电厂电气设备安装分析论文

时间:2022-06-30 03:54:00

电厂电气设备安装分析论文

1前言

水电机组运行参数的调节、控制和状态的监视,是通过电气二次设备实现的。当机组主设备运行稳定后,二次设备运行状况的优劣,是亘接影响电厂的安全、高效发、供电的关键因素。假如机组的励磁装置可控硅阻容保护回路击穿导致拆柜检修,假如顶盖浮子或水位传感器故障,导致淹水导,则该电厂的机组安装生产和安全记录将受到极大的威胁。

葛洲坝电厂作为三峡工程的实战演习,在已过去的20年中,经历了机组安装、调试、投运,机组大、小修和设备改造后的调试投运,尤其是完成了机组控制设备从以晶体管集成电路为主的控制到计算机局域网(LAN)的实时控制的改造。在二次设备施工改造过程中,处理过很多技术隐患。在此,通过几个实例力求概括二次设备安装调试质量应控制的几个关键环节,以供三峡左岸电厂二次设备安装调试时质量控制参考。

2二次设备配置特点

三峡左岸电厂二次设备是基于双冗余、全分布、全开放计算机网络配置,计算机监控系统(SCADA)可分为3层,它们分别是厂站层,主要由包括数据服务器、历史记录服务器、I/O接日的模拟返回屏、消防系统。工业电视系统、调度电话和行政电话服务器等组成,对厂内执行AVG、AVC和各类监视、告警、工业电视画面显示和编辑等功能,对外接受三峡梯调、华中、华东、重庆和国家等信息;现地控制单元(LCU)分布在各台机组、公用设备、GIS室等,LCU该受上位机的指令,执行开停机、I/O执行和数字信号反馈和事件记录、机组调试试验等功能;物理层设备包括发电机励磁装置、水轮机调速器、发变组保护设备、GIS保护设备、工业设备远程1/O或可编程控制器(PL以及各类基础自动化元件,如各类传感器、测温元件、继电器和接触器、浮子和压力接点等。

3二次设备安装调试质量应控制的几个环节

三峡左岸电厂二次设备安装调试质量目标是应符合设备合同文件中的技术条款、安装试验规程和性能保证值的要求。

质量控制通常分为主动控制和被动控制,主动控制是在工程开工前的方案和图纸审核等;而被动控制是指正式施工过程中,监理和政府职能部门的质量监督机构通过诸如旁站监理、质量检查等发现问题,纠正质量偏差。基于第2节中的配置方式,三峡左岸电厂二次设备安装时质量控制重点应放在以下几个环节。

3.1图纸审核应注意原理的正确性和控制过程的完备性

审查二次设备的原理图、配线图和程序框图时,首先应验证图纸的正确性,但原理正确并不等于控制过程是完备的,尤其是用计算机控制。

例如,葛洲坝电厂发电机组为自动准同期方式。励磁装置中功率柜采用负压风冷方式,两台风机互为备用。风机设有机组LCU自动开启、自动停止,风机控制把手上有“自动、手动、停止”3个位置。同时机组LCU和上位机可以单独启、停风机。在控制原理上,当发电机空载升压后,如果LCU开机流程中设置的1台励磁风机未启动,则自动准同期后,由断路器辅助接点通过重复继电器作为备用回路启动励磁风机。这样设计,原理上无疑是正确的,但不是完备的。就风机备用启动回路本身而言,在现场的实际运行中,由于断路器中问重复继电器的两对常开接点分别接入两台励磁风机,因此出现两台风机同时启动。就开机流程而言,诸如机组LCU励磁风机启动开出令的维持时问,风机接触器的动作特性,以及数字反馈信号采集的原因等,将导致风机在开机过程中启动失败。机组LCU做断路器位置开出试验时,如果风机电源投入,励磁风机两台也会同时启动。

解诀的方法是将1台风机接触器的辅助常闭接点串在另1台风机的自保持回路中即可。

由此可见图纸资料审查作为质量控制中主动控制的重要性,它不仅可以影响工程建设的质量和进度,更主要在于为设备投产后长期安全、稳定运行打好了良好的基础。

3.2基础自动化元件校验

基础自动化元件校验是电气二次设备安装质量控制的另一个重要环节。它直接关系到机组调试是否顺利完成,各种开关电器设备能否正确动作,各辅机设备能否正常投入和退出。

水电站基础自动化元件可分为以下几类:

继电器类:从用途上分,包括中间继电器、时间继电器、交流接触器、直流接触器、信号继电器、转速继电器、示流器、热耦继电器等;接点类:压力接点、水位油位常规接点、水位油位磁性接点、行程和限位接点、风压接点等;传感器类(包括电流源和电压源):位移传感器、压力传感器、压差传感器、水位油位传感器、温度传感器等;

电磁阀:如过速电磁铁、技术供水系统的各电磁阀、排污阀等;

变送器类:包括CT、PT及其二次仪表和采样回路,P、Q变送器或直接差行交流采样的回路;测温电阻类:三部轴承测温系统、定于测温系统、各变压器测温系统等;

表计类:如电压、电流、功率、压力表以及分流器等。

基础自动化元件的校验应严格遵循设备采购合同中的技术规范条款和指定的校验规程进行;在无上述标准时,应按厂家说明书中的性能保证值进行校验。在校验过程中,应结合元件所在的原理图和实际接线的电气距离,校核动作的正确性和准确级是否符合技术规范要求。

例如,某新装机组灭磁开关合闸线圈直流电阻力4.4Ω,动作电压值为183V,设计操作电源为DC220V;由于灭磁开关的操作按开关电器设备的规定,必须设置专用合闸电源,同时合闸线圈只能短时通电(通过时间继电器实现),按设计的电源电缆线径和直流母线至灭磁开关安装地点的距离,计算电阻值为3.8Ω,合闸线圈上的电压力12lV。合闸线圈校验和电源电缆的计算结果送交业主和监理单位后,批准通电试验,实际测量合闸线圈上的电压为123V,合灭磁开关时,合闸力不够,开关发生往复操作。后从该机组动力盘取交流,加装单相桥式整流电路,直流输出电压为197V,满足合闸线圈动作值要求,开关一次会闭成功。

因基础自动化元件校验不合格而导致工期拖延的现场实例不胜枚举,建议基础自动化元件校验时,应有现场试验经验的技术人员和电厂维护人员参与。

3.3配线和复查

配线工作不单指芯线上端子排,应该是电缆敷设完毕后,包括开电缆、做电缆头、做电缆屏蔽地线、号头编写、对线、上端子。配线时,应特别注意芯线的预留长度(裕度)、各类插头和电缆接地线的连接应符合技术规范要求。配线时经常犯的错误是,用烙铁焊接芯线时,焊渣或造成虚地、虚焊、假焊,短路等;对称回路配反,如电动阀的开启与关闭、电磁铁的开启与关闭、直流元件有正负极要求的极性接反等等。

例如,某机组励磁装置同步变压器一次测取自阳极刀闸的进线侧,同步变压器一次侧和二次侧的引出线焊接在变压器两侧的抽头上。小电流试验时,各通道调整正常,励磁工作面报完工。当发电机空载升流至0.7Ie时,监护人员听到励磁功率柜有放电声音。采取逆变和跳开灭磁开关后,检查发现同步变压器一次侧有一相的焊点在焊接端子时有一节焊锡丝与变压器铁芯有虚接触而形成放电间隙,清除焊锡丝后,放电现象消失。其他诸如传感器有正负极要求的将线配反,烧坏传感器;电磁阀、电动阀配反而导致相反操作的技术隐患均有发生。

因此复查工作是保证配线质量的重要环节,复查时,应确认接线的正确性和接线可靠性(尤其是CT口路、计算机等)。

3.4试验

试验是直接考核设备综合性能的关键环节。因此设备试验,应注意以下几个方面:

(1)试验前的准备工作:包括试验仪器、仪表,试验记录表格,试验原理分析,试验人员职责分工,熟悉试验大纲,安全措施等;

(2)试验开始前,应检查消防、安全应急措施是否落实;

(3)试验应由有经验的技术人员统一协调、指挥各工作面的试验工作;

(4)试验时,设专人监护,防止误合试验电源或试验人员误入带电间隔;

(5)试验开始后,应严格按照试验大纲进行各项试验,并做好原始记录;

(6)新技术试验(由于现行的试验规程相对滞后,有些最新发展的技术的试验应根据厂家的技术资料进行,如励磁、电调给定按钮的防粘连试验);

(7)试验完工后,应及时整理试验记录、试验报告,以利于标准化管理。

本文强调上述几个环节,是因为这几个环节出现技术隐思和事故的机率高于其它环节,同时在施工过程中容易疏忽。