陶瓷膜范文10篇

时间:2023-04-11 09:52:38

陶瓷膜

陶瓷膜范文篇1

陶瓷膜也称CT膜,是固态膜的一种,最早由日本的大日本印刷公司和东洋油墨公司在1996年开发引入市场。陶瓷膜主要是A12O3,Zr02,Ti02和Si02等无机材料制备的多孔膜,其孔径为2-50mm。具有化学稳定性好,能耐酸、耐碱、耐有机溶剂:机械强度大,可反向冲洗:抗微生物能力强:耐高温:孔径分布窄,分离效率高等特点,在食品工业、生物工程、环境工程、化学工业、石油化工、治金工业等领域得到了广泛的应用,其市场销售额以35%的年增长率发展着。陶瓷膜与同类的塑料制品相比,造价昂贵,但又具有许多优点,它坚硬、承受力强、耐用、不易阻寨,对具有化学侵害性液体和高温清洁液有更强的抵抗能力,其主要缺点就是价格昂贵目_制造过程复杂。

2004年7月,北美陶瓷技术公司顺利完成了其价值超过500万美元的新型双磨盘研磨机的组装,该设备在制备超薄陶瓷膜的生产技术上首屈一指,这同时也使得公司在制备超平、超完整陶瓷膜上的技术大大提升。我国南京工业大学完成了低温烧结多通道多孔陶瓷膜,该项目的研究对于提高我国陶瓷膜的质量、降低成本具有重要意义。多孔陶瓷膜由于具有优异的耐高温、耐溶剂、耐酸碱性能和机械强度高、容易再生等优点:在食品、生物、化工、能源和环保领域应用广泛。但目前在其应用中存在两大难题:一是多孔陶瓷膜的高成本,尤其是支撑体材料的成本高:二是有限的陶瓷品种与纷繁复杂的现状存在着矛后。目前商品化的陶瓷膜只有有限的几种规格,这就对特定孔结构的陶瓷膜制备提出了更高的要求。该课题组主要对以氧化铝和特种烧结促进剂为起始原料,在1400℃的烧成温度下制备出的支撑体进行了系统和深入的研究,得到渗透性能、机械性能及耐腐性能统一的支撑体。他们还以原料性质预测支撑体的孔结构为目标,以支撑体的制备过程和微观结构为基础,建立了原料性质与支撑体孔隙率、孔径分布之间的计算方法,为特定孔结构支撑体的定量制备提供了理论依据。

目前,己商品化的多孔陶瓷膜的构形主要有平板、管式和多通道3种。平板膜主要用于小规模的工业生产和实验室研究。管式膜组合起米形成类似于列管换热器的形式,可增大膜装填而积,但由于其强度问题,己逐步退出工业应用。规模应用的陶瓷膜,通常采用多通道构形,即在一圆截面上分布着多个通道,一般通道数为7,19和37。无机陶瓷膜的主要制备技术有:采用固态粒子烧结法制备载体及微滤膜,采用溶胶-凝胶法制各超滤膜:采用分相法制备玻璃膜:采用专门技术(如化学气相沉积、无电镀等)制备微孔膜或致密膜。其基本理论涉及材料学科的胶体与表面化学、材料化学、固态离子学、材料加工等。

从发展趋势米看,陶瓷膜制备技术的发展主要在以下2方面:一是在多孔膜研究方而,进一步完善己商品化的无机超滤和微滤膜,发展具有分子筛分功能的纳滤膜、气体分离膜和渗透汽化膜:二是在致密膜研究中,超薄金属及其合金膜及具有离子混合传导能力的固体电解质膜是研究的热点。己经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制各微孔滤膜,应用广泛的商品化A1203膜即是由粒子烧结法制备的。

2陶瓷膜的广泛应用

2.1提纯用陶瓷过滤膜

2004年8月,由北京迈胜普技术有限公司与山东鲁抗医药有限公司研制的陶瓷膜过滤系统用于某种抗生素的分离提纯获得成功,这不仅优化了此种抗生素的生产工艺,而目使抗生素收率提高15%,这是我国首次将陶瓷膜技术运用于抗生素生产。抗生素的分离提纯,必须经过对发酵液的过滤和对滤出的药液进行树脂交换。目前,许多抗生素生产企业对氨基糖苷类抗生素发酵液的分离提纯均采用真空转鼓过滤器,这种工艺需先将发酵液酸化调至一定的pH值,然后用敷设助滤剂层的真空转鼓过滤器进行预过滤,再用板框进行复滤及树脂交换。采用这种工艺不仅过程繁琐,而目有效成分收率低,仅过滤和树脂交换过程的收率损失达30%。而运用“迈胜普”与“鲁抗”共同研制的陶瓷膜过滤系统分离提纯某种抗生素,却能使有效成分在过滤过程的收失损提高近5%,在树脂交换过程中的收率提高10%以上。

当前,西方发达国家在食品工业、石化工业、环境保护、生化制药等许多领域对膜技术的应用越来越广泛,而用无机材料制成的过滤膜(陶瓷膜就是一种无机过滤膜)的发展前景有可能比有机过滤膜更好。对于面临抗生素政策性降价和抗菌药限售双重压力的国内众多抗生素生产企业而言,通过创新工艺提高产品收率和质量不失为降低成本的明智选择,而以陶瓷膜技术改进现行抗生素分离提纯工艺有可能成为降成本、提高效益的突破口。

2.2镀陶瓷包装膜

在食品包装领域,近年越来越引人注目的是具有高功能性和良好环保适应性的透明镀陶瓷膜。这种膜尽管目前价格较高,物理性能还有待进一步改进,但可预期在不远的将来它将在食品包装材料中占据重要的地位。陶瓷膜的加工镀膜方法与通常的镀金属方法相似,基本上按我们己知的加工法进行。镀陶瓷膜由PET(12μm)陶瓷(Si0x)组成。氧化硅能分成4类,即Si0,Si304,Si203,Si02。然而,在自然界它们通常以Si02形式存在,因此根据镀金属条件,它们的变化很大。对这种膜的主要要求是具有良好的透明度、极佳的阻隔性、优良的耐蒸煮性、较好的可透过微波性与良好的环境保护性以及良好的机械性能。

镀陶瓷膜基本上可以用制作镀铝膜一样的条件制取,在制取过程中,仔细处理表面层,不使镀层受到损伤是极其重要的。由于这种膜是由氧化硅处理的,表面具有极好的润湿性,因此,它在油墨或粘合剂的选择范围上比较广,几乎与任何油墨或粘合剂都能亲和。聚氨酯类粘合剂是最可取的粘合剂,而油墨可以按用途任意选择,不用进行表面处理。然而,镀陶瓷膜你像镀铝膜那样容易向聚乙烯复合,因为PET膜作为基材料,当其氧化硅表而直接熔融聚乙烯高温涂布或复合时,易趋向于伸长,从而破坏氧化硅表面层,导致阻隔性下降。同时,在目前条件下,由于技术工艺上的问题,PET膜在镀陶瓷过程中有时会发生卷曲,从而影响膜的质量。当然,这类问题正得到解决。

镀陶瓷膜首先用作细条实心面的调味品包装材料。其优良的包装性能引起了人们的注意。由于这种膜保味性极佳,因此,尤其适合于包装易升华产品,如茶(樟脑)之类的易挥发材质。由于其极好的阻隔性,除了作为高阻隔性包装材料和作食品包装材料用外、预计还可用在微波容器上作为盖材,在调味品、精密机械零配件、电子零件、药物和医药仪器等方而作为包装材料。随着加工技术的进一步发展,如果这种膜在成本上大幅下降,那么它将得到迅速推广和应用。

2.3燃料电池陶瓷膜

我国"863”计划固体氧化物燃料电池(SOFC)项目经过对新型中温固体氧化物陶瓷膜燃料电池的长期研制,把陶瓷膜制备技术开拓应用于SOFC的制作,把通常SOFC的高温(1000-900℃)拓延到中温阶段(700-500℃)。目前中国科技大学无机膜研究所己经研制成功的新型中温陶瓷膜燃料电池,是一种以陶瓷膜作为电解质的燃料电池。电池部件薄膜化以后,降低了电池的内阻,提高了有用功率的输出,不需要高温的条件下实现了中温化,操作温度降到700-500℃。这种新型燃料电池继承了高温SOFC的优点,同时降低了成本。此类陶瓷膜燃料电池具有广阔的应用前景。

2.4琥珀陶瓷隔热膜

2004年8月,基于金属膜对无线电信号的干扰和容易氧化等缺点,我国韶华科技公司携手德国某著名工业研究机构共同开发融入纳米蜂窝陶瓷技术,并将韶华科技独有的真空溅射技术用于陶瓷隔热膜的生产上,创造了独一无二的琥珀陶瓷隔热膜,解决了金属膜无法逾越的技术问题:对无线电信号无任何干扰,特别是卫星的短波信号,绝不氧化,因为陶瓷超乎寻常的稳定性,从而保证隔热性能始终如一:永不褪色,陶瓷隔热膜采用陶瓷固有的颜色,不添加任何颜料,囚此,陶瓷隔热膜绝不会像染色金属会发生褪色现象:超级耐用,陶瓷隔热膜保质期为10年,金属膜一般为5年:经典美感,象琉泊一样的晶莹剔透的美感,色泽柔和,拥有最舒适的视觉效果。琥珀纳米陶瓷隔热膜最先应用于美国的航天飞机和国际空间站,而后广泛应用于汽车、建筑、海事等各个领域。由于技术敏感,直到2003年该产品才在中国销售。

3陶瓷膜产业发展概况

陶瓷膜的研究始于20世纪40年代,其发展可分为3个阶段:用于铀的同位素分离的核工业时期,于20世纪80年代建成了膜面积达400万平方米的陶瓷膜的富集256UF6工厂,以无机微滤膜和超滤膜为主的液体分离时期和以膜催化反应为核心的全面发展的时期。

陶瓷膜范文篇2

陶瓷膜也称CT膜,是固态膜的一种,最早由日本的大日本印刷公司和东洋油墨公司在1996年开发引入市场。陶瓷膜主要是A12O3,Zr02,Ti02和Si02等无机材料制备的多孔膜,其孔径为2-50mm。具有化学稳定性好,能耐酸、耐碱、耐有机溶剂:机械强度大,可反向冲洗:抗微生物能力强:耐高温:孔径分布窄,分离效率高等特点,在食品工业、生物工程、环境工程、化学工业、石油化工、治金工业等领域得到了广泛的应用,其市场销售额以35%的年增长率发展着。陶瓷膜与同类的塑料制品相比,造价昂贵,但又具有许多优点,它坚硬、承受力强、耐用、不易阻寨,对具有化学侵害性液体和高温清洁液有更强的抵抗能力,其主要缺点就是价格昂贵目_制造过程复杂。

2004年7月,北美陶瓷技术公司顺利完成了其价值超过500万美元的新型双磨盘研磨机的组装,该设备在制备超薄陶瓷膜的生产技术上首屈一指,这同时也使得公司在制备超平、超完整陶瓷膜上的技术大大提升。我国南京工业大学完成了低温烧结多通道多孔陶瓷膜,该项目的研究对于提高我国陶瓷膜的质量、降低成本具有重要意义。多孔陶瓷膜由于具有优异的耐高温、耐溶剂、耐酸碱性能和机械强度高、容易再生等优点:在食品、生物、化工、能源和环保领域应用广泛。但目前在其应用中存在两大难题:一是多孔陶瓷膜的高成本,尤其是支撑体材料的成本高:二是有限的陶瓷品种与纷繁复杂的现状存在着矛后。目前商品化的陶瓷膜只有有限的几种规格,这就对特定孔结构的陶瓷膜制备提出了更高的要求。该课题组主要对以氧化铝和特种烧结促进剂为起始原料,在1400℃的烧成温度下制备出的支撑体进行了系统和深入的研究,得到渗透性能、机械性能及耐腐性能统一的支撑体。他们还以原料性质预测支撑体的孔结构为目标,以支撑体的制备过程和微观结构为基础,建立了原料性质与支撑体孔隙率、孔径分布之间的计算方法,为特定孔结构支撑体的定量制备提供了理论依据。

目前,己商品化的多孔陶瓷膜的构形主要有平板、管式和多通道3种。平板膜主要用于小规模的工业生产和实验室研究。管式膜组合起米形成类似于列管换热器的形式,可增大膜装填而积,但由于其强度问题,己逐步退出工业应用。规模应用的陶瓷膜,通常采用多通道构形,即在一圆截面上分布着多个通道,一般通道数为7,19和37。无机陶瓷膜的主要制备技术有:采用固态粒子烧结法制备载体及微滤膜,采用溶胶-凝胶法制各超滤膜:采用分相法制备玻璃膜:采用专门技术(如化学气相沉积、无电镀等)制备微孔膜或致密膜。其基本理论涉及材料学科的胶体与表面化学、材料化学、固态离子学、材料加工等。

从发展趋势米看,陶瓷膜制备技术的发展主要在以下2方面:一是在多孔膜研究方而,进一步完善己商品化的无机超滤和微滤膜,发展具有分子筛分功能的纳滤膜、气体分离膜和渗透汽化膜:二是在致密膜研究中,超薄金属及其合金膜及具有离子混合传导能力的固体电解质膜是研究的热点。己经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制各微孔滤膜,应用广泛的商品化A1203膜即是由粒子烧结法制备的。

2陶瓷膜的广泛应用

2.1提纯用陶瓷过滤膜

2004年8月,由北京迈胜普技术有限公司与山东鲁抗医药有限公司研制的陶瓷膜过滤系统用于某种抗生素的分离提纯获得成功,这不仅优化了此种抗生素的生产工艺,而目使抗生素收率提高15%,这是我国首次将陶瓷膜技术运用于抗生素生产。抗生素的分离提纯,必须经过对发酵液的过滤和对滤出的药液进行树脂交换。目前,许多抗生素生产企业对氨基糖苷类抗生素发酵液的分离提纯均采用真空转鼓过滤器,这种工艺需先将发酵液酸化调至一定的pH值,然后用敷设助滤剂层的真空转鼓过滤器进行预过滤,再用板框进行复滤及树脂交换。采用这种工艺不仅过程繁琐,而目有效成分收率低,仅过滤和树脂交换过程的收率损失达30%。而运用“迈胜普”与“鲁抗”共同研制的陶瓷膜过滤系统分离提纯某种抗生素,却能使有效成分在过滤过程的收失损提高近5%,在树脂交换过程中的收率提高10%以上。

当前,西方发达国家在食品工业、石化工业、环境保护、生化制药等许多领域对膜技术的应用越来越广泛,而用无机材料制成的过滤膜(陶瓷膜就是一种无机过滤膜)的发展前景有可能比有机过滤膜更好。对于面临抗生素政策性降价和抗菌药限售双重压力的国内众多抗生素生产企业而言,通过创新工艺提高产品收率和质量不失为降低成本的明智选择,而以陶瓷膜技术改进现行抗生素分离提纯工艺有可能成为降成本、提高效益的突破口。

2.2镀陶瓷包装膜

在食品包装领域,近年越来越引人注目的是具有高功能性和良好环保适应性的透明镀陶瓷膜。这种膜尽管目前价格较高,物理性能还有待进一步改进,但可预期在不远的将来它将在食品包装材料中占据重要的地位。陶瓷膜的加工镀膜方法与通常的镀金属方法相似,基本上按我们己知的加工法进行。镀陶瓷膜由PET(12μm)陶瓷(Si0x)组成。氧化硅能分成4类,即Si0,Si304,Si203,Si02。然而,在自然界它们通常以Si02形式存在,因此根据镀金属条件,它们的变化很大。对这种膜的主要要求是具有良好的透明度、极佳的阻隔性、优良的耐蒸煮性、较好的可透过微波性与良好的环境保护性以及良好的机械性能。镀陶瓷膜基本上可以用制作镀铝膜一样的条件制取,在制取过程中,仔细处理表面层,不使镀层受到损伤是极其重要的。由于这种膜是由氧化硅处理的,表面具有极好的润湿性,因此,它在油墨或粘合剂的选择范围上比较广,几乎与任何油墨或粘合剂都能亲和。聚氨酯类粘合剂是最可取的粘合剂,而油墨可以按用途任意选择,不用进行表面处理。然而,镀陶瓷膜你像镀铝膜那样容易向聚乙烯复合,因为PET膜作为基材料,当其氧化硅表而直接熔融聚乙烯高温涂布或复合时,易趋向于伸长,从而破坏氧化硅表面层,导致阻隔性下降。同时,在目前条件下,由于技术工艺上的问题,PET膜在镀陶瓷过程中有时会发生卷曲,从而影响膜的质量。当然,这类问题正得到解决。

镀陶瓷膜首先用作细条实心面的调味品包装材料。其优良的包装性能引起了人们的注意。由于这种膜保味性极佳,因此,尤其适合于包装易升华产品,如茶(樟脑)之类的易挥发材质。由于其极好的阻隔性,除了作为高阻隔性包装材料和作食品包装材料用外、预计还可用在微波容器上作为盖材,在调味品、精密机械零配件、电子零件、药物和医药仪器等方而作为包装材料。随着加工技术的进一步发展,如果这种膜在成本上大幅下降,那么它将得到迅速推广和应用。

2.3燃料电池陶瓷膜

我国"863”计划固体氧化物燃料电池(SOFC)项目经过对新型中温固体氧化物陶瓷膜燃料电池的长期研制,把陶瓷膜制备技术开拓应用于SOFC的制作,把通常SOFC的高温(1000-900℃)拓延到中温阶段(700-500℃)。目前中国科技大学无机膜研究所己经研制成功的新型中温陶瓷膜燃料电池,是一种以陶瓷膜作为电解质的燃料电池。电池部件薄膜化以后,降低了电池的内阻,提高了有用功率的输出,不需要高温的条件下实现了中温化,操作温度降到700-500℃。这种新型燃料电池继承了高温SOFC的优点,同时降低了成本。此类陶瓷膜燃料电池具有广阔的应用前景。

2.4琥珀陶瓷隔热膜

2004年8月,基于金属膜对无线电信号的干扰和容易氧化等缺点,我国韶华科技公司携手德国某著名工业研究机构共同开发融入纳米蜂窝陶瓷技术,并将韶华科技独有的真空溅射技术用于陶瓷隔热膜的生产上,创造了独一无二的琥珀陶瓷隔热膜,解决了金属膜无法逾越的技术问题:对无线电信号无任何干扰,特别是卫星的短波信号,绝不氧化,因为陶瓷超乎寻常的稳定性,从而保证隔热性能始终如一:永不褪色,陶瓷隔热膜采用陶瓷固有的颜色,不添加任何颜料,囚此,陶瓷隔热膜绝不会像染色金属会发生褪色现象:超级耐用,陶瓷隔热膜保质期为10年,金属膜一般为5年:经典美感,象琉泊一样的晶莹剔透的美感,色泽柔和,拥有最舒适的视觉效果。琥珀纳米陶瓷隔热膜最先应用于美国的航天飞机和国际空间站,而后广泛应用于汽车、建筑、海事等各个领域。由于技术敏感,直到2003年该产品才在中国销售。

3陶瓷膜产业发展概况

陶瓷膜的研究始于20世纪40年代,其发展可分为3个阶段:用于铀的同位素分离的核工业时期,于20世纪80年代建成了膜面积达400万平方米的陶瓷膜的富集256UF6工厂,以无机微滤膜和超滤膜为主的液体分离时期和以膜催化反应为核心的全面发展的时期。

陶瓷膜范文篇3

陶瓷膜也称CT膜,是固态膜的一种,最早由日本的大日本印刷公司和东洋油墨公司在1996年开发引入市场。陶瓷膜主要是A12O3,Zr02,Ti02和Si02等无机材料制备的多孔膜,其孔径为2-50mm。具有化学稳定性好,能耐酸、耐碱、耐有机溶剂:机械强度大,可反向冲洗:抗微生物能力强:耐高温:孔径分布窄,分离效率高等特点,在食品工业、生物工程、环境工程、化学工业、石油化工、治金工业等领域得到了广泛的应用,其市场销售额以35%的年增长率发展着。陶瓷膜与同类的塑料制品相比,造价昂贵,但又具有许多优点,它坚硬、承受力强、耐用、不易阻寨,对具有化学侵害性液体和高温清洁液有更强的抵抗能力,其主要缺点就是价格昂贵目_制造过程复杂。

****年*月,北美陶瓷技术公司顺利完成了其价值超过500万美元的新型双磨盘研磨机的组装,该设备在制备超薄陶瓷膜的生产技术上首屈一指,这同时也使得公司在制备超平、超完整陶瓷膜上的技术大大提升。我国南京工业大学完成了低温烧结多通道多孔陶瓷膜,该项目的研究对于提高我国陶瓷膜的质量、降低成本具有重要意义。多孔陶瓷膜由于具有优异的耐高温、耐溶剂、耐酸碱性能和机械强度高、容易再生等优点:在食品、生物、化工、能源和环保领域应用广泛。但目前在其应用中存在两大难题:一是多孔陶瓷膜的高成本,尤其是支撑体材料的成本高:二是有限的陶瓷品种与纷繁复杂的现状存在着矛后。目前商品化的陶瓷膜只有有限的几种规格,这就对特定孔结构的陶瓷膜制备提出了更高的要求。该课题组主要对以氧化铝和特种烧结促进剂为起始原料,在1400℃的烧成温度下制备出的支撑体进行了系统和深入的研究,得到渗透性能、机械性能及耐腐性能统一的支撑体。他们还以原料性质预测支撑体的孔结构为目标,以支撑体的制备过程和微观结构为基础,建立了原料性质与支撑体孔隙率、孔径分布之间的计算方法,为特定孔结构支撑体的定量制备提供了理论依据。

目前,己商品化的多孔陶瓷膜的构形主要有平板、管式和多通道3种。平板膜主要用于小规模的工业生产和实验室研究。管式膜组合起米形成类似于列管换热器的形式,可增大膜装填而积,但由于其强度问题,己逐步退出工业应用。规模应用的陶瓷膜,通常采用多通道构形,即在一圆截面上分布着多个通道,一般通道数为7,19和37。无机陶瓷膜的主要制备技术有:采用固态粒子烧结法制备载体及微滤膜,采用溶胶-凝胶法制各超滤膜:采用分相法制备玻璃膜:采用专门技术(如化学气相沉积、无电镀等)制备微孔膜或致密膜。其基本理论涉及材料学科的胶体与表面化学、材料化学、固态离子学、材料加工等。

从发展趋势米看,陶瓷膜制备技术的发展主要在以下2方面:一是在多孔膜研究方而,进一步完善己商品化的无机超滤和微滤膜,发展具有分子筛分功能的纳滤膜、气体分离膜和渗透汽化膜:二是在致密膜研究中,超薄金属及其合金膜及具有离子混合传导能力的固体电解质膜是研究的热点。己经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制各微孔滤膜,应用广泛的商品化A1203膜即是由粒子烧结法制备的。

2陶瓷膜的广泛应用

2.1提纯用陶瓷过滤膜

****年*月,由北京迈胜普技术有限公司与山东鲁抗医药有限公司研制的陶瓷膜过滤系统用于某种抗生素的分离提纯获得成功,这不仅优化了此种抗生素的生产工艺,而目使抗生素收率提高15%,这是我国首次将陶瓷膜技术运用于抗生素生产。抗生素的分离提纯,必须经过对发酵液的过滤和对滤出的药液进行树脂交换。目前,许多抗生素生产企业对氨基糖苷类抗生素发酵液的分离提纯均采用真空转鼓过滤器,这种工艺需先将发酵液酸化调至一定的pH值,然后用敷设助滤剂层的真空转鼓过滤器进行预过滤,再用板框进行复滤及树脂交换。采用这种工艺不仅过程繁琐,而目有效成分收率低,仅过滤和树脂交换过程的收率损失达30%。而运用“迈胜普”与“鲁抗”共同研制的陶瓷膜过滤系统分离提纯某种抗生素,却能使有效成分在过滤过程的收失损提高近5%,在树脂交换过程中的收率提高10%以上。

当前,西方发达国家在食品工业、石化工业、环境保护、生化制药等许多领域对膜技术的应用越来越广泛,而用无机材料制成的过滤膜(陶瓷膜就是一种无机过滤膜)的发展前景有可能比有机过滤膜更好。对于面临抗生素政策性降价和抗菌药限售双重压力的国内众多抗生素生产企业而言,通过创新工艺提高产品收率和质量不失为降低成本的明智选择,而以陶瓷膜技术改进现行抗生素分离提纯工艺有可能成为降成本、提高效益的突破口。

陶瓷膜范文篇4

陶瓷膜也称CT膜,是固态膜的一种,最早由日本的大日本印刷公司和东洋油墨公司在1996年开发引入市场。陶瓷膜主要是A12O3,Zr02,Ti02和Si02等无机材料制备的多孔膜,其孔径为2-50mm。具有化学稳定性好,能耐酸、耐碱、耐有机溶剂:机械强度大,可反向冲洗:抗微生物能力强:耐高温:孔径分布窄,分离效率高等特点,在食品工业、生物工程、环境工程、化学工业、石油化工、治金工业等领域得到了广泛的应用,其市场销售额以35%的年增长率发展着。陶瓷膜与同类的塑料制品相比,造价昂贵,但又具有许多优点,它坚硬、承受力强、耐用、不易阻寨,对具有化学侵害性液体和高温清洁液有更强的抵抗能力,其主要缺点就是价格昂贵目_制造过程复杂。

2004年7月,北美陶瓷技术公司顺利完成了其价值超过500万美元的新型双磨盘研磨机的组装,该设备在制备超薄陶瓷膜的生产技术上首屈一指,这同时也使得公司在制备超平、超完整陶瓷膜上的技术大大提升。我国南京工业大学完成了低温烧结多通道多孔陶瓷膜,该项目的研究对于提高我国陶瓷膜的质量、降低成本具有重要意义。多孔陶瓷膜由于具有优异的耐高温、耐溶剂、耐酸碱性能和机械强度高、容易再生等优点:在食品、生物、化工、能源和环保领域应用广泛。但目前在其应用中存在两大难题:一是多孔陶瓷膜的高成本,尤其是支撑体材料的成本高:二是有限的陶瓷品种与纷繁复杂的现状存在着矛后。目前商品化的陶瓷膜只有有限的几种规格,这就对特定孔结构的陶瓷膜制备提出了更高的要求。该课题组主要对以氧化铝和特种烧结促进剂为起始原料,在1400℃的烧成温度下制备出的支撑体进行了系统和深入的研究,得到渗透性能、机械性能及耐腐性能统一的支撑体。他们还以原料性质预测支撑体的孔结构为目标,以支撑体的制备过程和微观结构为基础,建立了原料性质与支撑体孔隙率、孔径分布之间的计算方法,为特定孔结构支撑体的定量制备提供了理论依据。

目前,己商品化的多孔陶瓷膜的构形主要有平板、管式和多通道3种。平板膜主要用于小规模的工业生产和实验室研究。管式膜组合起米形成类似于列管换热器的形式,可增大膜装填而积,但由于其强度问题,己逐步退出工业应用。规模应用的陶瓷膜,通常采用多通道构形,即在一圆截面上分布着多个通道,一般通道数为7,19和37。无机陶瓷膜的主要制备技术有:采用固态粒子烧结法制备载体及微滤膜,采用溶胶-凝胶法制各超滤膜:采用分相法制备玻璃膜:采用专门技术(如化学气相沉积、无电镀等)制备微孔膜或致密膜。其基本理论涉及材料学科的胶体与表面化学、材料化学、固态离子学、材料加工等。

从发展趋势米看,陶瓷膜制备技术的发展主要在以下2方面:一是在多孔膜研究方而,进一步完善己商品化的无机超滤和微滤膜,发展具有分子筛分功能的纳滤膜、气体分离膜和渗透汽化膜:二是在致密膜研究中,超薄金属及其合金膜及具有离子混合传导能力的固体电解质膜是研究的热点。己经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制各微孔滤膜,应用广泛的商品化A1203膜即是由粒子烧结法制备的。

2陶瓷膜的广泛应用

2.1提纯用陶瓷过滤膜

2004年8月,由北京迈胜普技术有限公司与山东鲁抗医药有限公司研制的陶瓷膜过滤系统用于某种抗生素的分离提纯获得成功,这不仅优化了此种抗生素的生产工艺,而目使抗生素收率提高15%,这是我国首次将陶瓷膜技术运用于抗生素生产。抗生素的分离提纯,必须经过对发酵液的过滤和对滤出的药液进行树脂交换。目前,许多抗生素生产企业对氨基糖苷类抗生素发酵液的分离提纯均采用真空转鼓过滤器,这种工艺需先将发酵液酸化调至一定的pH值,然后用敷设助滤剂层的真空转鼓过滤器进行预过滤,再用板框进行复滤及树脂交换。采用这种工艺不仅过程繁琐,而目有效成分收率低,仅过滤和树脂交换过程的收率损失达30%。而运用“迈胜普”与“鲁抗”共同研制的陶瓷膜过滤系统分离提纯某种抗生素,却能使有效成分在过滤过程的收失损提高近5%,在树脂交换过程中的收率提高10%以上。

当前,西方发达国家在食品工业、石化工业、环境保护、生化制药等许多领域对膜技术的应用越来越广泛,而用无机材料制成的过滤膜(陶瓷膜就是一种无机过滤膜)的发展前景有可能比有机过滤膜更好。对于面临抗生素政策性降价和抗菌药限售双重压力的国内众多抗生素生产企业而言,通过创新工艺提高产品收率和质量不失为降低成本的明智选择,而以陶瓷膜技术改进现行抗生素分离提纯工艺有可能成为降成本、提高效益的突破口。

2.2镀陶瓷包装膜

在食品包装领域,近年越来越引人注目的是具有高功能性和良好环保适应性的透明镀陶瓷膜。这种膜尽管目前价格较高,物理性能还有待进一步改进,但可预期在不远的将来它将在食品包装材料中占据重要的地位。陶瓷膜的加工镀膜方法与通常的镀金属方法相似,基本上按我们己知的加工法进行。镀陶瓷膜由PET(12μm)陶瓷(Si0x)组成。氧化硅能分成4类,即Si0,Si304,Si203,Si02。然而,在自然界它们通常以Si02形式存在,因此根据镀金属条件,它们的变化很大。对这种膜的主要要求是具有良好的透明度、极佳的阻隔性、优良的耐蒸煮性、较好的可透过微波性与良好的环境保护性以及良好的机械性能。

镀陶瓷膜基本上可以用制作镀铝膜一样的条件制取,在制取过程中,仔细处理表面层,不使镀层受到损伤是极其重要的。由于这种膜是由氧化硅处理的,表面具有极好的润湿性,因此,它在油墨或粘合剂的选择范围上比较广,几乎与任何油墨或粘合剂都能亲和。聚氨酯类粘合剂是最可取的粘合剂,而油墨可以按用途任意选择,不用进行表面处理。然而,镀陶瓷膜你像镀铝膜那样容易向聚乙烯复合,因为PET膜作为基材料,当其氧化硅表而直接熔融聚乙烯高温涂布或复合时,易趋向于伸长,从而破坏氧化硅表面层,导致阻隔性下降。同时,在目前条件下,由于技术工艺上的问题,PET膜在镀陶瓷过程中有时会发生卷曲,从而影响膜的质量。当然,这类问题正得到解决。

镀陶瓷膜首先用作细条实心面的调味品包装材料。其优良的包装性能引起了人们的注意。由于这种膜保味性极佳,因此,尤其适合于包装易升华产品,如茶(樟脑)之类的易挥发材质。由于其极好的阻隔性,除了作为高阻隔性包装材料和作食品包装材料用外、预计还可用在微波容器上作为盖材,在调味品、精密机械零配件、电子零件、药物和医药仪器等方而作为包装材料。随着加工技术的进一步发展,如果这种膜在成本上大幅下降,那么它将得到迅速推广和应用。

2.3燃料电池陶瓷膜

我国"863”计划固体氧化物燃料电池(SOFC)项目经过对新型中温固体氧化物陶瓷膜燃料电池的长期研制,把陶瓷膜制备技术开拓应用于SOFC的制作,把通常SOFC的高温(1000-900℃)拓延到中温阶段(700-500℃)。目前中国科技大学无机膜研究所己经研制成功的新型中温陶瓷膜燃料电池,是一种以陶瓷膜作为电解质的燃料电池。电池部件薄膜化以后,降低了电池的内阻,提高了有用功率的输出,不需要高温的条件下实现了中温化,操作温度降到700-500℃。这种新型燃料电池继承了高温SOFC的优点,同时降低了成本。此类陶瓷膜燃料电池具有广阔的应用前景。

2.4琥珀陶瓷隔热膜

2004年8月,基于金属膜对无线电信号的干扰和容易氧化等缺点,我国韶华科技公司携手德国某著名工业研究机构共同开发融入纳米蜂窝陶瓷技术,并将韶华科技独有的真空溅射技术用于陶瓷隔热膜的生产上,创造了独一无二的琥珀陶瓷隔热膜,解决了金属膜无法逾越的技术问题:对无线电信号无任何干扰,特别是卫星的短波信号,绝不氧化,因为陶瓷超乎寻常的稳定性,从而保证隔热性能始终如一:永不褪色,陶瓷隔热膜采用陶瓷固有的颜色,不添加任何颜料,囚此,陶瓷隔热膜绝不会像染色金属会发生褪色现象:超级耐用,陶瓷隔热膜保质期为10年,金属膜一般为5年:经典美感,象琉泊一样的晶莹剔透的美感,色泽柔和,拥有最舒适的视觉效果。琥珀纳米陶瓷隔热膜最先应用于美国的航天飞机和国际空间站,而后广泛应用于汽车、建筑、海事等各个领域。由于技术敏感,直到2003年该产品才在中国销售。

3陶瓷膜产业发展概况

陶瓷膜的研究始于20世纪40年代,其发展可分为3个阶段:用于铀的同位素分离的核工业时期,于20世纪80年代建成了膜面积达400万平方米的陶瓷膜的富集256UF6工厂,以无机微滤膜和超滤膜为主的液体分离时期和以膜催化反应为核心的全面发展的时期。

陶瓷膜范文篇5

钢铁企业的污(废水)由于污染物成分复杂,在进行反渗透脱盐处理时,若只采用常规水处理工艺(如:中和、生化处理、混凝、澄清、介质过滤等)作为反渗透的预处理,往往无法满足反渗透系统的进水水质要求,造成反渗透装置的快速污堵及频繁清洗。在常规水处理工艺的基础上结合超滤处理工艺作为反渗透的预处理,则能够大大降低反渗透装置的污堵速度及清洗频率,保证反渗透系统的长期、稳定运行,为钢铁企业提供可替代新鲜水、锅炉用水、工业工艺用水的高品质回用水在钢铁、冶炼和机加工等行业的诸多流程中(冷轧、热轧、金属加工、酸浸、抛光等)都会产生大量的含油废水。传统的处理方法(化学破乳法、充气浮选法以及各种重力分离法等)无法有效除油,产生大量难以处理的废油污泥,不但不能达到污水排放标准、还具有处理工艺冗长,处理成本高,占地面积大等缺点。乳化油废水成分非常复杂,主要含有矿物油、乳化剂、表面活性剂等,特别是油和油脂的含量很高,油份不但以微米和亚微米级大小的粒子存在,性质十分稳定,且含有很高的COD,直接排放会给环境带来严重的污染。

由于含油废水具有抗混凝性,传统典型化学方法在处理油水分离上往往无能为力。凯发研发的专利膜产品与高效的膜分离处理技术,有效解决了含油废水的分离难题。该技术能将乳化油强制截流,回收油、脱膜液和洗涤剂,出水经过进一步处理后达到排放或回用要求,甚至油、脱膜液和洗涤剂都可回收和循环使用。

膜分离技术作为一种新型、高效的分离技术,近年来取得了令人瞩目的飞速发展,已广泛应用于国民经济的各个领域。在节能减排、清洁生产和循环经济中发挥着重要作用,特别是在水资源利用和环境保护方面起着举足轻重的作用。

二、中水回用处理技术简介

中水回用处理技术按其机理可分为物理法、化学法、生物法等。中水回用技术通常需要多种处理技术的合理组合,即各种水处理方法结合起来深度处理污水,这是由于单一的某种水处理方法一般很难达到回用水水质的要求。目前,中水回用处理的基

本工艺有:

1、二级处理→消毒;

2、二级处理→过滤→消毒;

3、二级处理→混凝→沉淀(澄清、气浮)→过滤→消毒;

4、二级处理→微滤/超滤→消毒。

当对回用水水质有更高要求时,可选用其它处理工艺,即在深度处理中增加活性炭吸附、臭氧-活性炭、脱氨、离子交换、纳滤、反渗透等单元技术中一种或几种组合。

目前,中水回用处理技术的发展趋势是采用集成膜系统(IntegratedMembraneSystem,IMS)[2,3],即将微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等组合起来。IMS系统具有可靠性高、对原水的水质变化不敏感、操作费用低且均为商品化组件式装置的特点,并已在不同行业的中水回用中得到了广泛的应用。

三、中水回用案例介绍

1、膜分离技术在钢铁行业中水回用中的应用

钢铁行业是水资源消耗巨大的产业,除少数钢铁企业外,普遍存在着废水排放量大,废水循环利用率低,吨钢新水耗量居高不下的现象。日照钢铁控股集团有限公司是一家集烧结、炼铁、炼钢、轧材于一体并配套齐全的特大型钢铁联合企业。其中水回用项目是将经综合污水处理厂处理后(混凝+高密度沉淀池+V型滤池)的工业废水,利用双膜法(UF+RO)进行深度处理,从而达到回用的目的。日照钢铁中水回用项目设计的主要进水水质如表1所示:日照钢铁中水回用项目设计反渗透总产水量为420m3/h。其工艺流程如下所示:原水池→超滤进水泵→自清洗过滤器→超滤膜系统→超滤产水池→RO进水泵→保安过滤器→RO膜系统→RO产水日照钢铁中水回用系统包括了两个阶段的处理过程。第一阶段为超滤,Kristal超滤膜装置的出水性能稳定:SDI值≤2、浊度≤0.1NTU,将给后续的反渗透装置提供很好的进水水质,从而保证反渗透系统的长期稳定运行。第二阶段为反渗透,主要作用是去除水中大部分离子,系统脱盐率大于96%,保证出水满足回用要求。

2、膜分离技术在有色金属行业中水回用中的应用

为了避免再次发生环境污染事故,同时减轻企业生产对环境的污染,实现生产废水零排放,韶关冶炼厂决定实施废水回用工程。通过该项目的实施,可进一步提高工业水的重复利用率,降低新水耗量与废水排放量。韶关冶炼厂生产废水采用石灰+硫酸铁两段化学混凝沉淀法处理后达标排放。经现场水质监测和垢样判别研究,韶关冶炼厂废水处理后的水属结垢型水质,其结垢趋势严重。根据韶关冶炼厂历年资料及2006年2月复产后至7月的监测数据,处理后工业废水的典型水质如表2所示:根据进水水质的特点和产水要求,选择纳滤作为主脱盐工艺,可以降低能耗,达到所需要的脱盐率。本工程采用如下的工艺流程:处理后的生产废水→原水泵→多介质过滤器→超滤→超滤产水箱→纳滤进水泵→纳滤→除盐水箱。中水回用膜处理系统设计总规模为800m3/h,一期建设规模200m3/h。土建按总规模一次建设,一期工程车间布置与公用设施配置考虑与二期建设的衔接。韶关冶炼厂中水回用膜处理系统自2007年9月投入使用以来,已正常运行近三年。系统运行至今,经受住了复杂多变的冶炼废水水质的考验,尤其是稳定优质的Kristal超滤膜出水,保障了后续纳滤的平稳安全运行,降低了系统运行成本。其产水达到韶关冶炼厂工业循环水的水质要求:系统脱盐率≥80%,其中Ca2+<100mg/l,SO42-<100mg/l,电导率<250μs/cm。

3、陶瓷膜分离技术在钢铁、冶炼的含油废水中的应用

冶金企业在轧钢过程中产生大量的含油废水,其来源大致有:从酸洗线上排出的酸性废水;钢材表面的活化处理或钝化后排出的含盐、含金属离子的废水;钢轧制过程中为了消除冷轧产生的热变形,需采用乳化液(乳化液主要是由2~10%的矿物油或植物油、阴离子型或非离子型的乳化剂和水组成)进行冷却和润滑,由此而产生的冷轧乳化液废水;冷却带钢在松卷退火前均要用碱性溶液脱脂,产生碱性含油废水;冷轧不锈钢的生产过程中,退火、酸洗、冷轧、修磨、抛光、平整、切割等工序中或连续或间断地排放出含油含脂的轧制乳化废液;热轧和硅钢厂也都存在乳化液废水排放问题。这些废水中以冷轧乳化液废水处理最为困难,一般的含油废水处理方法如气浮法、吸附法、生化法、化学法等,都难以得到理想的处理效果。凯发采用自己的专利膜产品与高效的膜分离处理技术,有效解决了含油废水的分离难题。该技术能将乳化油强制截流,回收油、脱膜液和洗涤剂,出水经过进一步处理后达到排放或回用要求,甚至油、脱膜液和洗涤剂都可回收和循环使用。陶瓷膜处理冷轧乳化液废水的工艺介绍:冷轧乳化液废水进入原水池,经过适当预处理后,由供料泵送给陶瓷膜组件,陶瓷膜组件的操作方式采用内外循环式流动方式,由循环泵提供膜面流速,由供料泵提供系统操作压力,通过供料泵流量来调节系统的浓缩倍数。膜组件处理后的浓液回到回收槽,渗透液作为生活杂用水送到指定点。技术特点:陶瓷膜具有耐腐蚀、机械强度高、孔径分布窄、使用寿命长等突出优点,已经引起了国内外的广泛注意,并在许多领域得到了应用。陶瓷膜处理含油废水操作稳定,通量较高,出水水质好,油含量小于10ppm,乳化油/水分离效果能够达到100%。陶瓷膜设备占地面积小,正常工作时不消耗化学药剂也不产生新的污泥,回收油质量比较好,在含油废水处理领域已日益显示出极强的竞争力。油截留率高,出水含油量小于10ppm,达到环保要求;经过浓缩后可回收大量有价值的油;耐酸碱及氧化性物质,耐微生物侵蚀,使用寿命长;采用错流过滤,耐污染,可维持高通量过滤;无需使用昂贵的破乳剂、絮凝剂,运行成本低;膜清洗周期长,清洗通量恢复效果好且稳定;可实现PLC自动控制,劳动强度低,节省人力成本;易损件少,设备维护简单,维修费用低。案例:杭州正和环保有限公司以及南方航空于2007年7月18日至2007年8月4日在湖南株洲及浙江杭州进行了HYFLUX陶瓷膜过滤乳化油实验。原液为含油废水,含机械油脂、表面活性剂等,陶瓷膜采用InoCep40nm陶瓷膜,膜内外径为3/4mm,试验结果及分析如下:

1、操作压力超过3.0bar会导致滤液浑浊,并且通量会急剧下降。浓缩倍数过高也会导致滤液浑浊。

2、通量的变化较复杂,主要原因是每批次料液温度等差别较大。但也可以看出第四批通量明显较其它几批高是因为第四批初始温度较高。

3、第五批截留率下降是因为料液经运输到杭州后并经过多次实验发生变化,小分子物质增多导致。

4、可以看出随着浓缩倍数的增加,浓缩液COD显著增加,而滤出液COD增加缓慢。从截留率上所表现的就是截留率显著升高。

5、结合该乳化液的成分可以推测出Hyflux陶瓷膜对产生大量COD的小油滴有较强的截留效果,而对其它溶解油、分散剂及表面活性剂等小分子物质造成的COD不截留。因此造成浓缩液COD显著上升而滤出液COD基本不变的现象。

四、结论

目前以集成膜系统(MF/UF+NF/RO)为核心的中水回用系统,已成功应用于多个行业,系统运行稳定可靠,发挥了巨大的环境和经济效益,是值得推广的重要技术。

1、采用膜分离技术的中水回用系统,其产水视水质情况可做循环水的补水、锅炉、冷轧酸洗、漂洗等生产工艺的用水,具有节能、环保等特点。

2、超滤出水水质好,水质稳定且基本不受原水水质变化的影响。超滤能有效去除水中的颗粒、悬浮物、胶体、细菌、病毒等,是一种可靠的水处理技术;既可直接用于中水的生产,也可作为反渗透的预处理,与常规预处理相比可大大降低反渗透进水的SDI值,延长反渗透装置的使用寿命。

3、集成膜系统体现了高自动化、高集约化、高环境友好性的特点,有效提高了水循环的利用率,降低各行业的新水耗量,在节能降耗、清洁生产和循环经济中发挥着重要作用。

陶瓷膜范文篇6

1.1钢铁企业废水来源。钢铁企业的废水主要来源于钢铁企业生产制品过程中产生的废水。废水产生分布于钢铁生产的各个阶段,不同生产阶段会产生不同类型的废水。例如,焦化废水主要产生于焦炉熄焦和硝化生化系统中产生的废水,高炉洗涤过程中产生的高炉洗涤水,还有含有大量废弃物的转炉烟废弃水,以及轧钢废水等,这些废水中含有大量的氧化铁皮,以及悬浮物和油类等。钢铁企业在进行软化水、脱盐操作和纯水生产中还会产生大量的浓盐水。钢厂冷却系统的水循环中也会产生废水。主了提高钢铁企业废水处理的效率,做到对废水的循环利用,必须对废水进行分类。不同类别的废水的处理工艺复杂度不同,相比较来说冷却水的处理复杂度较高,纯水和软件化水循环系统量水的处理难度相对较低。只有在科学分类的基础上,才能按照相关的标准进行废水处理,从而使废水达到国家要求的排放标准,达到优化水处理和再利用的目标。[1]1.2钢铁企业废水特点。钢铁企业废水处理是生产过程中的重要环节,废水处理与资源化的再利用,不仅与环境保护密切相关,而且还直接关系到钢铁企业的生产成本。随着钢铁企业规模的扩大,目前主要采用联合设备进行污水处理的办法,要求使用不同的设备来处理不同类型的废水。目前主要用来进行钢铁企业废水处理的设备有离心脱水机、提升泵、转刷等设备。由于钢铁企业废水处理是个循环性的系统,因此容易受到的相关干扰因素较多,特别是随着钢铁企业废水处理设备智能化水的日渐提高,设备损坏的维修成本也不断上升。而且废水处理环境相对复杂且工作环境较差,使得企业对设备检修的难度加大,如何有效的在密闭的环境下安装废水处理设备,保证转刷等设备的合理运转,定期做好清洁成为重点。[2]

2钢铁企业废水处理具体问题

2.1设备管理问题。随着我国对环境保护力度的不断加强,对资源型企业管理力度的加大,突显出我国钢铁企业在环保排放管理方面的问题。目前,我国钢铁企业在排放安全方面存在的问题是处理环节增多,废水处理过程相对复杂,而且废水处理设备的更新速度较慢。钢铁企业还不能很好的解决庞大的废水处理问题,有些企业还不能达到严苛的废水处理标准要求。首先,钢铁企业在废水处理设备的日常维护不到位,还没能做到根据企业生产的实际需求对废水处理技术进行必要的改良。钢铁企业应当通过有效的方法来控制净水使用量,同时控制好废水的总量和提高污水的品质。其次,大量的废水处理会增加废水处理设备的损坏率,钢铁企业现有的废水设备处理人员还不能满足社会需求,还需要加强废水设备处理人员的培训,还必须提高废水设备维修人员应对突发情况的能力。第三,废水处理设备在运行过程中会时常出现一些小问题,但是当前对微小问题处理不到位,影响了废水处理设备的整体正常运转,如果不能及时发现这些微小问题,可能导致设备使用寿命的缩减。[3]2.2缺乏操作规程。加强对废水处理设备的定期维护,保证日常高速运转的废水处理设备处于稳定良好的运行状态,还需要解决当前钢铁企业废水设备维护规程不符合实际的问题。首先,应当解决当前钢铁企业废水处理设备操作规程不完善,相关标准不严格等的问题,注重根据机器设备运转的情况加大设备的清洗力度,注重及时处理设备的微小问题,加大对设备的检修频率。其次,当前钢铁企业维修人员对废水设备的检修积极性不高,没能有效的在日常检修过程中做深度检查,现有的绩效奖惩措施不能有效的激发维修人员的积极性,因此导致废水处理设备的损坏率提高,不能正确的发挥相关设备的实际作用,因此影响了废水处理的能力。第三,还有的钢铁企业不注重根据设备的规格进行必要的零部件储备,往往废水处理设备带病运行,这给废水处理留下了较大的安全隐患,很可能导致紧急情况的发生,只有加大废水处理设备的投入更新,提高操作流程的规格,提高设备保障水平,才能避免出现安全问题。[4]

3废水处理与资源化主要技术

3.1悬浮物处理技术。废水中的悬浮物是常见现象,有效的处理悬浮物质,可以收集钢铁企业生产有用资源,为钢铁企业节约生产成本。目前废水处理中的悬浮物处理主要采用的是沉淀技术,常用的工艺是混凝深沉和过滤处理。主要通过增加一定的混凝剂、助凝剂来达到有效沉淀废水中难以沉淀污染物,大部分的颗粒物以泥浆的形式从水池底部排出,清水从水池顶部排出。为了提高混凝处理的效率,混凝处理还于其它处理方法联合使用,目前主要采用的是曝气混凝沉淀的方法,这样可以将高炉内的煤气直接转化到沉淀池当中,从而使融解在水中的盐类物质也分离出来。为了提高污水过滤的效果,还可以使用多道过滤网对废水进行过滤,具体使用的有筛网、滤网、斜型筛等。3.2废水中油处理技术。钢铁企业生产废水中含有大量的油,目前油的处理方法主要有气浮法、吸附法、生化法。传统的油处理方法不仅效果较差,而且成本相对较高,一直是造成废水污染的重要问题。当前用于处理油的主要方法是陶瓷膜技术。陶瓷膜技术主要具有耐腐蚀、机械度高,孔径分布窄等特点。陶瓷膜对于油的截留率较高,而且陶瓷膜在截留油脂后可以进行反复的冲洗。经济陶瓷膜分离的油可以作为燃料使用,而且收集的效果较好,有着极大的发展空间,是当前钢铁企业进行废水处理和资源利用的重要方法。陶瓷膜的主要元件是由氧化铝、二氧化硅等无机材料高温烧结而成,主要依据的是筛分理论制作出的原料液在外侧流动,小分子物质可以透过膜,大分子物质被截留纯化,从而用于水处理的技术。而且陶瓷膜可以加收,材料可以被反复使用,使用寿命通常达15年。3.3废水中盐处理技术。对废水中盐的处理已经发展出较为成熟的艺,目前主要使用的是离子交换盐,膜分离等方法。由于钢铁企业废水中的盐的含量相对较高,而采用离子交换的方法成本较大,而且除盐率相对低,采用蒸馏的方法来提取盐,可以适用于生产规模较小的企业,以上两种方法的盐处理率相对较低,如果处理不当还会造成盐分的污染问题。当前主要采用的昌渗透膜技术,通过渗透膜可以有效的分离出盐,而且脱盐率可以达到95%以上,渗透膜还具有渗透速度快,化学稳定性较等特点,通过渗透膜进行盐处理,可以出高水质的可靠性。而且当前还普遍的采用双膜法,注重通过调节池、V型滤池使废水达到中水水质的指标。3.4废水中酸处理技术。对废水中酸的处理主要采用的是曝气法,由于焦化过程中会产生大量的酸,酸的处理主要采用的是预曝、中和、气浮、沉淀等操作方法。曝气法有效的解决了以往中和法回收率低和回收物不能有效利用的问题。根据酸性物质的特点,目前主要采用的是曝气絮凝方法,加入絮凝剂后可以使混浊液混合均匀,从而使悬浮物进行相互碰撞,并且结合成块,从而加快沉淀。为了提高曝气的效果,还应当注重科学配比药量。

钢铁企业废水处理关系到钢铁企业是否能达到环保生产要求问题,只有注重引进先进的工艺,通过有效的管理方式,才能发挥出各种废水处理设备的作用,全面提高废水处理的效率,解决好废水污染的实际问题。

参考文献

[1]徐匡迪.钢铁工业的循环经济与自主创新[J].山东冶金,2016,28(1):1-3.

[2]金亚飚.钢铁工业污水回用方式和提高回用率的探讨[J].工业水处理,2012,29(1):80-83.

[3]郭会平.我国城市污水处理现状及污水处理厂提标改造路径分析[D].沈阳:辽宁大学,2016.

陶瓷膜范文篇7

1高值耗材准入前的循证分析

“高值医用耗材”主要指植介入类耗材,包括关节假体、心脏支架、导管、导丝等,在欧美国家这类器械被称为医生偏好器械。顾名思义,虽然医院是这些器械的实际采购者,但是是由医生决定对具体患者使用何种器械。由于这类器械占据了医院供应成本的61%,所以越来越受到医院管理者的关注[2]。一次性高值器具,由于价值较高,也被归为高值耗材。高值耗材的耗占比在医院整体耗占比中所占份额较大。耗占比既能体现医院的医疗实力,也能一定程度上反映患者医疗费用的情况。在满足医院各专科正常工作的前提下,如何减轻患者均次医疗费用,促进医用高值耗材的合理使用,防止过度浪费挤占新技术的扩展,医院管理者须重视高值耗材的准入。高值耗材的循证分析,在国外已形成HB-HTA模式,并已广泛得到认可。HTA指专门基于特定医院背景,来帮助医院对各类卫生技术做管理决策而进行的卫生技术评估活动[3]。我国HTA起步尚晚,目前上海交通大学附属第六人民医院在医用耗材管理人员中普及推广循证管理、卫生技术评估概念[3],无锡市人民医院对Mini-HTA在医院医用器械评价中的运用做了深入分析[4]。HTA循证应用将会在高值耗材管理中帮助管理者做出最科学的决策。我院在探索建设医用耗材循证管理体系时,将高值耗材的中标情况作为一个量化指标,同时自去年起,我院高值耗材的准入需在建立耗材简易评估模式的医用耗材管理小组会议上通过,与HB-HTA里的内部委员会类似。高值耗材的循证首先从查找文献开始,以陶瓷膜封堵器与普通钛镍合金封堵器对比为例,对于临床申请使用陶瓷膜封堵器,我们查文献得知普通镍钛合金含镍较高,较陶瓷膜封堵器相容性差,术后1个月血镍浓度达最高值,术后6~9个月封堵器完全内皮化后血镍浓度才降至术前水平,陶瓷膜封堵器血镍浓度1个月内较置入普通镍钛合金封堵器明显降低;而术后6个月基本无差异[5]。其取证的优势不是很充分,新产品的价格较同类产品价格明显偏高,预计科室消耗的成本将大幅增加,患者负担增加,所以不建议心内科使用,心胸外科在小年龄组手术患者,考虑手术难度以及成功率,进行限量使用。

2高值耗材使用过程中追溯系统的溯源管理

我院2013年引入供应链管理理念,在手术室、DSA实施了医用高值耗材追溯系统,采用条形码为出厂厂家原唯一识别条形码,配送商需由生产厂家逐级授权,杜绝医用耗材的假冒、串货等非法行为。该系统将高值耗材分为两种类型进行管理:一种是备库通用自购型高值耗材。采供中心扫码入库,条形码分为主副码,主条码代表货号,副条码代表有效期等,此类物资直接入库出库发票核对。另一种是备库预存量型高值耗材。采供中心扫码入库,在输入病历号,调取HIS手术数据后,根据术中已使用的耗材明细生成入库单,其余自动退库。该系统能够完成高值耗材的闭环追溯管理,能追溯耗材批号使用者、使用医生、使用手术名称等信息。对于后期耗材的成本分析,以及耗材的不良事件有重大的意义,完善了耗材入院后全生命周期的监控。通过此系统的使用,能够使得条码与实物一一对应,并减少错收费漏收费造成患者费用的差错,同时减少手工登记,节省人力成本。

3高值耗材的评价分析

高值耗材后期的评价分析对高值耗材的管理至关重要。对于植入性高值耗材,我院进行高值耗材溯源性倒查点评,从病例的高值耗材条码开始、手术名称、手术医生、手术等级、网上采购记录、发票、供应商资质等,确保高值耗材的安全使用。高值耗材临床应用管理专家组将高值耗材的使用与手术安全事件相结合,定期公布各级医师具备的手术诊疗操作权限,动态联系某种高值耗材的使用,紧密联系高值耗材使用中的不良事件,形成对高值耗材的动态监测。对于一次性高值器具,建立医生等级分级分类对应,根据手术量限量供应。建立各科室耗材占比指标体系,将手术室医用高值耗材的使用根据各专科进行分类,根据以下公式:手术室耗占比=(手术室耗材收入-手术室记账的高植耗材收入)/(手术室收入总金额-手术室记账的高植耗材收入)*100%病区耗占比=(各病区耗材收入-手术室记账的非高植耗材收入)/(各病区收入总金额-手术室记账的非高植耗材收入)*100%将高值医用耗材的使用与各科室挂钩,通过管理耗占比来规范高值医用耗材的使用。2011年以来,我院通过定期的数据分析,按高值耗材的归属专科(如骨科、神经外科、心内科、放射科等)统计高值耗材的采购金额、按高值耗材单个品种统计采购金额、按科室统计高值医用耗材的耗占比并与收入增长幅度来进行对比、按供应商按年统计供货金额并绘制相应的饼图等方法,使医院管理者更详细地了解高值耗材的成本。

4讨论

通过加强对使用周期医用高值耗材的规范化管理,达到降低耗材使用的风险,降低耗占比,降低患者人均费用。高值医用耗材的循证管理,借助卫生技术评估等先进工具进行论证,从源头由意识准入向实际准入转变。高值耗材追溯系统的使用,规范了科室耗材使用的流程,提供了评价分析数据,为病历评价、手术等级、耗材的使用量提供了全程的信息跟踪。根据数据分析,进行对应高值耗材分级诊疗使用品种、建立耗占比指标体系、回顾性点评病历等行为,来降低耗占比。合理使用高值耗材并非不让使用耗材,而是要合理控制。我们不断探索分析门诊量、床位数以及手术等级来控制耗占比在合理的增长范围内,同时基于大数据模型的建立,依靠信息化手段来分析均次费用的增长点、手术单次单品种耗材的使用量以及同级专家的不同耗占比情况,自主生成统计报表,这样才能逐步建立控制医疗费用的不合理增长。

[参考文献]

[1]厉君.医用耗材采购成本的控制[J].中国医药科学,2016,6(19):221-224.

[2]MontgomeryK,SchnellerES.Hospitals,strategiesforor⁃chtratingselectionofphysicianpreferenceitems[J].Mil⁃bankQ,2007,85(2):307-335.

[3]杨海.医院卫生技术评估在医用耗材管理中的应用[J].中国医疗设备,2017,32(5):123-126.

[4]杨俊,金伟,张恒,等.Mini-HTA在医院医疗器械评价中的分析与探讨[J].中国医疗设备,2016,31(1):77-79.

陶瓷膜范文篇8

关键词:高盐有机废水;膜分离技术;热法技术;耦合技术;工业化应用

高盐有机废水是指总含盐量大于1%的废水,主要来源为石油化工、煤化工、医药、印染等生产过程以及其他废水处理过程如电渗析(ED)、纳滤膜(NF)、反渗透(RO)等产生的高盐废水。此类废水除了含有大量K+、Na+、Ca+、SO42-、Cl-、CO32-等游离态无机离子外,通常还含有大量的有机组分,如多环芳烃化合物、卤代烃化合物、酚和甲醛类化合物等,废水成分复杂、有毒性、有异味、色度大,可生化性差[1]。若不加以妥善处理,排放废水将严重破坏土壤生态毒害农作物;污染河流和地下水资源,造成饮用水安全隐患。目前,高盐有机废水主要处理技术为膜处理技术、热法处理技术及其耦合技术。

1膜分离技术

膜分离技术主要是靠膜的选择透过性,分离水中的离子及有机物,从而得到清洁的淡水和浓缩的盐水。膜和其他纳米多孔材料被认为是解决全球缺水问题的关键技术[2]。随着工业现代化生产的快速发展,常规膜材料难以应对高温、高压以及耐腐蚀的问题。因此,针对废水特点及工艺条件,制备具有高效耐用的膜是膜分离技术的关键。根据材料类型,可将膜分为无机膜和有机膜,无机膜主要为陶瓷膜,有机膜主要是由高分子聚合物制成。1.1无机膜处理技术。无机膜是在其结构中含有金属、氧化物或元素碳的膜,目前广泛应用于水处理和海水淡化的膜是氧化铝、二氧化钛、氧化锆和碳膜[3-4]。无机膜的主要特点为抗污染能力强,化学稳定性好,机械强度大。金属、金属氧化物形成的膜表面致密,亲水性好,不利于有机物的吸附,是无机膜抗污染能力强的主要因素。ZHONG等人[5]通过控制陶瓷膜表面的粗糙度,探究了不同陶瓷膜的表面粗糙度对含油污水的处理效果,结果表明光滑的膜表面可减少在含油污水处理过程中的膜污染情况。同样,在TiO2复合陶瓷膜中,TiO2薄层增加了陶瓷膜表面羟基,从而增强了膜的亲水性,以防止油滴粘附在其上,亲水膜孔具有高的毛细管排斥力以防止油滴传输,因此阻碍表面吸附并减少膜污染倾向[6]。除了抗污染之外,膜表面的亲水性还可增加膜分离过程中的截留率与通量。截留率与通量通常是此消彼长的关系,截留率越高,膜孔越容易堵塞,水的通量就越低,所需要的推动力就越大。CHANG等人[7]通过原位沉淀法进行纳米TiO2涂层,使纳米粒子均匀分布在氧化铝MF膜表面,增加膜表面的羟基。同时,HU等人[8]通过真空转移法用GO(氧化石墨烯)改性氧化铝膜,将GO涂层附着在氧化铝膜孔表面上,改变表面亲水性和电荷,以此使水加速穿过膜孔,实现了667L/(m2•h•bar)的高通量,油的截留率为98.7%。EBRAHIMI等人[9]研究了多种陶瓷膜组合工艺的预处理装置,包括不对称多层Al2O3和TiO2的陶瓷MF(微滤)膜,UF(超滤)膜和NF(纳滤)膜,处理TOC为292mg/L、油含量为2.6mg/L的产出水(与石油和天然气生产勘探相关的高盐有机废水)。以MF为预处理步骤,对含油量的总去除率可达93%,而UF和NF的总去除率分别可达99.5%和99.5%,TOC的去除率为49%。表1总结了不同陶瓷膜处理产出水的效果。1.2有机聚合物膜处理技术。有机聚合物膜的膜污染问题较无机膜更严重,且机械强度较无机膜低。但与无机膜相比,有机聚合物膜成本低,油水分离效率可达99.98%[14],并已大规模工业化生产,见表2。制备MF和UF膜最常用的聚合物是聚砜(PSO)、聚醚砜(PES)、聚丙烯腈(PAN)和醋酸纤维素(CA)[15]。与无机膜材料相同,有机膜材料也通过提高其亲水性来降低膜污染,亲水性材料对吸附的敏感性较低是公认的事实,所以它可以被认为是降低抗污性的关键。CHAKRABARTY等人[24]使用不同分子量的聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)合成多孔、亲水和低表面电荷的PSO膜,研究结果表明,所有膜对油的截留率均在90%以上,渗透液中的油浓度低于10mg/L。与PSO膜相比,PES膜有更高的耐热性与刚性。RAHIMPOUR等人[25]利用醋酸邻苯二甲酸纤维素(CAP)改善PES膜的亲水性以增加膜的抗污染能力,选择聚乙烯吡咯烷酮(PVP)作为成孔剂,研究了不同加量的CAP后发现,PES/CAP为4:1、PVP加量为2%时,膜对蛋白质的截留率可达99%,且PVP使得PES膜具有更高的机械强度和更好的性能。在保持膜的抗污染、高截留、高纯水渗透性的情况下,为提升膜的重复使用,简化膜清洗步骤。MELBIAH等人[26]将PluronicF127(PF127)和无机碳酸钙(CaCO3)纳米粒子合成平板PAN基超滤膜,改性膜表面上的大量羟基与小孔相结合,显著增加了水的渗透性和膜的抗污染能力,在CaCO3质量分数为0.75%时,膜的润湿性、纯水渗透性、机械强度、热稳定性、除油效率等均有显著提升,且在简单液压冲洗后,通量可从63%提升至90%。最近,由于醋酸纤维素是一种环境友好,丰富的原料,具有高表面积与体积比、大孔隙率、表面功能灵活性、高透水性而正受到关注[27]。“天然”聚合物醋酸纤维膜通常不符合油水分离的(实际)要求;为了提高膜的性能,需要对纤维进行改性。MA等人[27]合成了一种超疏水聚酰亚胺/醋酸纤维素(PI/CA)膜,在重力作用下可进行油水分离,并且在经过10次分离后,分离水中的油含量也小于4mg/L。MA等人的研究是一个巨大的进步,在油水混合物的节能分离上具有重大意义。

2热法技术

相较于膜处理技术,热法技术可将盐水完全进行盐-水分离,是最彻底的脱盐方法。热法技术处理高盐有机废水是由海水淡化工艺演变而来的,其主要是靠相变分离,将高盐有机废水中的水通过液-气-液的相态转化,得到纯净的淡水。然而在实际处理高盐有机废水的过程中,由于有机物的挥发以及雾沫夹带,蒸馏水中会存在高浓度有机物。热法技术处理高盐有机废水通常有两种方式:一是先将污水中有机物去除,再进行热法脱盐;二是先采用热法脱盐技术将污水中的有机物蒸发至冷凝水中,再将冷凝水进行有机物去除。图1[28]为罗拉多州东北部瓦滕伯格油田高盐有机页岩气产出水处理工艺,由ZHANG等人研发。处理工艺系统包括三相分离(Separator)、沉淀软化(PrecipitativeSoftening)、核桃壳过滤(WalnutFiltration)、膜蒸馏(MembraneDistillation)。其中沉淀软化处理单元以减轻产出水的结垢为目标,核桃壳过滤为消除挥发性有毒化合物(如苯,乙苯,甲苯和二甲苯)而设置,膜蒸馏通过相变分离浓缩获取淡化产出水。文献表明,末端膜蒸馏馏分中的硼和总二甲苯浓度,满足所在地灌溉和常规排放限值的监管要求。同样,以蒸发作为脱盐与深度处理工艺,杨杰等人[29]以混凝脱硫、去除有机物,氧化剂降解氨氮,处理含硫气田水。全流程工艺处理后,出水达到污水综合排放标准一级标准。图2[1]为川中某天然气田高盐有机产出水处理工艺流程,由杨贡林等人研发。处理系统包括化学沉淀、汽提、混凝沉降、分段蒸发。其中化学沉降处理单元以防止设备结构为目标,汽提用以减少设备管道腐蚀,混凝沉降为减少产品杂质调节pH而设置,分段蒸发将有机物分离从而获取淡化产出水。分段蒸发共四段,第一段蒸发将有机物及氨氮气化分离得到高浓度溶液,二段以后混合冷凝水中COD和氨氮达到污水综合排放标准要求。而一段蒸发得到的高浓度溶液中Cl-浓度也仅为20mg/L,有机物可通过生物法、化学法进行二次处理。上述高盐有机废水处理工艺,针对废水的污染特征,在工艺研发中都采用了将高盐、有机污染“分而治之”的模式进行处理单元模块化集成,故处理流程长是其共同的特点。但集成模块处理系统也会带来各个模块的缺点,如混凝、沉淀产生的污泥处置也是如今研究的重点。另外,冗长的处理流程的建设维护费用也使多数中小型企业难以负担。因此,如何将高盐有机废水相变分离脱盐、有机污染物氧化无害化按照“合而治之”进行处理,是近年来研究的热点。

3耦合技术

现有处理技术流程较长是高盐有机废水处理所面临的主要问题,且多采用“分而治之”的模式,见表3。通过独立单元进行脱盐、去除有机物对高盐有机废水进行处理不仅使过程复杂化,而且还带来与单个过程相关的缺点[30]。因此,将高盐有机废水以“合而治之”的思路进行处理是行业所需。目前,已有研究将膜分离技术、电化学、热法、高级氧化法、生物法相结合,以实现盐与有机物的同步处理,并取得了显著效果[31-37]。有机废水原理,为YE等人提出。以泵为推动力在反应装置顶部抽水,电吸附离子,膜表面光电降解有机物。与传统的离子交换膜不同,阴阳离子均可通过,在电场作用下,分别吸附在两极板上以达到脱盐效果。其膜共分为三层,第一层以石墨碳氮化物膜与盐水接触,在光照条件下降解废水中有机物;第二层的改性碳纳米管膜可吸附有机物并具有高导电性,离子可无阻碍通过并富集;第三层以聚乙烯醇缩甲醛膜保证膜系统的机械稳定性。研究表明,该系统对不同有机物的去除率均高于90%,30min后脱盐率依然可达55%,在循环四次后系统脱盐率、有机物去除率无明显降低。高级氧化技术是高盐有机废水中有机物去除的重要手段,李春立[41]采用蒸发-过硫酸盐高级氧化法一体化技术处理高挥发性有机废水,在蒸发脱盐过程中加入过硫酸盐,利用蒸发热量活化过硫酸盐产生自由基降解废水中有机物,COD去除率最高可达95%,但为了控制挥发性有机物溢出,其过硫酸盐投加量较大,最高达81g/L。张灵[42]采用臭氧-蒸发技术处理苯胺生产废水,将臭氧通入废水中降解有机物,而随蒸汽溢出的有机物继续由臭氧在管道中反应,废水BOD5/COD由最初的接近于0提升至0.309。上述方法为高盐有机废水的处理提供的研究思路,但其处理成本较高,需工业化应用还要对工艺及参数进行优化。耦合技术流程较集成模块更短,并可达到同样的处理目标。但系统的功能越多,可能出现问题的几率也就越高,并且系统复杂性增加,在维护和操作时的难度也变高。在工业放大时,系统的问题也将放大,因此需尽可能考虑后期应用的潜在问题。总的来说,实验阶段的成功,将为工业化的应用奠定坚实可靠的基础。

4结语与展望

陶瓷膜范文篇9

乳化液是一多相体系的溶液,由基础油、乳化剂(表面活性)、添加剂和水稀释后配制而成,由于加入了基础油,外观往往呈乳状,所以称为乳化液。现如今,机械制造工业和金属加工业不断发展,乳化液被用于机器零件的切削、研磨工艺过程中,冷却、润滑或传递压力的介质。乳化液循环多次使用后,会发生不同程度的酸败变质,需要定期更换,于是就形成了大量的乳化液废水。乳化液废水属于危险废弃物,特点是有机物浓度高、色度高、间歇排放、量少但污染强度大、难降解等。乳化液废水由于具有很强的稳定性,排入环境中不能自然降解,处理难度大,处理不当,对生态环境、动植物包括人类健康都有严重的危害。因此,对乳化液废水处理技术的探讨和研究具有重要意义。

2乳化液废水处理技术

工业上对乳化液进行单独收集,集中处理。乳化液废水处理难易程度取决于乳液中的油分在水中的存在形式及处理要求。乳化液废水的处理方法主要包括物理法、物理化学法、化学法、生物法和其他方法。笔者对乳化液废水处理技术进行综述,以期为乳化液废水废水处理提供一定参考。

2.1物理法

2.1.1重力分离法重力分离法是废水处理中最常用、最基本的方法。重力法通过调节理化性质、离心分离、除油、沉淀和过滤等步骤实现油与水的分离。此方法通常适用于油水连续相黏度较小,密度差较大的废水,常用的处理设施是隔油池。重力分离法的优点在于运行费用较低,缺陷是去除率较低,出水含油量高等。该方法一般作为乳化液的第一步处理。

2.1.2膜分离法高分子膜分离法处理高浓度乳化液废水也是国内外学者研究比较多的方法之一,膜分离法是采用高分子膜的过滤性能,在压力作用下把不同分子量的物质进行分离。包括微滤、超滤和纳滤等方法。膜分离法处理效果好于重力法,出水效果好,能耗比较低,但是此法存在对原水的要求比较高,造价偏高同时伴随着高浓度浓缩液的产生的弊端。国内外使用较为广泛的是聚亚酰胺、醋酸纤维、聚砜等有机膜,ShuiliY等采用聚亚乙烯基氟化物超滤膜处理含油废水,乳化液废水浮油的去除效果好,处理后的废水能够满足回注标准。此外,还有微孔玻璃膜、炭分子筛膜、垒属膜和陶瓷膜等无机膜。杨涛等采用陶瓷膜处理乳化液废水,在30℃条件下,陶瓷膜可有效截留乳化液废水中的CODcr和矿物油,截留率均可达90%以上。研究了陶瓷膜对CODcr约50000~80000mg/L,pH为8左右的乳化液废水的处理,CODcr去除率可达97%,但处理成本达到113.6元/t。等研究了震动膜对乳化液的处理效果,利用震动膜过滤2种乳化液,CODcr和油的去除率分别可以达到93.5%和99%以上,SS去除率可以实现完全截留。

2.2物理化学法

2.2.1吸附法吸附法是通过投加亲油性介质,通过分子引力和化学键力,以此来吸附水中的油对乳化液废水的溶解油进行物理吸附或化学吸附来实现油水分离。活性炭是最常用的吸附材料,其具有良好的吸油性能,可将乳化液废水中的大多数油吸附分离,但是也存在价格较高,吸附容量有限,再生比较困难等缺点。粉煤灰以及一些无机和有机的吸附剂也被广泛使用,物理化学处理法往往将吸附剂和混凝剂联用,共同处理乳化液废水,能使处理效果更加显著。BreneF介绍的由镁、铁盐或氧化物组成的质量分数为5%~8%的无机填充剂与由聚乙烯和聚苯乙烯组成20%~95%的交联聚合物的新型吸油剂对高低浓度乳化液废水处理取得不错效果。隋博远等处理乳化液废水的研究中发现,采用混凝吸附法后,其乳化液废水中油类浓度和CODcr浓度去除率都为99%。刘恒等采用化学破乳和活性炭吸附技术对乳化液废水进行技术分析,并对影响乳化液废水处理技术的主要因素—絮凝剂、搅拌速度、pH和温度进行了讨论,排出废水达到国家二级排放标准。

2.2.2气浮法气浮法主要是通过曝气产生大量微气泡,微气泡作为载体粘附在油滴上,使其密度小于水而浮到水面,最终达到固液分离的方法。共凝聚气浮法是在投加混凝剂的基础上与气浮法工艺相结合产生的一种方法,投加混凝剂后,生成大粒径油滴与气浮产生的微气泡形成大的带气絮体,浮到水面实现乳化液废水的处理,因此其去除效果更加显著,且使得投药量更少,反应时间更短。A.I.Zouboulis等使用共凝聚气浮法处理含有正辛烷的模拟乳化液废水。研究结果表明,在实验最佳条件下,初始油质量浓度为500mg/L的模拟乳化液废水,95%的油得到去除。曹福等采用聚合氯化铝铁(PAFC)对乳化液废水进行共凝聚气浮处理,当PAFC为1g/L时,浊度去除率达98%以上。

2.3化学法

2.3.1酸化混凝混合法酸化法是向乳化液废水中投加无机酸调节pH至1.5~4,使乳化剂中的高级脂肪酸皂析出脂肪酸,这些高级脂肪酸不溶于水而溶于油,从而破乳析油。但是酸化虽能达到破乳的目的,但是也会产生酸性废油这种二次污染物,不具有实用性。化学混凝法是处理乳化液废水的传统方法,向乳化液废水中投加化学混凝剂,一方面生成胶体吸附油珠,另一方面通过吸附絮凝,架桥作用去除油滴,达到破乳的目的,化学混凝法中混凝剂对最佳pH有一定要求,在混凝前往往伴随着酸化,调碱等过程,所以酸化法和混凝法可以用作组合工艺作为一级处理工艺,对水样预处理效果优于单独一种方法的效果。田禹等在对高浓度酸性乳化液处理过程中,采用投加石灰+聚丙烯酰胺(PAM)的破乳剂组合的方法,其乳化液浊度去除率为98%,CODcr去除率为34%。对CODcr约50000~80000mg/L进行酸化破乳试验,加浓硫酸将pH调至2,酸化40h后取中间液调节pH为10~11,再投加PAC和PAM混凝絮凝之后,CODcr去除率为65%。

2.3.2高级氧化法高级氧化由Glaze首次提出,基于大量强氧化性能的羟基自由基参与深度氧化处理高浓度乳化液废水,高级氧化技术可以无选择性的氧化绝大多数有机物,反应迅速且无二次污染,在工程上备受青睐。这方面研究以Fenton氧化和类Fenton氧化技术为主,Mandal等处理工业废水,当投加一定量的FeS04,H2O2投加量从44.4mg/L增加到277.7mg/L,反应24h后CODcr的去除率从60%增加到95%。类Fenton法就是将催化剂等引入Fenton体系,M.A.Tony等的研究结果表明光助Fenton法对乳化含油废水有很好的处理效果,不仅能有效去除CODcr、油,还可显著改善乳化废水水质。除了Fenton技术,高级氧化技术还包括光催化氧化法、臭氧氧化法、电化学氧化法,Ahmed等处理废水,在UV-H202协同作用下,有机物COD去除率为92%,而单独使用H202或UV,有机物去除效果不明显。研究了在PH=10,投加1g30%H202最优条件下,臭氧投加量为220.42mg/L时,乳化液废水的CODcr值从63060mg/L下降到12233.4mg/L,效果强于单独投加臭氧的氧化处理技术。等以铝板为电极并投加NaCl处理轧钢乳化液废水,在pH=6、电流密度为0.004A/cm2、时间为40min、NaCl为1.25g/L、极板间距为1cm的条件下进行实验,CODcr去除率为99.5%,处理效果较好。

2.4生物法生物法处理过程所需的微生物来源广泛、容易培养、繁殖速度快、环境适应性强、处理成本低,在工业废水的处理应用越来越广泛。根据微生物对氧气的需求可分为厌氧处理和好氧处理。厌氧生物处理具有低能耗、高负荷、污泥量少等优点,但是处理所需时间较长,构筑物体积大,常作为其他生物处理的预处理。好氧生物处理效率高、工艺运行成熟,但是又存在剩余污泥量大等缺点。乳化液废水污染物浓度高,直接进行生物法处理,对活性污泥的负荷很大,导致活性污泥死亡,达不到预期的效果。对采用物化处理方法进行一级处理的仍然不能达标排放的乳化液废水可采用生物法进行二级处理,此法可称之为生化组合工艺。朱靖等采用混凝气浮—SBR—过滤工艺处理乳化液废水,CODcr、BOD、油由22400mg/L、2680mg/L、1420mg/L降到137mg/L、25mg/L、0.8mg/L,去除率分别达到99.38%、99.06%、99.94%。成文[24]等对经过氯化钙和明矾破乳、PAC和PAM混凝处理的出水进行处理,采用水解—好氧—活性炭吸附可使出水CODcr达50~70mg/L、SS为75mg/L、石油类为5.4mg/L、色度5倍。马士龙采用物化—生化组合工艺处理不同来源乳化液废水,生化处理系统耐冲击负荷强,出水稳定,最终出水能够满足上海市化工区污水纳管标准。

2.5其他方法除了以上一些传统方法以外,燃烧法也是处理乳化液废水的方法之一,将废液蒸发浓缩再进行燃烧处理。该方法处理效果比较彻底,但是弊端比较多,能耗大,会有二次污染污染空气,因此燃烧法处理乳化液废水并未得到广泛应用。

3展望

陶瓷膜范文篇10

一、改造前废水排放水质指标及存在问题

改造前废水排放水质指标悬浮物50毫克/升,BOD 20毫克/升,COD 60毫克/升,总有机碳20毫克/升,氨氮10毫克/升,石油类4毫克/升,总磷0.5毫克/升。改造前主要存在问题1、无机陶瓷膜超滤设备产水不稳定,运行成本高,耗电量大,陶瓷膜管容易断裂,影响出水水质;2、无机陶瓷膜MBR设备运行稳定性差,经常出现堵塞,影响废水处理水量且耗电量大;3、沉淀池出水悬浮物较高有时会发生污泥上浮现象,影响出水水质;4、催化氧化系统耗电量大,工艺复杂,运行成本高;5、工艺线较多,工艺复杂、造成现场操作维护工作量大。

二、改造后废水排放水质指标及处理规模

废水站设有一个总排口,处理后的废水在最终排放口的水质达到北京市《水污染物综合排放标准(DB11/307-2013)》的排放要求。悬浮物、BOD、COD、总有机碳、氨氮、石油类及总磷控制值比改造前有很大提升。悬浮物10毫克/升,BOD 6毫克/升,COD 30毫克/升,总有机碳12毫克/升,氨氮1.5毫克/升,总氮15毫克/升,石油类1毫克/升,总磷0.3毫克/升,氯化物500毫克/升,余氯8毫克/升。总氮、氯化物和余氯等污染物开始纳入排放指标中。整个废水站废水共分为以下四个系统,总处理规模为180立方米/时,其中:含酸废水处理系统:40立方米/时;稀碱废水处理系统:50立方米/时;含油及光整液废水处理系统:20立方米/时(含油废水15立方米/时、光整液废水5立方米/时);中水排污及生活污水处理系统:70立方米/时。

三、实施先进的处理工艺

含油及光整液废水预处理采用进口气能絮凝工艺在冷轧废水中,含油及乳化液废水由于其含油量高、COD高、生物处理难等特性特别难以处理,国内冷轧含油废水的处理工艺经历了从“气浮—超滤—气能絮凝”不断改良的发展历程。超滤存在“占地面积大、配套土建工程投资高、运行费用高、操作维护要求高”等缺点,而气能絮凝能有效解决超滤的“一大三高”问题,因此在冷轧浓油废水处理领域采用气能絮凝取代超滤已成为一种必然趋势。气能絮凝技术是美国的创新产品,能有效去除污水中的固体悬浮颗粒、油类、浊度和化学需氧量。气能絮凝装置可针对特殊废水,利用精确少量的化学药剂,充分捕集水中污染物,形成比重轻而面积大的中空絮体,刮至池面去除。其利用特殊研发的涡流三相混合器,可完成药剂分子拉伸提效、混凝絮凝搅拌、气泡晶核产生、超轻中空絮体形成的全部步骤,体现三大优越性:物尽其用—有效伸展高分子药剂链、充分利用药剂;以逸待劳—三相混和器独有的涡流能量调节功能可保证设备适应不同进水负荷、确保稳定性;化繁为简—气固液一体混合,真正实现整机一体化。稀碱废水生化采用内置浸没式PTFE材质MBR工艺膜生物反应器(MBR)工艺是一项非常成熟、可靠的废水处理新技术,是膜分离技术与生物技术的有机结合,在国内外及冷轧废水处理领域有着多年的、广泛的应用。采用生化+沉淀+过滤的处理工艺,由于没有从根本上解决生化池污泥的浓度和活性与污泥的沉降性能之间的矛盾,反而造成了工艺流程过长、管理更加繁琐的后果。由于污泥的絮凝效果差、粒径小,普通的过滤器的截留效果也是非常的有限,特别对于含有难生物降解有机物的废水,存在许多不足:沉淀及过滤效果受药剂投加和絮凝效果影响较大,出水水质差且波动大;耐冲击负荷的能力差,出水水质波动较大;难降解有机物,去除效果差,制约了出水指标从COD≤70毫克/升继续提升;药剂投加不当,会造成出水含有大量药剂,对生化产生影响,或影响出水水质。虽然无论采用哪种生化处理工艺,进行COD降解靠的还是微生物,但怎样筛选(驯化)微生物、保持微生物较高的浓度和活性、有效地进行微生物和水的分离才是关键。在这些方面,内置浸没式PTFE材质MBR(以下简称MBR)工艺拥有很强的优势。MBR的工艺技术优势MBR工艺采用膜过滤的方式进行泥水分离,可完全截留水中的活性污泥,避免活性污泥的流失,活性污泥浓度因此大大提高,并保持生化池内污泥的高活性。MBR工艺通过膜分离技术大大强化了生物反应器的功能,水力停留时间(HRT)和污泥停留时间(SRT)可以分别控制,从而使难降解的有机物在生化池中不断反应、降解:1、有机物降解效率高,出水水质好;2、膜过滤精度高,且不受药剂投加、絮凝效果的影响;3、耐冲击负荷的能力非常强,出水水质稳定;4、对难降解有机物的去除效果好,提高出水水质。MBR工艺的管理优势MBR工艺将膜分离技术与生物技术有机结合,有效地解决了生化池内污泥的生物活性和沉淀性能之间的矛盾,运行过程中不需要投加任何药剂,自动运行,运行管理方便。MBR工艺主要管理优势包括:1、自动运行,程序化管理,对管理和操作人员的要求和依赖性不高(而传统生化工艺经常需要操作人员根据经验进行判断和操作);2、不需要频繁调整生化处理工艺参数、污泥回流量、药剂投加量等(但传统生化需根据水质水量的变化经常调整);3、膜材质都经过亲水性处理,抗污染能力强,膜组件采用独特的间歇性运行方式,膜表面在运行过程中自动被冲刷干净,有效减少膜表面污染;4、膜组件清洗周期长,一般3-6个月才清洗一次,清洗方法非常简便;5、药剂节省:仅需很少量的清洗药剂,无混凝剂、絮凝剂的连续消耗;6、多组膜组件灵活组合,运行稳定。根据冷轧厂含碱废水COD值高、生化性差、水质水量波动较大的特点,为满足出水水质稳定达到北京市《水污染物综合排放标准(DB11/307-2013)》的排放要求,本造工程中采用内置浸没式PTFE材质MBR,确保出水的稳定达标,并从根本上解决废水处理站运行管理繁琐,出水波动大的问题。

四、改造后废水处理工艺流程

含酸废水处理系统生产线机组排放的含酸废水以及循环水站过滤器反洗排水等排入废水站的含酸废水调节池,均质均量后,用泵送至一、二级中和罐,在中和罐中投加石灰乳并进行曝气,使废水中的Fe2+、Fe3+转化成较易沉淀的Fe(OH)3絮体。中和罐的出水再进入澄清池进行沉淀,为提高沉淀效果,往废水中投加高分子助凝剂。沉淀后的上清液进入重力式过滤池,去除残余悬浮物后再流至最终pH调节池,投加酸/碱将废水pH值调整至合适值,自流到终排水池达标排放。稀碱废水处理系统生产线机组排放稀碱废水排入废水站的稀碱废水调节池,均质均量后,用泵送至pH调整槽/絮凝槽,投加酸和混凝剂,使废水中油及悬浮物颗粒形成较大絮体,出水再进入气浮池,通过气浮池中释气器释放出的大量微气泡,将废水中的油及悬浮物颗粒携带上浮至池面,形成浮渣去除。经气浮处理后的废水,流至pH调节池/中间水池,投加酸/碱将pH值调整至中性,用泵送至冷却塔降温,使废水水温达到后续生化处理中微生物生长适宜环境,冷却塔出水自流到中水站及生活污水调节池,与中水排污及生活污水混合后,用提升泵送至后续生化处理单元处理,生化处理单元采用“缺氧池+好氧池Ⅰ+好氧池Ⅱ+膜生物反应器”的工艺,出水至终排水池排放或至中水站原水池回用。原系统构筑物没有降解总氮的功效,故新建了一座缺氧池;利用原生物接触氧化池作为好氧池Ⅰ,并设置混合液回流至缺氧池;利用原兼氧/好氧池作为好氧池Ⅱ,并设置污泥回流至缺氧池及好氧池Ⅰ;为进一步降解CODcr、BOD5等有机物,新增一座MBR膜池,确保系统稳定达标排放/回用。含硝态氮废水及生活污水的氨氮经好氧硝化后按比例回流至生化处理单元的缺氧池进行反硝化脱氮处理,缺氧池出水自流到好氧池Ⅰ、好氧池Ⅰ出水自流到好氧池Ⅱ,污水进行好氧生化进一步降解CODcr、BOD5等有机物,出水自流到MBR池,采用内置式膜生物反应器,通过抽吸泵将生化处理后的废水送至终排水池排放或至中水站原水池回用。光整液废水处理系统生产线机组排放的含油及乳化液废水和生产机组排放的光整液废水排至废水站的含油废水调节池,调节池废水用泵提升至气浮装置去除粗渣,出水进入到pH调节池调节pH值,用泵送至气能絮凝装置处理,进一步去除油和CODcr等污染物,气能絮凝装置出水排至稀碱废水调节池,与稀碱废水一道进行后续单元处理。

五、本改造工程的创新点

1、优化了含油及乳化液废水、光整液废水的预处理工艺,各股废水一起进入调节池进行混合均质,通过一级气浮后进入高效气能絮凝进行处理,设备占地面积比较小,出水水质比较稳定,运行费用比较低,为后续的生化的稳定运行提供了强有力的支持。2、碱性废水生化处理流程进行优化提升,增加了缺氧工段,MBR采用了出水水质好、运行费用低、管理方便、占地节省的内置式PTFE材质的MBR工艺,为处理后废水长期稳定达标提供了可靠的保障。

六、投运后效果分析