪是带有喷枪、焊枪、砂轮、铣刀等加工工具的机械手附加装置,用来进行相应的加工作业;测量用手爪是装有测量头或传感器的附加装置,用来进行测量及检验作业。

机械手手爪设计有如下要求:

1、机械手手爪是根据机械手作业要求来设计的。既根据其应用场合设计手爪,在满足作业要求的前提下,机械手手爪还要求体积小、重量轻、结构紧凑。

2、机械手手爪的万能性与专用性是矛盾的。万能手爪在结构上很复杂,甚至很难实现,从工业实际应用出发,应着重开发各种专用的、高效率的机械手手爪,加之以快速更换装置,以实现机械手的多种作业功能,而不主张用一个万能的手爪去完成多种作业,以考虑设计的经济效益。

3、机械手手爪的通用性。通用性是指有限的手爪,可适用于不同的机械手,这就要求末端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化。

4、机械手手爪要便于安装和维修,易于实现计算机控制。

2.2.2驱动方式

一般工业机械手手爪,多为双指手爪。按手指的运动方式,可分为回转型和移动型;按夹持方式来分,有外夹式和内撑式两种。

机械手夹持器(手爪)的驱动方式主要有三种:

1.气动驱动方式

这种驱动系统是用电磁阀来控制手爪的运动方向,用气流调节阀来调节其运动速度。由于气动驱动系统价格较低,所以气动夹持器在工业中应用较为普遍。另外,由于气体的可压缩性,使气动手爪的抓取运动具有一定的柔顺性,这一点是抓取动作十分需要的。

2.电动驱动方式

电动驱动手爪应用也较为广泛。这种手爪,一般采用直流伺服电机或步进电机,并需要减速器以获得足够大的驱动力和力矩。电动驱动方式可实现手爪的力与位置控制。但是,这种驱动方式不能用于有防爆要求的条件下,因为电机有可能产生火花和发热。

3.液压驱动方式

液压驱动方式是利用液压系统进行控制,传动刚度大,可实现连续位置控制。

2.2.3典型结构

机械手手爪的典型结构有以下五种:

1.楔块杠杆式手爪

利用楔块与杠杆来实现手爪的松、开,来实现抓取工件。

2.滑槽式手爪

当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞向后运动时,手爪松开。这种手爪开合行程较大,适应抓取大小不同的物体。

3.连杆杠杆式手爪

在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。

4.齿轮齿条式手爪

通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。

5.平行杠杆式手爪

采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,且比带有导轨的平行移动手爪的摩擦力要小得多。

2.2.4具体设计方案

结合具体的工作情况,本设计采用连杆杠杆式的手爪。驱动活塞往复移动,通过活塞杆端部齿条,中间齿条及扇形齿条使手指张开或闭合。手指的最小开度由加工工件的直径来调定。本设计按照工件的直径为50mm来设计。手爪的具体结构形式如图2-3所示:

2.3机械手手腕结构的设计

机械手手腕是机械手操作机的最末端,与手爪相连接,它与机械手手臂配合,使手爪在空间运动,完成所需要的作业动作。

2.3.1 手腕结构的设计要求

1、由于手腕安装在机械手末端,因此要求手腕设计应尽量小巧轻盈,结构紧凑。

2、根据作业需要,设计机械手手腕的自由度。一般情况下,自由度数目愈多,腕部的灵活性愈高,对对作业的适应能力也愈强。但自由度的增加,必然使腕部结构更复杂,控制更困难,成本也会相应增加。因此,手腕的自由度数,应根据实际作业要求来确定。

3、为实现腕部的通用性,要求有标准的连接法兰,以便于和不同的机械手手爪进行连接。

4、为保证工作时力的传递和运动的连贯,腕部结构要有足够的强度和刚度。

5、要设有可靠的传动间隙调整机构,以减小空回间隙,提高传动精度。

6、手腕各关节轴转动要有限位开关,并设置硬限位,以防止超限造成机械损坏。

2.3.2具体设计方案

通过对数控机床上下料作业的具体分析,考虑数控机床加工的具体形式及对机械手上下料作业时的具体要求,在满足系统工艺要求的前提下提高安全和可靠性,为使机械手的结构尽量简单,降低控制的难度,本设计手腕不增加自由度,实践证明这是完全能满足作业要求的,3个自由度来实现机床的上下料完全足够。具体的手腕(手臂手爪联结梁)结构见图2-4。

2.4机械手手臂结构的设计

2.4.1手臂结构的设计要求

机械手的手臂在工作时,要承受一定的载荷,且其运动本身具有一定的速度,因此,机械手手臂的设计需要遵循以下设计要求:

1、工作空间的形状和大小与机械手手臂的长度,手臂关节的转动范围有密切的关系,因此手臂尺寸设计应合理,一般满足其工作空间即可。

2、为了提高机械手的运动速度与控制精度,应在保证机械手手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。

3、应尽可能使机械手手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手的控制。

4、机械手各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。

5、为提高机械手手臂运动的响应速度、减小电机负载,机械手的手臂相对其关节回转轴应尽可能在重量上平衡。

2.4.2具体设计方案

由于机械手手臂运动为直线运动,且考虑到搬运工件的重量较大(质量达30KG),以及机械手的动态性能及运动的稳定性,安全性和较高的刚度要求,因此选择液压驱动方式。通过液压缸的直接驱动,液压缸既是驱动元件,又是执行运动件,因此不用再额外设计执行件;而且液压缸实现直线运动,控制简单,易于实现计算机的控制。

由于液压系统能提供很大的驱动力,因此驱动力和结构的强度都较容易实现,其关键在于机械手运动的稳定性和刚度的设计。因此手臂液压缸的设计原则是液压缸的直径取得大一点(在整体结构允许的情况下),再进行强度的较核。

同时,因为控制和具体工作的要求,机械手的手臂的结构不能太大,若仅仅通过增大液压缸的直径来增大刚度,是不能满足系统刚度要求的。因此,在设计时另外增设了导杆机构,小臂增设了两个导杆,与活塞杆一起构成等边三角形的截面形式,尽量增加其刚度;大臂增设了四个导杆,成正四边形布置,为减小质量,各个导杆均采用空心结构。通过增设导杆,能显著提高机械手的运动刚度和稳定性,比较好的解决了结构、稳定性的问题。

2.5机械手腰座结构的设计

2.5.1腰座结构的设计要求

机械手的腰座,就是机械手的回转基座。它是机械手的第一个回转关节,承受了机械手的全部重量。因此在设计机械手腰座结构时,有以下设计要求:

1、由于腰座要承受机械手全部的重量和载荷,因此,机械手腰座的结构要有足够大的强度和刚度,以保证其承载能力,且腰座是机械手的第一个回转关节,它对机械手末端的运动精度影响最大,因此,在设计时要特别注意腰部轴系及传动链的精度与刚度。

2、腰部结构要便于安装、调整。要有可靠的定位基准面和调整机构。且腰座要安装在足够大的基面,以保证机械手在工作时整体安装的稳定性。

3、腰部的回转运动要有相应的驱动装置,它包括驱动器及减速器。驱动装置一般都带有速度与位置传感器,以及制动器。

4、为了减轻机械手运动部分的惯量,提高控制精度,要求回转运动部分由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。

2.5.2具体设计方案

腰座回转的驱动形式主要有两种,一是电机通过减速机构来实现,二是通过摆动液压缸或液压马达来实现。考虑到腰座是机械手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。因为电动方式控制的精度高,结构紧凑,不用额外设计液压系统及其辅助元件。由于电机都不能直接驱动,并考虑到转速以及扭矩的具体要求,故采用大传动比的齿轮传动系统进行减速和扭矩的放大。由于齿轮传动存在着齿侧间隙,影响传动精度,故仅采用一级齿轮传动,采用大的传动比(大于100),同时为了减小传动误差,齿轮采用高强度、高硬度的材料,高精度加工制造。腰座具体结构如图2-5所示:

2.6机械手的机械传动机构设计

2.6.1传动机构设计应注意的问题

由于传动部件直接影响着机械手的精度、稳定性和快速响应能力,因此,在设计机械手的传动机构时要注意以下问题:

1、机械手的传动机构要力求结构紧凑,重量轻,体积小,以提高机械手的运动速度及控制精度。并在传动链及运动副中采用间隙调整机构,以减小反向空回所造成的运动误差。

2、尽量减少系统运动部件的静摩擦力,而正摩擦力为尽可能小的正斜率,以消除爬行现象,增加系统寿命。

3、尽量缩短传动链,提高传动与支承刚度。

4、选用最佳传动比,以达到提高系统分辨率、减少等效到执行元件输出轴上的等效转动惯量,尽可能提高加速能力。

5、适当的阻尼比。阻尼比越大,零件产生振动时最大振幅越小,衰减越快。但大的阻尼会使系统误差增大,精度降低。故应采取合适的阻尼比。

2.6.2常用的传动机构形式

常用的机械传动机构主要有螺旋传动、齿轮传动、链传动、同步带传动等。

1.螺旋传动

它主要是用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。有传递能量为主的,如螺旋压力机、千斤顶等;有以传递运动为主的,如机床工作台的进给丝杠。

2.齿轮传动

在机械手中常用的齿轮传动机构有圆柱齿轮,圆锥齿轮,谐波齿轮,摆线针轮及蜗轮蜗杆传动等。

齿轮传动部件是转矩、转速和转向的变换器,用于伺服系统的齿轮减速器是一个力矩变换器。齿轮传动时,齿轮传动形式及其传动比必须是最佳匹配,应满足驱动部件与负载之间的位移及转矩、转速的匹配要求,其输入电动机为高转速,低转矩,而输出则为低转速,高转矩,且系统要有足够的刚度。同时,为保证在同一驱动功率时,其加速度响应最大,还要求其转动惯量尽量小。为使系统稳定,不产生传动死区,要尽量采用齿侧间隙小,精度高的齿轮,并采用调整齿侧间隙的方法来消除或减小啮合间隙,从而提高传动精度和系统的稳定性,降低成本。

3.链传动

在机械手中链传动多用于腕传动上,为了减轻机械手末端的重量,一般都将腕关节驱动电机安装在小臂后端或大臂关节处。由于电机距离被传动的腕关节较远,故采用精密套筒滚子链来传动。

4.同步带传动

同步带传动是综合了普通带传动和链传动优点的一种新型传动。为保证带和带轮作无滑动的同步传动,在带的工作面及带轮外周上均制有采用承载后无弹性变形的高强力材料制成啮合齿,通过齿间啮合进行传动。其特点是传动比准确、传动效率高(可达98%)、节能效果好;能吸振、噪声低、不需要润滑;传动平稳,能高速传动(可达40m/s)、传动比可达10,结构紧凑、维护方便等优点,故在机械手中使用很多。

2.6.3具体设计方案

因为选用了液压缸作为机械手的手臂,它既是关节结构,又是动力单元,因此不需要中间传动机构,既简化了结构,又提高了精度。而其腰座的回转采用步进电动机驱动,而电动机不能作为直接驱动元件,因此为取得较大的转矩,经分析比较,选择圆柱齿轮传动。为了保证比较高的精度,尽量减小因齿轮传动造成的误差;同时大大增大扭矩,以较大的降低电机转速,使机械手的运动平稳,动态性能好。这里只采用一级齿轮传动,采用大的传动比(大于100),齿轮采用高强度、高硬度的材料,高精度加工制造。

2.7机械手驱动系统设计

2.7.1常用驱动系统及其特点

工业常用驱动系统,按动力源分为液压、气动和电动三大类。根据需要也可将这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的主要特点如下。

1.液压驱动系统

具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动、精度高等特点。适合于在承载能力大,惯量大以及在防火防爆的环境中工作的机械手。

2.气动驱动系统

具有速度快,系统结构简单,维修方便、价格低等特点。适用于中、小负荷的机械手中采用。但是因难于实现伺服控制,多用于程序控制的机械手中。

3.电动驱动系统

具有使用方便,噪声较低,控制灵活等特点。这类驱动系统不需要能量转换,但大多数电机后面需安装精密的传动机构。

2.7.2具体设计方案

在分析了具体工作要求后,综合考虑各个因素,机械手腰部的旋转运动需要一定的定位控制精度,因此采用步进电动机来实现。由于手臂采用液压缸,故用液压驱动。随着机床加工的工件的不同,手臂伸出长度不同,要求手臂具有伺服定位能力,故采用电液伺服液压缸进行驱动。而手爪的张开和夹紧通过液压柱塞缸活塞与中间齿轮和扇形齿轮配合来实现,即手爪在柱塞缸推力作用下通过活塞杆端部齿条、中间齿轮及扇形齿轮使手指张开和闭合。

2.8 机械手手臂的平衡机构设计

直角坐标型、圆柱坐标型和球坐标型机械手可以通过合理布局,优化设计结构,使得手臂本身可能达到平衡。关节机械手手臂一般都需要平衡装置,以减小驱动器的负荷,同时缩短启动时间。

2.8.1平衡机构的形式

1.配重平衡机构

这种平衡装置结构简单,平衡效果好,易于调整,工作可靠,但增加了机械手手臂的惯量与关节轴的载荷。一般在机械手手臂的不平衡力矩比较小的情况下采用这种平衡机构。

2.弹簧平衡机构

弹簧平衡机构,机构简单、造价低、工作可靠、平衡效果好、易维修,因此应用广泛。

3.活塞推杆平衡机构

活塞式平衡系统分为两种,一是液压平衡系统,二是气动平衡系统。其中液压平衡系统平衡力大,体积小,有一定的阻尼作用;而气动平衡系统,具有很好的阻尼作用,但体积比较大。活塞式平衡需要配备有专门的液压或气动装置,系统复杂,因此造价高,设计、安装和调试都增加了难度,但是平衡效果好。用于配重平衡、弹簧平衡满足不了工作要求的场合。

2.8.2具体设计方案

因为本机械手采用圆柱坐标型的结构,而且在手臂的结构设计以及整个机械手的设计和布局中都重点考虑了机械手手臂的平衡问题,通过合理布局,优化设计结构,使得手臂本身尽可能达到平衡。若实际工作中平衡结果不满足,则设置弹簧平衡机构进行平衡。

第3章 理论分析和设计计算

3.1电机选型有关参数计算

3.1.1有关参数的计算

1.若传动负载作直线运动(通过滚珠丝杠)则有

具体到本设计,因为步进电机是驱动腰部的回转,传递运动形式属于第二种。下面进行具体的计算。

因为腰部回转运动只存在摩擦力矩,在回转圆周方向上不存在其他的转矩,则在回转轴上有;

3.1.2电机型号的选择

根据以上计算结果,并综合考虑各方面因素,决定选择北京和利时电机技术有限公司(原北京四通电机公司)的步进电机,具体型号为:

110BYG550B-SAKRMA-0301 或 110BYG550B-SAKRMT-0301 或 110BYG550B-BAKRMT-0301,该步进电机高转矩,低振动,综合性能很好,各项参数如表3-2。

其中 110BYG550B-SAKRMA-0301型步进电机矩频特性曲线和相关技术参数。如图3-3所示

驱动方式为升频升压 ,步距角为0.36°。同时因为腰部齿轮传动比为1:120,步进电机经过减速后传递到回转轴,回转轴实际的步距角将为电机实际步距角的1/120(理论上),虽然实际上存在着间隙和齿轮传动非线性误差,实际回转轴的最小步距角也仍然是很小的,故其精度相当高,完全满足机械手的定位精度要求。

3.2液压传动系统设计计算

3.2.1确定液压系统基本方案

液压执行元件大体分为液压缸和液压马达,液压缸实现直线运动,液压马达实现回转运动。二者的特点及适用场合见表3-1:

因为机械手设计为圆柱坐标形式,且具有3个自由度,一个为腰座的转动,两个为手臂的移动自由度。同时考虑机械手的工作环境和载荷对其布局和定位精度的要求,以及计算机的控制的因素,腰部的回转用电机驱动实现,机械手的水平手臂和垂直手臂都采用单活塞杆液压缸,来实现直线往复运动。

3.2.2拟定液压执行元件运动控制回路

液压执行元件确定后,其运动速度和运动方向的控制是液压回路的核心问题。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。相应的调速方式有节流调速、容积调速以及二者结合的容积节流调速;方向控制是用换向阀或是逻辑控制单元来实现。对于一般中小流量的液压系统,通过换向阀的有机组合来实现所要求的动作。对高压大流量的系统,多采用插装阀与先导控制阀的逻辑组合来实现。

本设计的速度的控制主要采用节流调速,利用用比较简单的节流阀来实现,而方向控制采用电磁换向阀来实现。

3.2.3液压源系统的设计

液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多用变量泵供油,用安全阀来限定系统的最高压力。

油液的净化装置是液压源中不可缺的元件。一般泵的入口要装粗滤油器,进入系统的油液根据要求,通过精滤油器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁过滤器。根据液压设备所处的环境及对温升的要求,还要考虑加热、冷却等措施。

本设计的液压系统采用定量泵供油,由溢流阀V1来调定系统压力。为了保证液压油的洁净,避免液压油带入污染物,故在油泵的入口安装粗过滤器,而在油泵的出口安装精过滤器对循环的液压油进行净化。

3.2.4绘制液压系统图

本机械手的液压系统图如图3-2所示(详见图纸第四页),

它拥有垂直手臂的上升、下降,水平手臂的前伸、后缩,以及执行手爪的夹紧、张开三个执行机构。

其中,泵由三相交流异步电动机M拖动;系统压力由溢流阀V1调定;1DT的得失电决定了动力源的投入与摘除。

考虑到手爪的工作要求轻缓抓取、迅速松开,系统采用了节流效果不等的两个单向节流阀。当5DT得电时,工作液体经由节流阀V5进入柱塞缸,实现手爪的轻缓抓紧;当6DT失电时,工作液体进入柱塞缸中,实现手爪迅速松开。

另外,由于机械手垂直升降缸在工作时其下降方向与负荷重力作用方向一致,下降时有使运动速度加快的趋势,为使运动过程的平稳,同时尽量减小冲击、振动,保证系统的安全性,采用V2构成的平衡回路相升降油缸下腔提供一定的排油背压,以平衡重力负载。

3.2.5确定液压系统的主要参数

液压系统的主要参数是压力和流量,他们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷,流量取决于液压执行元件的运动速度和结构尺寸。

1.计算液压缸的总机械载荷

3.液压缸主要参数的确定

考虑到机械手的特点,系统的刚度及其稳定性是很重要的。因此,先从刚度角度进行液压缸缸径的选择,以尽量优先保证机械手的结构和运动的稳定性和安全性。至于液压缸的工作压力和缸的工作速度,放在液压系统设计阶段,通过外部的液压回路、采用合适的调速回路和元件来实现。经过仔细分析,综合考虑各方面的因素,初步确定各液压缸的基本参数如下;

因为伸缩缸的作用主要是实现直线运动,在其轴向上并不承受显性的工作载荷(因为手爪夹持工件,受力方向为垂直方向),轴向主要是克服摩擦力矩,其所受的载荷主要是径向载荷,载荷性质为弯矩,使其产生弯曲变形。而且因为机械手要求具有一定的柔性,水平液压缸活塞杆要求具有比较大的工作行程。同时具有比较大的弯矩和比较长的行程,这对液压缸的稳定性和刚度有较高的要求。

因此,在水平伸缩缸的设计上,一是增大其抗弯能力,二是通过合理的结构布局设计,使其具有尽量大的刚度。为了达到这个目的,设计中采用了两个导向杆,以满足长行程活塞杆的稳定性和导向问题。另一方面,为增大结构的刚度和稳定性,将两个导向杆与活塞杆布局成等边三角形的截面形式,以增大抗弯截面模量,也大大增加了液压缸的工作刚度。

因为垂直液压缸所承受的载荷方式既有一定的轴向载荷,又存在着比较大的倾覆力矩(由加工工件的重力引起的)。作为液压执行元件,满足此处的驱动力要求是轻而易举的,要解决的关键问题仍然是它的结构设计能否有足够的刚度来抗倾覆。这里同样采用了导向杆机构,围绕垂直升降缸设置四根导杆,较好的解决了这一问题。

4.液压缸强度的较核

(1)活塞杆直径的较核

3.2.6计算和选择液压元件

1. 控制元件的选择

根据系统最高工作压力和通过该阀的最大流量,在标准元件的产品样本中选取各控制元件。

2. 液压泵的计算

第4章 机械手控制系统的设计

4.1硬件设计

4.1.1操作面板布置

操作面板布置如图4-2所示:

机械手的操作方式分为手动操作和自动操作两种。

1.手动操作:就是用按钮作机械手的每一步运动进行单独的控制。当选择升/降按钮时,按下启动按钮,机械手上升;按下停止按钮时,机械手上升。当选择正转/逆转按钮时,按下启动按钮,机械手顺时针转动,而按下停止按钮时,机械手逆时针转动。同理,当选择夹紧/放松按钮时,按下启动按钮,机械手爪夹紧,而按下停止按钮时,手爪松开。

2.自动操作:机械手从原点开始,按下启动按钮,机械手的动作将自动的、连续的周期性循环。在工作中若按下停止按钮,机械手将继续完成一个周期动作后,回到原点位置。

4.1.2工艺过程与控制要求

机械手的动作有腰座的旋转,垂直手臂的升降,水平手臂的伸缩及手爪的夹紧与松开。手臂垂直升降和水平伸缩由液压实现驱动;手爪的夹紧与放松,通过柱塞缸与齿轮来实现;腰座旋转通过步进电动机与齿轮来实现。

其中,液压缸由相应的电磁阀控制,升降分别由双线圈的两位电磁阀控制,当下降电磁阀通电时,机械手下降;断电时,机械手下降停止;当上升电磁阀通电时,机械手上升;断电时,机械手上升停止。而水平方向的伸缩主要由电液伺服阀、伺服驱动器、感应式位移传感器构成的回路进行调节控制。

实现执行手爪夹紧与放松的柱塞缸,由单线圈的电磁阀(夹紧电磁阀)来控制,当线圈不通电时,柱塞缸不工作,当线圈通电时,柱塞缸工作冲程,手爪张开,柱塞缸工作回程,手爪闭合。

当机械手旋转到机床上方,并准备下降进行上下料工作时,为了确保安全,必须在机床停止工作并发出上下料命令时,才允许机械手下降进行作业。同时,从工件料架上抓取工件时,也要先判断料架上有无工件可取。

4.1.3作业流程

机械手工作流程如图4-1所示:

从原点开始,按下启动键,且有上下料命令,则水平液压缸开始前伸并进行伺服定位,前伸到位后,停止前伸; 下降电磁阀通电,同时手爪柱塞缸电磁阀也通电,机械手下降,同时张开手爪,下降到位后碰到下限行程开关,下降电磁阀断电,下降停止,同时手爪夹紧,抓住工件; 上升电磁阀通电,机械手开始上升,上升到位后,碰到上限位开关,上升电磁阀断电,上升停止; PLC开始输出高速脉冲,驱动机械手逆时针转动,当转过90度到位后,PLC停止输出脉冲,机械手停止转动; 接着下降电磁阀通电,机械手下降,下降到位后,碰到下限行程开关,下降电磁阀断电,下降停止,机械手到达卡盘中心高度; 机械手开始水平定位后缩,将工件装入机床卡盘; 当工件装入到位后,卡盘收紧; 机械手松开手爪,准备离开; 接着上升电磁阀通电,机械手开始上升,上升到位后,碰到上限位开关,上升电磁阀断电,上升停止; PLC启动高速脉冲驱动机械手作顺时针转动,当转过90度到位后,PLC停止输出脉冲,机械手停止转动,机械手回到原点待命; 机床进行加工。

当数控机床加工完一个工件时,发送下料命令给机械手,机械手接到命令后,PLC马上输出脉冲驱动机械手逆时针转动,当转过90度到位后,PLC停止输出脉冲,机械手停止转动; 下降电磁阀通电,同时手爪柱塞缸电磁阀也通电,机械手下降且张开手爪,下降到位后碰到下限行程开关,下降电磁阀断电,下降停止且手爪夹紧,夹紧已加工好的工件;机床卡盘松开; 机械手开始前伸,将工件从机床上取出,准备运走; 上升电磁阀通电,机械手开始上升,上升到位后,碰到上限位开关,上升电磁阀断电,上升停止; PLC输出高速脉冲,驱动机械手顺时针转动,当转过90度到位后,PLC停止输出脉冲,机械手停止转动; 下降电磁阀通电,机械手下降,下降到位后碰到下限行程开关,下降电磁阀断电,下降停止; 接着手爪柱塞缸电磁阀通电,手爪张开,放下工件准备离开; 接着上升电磁阀通电,机械手开始上升,上升到位后,碰到上限位开关,上升电磁阀断电,上升停止同时手爪也闭合复原; 接着机械手水平手臂开始后缩,准备回原点,当后缩到位时,后缩停止,机械手回到原点,一个上下料过程结束; 机械手在原点等待命令,准备下一个工作循环。

机械手的每次循环都从原点位置开始动作。

4.1.4控制器的选型

机械手控制系统的硬件设计上考虑到机械手工作的稳定性、可靠性以及各种控制元件连接的灵活性和方便性,控制器应选择有极高可靠性、专门面向恶劣的工业环境设计开发的工业控制器---PLC,故选择在国内应用较多的西门子S7-200型PLC。具体型号为SIMATIC S7-200 CPU224。如图4-3所示:

该PLC集成14,输入/10,输出共24个数字量I/O点,可连接7个扩展模块,最大扩展至168路数字量I/O点或35路模拟量I/O点,具有16K字节程序和数据存储空间。6个独立的30kHz 高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器。1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。是具有较强控制能力的控制器。

4.1.5控制系统原理分析

由于机械手作业时,取、放工件和装、卸工件都有较高的定位精度要求,所以在机械手控制中,除了要对垂直手臂、执行手爪液压缸和腰部步进驱动进行开环控制外,还要对水平手臂进行闭环伺服控制。

为了减少PLC的I/O点数,以伺服放大器作为闭环的比较点。伺服放大器具有传感器反馈输入端,给定的输入信号和反馈信号进行比较后形成的控制信号经过PID调节和功率放大后,驱动电液伺服阀对液压缸进行伺服定位。PLC将上位机输入的给定信号转换为电压信号,输出至伺服放大器,由伺服放大器作为闭环比较点,组成模拟控制系统,如图4-4所示:

这种方案使得PLC控制量少(尤其是模拟量),节省了系统资源,而且编程简单,不必过多考虑控制算法等优点,也是完全能满足工作要求的。

4.1.6 PLC外部接线设计

为实现水平手臂液压缸伺服定位的控制要求,利用西门子SIMATIC S7-200 (CPU224)PLC,考虑到位移传感器和伺服放大器工作采用的都为模拟量,因此增加一个模拟量输出模块EM232。鉴于伺服放大器和位移传感器对输入的要求,PLC的模拟量采用-10V~ +10V输入输出,各输入输出点及其接线如图4-5所示。

PLC的具体硬件接线图如下图所示(详细的硬件设计见图纸)

4.1.7 I/O地址分配

详细参见表4-1、4-2:

4.2软件设计

4.2.1控制主程序流程图

机械手控制主程序流程图如图4-6所示:

结 论

本设计通过对机械设计制造及其自动化专业大学本科四年所学知识进行整合,完成一个特定功能、满足特殊要求的数控机床上下料机械手的设计,比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平、实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,实现了理论和实践的有机结合。

机械手采用可编程序控制器控制,可以实行手动调整、手动及自动控制。系统结构紧凑、工作可靠,设计周期短且造价较低。PLC有较高的灵活性,当机械手工艺流程改变时,只要对I/O点的接线稍作修改,或对I/O重新分配,在控制程序中作简单修改,补充扩展即可。经过重新编制相应的控制程序,就能够比较容易的推广到其他类似的加工情况。

综上,经过资料的收集、方案的选择比较和论证,到分析计算,再到工程图纸的绘制以及毕业设计论文的撰写等各个环节,我对大学四本科阶段的知识有了一个整体的深层次的理解,同时对工程的理解更加深刻和准确。因此,通过毕业设计实现了预期目标。

致 谢

经过一段时间的努力,本次毕业设计终于完成。在这段时间里,我运用大学所学知识,通过对本设计的论证、计算以及图纸的绘制,对大学所学知识进行了一次系统的整合,使自己的理论和实际动手能力有了很大提高。

此次毕业设计能够顺利完成,我得到了很多老师和同学的帮助和支持,在此向他们表示感谢。在此毕业设计过程中,尤其要感谢我的指导老师,他给我很多专业方面的帮助,让我少走很多弯路。还有在大学里所有的任课老师和图书馆的管理老师,也谢谢你们,是你们给我知识,谢谢!

此外,由于个人知识能力水平有限,论文中难免有纰漏错误指出,恳请各位老师批评指正,谢谢!

参考文献

1.付永领, 王岩, 裴忠才. 基于CAN总线液压喷漆机器人控制系统设计与实现. 机床与液压. 2003, (6): 90~92

2.刘剑雄, 韩建华. 物流自动化搬运机械手机电系统研究. 机床与液压. 2003, (1): 126~128

3.徐轶, 杨征瑞, 朱敏华, 温齐全. PLC在电液比例与伺服控制系统中的应用. 机床与液压. 2003, (5): 143~144

4.胡学林. 可编程控制器(基础篇). 北京: 电子工业出版社, 2003.

5.胡学林. 可编程控制器(实训篇). 北京: 电子工业出版社, 2004.

6.孙兵, 赵斌, 施永康. 基于PLC的机械手混合驱动控制. 液压与气动. 2005, (3): 37~39

7.孙兵, 赵斌, 施永康. 物料搬运机械手的研制. 机电一体化. 2005, (2): 43~45

8.王田苗, 丑武胜. 机电控制基础理论及应用. 北京: 清华大学出版社, 2003.

9.陈铁鸣, 王连明, 王黎钦. 机械设计(修订版). 哈尔滨: 哈尔滨工业大学出版社, 2003.

10.李建勇. 机电一体化技术. 北京: 科学出版社, 2004.

11.王孙安, 杜海峰, 任华. 机械电子工程. 北京: 科学出版社,2003.

12.张启玲, 何玉安. PLC在气动控制称量包装装置中的应用. 液压与气动. 2005, (1): 31~33

机械手设计篇3

关键词:数控机床;机械手;仿真

中图分类号:S795 文献标识码:A

机械手顾名思义就是一种能够代替人手和臂来完成某些操作任务的装置,它主要是由手部和一些机械部件所组成,可以根据不同的物件,不同的加工要求来进行相应的运动。

为了能够提高机械手的适用范围,在对其进行控制系统设计上采用的时PLC自动控制系统,这样不仅能够提高机械手的运动精度,同时还能够帮助进一步的减小机械手的体积,以及制造成本。此外,PLC一个最大的优点就是对于顺序控制的优化,具有极强的扩展能力。

工业应用中一般是采用以下几种驱动方式:液压驱动、气体驱动以及电机驱动。同时在实际工程应用中,还可以将以上3种方式进行综合,构造一种混合驱动模式。液压驱动的主要特点就是能够提供较大的动力,同时在控制精度上能够达到较高的标准,实现恶劣环境下的动力驱动;气体驱动一般应用于负荷较小的工程实践当中,拥有价格低廉,维护方便等优势;电机驱动的应用范围较广,使用起来噪音较低,但是要想应用这种驱动方式,必须结合一些精密控制装置。根据各种驱动方式的特点以及本文所设计机械手具体要求,采用的是电机与液压综合驱动。

本文设计的数控机床机械手已经在实际的工程实践中得到了一定的应用,目前还处于调试阶段,在今后的工作中还需要不断地进行相关技术提升。

参考文献

[1] 付永领,王岩,裴忠才.基于CAN总线液压喷漆机器人控制系统设计与实现[J].机床与液压,2003,(6):90-92.

[2] 刘剑雄,韩建华.物流自动化搬运机械手机电系统研究[J].机床与液压,2003,(1):126-128.

[3] 徐轶,杨征瑞,朱敏华,温齐全.PLC在电液比例与伺服控制系统中的应用[J].机床与液压,2003,(5):143-144.

[4] 胡学林.可编程控制器(基础篇)[M].北京:电子工业出版社,2003.

机械手设计篇4

关键词:机械手臂;避碰路径规划;计算机辅助设计

中图分类号:TP241 文献标识码:A DOI:10.3969/j.issn.1003-6970.2013.06.024

0 引言

在工厂自动化的过程中,机械手臂的应用十分广泛,从简单的工件搬运到复杂的精密加工定位皆可胜任。除了高品质、高效率的工作能力外,对于粗重、单调、甚至于危险、恶劣环境下的工作,机械手臂更是能代替人员进行,以减少对人员的伤害。然而,一般在机械手臂的工作环境中,难免会有障碍物的存在,若要完成指定的工作,势必要避开障碍物。因此,如何使机械手臂避开障碍物的路径规划,将显得颇为重要。

关于机械手臂避碰路径规划,已有不少学者提出各种方法,可归纳整理如下[1]:1)阶层路径搜寻法(Hierarchical-path-search):利用四元树(Quadtree)将障碍物影象分成等分区域,每个区域都用一个节点来表示,而其中节点包括障碍物节点(obstacle nodes)与自由节点(free nodes),障碍物节点表示障碍物存在的区域。利用这些自由节点产生一树状结构图,设计者可根据此树状图做轨迹规划的工作,找出最佳的路径。2)能量场法(Potential field):此方法的观念是将机械手臂置于一力场中做分析,此力场中有排斥力与吸引力两种力的力场,所有的路径规划,就在此两力的互相作用下进行。3)可通过空间法(Free space):先扫描整个工作空间以找出无障碍物的空间,利用障碍物边界及工作空间边界定义出广义锥形体(generalized cone),如物体沿此锥形体的中心线移动而不与障碍物发生碰撞,就将此圆锥体列入可通行空间,而整个可通行的空间就以这些重叠的圆锥体来表示。4)架构空间法(Configuration space):将机械手臂各轴的状态,用轴空间来表示,对n个自由度的机械手臂而言,其在架构空间的位置则用n维向量来表示它。设计者可在机械手臂的活动空间内,对非障碍物的区域进行路径规划。5)可视图法(Visibility graph algorithm):此方法是将原障碍物边界扩大后所得到的新的障碍物,称此线段为连接杆。连接起点与终点的连续连接杆的集合形成了一安全路径,而所有安全路径所形成的图形即称为可视图。此种方法限于处理多边形障碍物,无法处理圆形或其他圆滑外形的障碍物。(六)距离图示法(Distance Maps):此方法是先定义距离单位,并将其离散化。整个工作区域以数个区间表示,除了障碍物的区间以0表示外,其余区间以一个整数来作为标记,标记的整数值表示与障碍物的距离,其数值愈小表示距离障碍物的距离愈小,而设计者即可依据此数值进行路径规划的工作。本文以一个全为转动关节的三连杆机械手臂为例,并将障碍物以基本的几何形体加以描述,以作为本文所使用的模型。在路径规划上,本文运用了距离图示法的概念并加以简化,其做法为省略了对工作区域的离散化,以及定义工作区域的距离单位的步骤,而直接找出障碍物的碰撞区间,并将障碍物离散化成适当的节点。因此,运用这种方法便于运用碰撞检查法检查手臂各杆臂与障碍物四周搜寻无碰撞的坐标点位置。本文同时使用平面解析的方法计算出各杆臂的关节角度,可避免复杂的逆向运动学计算。最后,本文使用MATLAB软件构建机械手臂与障碍物的三维实体模型,并读取程序计算所得的各杆臂关节角度,进行机械手臂的避碰运动模拟。使用MATLAB软件进行模拟仿真,可在视觉上再度验证避碰路径的可行性。

1 机械手臂的运动学

机器人运动的控制就是控制机器人各连杆、各关节等彼此之间的相对位置和各连杆、各关节的运动速度以及输出力的大小,这就涉及到各连杆、各关节、作业工具、作业对象、工作台及参考基准等彼此之间的相对位置的关系.因此,我们对机器人位姿描述和坐标变换进行分析,设置机器人各连杆坐标系,确定各连杆的齐次坐标变换矩阵、建立机器人的运动学方程.机器人运动学主要包括正向运动学,即给定机器人各关节变量,计算机器人末端的位置与姿态;逆向运动学是已知机器人末端的位置与姿态,计算机器人对应位姿的全部关节变量.一般正向运动学的解是唯一的,而逆向运动学往往有多个解且分析方法更复杂。

1.1 顺向运动学

用于描述机械手的位姿矩阵如下[1-6]:

其中:

R为一个3*3的旋转矩阵,代表运动点的坐标相对于固定原点坐标的方位。

P为一个3*1的位置向量,代表运动点的坐标相对于固定原点坐标的位置。

ρ代表一个1*3的透视向量,在机械手臂转换矩阵中为0。

λ为一个比例因子,在机械手臂转换矩阵中为1。

使用D-H的表示法,将机械手臂的每一个杆臂赋予一个坐标系来表示,所得到的坐标转换式为:

其中n为法线向量,s为滑动向量,a为接近向量,p为X、Y、Z三方向的位置向量。依照上述公式,求得机械手臂的齐次转换矩阵,也称为顺向运动学方程。

本文使用的机械手臂是由3个旋转关节所构成的3轴机械手臂,手臂的参数如表1所示:

1.2 逆向运动学

通常描述机械手臂的位置都习惯以笛卡尔坐来表示[1-8],然而在机械手臂路径的规划上,必须将各路径点的资料转换成各关节角度的资料,为了达到此目的,可以用逆向运动学的方式完成。一般求解机械手臂的逆向运动学,常用的方法有代数解、几何解及数值解等三种解法。代数解是利用齐次转换矩阵,由逆矩阵的计算找出等式两边各元素间的关系而求解;几何解则是将空间几何分解成数个平面几何问题,利用平面几何学来求解;数值解则是利用连续迭代的计算,以雅可比矩阵所表示的微量变动关系式进行求解。每种求法各有其优缺点,例如使用代数解时,容易在推导过程中遇到非线性方程式的问题等。本文应用几何法来求解机械手臂的逆向运动学问题,可节省如代数解中必须利用反矩阵的计算找出等式两边各元素间的关系而求解等繁杂的公式推导,并可依据所使用的演算法则,迅速求解出合理的答案。逆向运动学运用平面解析几何的基本定理,如余弦定理,三角恒等式,二项式方程等,以便迅速求得个关节角度坐标,避免了复杂的代数解。以下就本文所用的方法加以说明。

由于当手臂运动到指定点时,其间各杆臂的旋转角度并不是唯一的,因此,本文希望当杆臂末端到达目标点时,各杆臂关节的旋转角度唯一,即机械手臂的位姿唯一。当机械手臂末端位于指定点时,末端极坐标(ρ,φ)为已知,由于这是一个三自由度的平面旋转关节机械手臂,因而还需要一个限定条件,在此设第二个关节角度和第三个关节角度在任意时刻总相等,由此可求得此机械手臂的各关节角度。

2 避碰路径规划方法及流程

碰撞检查为避碰路径规划中的必要过程,当机械手臂运动至指定坐标点的运动期间,必须对手臂整体外形进行碰撞检查,以确保运动路径的可行性。因此,在进行碰撞检查之前,首先须对机械手臂与障碍物的几何结构做一番分析,运用简单的近似几何模型,配合碰撞检查法则来判断机械手臂与周边障碍物发生碰撞与否。以下就三自由度平面连杆机械手臂为例加以说明。

2.1 机械手臂与障碍物模型

由于机械手臂各杆臂的体积大小不一,为了近似表示其外形,将各杆臂分别用直线近似表示其外形[2][3][5][7][8]。

至于障碍物的模型,以基本的几何形体,如圆柱体,方柱体等组合形体表示。另外,为了方便应用碰撞检查法则,将这些障碍物离散化成适当的节点,并计算各障碍物节点相对机械手臂原点的坐标值。

2.2 碰撞检查法则

由于机械手臂以直线表示,障碍物以圆形表示,因此,要保证机械手臂在运动过程中不与障碍物发生碰撞,也就是要保证机械手臂各连杆直线段在运动过程中与障碍物没有交点。所以,碰撞检查可以描述为在运动的任意位置各直线段与圆是否有实数解,如果在运动过程中产生实数解,就说明机械手臂与障碍物有碰撞发生,此路径不可行,要重新规划路径;如果没有实数解,就说明机械手臂与障碍物没有发生碰撞,是可行路径,机械手臂末端可以沿此路径运动。[1][2][3][7][8]

由于机械手臂的各杆臂处于运动状态下,各杆臂的位置随之改变,因此,应用顺向运动学的公式,计算出各杆臂的位置,应用碰撞检查法则,即可得知机械手臂运动至终点时在运动期间是否与障碍物产生碰撞。

2.3 避碰路径的搜寻与建立

当机械手臂运动至目标点期间,若与障碍物产生碰撞,则必须规划一条避开障碍物的路径,并让手臂末端沿此路径移动。一般机械手臂若要避开障碍物而到达指定的终点,不外乎是从障碍物的侧边绕过或是跨过障碍物的情形。因此,对于避碰路径的搜寻,除了已知的起点和终点坐标外,还须在障碍物周围附近,搜寻出可避开障碍物的点坐标,并让机械手末端经过此点而避开障碍物元素,并针对手臂绕过障碍物的情况搜寻出避开碰撞点的坐标[1][7][8]。单一圆形障碍物搜寻步骤如下:

步骤1:指定路径的起点和终点,并指定圆形障碍物的圆心坐标(Cx,Cy),半径(Cr)。

步骤2:在xy平面上,以圆形半径(Cr)加上安全偏移距离(Sr)以及杆臂宽度的一半(W3),以障碍物圆心为圆心构建一圆,如图1所示.

步骤3:计算起点与终点与此圆相切的切线交点(int_x,int_y)。如有两个圆形障碍物,则依次从起点搜寻第一个圆形的避碰点,并以此点为起点,搜寻第二个圆形的避碰点,如图2所示。

步骤4:确定避碰坐标(Int_x,Int_y)后,用线性插值法求出其他的路径坐标点,可得到一个连续的平面曲线。

矩形障碍物的搜寻方式与圆形障碍物的搜寻方式雷同,其差别在于:在对矩形障碍物进行路径搜寻时,将矩形的边结点化,以结点为圆心,以适当的半径做圆,从而转化为前面的圆形障碍物的搜寻方法,即对圆求切线,从而确定避碰路径。

2.4 路径规划的结构

整个路径规划的过程及避碰的计算,均用MATLAB程序语言编写,以下对结构进行说明。

首先已知机械手臂末端的起点坐标和运动的终点坐标在机械手臂可行域中的位置,同时选择障碍物的类型并建立它。当障碍物建立完成后,将关节角度线性分割数等份,每一等份都进行碰撞检查,如碰撞检查结果为无碰撞发生,则无须进行路径规划的工作,将上述的关节角度代入顺向运动学中,即可得到一路径坐标,随后将转换后的关节角度予以存储,在MATLAB上进行运动模拟的工作。如果碰撞检查为有碰撞发生,则须进行路径规划的工作,以便搜寻避碰路径,同时须将搜寻得到的避碰路径再次进行碰撞检查,以确认所有杆件与障碍物都无碰撞。如检查结果仍为有碰撞,则表示此规划的路径可能为无法通行的路径或是手臂某杆臂与障碍物发生碰撞,此时须再次搜寻另一避碰路径;反之,如检查结果为无碰撞,则将搜寻所得到的避碰关节角度坐标进行存储,利用MATLAB软件,进行避碰路径的运动模拟与验证。

在建立了路径规划的结构的基础上,考虑到障碍物的位置以及目标点的位置在实际环境中可随时变动,故在此将障碍物的位置设置成可变的,具体做法是:用鼠标单击障碍物,表示选中此障碍物,然后在新的位置点击鼠标,表示将此障碍物移动到此处,同时判断指定点是否在指定的活动区域内,如果是在指定的活动区域内,则将障碍物移动到此点;如果不是在指定的活动区域内,则系统提示给出新的位置坐标。由于在运动路径上,经过两切线交点的先后顺序需要固定,故当将两障碍物的相互位置交换时,机械手臂的运动就不可控制。为避免此种情况发生,在此将两个障碍物的运动位置限制在一定的区域内,即:将机械手臂的可行域分为四个象限,两障碍物分别在第二象限和第四象限内,这样就保证了两障碍物的相互位置不变,从而保证了机械手臂末端沿一定的轨迹运动。

在上面的基础上,将两障碍物的分布及机械手臂末端运动轨迹划分为三种情况:

(1) 两障碍物都与机械手臂末端起始点与终点的连线相离且都位于连线的上部。此时机械手臂可以直接从起始点运动到终点。

(2) 仅有一个障碍物与机械手臂末端起点与终点的连线相割或位于连线的下部,另一个障碍物与连线相离且位于连线的上部,此时机械手臂可只需越过一个障碍物而到达终点。

(3) 两障碍物都与机械手臂末端起始点与终点的连线相离或都位于连线的下部。此时机械手臂需越过两个障碍物而到达终点。

3计算机模拟与仿真

本文利用计算机辅助设计软件MATLAB,建构机械手臂与障碍物的实体模型,并读取模拟程序所产生的各杆臂的关节角度资料,以进行运动模拟。借由MATLAB的机构运动模拟的功能,可清晰地展现出避碰的结果,同时可强化机械手臂进行离线运动规划的功能。以下,利用本文所提出的方法,计算碰撞结果并模拟机械手臂的运动过程。

机械手臂起点(sx,xy)=(0,21)

机械手臂终点(gx,gy)=(18,8)

障碍物资料:由两个圆形障碍物组成,其分布状态如图3示。

首先将机械手臂的初始状态的各关节角度设为零度,接着利用逆向运动学方法计算各杆臂自起点到达终点时旋转的角度。将各杆臂的关节角度等分成八等分,依次代入顺向运动学公式中,经执行碰撞检查后得到为无碰撞发生的情形,其运动过程如图4示,由该图可清晰地看到机械手臂的运动情形。

4 结论

本文以计算机模拟的方式求出机械手臂的碰撞路径,同时以计算机辅助设计软件展示与验证避碰运动的结果。在此过程中以基本的几何形体代替机械手臂与障碍物的外形,即可达到所要求的避碰结果。同时使用几何方法处理逆向运动学的求解,可迅速找到合理的答案,并可执行程序进行实体的运动模拟。

由于本文的避碰路径规划属于离线的方式,对于机械手臂的各种动作的结果,虽然可以事先在计算机上模拟实现,进而修改产生碰撞的路径,但对于障碍物在工作域中的位置,必须事先进行测量计算,若能以自动的辨识工具,例如机器视觉系统,代替人为测量计算来建立障碍物的模型,应能提高路径规划的效率。

参考文献

[1]赖明钧,陈钺涵.三维机器手臂避碰路径规画之电脑辅助设计与模拟.1992.

[2][美]Saeed B.Niku. Introduction to Robotics Analysis,Systems,Applications机器人学导论.北京:电子工业出版社,2004.

[3]熊有伦.机器人技术基础.华中理工大学出版社.1996.

[4] (苏)别洛夫.机械手.原子能出版社.1982.3.

[5]冯香峰.机器人结构学.北京:机械工业出版社.1991.

[6]吴振彪.工业机器人[M].武汉:华中科技大学出版社.1997.

机械手设计篇5

关键词:仿生机器人;智能;机械手;医疗;

1.引言

假肢是医疗领域最早使用仿生智能机械手, 随着技术的发展,出现了可以模仿人手做绝大部分的操作的仿生机器手,使用方便、灵活。在外科手术里,医生需要长时间地或在有限的时间内完成一系列复杂精确的操作。仿生智能机械手是一种仿人机械,可以在医生的监控或操作下, 按照即定的方案, 高精度地、高可靠地实施手术,并在规定的时限内完成。仿生智能机械手的应用可以为病人带来福音。现代社会、科技的高速发展推动着机械产业的发展, 对其自身结构、能量消耗或者运动的可靠性提出了更为严苛的要求。在环境优胜劣汰法则的作用下,自然界存在拥有神奇的特性与功能各种各样的生物。仿生智能机械手就是模仿人手的形态、结构和控制原理而诞生。人手共有27个自由度,可以精确定位并做出复杂精细的动作。仿生智能机械手可以通过模仿人类手部的动作,并依照智能控制系统给定的程序而实现智能化的手部抓取、搬运等复杂动作的自动机械装置。

在中国,医疗类自动控制机械设备的研究和应用起步较晚,然而近年来随着国内外自动控制和智能控制技术的快速发展,以及医院等医疗机构的迫切需求,智能机械手的应用得到了迅速的发展。智能控制技术可以建立柔性程序控制系统,从而实现医疗机械手的高精度控制。

2.结构简介

2.1.基本结构

本文设计的医疗机械手由执行机构、驱动机构和控制机构三部分组成。

手部用来抓取刀具,由手指传力机构和驱动装置等组成。仿生机械手的手部结构一般以双指或者多指结构为基础;如果根据实现的不同任务动作要求,又被分成以下两种结构形式:外抓和内抓;如果根据仿生机械手的手部的运动形式又可以分为回转式和平移式,其中回转型又分为以下几种形式:单支点式,双支点式。在以上结构中,我们较多选用回转式的手部,这种结构能够方便的用来抓取药瓶等圆柱形医疗工具,平移型用于抓持方形医疗工具。

对于医疗机械手而言,其手部需满足的条件:首先,机械手的结构能够产生强且稳定的夹持力,用来精确安全的夹持医疗器具。由于医疗器具的搬运过程中,往往会存在一定的动载荷,因此在设计校核的过程中,一定要充分考虑动载荷的波动。同时,不同重量、尺寸的医疗器具在被夹持和传送过程中所要求的基本方向、动作、精度等不相同,因此结构设计必须充分考虑各种器具的使用条件。第三,必须充分考虑医疗器具的高精度定位要求。第四,医疗机械手的尺寸结构必须满足紧凑、精巧的要求,以利于腕部和臂部的结构设计。

智能仿生医疗器械手的动作机构的作用对象是医疗器具或者患者身体工,因此需要完成的不同动作都必须满足安全行要求,防止意外的发生;同时,智能仿生医疗器械手的结构、质量、尺寸等对于机械手的整体的运动学、动力学性能以及使用条件和使用范围等也有着直接、显著的影响。智能仿生医疗器械手整体动力学和运动学性能的高低,决定了机械手最终能否正常按照控制机构的指令进行工作。因此,智能仿生医疗器械手的结构设计是整体设计的最重要环节。

智能仿生医疗器械手的手腕在于手和手臂之间,用于调整手的方向。要使智能仿生医疗器械手能以不同的旋转角度和方位进行动作,因此,智能仿生医疗器械手的手腕要能满足六个自由度的动作要求,即:分别独立的绕X、Y、Z 轴向实现转动和平动,这样,智能仿生医疗器械手的手腕才能实现大范围角度的伸、缩、转动、平动、摆动等。

智能仿生医疗器械手的臂部是运动的主要执行部件,需要承载手部抓起器具的整体重力载荷,臂部的运动形式决定了它的基本结构。臂部运动的基本作用是把机械的手部所夹持的器具送到控制机构要求的空间点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。

2.2. 驱动机构与控制系统

驱动机构是智能仿生医疗器械手的动力来源。智能仿生医疗器械手的动力源与常规的动力源相同,主要包括液压驱动、气动、电力驱动和机械驱动等几种主要形式,近年来还发展了其它几种形式。电动机构驱动由于结构简单、尺寸紧凑、重量小、控制方便,备受设计人员的青睐。

智能仿生医疗器械手控制方式一般为基于模糊控制理论的点动控制和连续控制。主要控制的是坐标位置,并注意其加速度特性。智能仿生医疗器械手缓冲干扰源也越来越多样化,需要在不同的工作环境下,对干扰源进行正确的分析,并找出其抑制措施,是非常有必要的。

2.3. 结构布置要求及平稳性与定位精度

智能仿生医疗器械手在工作中运动定位要求较高,在结构布置上应保证运动精确平稳,这样可提高使用的可靠性,并可延长使用寿命,在结构上要注意以下几点:

2.3.1.臂部要防止偏重。一般情况下臂部为悬臂,所以在设计臂部、手部结构时,要尽量使其总的重心在支撑中心,防止偏重。假如有偏重,它将会产生附加的弯矩,引起立柱和导向的变形。防止偏重过大可采取的措施如下:一是减轻手部重量,以尽量减少偏心载荷;二是臂部上各部件应合理分布或增加平衡重,使臂部平衡;三是在结构上无法避免偏重时,则应加强导向支撑。

2.3.2.加强臂部刚度。臂部的刚度,决定于臂部的结构和导向形式。选取臂部结构时,各个方向的刚度都有要求。提高臂部刚度,是减少手部颤动的关键,也有利于提高定位精度。

2.3.3.改进缓冲装置和提高配合精度。机械手缓冲干扰源越来越多样化,需要在不同的工作环境下,对干扰源进行正确的分析,并找出其抑制措施,是非常有必要的。

3. 总结

机械手设计篇6

关键词:PLC控制;智能机械手;设计

智能仿生机械手用智能手机的iOS应用程序进行控制的一款灵敏系数很高的一种仿生手。2013年帕特里克・凯恩成为英国首位装配智能仿生手的人。这款机械手名为i-limb,可以用智能手机的iOS应用程序进行控制。帕特里克还能控制5个独立供能的手指,其中大拇指还能旋转。该款机械手是苏格兰触摸仿生(Touch Bionics)公司的最新产品。目前,在国内大部分中小型轴承加工企业中,轴承毛坯的冲压、冲孔加工仍靠人工完成,不仅劳动强度大、生产成本高、效率低,而且还存在着安全隐患和产品质量问题;再加上大部分企业车间布局不统一,难以同时满足所有企业的自动化需求。因此,基于上述问题,设计一种用于轴承加工的智能机械手势在必行。

一、智能机械手的结构

智能机械手的总体装置分为两道工序,一道工序专门用于上料,主要包括气动手指、上料垂直气缸、上料伸缩气缸;一道工序专门用于下料,主要包括翻转机构、旋转平台、下料伸缩气缸。两道工序互不干涉,相对于上下料由一道工序完成的机械手,大大节省了时间,提高了效率。在机械手上装有两个红外光电开关,一个开关用来检测是否有料,若有料,机械手就按照指令一步一步动作,完成轴承毛坯的加工,若没料,机械手会等待毛坯到位之后再动作;另一个开关是用来检测冲杆是否将工件带起,若没带起会发出警报,等待工作人员处理。主要元件功能如下:气动手指实现工件的夹紧和松开,装有夹位、松位限位开关;上料垂直气缸实现上升和下降动作,装有上位、下位限位开关;上料伸缩气缸控制机械手的伸出和收缩,实现工件的上料动作,装有前位、后位限位开关;翻转机构用于工件的接取,翻转气缸动作将工件翻转掉到指定位置;旋转平台通过步进电机实现顺时针、逆时针的旋转,装有左侧、右侧限位开关。

二、智能机械手工作过程

气动手指和气缸均由220 V单电控二位五通电磁阀控制,电磁阀通电,气缸伸出、手指夹紧;电磁阀断电,气缸收缩、手指松开。将流量阀分别装在气缸和手指的进气口和出气口,通过流量阀控制气体的流量和速度,来调节舛手指和气缸的动作速度。初始状态:气动手指松开,上料垂直气缸、上料伸缩气缸、下料伸缩气缸、翻转气缸都处于收缩状态。工作过程为:(上电)回原点(启动) 工件到位上料垂直气缸下降气动手指夹紧工件上料垂直气缸收缩伸缩气缸伸出斗气动手指松开伸缩气缸收缩压力机冲压工件,同时下料伸缩气缸伸出下料伸缩气缸收缩旋转平台逆时针旋转900翻转气缸伸出旋转平台顺时针旋转900,同时翻转气缸收缩,如此循环。

三、 PLC控制系统的设计

(一)PLC控制系统

分析生产过程的工艺要求,确定控制系统要实现哪些功能要求;进行控制器、L / O模块、电源模块、控制模式、数据通信模块、通信模式的选择;确定数字量、模拟量输人、输出点的个数,列出PLC输入输出分配表;画出控制柜接线图,根据接线图进行现场接线;根据顺序功能图编写程序进行调试,若是程序问题修改程序,若是硬件问题解决硬件问题,直到调试成功。

(二) PLC软件设计

系统设有手动、连续、单周期、单步和回原点三种工作方式。机械手为初始状态时称为系统处于原点状态,在进入手动、连续、单周期和单步工作方式之前,系统应处于原点状态。机械手从初始状态开始,到夹紧工件、接到工件并将其放到指定位置的过程称为一个工作周期,在自动工作方式下,按下启动按钮,机械手反复地工作,但按下停止按钮机械手并不会立即停止工作,而是完成一个周期的工作后返回并停留在初始步。单步操作常用于系统的调试,在单步工作方式下,按下启动按钮系统只完成一步的动作,再次按下启动按钮,系统接着完成下一步动作。对于本系统而言,当接通I0.3时,系统进入单步工作方式,按一下启动按钮,上料垂直气缸下降,再按一下启动按钮,手指夹紧工件,如此一步一步的动作。连续工作方式的顺序功能图如图1所示,将选择开关打到连续工作方式位置,I0.1为1状态,系统进入连续工作方式。MO.5为原点条件,在初始步为活动步的情况下按下启动按钮I0.5,红外光电开关检测是否有料,若有,则I2.3为1状态,M2.O变为1状态,上料垂直气缸下降。同时,控制连续工作方式的线圈M0.7“通电”并自保持。

(三) PLC控制步进电机

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

四、结束语

本文介绍了一种基于PLC控制的工业取料机械手,设计了取料机械手的机械结构和气动系统,并给出了PLC控制系统的软硬件设计和步进电机运行速度控制设计,该系统应用于各大行业,具有稳定可靠的性能,提高了生产效率。

参考文献:

机械手设计篇7

【关键词】仿人机械手;三维建模;运动学仿真

【Abstract】This paper describes the situation at home and abroad of Humanoid robot hand research and open problems. To solve these problems, 3D modeling and kinematics simulation of Humanoid robot hand are given . At the same time, the paper describes the practical significance of the research of humanoid mechanical hand of social life.

【Key words】Humanoid robot hand;3D modeling;Kinematics simulation

0 引言

机器人技术的发展是一个国家高科技水平和综合能力的重要标志,而服务机器人是未来社会发展的必然产物,对于服务机器人的研究,尤其是仿人机器人的研究是具有巨大经济价值和历史意义的,其原因有两个:第一,世界老龄化进程的加快,尤其是中国也正进入老龄化社会,照顾老人问题即将成为一个严重的社会问题,而仿人机器人在解决这一社会问题中有着不容置疑的作用;第二,由于各种灾难和疾病造成的残障人士也逐年增加,他们需要越来越多的关心和照顾,如果采用专门的人力将严重增加社会的负担。所以对于服务型机器人的研究,显得格外重要。

目前有很多服务型机器人,但是没有一个机器人可以像人一样有一双灵巧的手,完成只有人类才能实现的复杂动作,本课题就是针对这一问题从仿人机器人的机械手开始研究的。

1 国内外发展现状与问题

从1960年由通用电气公司设计制造的造型为两只手指的爪状物开始,为以后的各类机械手打下了基础,到现在为止美国的宇航局(NASA)、哈佛大学和耶鲁大学,日本的东京大学在机械手的研究上都取得了不小的突破。

我国机械手的研究比较晚但是也做了很多工作,国防科技大学[1]、哈尔滨工业大学[2]也研制出了多指灵巧手。尤其是哈尔滨工业大学机器人研究所研制的“仿人型机器人灵巧手”,2006年5月亮相德国慕尼黑国际机器人及自动化展览会,以其精美的外观、可靠的软硬件系统等赢得了众多参观者的赞赏,并率先进入了国际市场。

由此可见,目前多数国家和企业高校都在对仿人机械手进行研究与设计,不过现在还存在一系列问题,例如:价格昂贵,实时性不理想,设备笨重,并且大都停留在实验阶段,这些都制约其在实际当中的应用。

2 五指仿人机械手设计

本文设计的五指仿人机械手具有的优势有:采用欠驱动控制方式[3],所以机械系统大大简化,机械手大小基本与普通人手大小一致,便于安装到各种服务机器人的移动平台上;同时每个手指都靠手指末端拉力进行运动,也就是说只需要一个拉力便可以实现机械手指的人类手指运动方式,结构紧凑、便于控制、动作灵活;材料可以采用塑料纤维进行加工实现,因此质量轻、价格便宜,易于普及;可以采用嵌入式的控制方式进行控制,处理速度快,响应时间短。

本文通过Solidworks对五指仿人机械手进行建模,其单指与整手建模图形如下所示:

图1 单指结构与整手三维建模

本文通过ADAMS实现仿人机械手的运动学仿真,其仿真图形如下所示:

图2 约束添加以及手指运动效果图

3 现实意义

对于仿人机械手的研发对社会有着重要意义:其一,对于服务机器人的研制,尤其仿人机器人的研究应用,必将对机器人行业起到积极的促进作用;其二,仿人机械手的研发隶属于制造业,其研制成功与推广,可以增加就业,创造经济价值;其三,其技术的实现可以促进制造业的信息化、自动化和产品的智能化,提升产品技术含量和附加值,从而促进制造业相关技术领域的发展;其四,实现服务机器人上机械手的灵活运动与控制,对于老年人以及残障人士在心理上和身体上都非常有益处,为解决我国社会问题,创建和谐社会做出贡献。

【参考文献】

[1]刘世廉,周华平,马宏绪.一种新型仿人多指机械手的简易实现[J].控制工程,2003,5(10):147-151.

机械手设计篇8

关键词:机械手 PLC 气动

由于工业自动化的全面发展和科学技术的不断提高,对工作效率的提高迫在眉睫。单纯的手工劳作以满足不了工业自动化的要求,因此,必须利用先进设备生产自动化机械以取代人的劳动,满足工业自动化的需求。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。

苏州工业园区某公司有一台自制的无刷电机定子铁芯上粉机,需要两人完成上粉过程,一人负责把定子铁芯连轴一起架到上粉机入口的丝杠上,随丝杠的旋转传入其中进行上粉,另一人则负责在出口处把上完粉的定子铁芯装箱。现在为了节约人力成本,故需要在出口处加装机械手装置,抓取定子铁芯放到传送带上传回入口处。

1 机械手的设计

目前来说,国内外机械手的研究大体是两个方向:其一是机械手的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,性价比高,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。

因此,根据定子铁芯在上粉机中是架在丝杠上传输这一特点,故采用固定不动的承托式U型勾爪,直接从底下向上勾起定子铁芯。这样做减免了手爪抓紧、放松的动作控制,现在只需要用两个气缸,控制机械手的手臂垂直升降和水平移动就可以了。从而使其结构简单,大大提高其工作时的安全可靠性。

2 工作过程与控制要求

机械手的动作主要由两个气缸控制的手臂垂直升降和水平移动。气缸由相应的电磁阀控制。手臂垂直升降由单线圈的两位电磁阀控制,当升降电磁阀通电时,机械手下降;断电时,机械手上升。而手臂水平移动则由双线圈的三位电磁阀控制,当下降电磁阀通电时,机械手下降;断电时,机械手下降停止;当上升电磁阀通电时,机械手上升;断电时,机械手上升停止。

当机械手移到丝杠上方,并准备下降时,为了确保安全,必须确保下方一定范围内无定子铁芯才允许机械手下降进行作业。同样,从丝杠上抓取定子铁芯时,也要先判断丝杠上有无定子铁芯可取。另外,在传送带上放下定子铁芯也必须确保定子铁芯移开后方能上升。

2.1 工作过程

2.2 控制要求

按下启动按钮,传送带开始运行。机械手判别送料是否完成,若有料,则先下降送料;若无,则向右移动,右移到位后,判别下方是否有料,若无才能下降,下降到位后开始等料,取料检测到位方能开始上升,上升到位后开始左移,左移到位后下降放料,直到检测到放料完成才能上升回到原点。然后循环往复运动,直到按下停止按钮,机械手先上升,再回到原点(防止在丝杠处走斜线回原点损坏丝杠)。

3 PLC控制设计

3.1 PLC输入分配表

表3-1 PLC输入分配表

3.2 PLC输出分配表(如表3-2)

3.3 PLC程序

000 LD M1002

001 ZRST S0 S127

006 SET S0

007 LD X6

008 SET Y3

009 LD X7

010 ZRST Y0 Y7

015 ZRST S0 S50

020 LDF X7

023 SET S0

024 STL S0

025 OUT M100

026 LD X0

027 MPS

028 AND X2

029 SET S17

030 MPP

031 OUT Y2

032 STL S17

033 OUT M100

034 OUT Y2

035 LD X0

036 AND X2

037 LD X6

038 OR M150

039 ANB

040 SET S11

041 STL S11

042 LD X0

043 OUT Y1

044 LD X0

045 AND X3

046 ANI X4

047 SET S12

048 SET M150

049 LD X7

050 OUT S17

051 STL S12

052 OUT Y1

053 OUT Y0

054 LD X3

055 AND X1

056 AND X4

057 SET S13

058 LD X0

059 SET S18

060 STL S18

061 OUT Y1

062 LD X0

063 AND X3

064 OUT S17

065 STL S13

066 OUT Y1

067 LD X0

068 AND X3

069 SET S14

070 LD X7

071 OUT S17

072 STL S14

073 OUT M100

074 LD X0

075 MPS

076 AND X2

077 SET S15

078 MPP

079 OUT Y2

080 LD X7

081 OUT S17

082 STL S15

083 OUT Y0

084 OUT Y2

085 TMR T1 K20

089 LD X1

090 AND X2

091 AND T1

092 SET S16

093 LD X7

094 OUT S17

095 STL S16

096 TMR T0 K1

100 LD T0

101 OUT S0

102 RET

103 END

总之,机械手采用可编程序控制器控制,系统结构紧凑、工作可靠,设计周期短且造价较低。PLC有较高的灵活性,当机械手工艺流程改变时,只要对I/O点的接线稍作修改,或对I/O重新分配,在控制程序中作简单修改,补充扩展即可。经过重新编制相应的控制程序,就能够比较容易的推广到其他类似的加工情况。

参考文献:

[1]胡学林.可编程控制器(基础篇).北京电子工业出版社.2003.

[2]张启玲,何玉安.PLC在气动控制称量包装装置中的应用.液压与气动.2005.

机械手设计篇9

关键词:PLC;焊接机械手;控制系统

中图分类号:TP273 文献标识码:A 文章编号:1009-2374(2013)14-0016-02

随着自动化控制技术的飞速发展,机械手在很多环境下能准确完成预期的工作并能模拟人的适应性,这使得机械手的应用越来越广泛。焊接是装备制造业中最为常用的加工方法之一,由于焊接加工产生的烟气与火花使得工作环境比较恶劣,为了尽量减少环境条件对人身造成的伤害,设计了一种PLC控制的焊接机械手,专用于某建筑机械厂塔吊构件的焊接加工,提高了焊接车间自动化程度,减少了环境对人体的伤害。该焊接机械手因具有作用灵活方便与价格便宜等优点具有较好应用价值。

1 机械手的现状和发展

因机械手能够在有毒、有害、危险、高热和低温等恶劣条件中的工作进行替代,对人的一些单调重复、繁重劳动进行代替,从而大大提高劳动生产率,进一步提升产品质量。我国机械手的应用是从20世纪70年代开始的,经过30多年的发展,机械加工、焊接、装配、上下料、搬运及喷漆、医疗等行业均有机械手的应用。目前主要集中在制造业,尤其是通用机械、汽车、电器制造以及加工金属和塑料等工业。计算机集成制造系统和柔性制造系统的构成,使生产自动化得以实现。

随着生产自动化的持续发展,网络技术、激光技术、传感技术、机器人的智能水平及机械手的发展领域都得到了极大的提高和扩展,众多领域越来越离不开机械手。随着机械手的性能、质量的加强,其已由传统的汽车制造领域向外进一步扩展延伸,高质量的机械手与较低的运行成本,必将使机械手在各个领域中得到极为广泛的应用。

2 设计选择PLC机型的原则

2.1 满足控制功能的要求

PLC在控制功能方面主要考虑的是逻辑运算、算术运算、定时、计数等功能要求,是否要有模拟量的输入与输出功能要求,在考虑输入与输出点数的要求时应该留有余量以备用。另外还要考虑是用晶体管输出型还用继电器输出型,是否要具备网络通信功能等。

2.2 安装方式要适合

PLC多网的分布式、远程I/O式、集中式是安装PLC系统的三种方式。

对于大型系统来讲,远程I/O式是一种比较适合的方式,它具有分布范围广的特点,远程I/O可以在现场装置附近分散安装,它不需要太长的连线,然而远程I/O电源和驱动器需要加以增加设置;不需要对驱动远程I/O硬件进行设置的是集中式,这个系统的特点是具有快捷的反应、低廉的成本;多台PLC联网的分布式常常适合应用于多台设备之间相互联系,但又能够各自独立进行控制的场合。

降低成本对于工厂小批量生产是非常重要的,所以集中式的安装方式是此系统的较好选择。

2.3 结构型式要合理

整体式和模块式是主要的两种PLC的结构型式:

在平均价格上每一个在PLC整体式上的I/O点与模块式比较要低很多,而且它还有另外一个特点,就是它的体积较小,通常在小型控制系统中大为推广;而PLC模块式具有非常优越的功能特点,它在进行扩展的时候灵活方便,具有较大的选择余地,且维修起来非常方便,在纷乱繁琐的控制系统中得以大量应用。

3 机械手控制要求与PLC的选用

考虑到本PLC控制机械手的特定控制要求,需要实现同一平面内X轴方向与Y轴方向的直线焊接与同一平面内的圆弧焊接功能。输入主要有X轴方向焊接选择、Y轴方向焊接选择、圆弧焊接选择、启动按钮、停止按钮、限位开关与位置检测传感器,输出主要通过中间继电器隔离后再控制电磁阀驱动机械手的各个气缸运动。本系统中用五个气缸分别用于机械手的X轴方向移动、Y轴方向移动、旋转运行、机械手升降移动、手爪夹紧控制。根据机械手的控制要求及PLC的性能特点,选择西门S7-200 PLC,CPU为226AC/DC/RLY,有24点输入与16点继电器输出即可满足控制要求。

4 气动控制回路设计

根据机械手的控制要求,五个气动缸的气动控制回路如图1所示,在每个气缸的进气与出气管均安装有节流阀,可调整气流的大小,达到气缸移动与旋转速度的调节

作用。

5 PLC的I/O地址分配

根据机械手输入/输出点数,为了方便PLC的外部接线及程序设计,将PLC的I/O地址分配如表1所示:

6 PLC外部接线图

根据PLC的I/O地址分配表,设计如图2所示的PLC外部接线图:

7 程序设计与调试

焊接机械手的程序设计思路,首先是检测机械手是否在原点位置,正常则常亮,否则故障指示灯按1Hz频率闪烁。然后根据X轴焊、Y轴焊、圆弧焊的选择情况,按下启动按钮即进行焊接加工,按下停止按钮时暂停焊接,再次按下启动时接着焊接,直到焊接完成为止。在加工过程中按下急停按钮,机械手立即停止,自动反回原点位置。由于同一批工件的焊接行程是一致的,在调试过程中应先根据焊接行程调整好气缸行程的检测传感器位置然后固定好传感器。

8 结语

经过对焊接机械手在某建筑机械厂进行现场调试,本系统控制的焊接机械手能够完成预定的功能,能在恶劣环境下代替人工操作,大大地提高了生产效率,节约了人力成本,具有很大的实用价值。

参考文献

[1] 吴峰,胡志超.基于PLC的粮食烘干机燃油炉控制系统设计与实现[J].中国农机化,2010,(2):71-73.

[2] 吕景泉.自动化生产线安装与调试(第二版)[M].北京:中国铁道出版社,2009.

[3] 朱绍胜.基于PLC的车床液压回路控制系统设计[J].液压气动与密封,2010,(3):47-48.

[4] 梁志宏,王怀学.基于PLC的龙门刨床直流调速系统改造[J].科技创新导报,2011,(33).

机械手设计篇10

关键词:并联机械手 三菱QPLC QD75 视觉分析

1 引 言

机器人可以代替人类进行很多繁重和危险的工作,是过去数千年一贯的梦想。人类进入二十一世纪以后,现代科技飞速发展,让机器人逐渐由梦想变为现实。现在机器人已经成为信息和自动化行业蓬勃发展的一个重要领域。机器人从结构上可以分为串联机器人和并联机器人两类,串联机器人具有工作空间大、操作灵活等优点,虽然在工业生产中得到了应用,但是它也存在承载能力低、动力学性能差和关节误差累积等缺点。在实际应用中需要机器人具有高的承载能力、良好的动力学性能以及高精度等要求时,这就迫切需要有另外一种机械结构形式的机器人可供选择。在这种情况下,并联机器人就应运而生了。并联机器人与传统的串联机器人相比,并联机器人具有运行速度快、承载能力强、高柔性化、精度高以及惯性小等特点,因而在航天、航空、航海、机电工业、医疗器械、微型微动机械等方面得到了广泛的应用。

并联机械手由于其诸多的优点成为现在研究领域的热点,由于其运行速度快、承载能力强、高柔性化、精度高以及惯性小等特点,已在航天、航空、航海、机电工业、医疗器械、微型微动机械等方面得到了广泛的应用。PLC的控制使得并联机械手的运动轨迹和控制更加的科学化、人性化。可自动按程序完成工件的检测、抓取、放置、按照设定的轨迹进行工作,保证了伺服电机、主轴、从动轴等各执行构件的动作相互协调,系统运行可靠。

2硬件方案设计

本文设计的并联机械手主要由三条主动臂、三条从动臂和上下两个平台组成,每条主动臂上由一个伺服电机驱动,一个铝制主动臂和一组碳棒组成的从动臂连接,两个平台也分别是用铝材料打造而成。三个伺服电机固定在主平台上,电机与铝制主动臂是通过键结构连接,该结构使电机与主动臂联为一体,主动臂另一端同从动臂连接,从动臂与动平台框架连接。当机构圆点回归运动时,主动臂末端连接的三个伺服电机同时作用于动平台,这样就可以让动平台位于固定的一点,全部结构由三维建模软件SOLIDWORKS设计并仿真,在完成仿真后进行分零件加工。并联机械手运动机构的三维模型图如下图1所示。

当机构需要对物体进行抓取时,则需要伺服电机同时输出不同的脉冲数,进而带动整个机构到达指定位置。动平台框架上可以根据生产中的实际需要来安装不同形式的抓手。本文为了实现对不同形状镍铁合金物体的抓取,采用了电磁铁,用于拾取工作台内的镍铁金属物件(例如螺丝,螺帽,硬币等),体现机械手整体的灵活性、精确度而选择,为了不影响吸取周围的金属物件,吸盘的周围增加了缓冲套,为了能吸到物件偏离而设计,也可以防止吸到其他的物件,选择吸盘不止可以金属分类,也可以对金属和非金属的杂物进行筛选。在动平台不但可以装电磁铁,也可以和切割、画图、扫描等功能多元化结合,可以拓展的功能多种多样。

为了进行视觉信息的采集,本机构中采用了摄像头模块,其分辨率为320*640像素,视角为75度广角镜^,主要功能是捕捉工作台上的物件位置外观,可以附件工作录像、实施拍照等功能,增加摄像头可以大大提升了设备的智能化水平,对于不同的器件的分拣,只需要扩展其识别类别即可。摄像头的工作内容为识别工件的位置、形状等信息,将相关信息传输到人机界面,人机界面将数据进一步传输到PLC,等待PLC计算并控制机械手动作并对其监视,确认无误后进行下次识别工作。

PLC可编程控制器作为本装置的控制核心处理器,选择的是三菱Q系列PLC,作为一款中型PLC产品,三菱Q系列PLC具有更高的处理速度和更多的智能模块可以选择。具体的各模块型号如下:Q61P电源、Q30UDCPU、QD75D2N定位模块、QX40输入模块、QY10输出模块、QJ71E71-100以太网模块,伺服运动控制器选择:三个MR J3-10A伺服驱动器、三个HF-KP13伺服电机。

本装置状态的监控采用三维力控监控软件,作为一款主流的控制监控HMI,力控提供了性能优异的实时数据库、多设备接口、专业的HMI等功能,为完成机械手控制系统的设计提供了良好的基础。

3软件方案设计

3.1 PLC控制模块

在PLC程序中采用双精度64位的浮点型传送指令将实物中的主动臂长度,从动臂长度输入到某个指定的位置中,如"EDMOVP E20 D2"。然后,运用PLC程序里的浮点型算法指令"ED*、ED/、ED-、ED+"编写上述计算出夹角的方程,PLC程序中动平台中心点P的坐标是通过外部信号传输给它的,每一次P点的坐标更新都会通过PLC编写的算法重新进行计算,PLC算法最终是计算出主动臂和XY平面的浮点型弧度角,所以需要再通过PLC转化,将算出来的浮点型弧度值转化,如"DINTD D0 D4"。最后对计算出来的弧度进行放大处理转化为三个伺服电机的脉冲数,让三个电机运行到硬币位置,电磁铁得电硬币被吸引实现抓取,抓取后运动到指定区域后电磁铁失电实现硬币放置,完成本次智能识别抓取任务,并进行下一次识别动作准备。

3.2 定位模块参数设置

伺服放大器MR-J3-10A具有更高性能和更高功能,其控制模式有位置控制、速度控制和转矩控制,广泛用于机械工具和工业机械等需要高精度位置控制和平稳速度控制。伺服控制参数的设定是本设计的重点,通过Q系列PLC的参数设置使用编程软件Works2对其自带定位参数进行修改,伺服系统内部参数设定,是根据系统要求对可编程控制器的参数进行相关设置,从而使PLC通过脉冲来控制伺服放大器来对伺服电机控制,通过设置机械设备和相应电机的速度来对系统进行速度控置。

3.3 PLC控制模块

视觉识别模块主要完成对硬币形状、颜色、大小的识别。它是整个装置中的核心信息驱动模块,主要由工业摄像机和相关软件组成。工业摄像机可以清晰的拍摄到物料圆槽中的所有饰品,并形成图像传递给信息处理计算机,为了完成饰品原料的精确抓取,需要完成样本库的创建、图像的抓取、二值化、轮廓识别、子图抠取、子图旋转、矢量化运算、样本比对等环节,最终完成每个饰品的位置、方位、倾角、文字符号的定位和模式识别。得到这些信息后,机械手才能正常的完成工作。因此视觉识别模块为系统核心模块和其他模块的正常运转提供必要条件。

4系统调试

使用三菱编程软件GX Works2进行程序的编辑,打开GX Works2软件,设置相关PLC参数,进入主程序编辑界面,输入相关程序,编辑QD75P2模块的相关参数。具体操作步骤如下:

(1)新建程序文档,更改程序文件名;

(2)进入软件,更改PLC类型、程序语言;

(3)输入用户程序,在程序编辑框内,逐条输入程序指令;

(4)编辑程序,如果程序中有语法错误,则给出错误的数量。

4.2 模拟调试

通过计算机和PLC连接,使用编程软件GX Works2上的模拟调试功能对系统进行虚拟调试,虚拟调试不需要连接设备减小了系统损耗,也使程序编写更加方便,是系统调试必须要进行的环节,具体操作步骤如下:

(1)在断电情况下,用编程电缆(PC/PPI电缆)将计算机和PLC主机相连;

(2)接通计算机与PLC的工作电源;

(3)在计算机上运行GX Works2软件,并进行正确的通信参数设置;

(4)通过GX Works2软件,将机械手的控制系统程序导入至PLC中,并将相关的定位数据同时写入PLC中;

(5)建立计算机和PLC主机的在线联系;

(6)用户程序监视运行;

(7)用户程序动态调试。

结合程序监视运行的动态显示,分析程序运行的结果,以及影响程序运行的因素,然后在STOP状态下对程序进行修改编辑,重新编译、下载、监视运行,如此反复修改调试,直至得出正确运行结果为止。

4.3联机调试

在断电条件下硬件线路接好,按照电路图要求,将PLC和外部设备通过航空插座相连,同时将PLC和编程计算机,伺服放大器与伺服电机相连。将系统所有设备接通电源后,PLC在计算机的监视下运行用户程序。观察系统运行动态是否符合设计要求。伺服电机执行回原点动作,定位启动按键断开,按下"原点回归"按键,近位开关将回到起始位置。第一步定位完成。 当摄像头成功的识别出物体后,PLC将位置数据传送给各个伺服放大器,伺服放大器驱动X、Y、Z轴同时运动,到达定位点,接着,PLC控制电磁铁得电,将物体吸引实现抓取;最后,当机械手抓到物体后,再将抓取物体先提升到指定高度,平移,最后下移,到达指定高度后,将物体放置下来,并做好对下一物体的抓取准备,完成了一个抓取周期。

5 结 论

并联机械手由于其刚度大、承载能力弱、响应速度快、精度高以及惯性小等特点,在轻工业中得到了广泛的应用,成为了机械代替人力的典型范例。随着机械手应用的普及,机械手向着专用化、机械结构模块化、可重构化的方向发展,机械手的运动更加的灵活准确多样化,其控制方式也在向着多元化的方向发展,其应用将有着更大的发展空间。

参考文献(References)

【1】王成福.黄敏,张小杭.电器及PLC控制技术 [M].浙江大学出版社,2008.(Wang Chengfu, Huang Min, Zhang Xiaohang. [M]. control technology, Zhejiang University press, 2008.)

【2】王海, 李洪奎, 刘晓. 基于PLC的多轴控制研究[J]. 机械工程学报, 2008.(Wang Hai, Li Hongkui, Liu Xiao. Based on the multi axis control of [J]. PLC Journal of mechanical engineering, 2008.)

【3】刘建峰. 基于PLC的多轴运动控制系统的研究[J]. 机械制造与自动化, 2007.(Liu Jianfeng. Research on multi axis motion control system based on [J]. PLC machine manufacturing and automation, 2007.)

【4】张万忠.可编程控制入门与应用实例[M].北京:中国电力出版社, 2005.(Zhang Wanzhong. Introduction and application of programmable control [M]. Beijing: China Electric Power Press, 2005.)

【5】刘洪涛.PLC应用开发从基础到实践[M].北京:电子工业出版社, 2007.(Liu Hongtao.PLC application development from basic to practice [M]. Beijing: Electronics Industry Press, 2007.)

【6】徐国林.PLC控制技术[M] 徐国林.北京:机械工业出版社, 2007.(Xu Guolin.PLC control technology [M] Xu Guolin. Beijing: Mechanical Industry Press, 2007.)