数字化变电站范文10篇

时间:2023-03-27 17:38:49

数字化变电站

数字化变电站范文篇1

关键词:数字化变电站;自动化技术;技术应用;功能

在社会经济与科学技术的发展带领下,自动化技术在变电站建设中的应用水平逐渐提升,其不仅有力的促进了电力系统的现代化发展,用时还有利于电网调度可靠性的有效提高,同时为该系统实现安全稳定运行提供了重要的技术支持,最终实现了变电站的数字化发展。所以,当前的设计研究人员应当对自动化技术的应用发展进行深入研究,不断实现数字化功能完善,使其服务于电力资源的合理配置并推动我国的电力行业实现不断发展。

1数字化变电站中的自动化技术应用

1.1光电量测技术

对于数字化变电站来说,传感器工程应用所具备的稳定性能是十分重要的。其主要分为光电式与电子式两种类型的电流/电压互感器。其中数字化变电站中所应用的光电测量技术主要由互感器、交换器、信息处理设备以及连接光缆共同组成。其中根据原理进行变换器分类主要分为半常规与电—光两种类型。其中,前者的电压变换原理主要是依靠电阻与电压分压实现,其中电阻的计算方式为I1=j•(L/N)•I2•(1/R+r+j•L),R=U/I1.电流变换原理主要是依靠带铁芯微型CT来实现的。而后者的电压变换原理主要是依靠逆电压效应来实现的,电流变换主要依靠法拉第效应来实现。其主要的系统构成结构有分别针对电流采样与电压采样工作的电流变换器,以及电压变换器与光电接口装置几部分,并且利用光缆装置进行连接。图1即为光电测量技术的基本光路原理。

1.2系统中的合并单元技术

合并单元技术是数字化变电站中全新的物理元件,其合成功能主要是针对由二次转换器所提供的电流与电压数据。该系统主要是由七个以上的电流互感器与五个以上的电压互感器共同构成单元组,并将该单元组中输出的瞬间数字信号填进数据帧内,这就使得数据信号具有更高的优越性。另外,互感器与监控系统、计量与保护装置之间的联系也是利用该技术来实现的,接收由互感器传出的信号数据并将其进行转化后传出,并且在这同时进行同步信号的收集,为系统运作的二次设备进行精确的电压与电流提供。

1.3集成与智能的开关设备

对于变电站来说,其在实际工作中有必要实现一次与而二次设备的集成操作。与传统的互感器进行比较而言,光电量测系统为实现设备集成与结构优化工作创造了条件。就当前的系统研究工作已经实现了多种高压设备集成技术,其主要包括了针对互感器和断路器的量测技术、智能化的断路器以及智能开关设备等。目前已经出现了一种在SF6断路器基础上研发的半封闭组合电器,其形成原理主要是将SF6气体填充进金属壳中,并在该金属壳中将断路器、隔离与接地开关装置以及变换器进行合理组合,并利用集成开关设备系统实现出线。

1.4系统中的网络通信技术

变电站的自动化发展主要是依靠系统中的网络通信技术来实现的。而在当前的数字化变电站中常见的网络技术包括交换式的以太网技术、IEEE802.1p排队特性、虚拟化局域网以及快速生成树协议几部分。变电站在进行网络通信技术应同时主要是结合了抽象通信服务接口使其实现了自动化功能的独立性建设,有利于先进的网络技术的高效应用。同时,抽象通信服务接口中也对IED进行了隐藏,将多种功能在IED中进行存储和分配。但是也存在着部分不支持IEC61850标准的通信服务接口。在实际技术应用中,只需要引进ACSI网关装置就能实现设备接入操作。其中,IEC61850协议实现模式如图2所示。

1.5系统中IED设备的互操技术

IED设备即为智能电子装置,其可组合在一次设备当中进行应用,并且该技术的主要应用功能是为实现数据收集做准备,并对数据的输入与传输进行控制。该技术与系统中的光纤通信和二次系统技术共同投入应用,是实现对变电站进行的监控与维护工作的基础。而智能电子装置本身具备的互操技术更是为维护软硬件投资提供了支持,可实现对多种产品的有效集成。所以,在不断推进IED设备的互操技术应用的同时,还应当进一步进行技术优化,研究人员可采用一致性测试与性能测试来进行优化实验探究。

1.6系统中的信息同步技术

数字变电站系统在进行数据采样操作时,为避免由于相位与幅值差异而造成采样数据误差,应当在统一时间点进行统一化的数据信息采集。GPS接收装置应当安装在通信服务器中,为进行数据采集工作的光电式互感器等提供对时服务。同时利用网络时间协议进行间隔总线设置,以此来实现系统内的设备采样同步,并将同步时间的误差控制在1ms之内。但在收集数据同步采样过程中,系统的总线承载过大,实际误差范围应当控制在1us之内。所以,应当将以IEEE1588标准作为同步标准,在这基础上设置的时钟系统是由多个节点共同组成的,并利用网络实现节点连接。这样不仅可以实现系统网络的同步性能提高,同时避免了实际操作过程中繁琐的通信同步过程,最终实现通行时间与执行时间的有效分隔。

2数字化变电站中自动化技术的主要应用功能

2.1计算机保护功能

自动化技术的应用可实现对计算机设备的有效保护,其不仅包括了电气设备,还涵盖了自动化装置、变压器以及母线等多种系统环节。在变电站的实际运行过程中,其还具备对系统内的故障进行记录与存储的功能。同时,其还在接受控制指令的同时进行运行流程和故障信息的传递,再进一步地就设备运行故障进行正确的诊断与处理,完成定值修改与时间校对。

2.2对系统运行数据进行收集与处理

自动化技术应用的另一重要功能即为高效地对系统运行数据进行收集与处理。并且其主要的数据收集与整理工作是面对系统脉冲、状态与模拟的。其中针对系统状态的数据收集主要包括事故跳闸、断路器运行、预告信号以及隔离开关等方面的状态。而针对系统模拟的数据收集与处理工作主要包括对电压与电流等模拟的数据收集与处理。

2.3自动诊断与控制功能

在数字化变电站中运用自动化技术能实现系统本身自动化的进行诊断与检查,并根据诊断结果进行系统维护,同时在开展自动诊断功能时,其还能就系统的具体缺陷位置进行判断与显示,为系统维修工作提供了帮助。另外,该技术的应用还能保证系统操作与控制自动化的实现,相关工作人员能在实际工作中的系统设备进行远程控制。另外,自动性能的实现还对跳合闸现象进行了考虑,避免由于系统故障的意外出现而造成相关设备出现应用瘫痪,影响变电站的正常运行。在该技术的支持下,已经基本实现即使系统出现故障,操作人员依旧可依靠自动化操作来实现系统运行。

变电站的数字化发展离不开自动化技术的应用支持。其主要涉及到数字化的光电量测、单元合并、智能化开关设备、网络通信、设备互操作性能以及信息同步技术等。其在系统运行中的主要功能优势包括对计算机进行维护,精确快速的进行相关数据的收集与处理工作,自动对设备功能进行诊断以及能满足操作人员对于自动化操作与控制的需求。所以,在数字变电站中加强自动化技术的应用与发展对于实现变电站现代化发展是十分重要的,相关研究人员应当加强对该技术的应用研究。

作者:成祥祥 单位:渤海大学工学院

引用:

[1]胡晓娟.数字化变电站自动化技术的应用[J].科技资讯,2011,17:124-127.

[2]葛荣良.数字化变电站技术与应用[J].上海电力,2006,06:557-564.

[3]马天涛.自动化技术在数字化变电站中的应用分析[J].中国电力教育,2014,12:229-230.

数字化变电站范文篇2

一、电子式互感器的使用

电子式互感器的出现,克服了传统互感器绝缘复杂;重量重、体积大;CT动态范围小、易饱和;电磁式PT易产生铁磁谐振;CT二次输出不能开路等诸多缺点。电子式互感器绝缘简单;体积小、重量轻;CT动态范围宽、无磁饱和;PT无谐振现象;CT二次输出可以开路。

目前研究开发中的电子式CT、PT可分成两类:(1)基于ROGOWSKI线圈CT(电磁感应原理,但无铁芯),电容(电阻、电感)分压式PT,先将高电压大电流变换成小电压信号,就近经A/D变换成数字信号后通过光缆送出给接收端,高压端电子设备需要供电,称为有源式互感器。(2)利用光学材料的电光效应、磁光效应将电压电流信号转变成光信号,经光缆送到低压区,解调成电信号或数字信号,用光纤送给二次设备。因高压区不需电源,称为无源型互感器。

110千伏翠峰数字化变电站更换的光电式互感器对保护性能的影响、新型计量系统的精度评估以及新老设备的兼容对整个运行体系都有着直接的影响,它标志着变电站自动化技术向数字化迈出了关键的一步,也为我国数字化变电站的推广、运用打下了坚实的基础。

二、开放式数字化的变电站综合自动化系统

1、智能化的一次设备

根据IEC62063:1999对智能开关设备的定义,它不但具有开关设备的基本功能,还具有在线监视、智能控制、数字化接口和开关的电子操作等一系列的高智能化功能。

一次设备被检测的信号回路和被控制的操作驱动回路将采用微处理器和光电技术设计,简化常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络要取代传统的导线连接。变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。传统控制模式和新模式对比如下图所示:

根据上图:110千伏变电站在改造过程中,采用了把传统开关端子箱通过加装智能单元的形式,改造为智能开关下放到开关柜,这样既降低了造价又提高了安全性;变压器端子箱配置智能单元,各种信息通过光缆与控制室相连。不但大大节省了电缆、节约了占地,而且缩短了投运周期和互感器的电气距离,更重要的是优化了控制回路。

2、网络化的二次设备

二次设备的网络化,是适应电子式互感器的应用和智能化一次设备的需要,更重要的是适应IEC61850通信规范的需要。

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

110千伏翠峰变电站的通信网络的改变,使监控、在线检测、五防、VQC和保护等信息传输方面也由原来的点对点对接实现了信息的共享。

3、IEC61850标准的应用

IEC61850是基于网络通信平台,将电力系统从调度中心到变电站、变电站内、配电自动化进行无缝连接的唯一的自动化国际通信标准,不但规范了保护测控装置的模型和通信接口,而且还定义了数字式CT、PT、智能化开关等一次设备的模型和通信接口。

(1)开放式数字化变电站自动化系统的结构分层

数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;而在逻辑结构上可分为三个层次,根据IEC61850通信协议定义,这三个层次分别称为“过程层”、间隔层”、站控层”。

如上图定义了变电站层、间隔层和过程层,并定义了3层间的9种逻辑接口:

(2)开放式数字化变电站自动化系统的设备模型和信息模型

IEC61850中,每个物理装置由服务器和应用组成,服务器(server)分为逻辑装置(logicaldevice)-逻辑节点(logical-node)-数据对象(dataobject)-数据属性(dataatributes);从应用方面来看,服务器包含通信网络和I/O。从通信的角度来看,服务器通过子网和站网相连,每1个IED(智能电子装置)既可扮演服务器角色也可扮演客户的角色(如下图所示)。

这种分层,需要有相应的抽象服务来实现数据交换。这就是IEC61850的另一个特点:抽象通信服务接口(ACSI),它独立于具体的网络应用层协议(例如目前采用的MMS)和采用的网络(例如现在采用的IP网络)无关。ACSI服务有服务器模型、逻辑装置模型、逻辑节点模型、数据模型和数据集模型(如下图所示)这样提供了直接访问现场设备,对各个制造厂的设备都用同一种方法进行访问。这种方法可以用于重构配置,很容易获得新加入的设备的名称和用于管理设备的属性。

(3)开放式数字化变电站自动化系统的通信服务映射

IEC61850在两个方面进行了标准化的工作,一是抽象通信服务接口,二是特殊通信服务映射。特殊通信服务映射(SCSM)定义的是这些对象和服务向网络层的映射。按照应用的网络层协议不同,映射方法也各不相同,由IED供应商自己定义,但是IED的抽象通信服务接口是相同的。通信服务映射的层次如下图所示:

<1>间隔层与变电站层的网络映射

在IEC61850-7-2、-7-3、-7-4中定义的信息模型通过IEC61850-7-2提供的抽象服务实现不同设备之间的信息交换。为了达到信息交换的目的,IEC61850-8-1部分定义了抽象服务到MMS的标准映射,即特殊通信服务映射(SCSM)。如果采用的网络类型有变化,这时只要改变相应的特定通信服务映射(SCSM)就可以了,而无需改变上层的任何内容,IEC61850采用的ACSI很容易就适应这种变化,大大提高了网络适应能力。

在IEC61850-8-1中定义的特殊通信服务映射SCSM就是将IEC61850-7-2提供的抽象服务映射到MMS以及其它的TCP/IP与以太网。在IEC61850-7-2中定义的不同控制模块同SCSM被映射到MMS中的各个部分(如虚拟制造设备VMD、域DOMAIN、命名变量、命名变量列表、日志、文件管理等),控制模块包含的服务则被映射到MMS类的响应服务中去。通过SCSM,ACSI与MMS之间建立起一一对应的关系,ACSI的对象(即IEC61850-7-2中定义的类模型)与MMS的对象一一对应,每个对象内提供的服务也一一对应。

<2>间隔层与过程层的网络映射

ACSI到单向多路点对点的串行通信连接用于电子式CT和PT,输出的数字信号通过合并单元(MergingUnit)传输到电子式测量仪器和电子式保护设备。IEC61850-7-2定义的采样值传输类模型及其服务通过IEC61850-9-1定义的特殊通信服务映射SCSM与OSI通信栈的链路层直接建立单向多路点对点的连接,从而实现采样值的传输,其中链路层遵循ISO/IEC8802-3标准。

IEC61850-9-2定义的特殊通信服务映射SCSM是IEC61850-9-1的补充,目的在于实现采样值模型及其服务到通行栈的完全映射。IEC61850-7-2定义的采样值传输类模型及其服务通过特殊通信服务映射SCSM,在混合通信栈的基础上,利用对ISO/IEC8802-3过程总线的直接访问来实现采样值的传输。

三开放式变电站综合自动化系统的安全问题

由于原来的SCADA和其他的控制系统都是一个独立系统,是厂家的专有产品。它们的安全性来自于它们的硬件平台和逻辑结构与外界不同。开放式变电站综合自动化系统基于开放的、标准的网络技术之上。所有的供应商都可以开发基于因特网的应用程序来监测、控制或远方诊断,但是带来的问题是可能导致计算机控制系统的安全性降低。对于电力系统这样一个要求高可靠性和安全稳定性的系统而言,安全问题尤其突出。因此对于开放式变电站综合自动化系统的具体设计和实施而言安全问题十分重要。

可采用的技术措施分为两类:加密技术与防火墙。

前者对网络中传输的数据进行加密处理,到达目的地址后再解密还原为原始数据,从而防止非法用户对信息的截取和盗用。防火墙技术通过对网络的隔离和限制访问等方法,来控制网络的访问权限,从而保证变电站综合自动化系统的网络安全。

数字化变电站范文篇3

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。

由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

(3)电子互感器在A/D转换的过程中存在较大的角度误差。在光电互感器对采集到的模拟量转换为数字量的A/D转换中,会带来较大的角度误差,从而对电能计量的计量准确性又带来了一定的影响。

(4)与光电互感器相匹配的电能表必须具有国家法定计量检定机构的认证。由于光电互感器的结构特殊性,必须要采用与之相匹配的电能表进行计量,原先的电能表均无法实现计量功能,为此就出现了一个新的问题,新型的电能表作为一种“新”计量工具,按照国家法规就必须有具有国家法定计量检定机构的认证,因此新型电能表的认证也是必不可少的。

数字化变电站范文篇4

数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。

由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

数字化变电站范文篇5

关键词:数字化变电站光电互感器组成传统互感器有源式无源式电能计量

数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。

由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

数字化变电站范文篇6

【关键词】数字化变电站;网络通信技术;网络结构;研究

随着各种先进技术如计算机、信息、自动化等的不断发展,将这些技术充分应用于变电站自动化系统中之后,就极大地推进了变电站的数字化发展。当前,数字化变电站已经成为我国变电站的主流发展趋势,并作为智能化电网中的重要组成,促进了我国电力行业的发展,也为社会提供了源源不断的发展动力。在数字化变电站站中,网络通信技术的重要性不言而喻,其性能的好坏将直接影响到变电站的自动化运行,进而还会影响到数字化变电站的安全。

1数字化变电站的主要特性

1.1一次设备的智能化。较之传统的变电站系统,数字化变电站有着诸多的不同之处。如数字化变电站内部的互感器已经发展成为电子式及光电式。不同于过去的电磁式互感器,这些新型的互感设备具备了更多的功能。如其对外能直接提供数字式的光纤以太网接口,而在其内部则具有可以与外部进行数字通信的智能断路器及变压器等设备,也有些变电站中支架在以此设备上加设相应的智能终端,以便于将信号进行数字式转变,也能利于对状态的监测,从而实现了一次设备的智能数字化。1.2二次设备的网络化。在数字化变电站中,其二次设备除了具备相应的数字化功能与特征外,还拥有对外的网络接口,并且其信号的传输都是在以太网的基础上得以实现的。1.3标准化。自IEC61850这一国际标准实施以来,传统的变电站中的相关信息与网络通信在标准化的差异致使其设备之间的信息交互出现了诸多的问题,但是对于数字化变电站而言,由于其站内的设备都符合国际标准,从而使得站内的设备之间都具备可互相操作的特性。1.4系统运行的自动化。数字化是综合自动化的必然结果,在数字化的变电站系统中,不论是站内的设备,还是信号的传输以及信息的共享都可以自动化。

2数字化变电站中通信网络的要求

2.1功能要求。在数字化变电站中,通信网络要承担信息的实时传递功能,并且这种信息传递不仅限于系统内部之间,还应同时支持系统与外部之间的信息传递。在这一过程中,网络是最不可或缺载体。因此对于数字化变电站而言,高效稳定的通信体系的建立是确保其通信功能得以实现的决定性因素之一。通过对相关文件进行检索后发现,过去的部分研究中指出,通信技术是实现变电站自动化的核心所在。而通信网络作为变电站中实现各种设备有效连接的最关键介质,应符合标准化的网络需求,此外还应具备多样的接口类型。当前,我国的变电站都开始向无人值守的变电站进行转变,站内所传递的信息量也在不断增加,因此对于通信网络而言,其内部的存储空间及对信息的传递速度也应进一步提升。再加上,随着无人值守变电站的不断增多,在变电站中,这些通信网络不仅要做到可对电压自动调节,还在系统中实现自动对时。最后,在变电站的运维上,诊断技术的进一步智能化也是数字化变电站中通信网络所应具备的功能要求。2.2性能要求。①可靠性:由于电力的生产及供应要连续不断地进行,为确保这种状态的持续,通信网络的可靠性是首要条件,并且还不能因为某一设备的故障而造成系统的整体通信障碍。而随着信息技术的发展,对变电站的监控也将会以依附于通信网络;②开放性:在变电站中,通信网络不仅要保障站内的智能设备都能进行互相连接与扩展,还要充分服从于系统的自动化设计。其接口及协议的使用都应满足相应的国际标准,以便于用户的系统集成;③实时性:由于系统内的全部信息数据都要在获取的第一时间进行传递,尤其是在系统出现故障时,大量的数据都需要及时被传输出去,这就需要通信网络具备对信息及时快速进行传送的功能。如根据相应的国际标准,在数字化变电站中其报文类型大致有7种,对于快速跳闸报文以及生成数据报文而言,其时限要求通常都为3ms。

3IEC61850标准

当前在数字化变电站的网络平台的建设过程中,IEC61850标准是唯一需要且必须遵循的国际标准。此标准的应用使得变电站的通信系统实现了分层,主要为站控层、间隔层以及过程层。在前两层之间的网络只要使用MMS以及TCP/IP以太网或者光线网络,而在后两层之间则主要使用由单点向多点进行传输的以太网,并且这种传输还是单向的。站内的全部设备都使用同一的协议,并在通信网络的支持下实现各自信息的交互。此国际标准主要具有以下特点:①对电力系统整体进行统一建模;②通信服务的接口都较为抽象;③服务需实时进行;④同时配置语言;⑤面向对象进行建模。在此标准下,多数变电站内各产品之间的互操作及协议转换等问题都得到了有效的解决。此外,这一标准的使用还使得变电站中的设备具备了自我诊断与描述以及即时使用的特点,进一步便利了系统的集成,同时还使得变电站自动化的实现费用得到了极大程度的降低。

4数字化变电站的数据通信与组网

在数据化变电站之间都需要使用以太网交换机,并经由光纤网实现站与站之间的高速互联。在变电站中,电子设备经由以太网实现对信息的汇总,而站间以及监控中心之间也在相关的协议下实现互相通信。在数字化变电站内,通常都配置有较高性能的管理机并且与主机进行一体化安装。在对站内的其他信息进行汇总时常使用多模式的通信接口,这些接口还需要充分考虑到未来的扩展需求,同时所有信息到最后都会在以太网上实现最终的交换。在数字化变电站中,其站控层内主要包含一些监控、告警及其他功能设备。间隔层中则主要有保护、计量、测控以及一些转换设备等。过程层中则主要有合并单元、智能开关以及数字互感器等。在站控层内,全面实施相应的国际标准,其内部的后台程序以及一些具备信息保护功能的子站都可以直接与符合标准的装置进行连接,并允许其接入。间隔层的特殊架构则可以实现网络中的跨间隔之间的横向连锁。当变电站为110kV以下时,其自动化系统中应应用单以太网;而超过110kV的变电站,则应应用双以太网。在这些系统中,网络之间的通信都应当符合国际标准,当接入设备不能符合此项规约时,只能在经过相应的处理后才可被允许接入。在数字化变电站中,COOSE机制是实现系统分布式的基础,通常可用于间隔层及过程层之间,主要被用于层间的纵向联系,例如跳闸信息;也可被用于间隔层内的横向联系,主要保护智能电子设备之间的信息互换等。

5结束语

对于数字化的变电站而言,其内部的自动化系统具有一定的复杂性,而通信网络技术就是其核心。随着现有技术水平的不断进步,数字化变电站必将逐渐以其在多方面的不同优势,成为变电站的主流发展趋势。

参考文献

[1]朱学科.基于数字化变电站自动化系统的网络选型探讨[J].电子技术与软件工程,2017(24):34-35.

[2]徐修远.220kV内桥接线方式数字化变电站继电保护验收难点研究[J].贵州电力技术,2017,20(1):66-69.

数字化变电站范文篇7

论文摘要:当今世界,在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。

经过几十年的发展,变电站自动化技术已经达到了一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有

的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。

一数字化变电站自动化系统的特点

(1)智能化的一次设备

通常一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

(2)网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

(3)自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

二数字化变电站自动化系统的结构

在变电站自动化领域中,智能化电气的发展,特别是智能开关、光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元,如A/D变换、光隔离器件、控制操作回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器、数字化控制回路代替了常规继电保护装置、测控等装置的I/O部分;而在中低压变电站则将保护、监控装置小型化、紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。

数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC6185A通信协议草案定义,这三个层次分别称为“过程层”、“间隔层”、“站控层”。

过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:(1)电力运行实时的电气量检测;(2)运行设备的状态参数检测;(3)操作控制执行与驱动。间隔层设备的主要功能是:(1)汇总本间隔过程层实时数据信息;(2)实施对一次设备保护控制功能;(3)实施本间隔操作闭锁功能;(4)实施操作同期及其他控制功能;(5)对数据采集、统计运算及控制命令的发出具有优先级别的控制;(6)承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工方式,以提高信息通道的冗余度,保证网络通信的可靠性。

站控层的主要任务是:(1)通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;(2)按既定规约将有关数据信息送向调度或控制中心;(3)接收调度或控制中心有关控制命令并转间隔层、过程层执行;(4)具有在线可编程的全站操作闭锁控制功能;(5)具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;(6)具有对间隔层、过程层诸设备的在线维护、在线组态,在线修改参数的功能;(7)具有(或备有)变电站故障自动分析和操作培训功能。

三数字化变电站自动化系统中的网络选型

网络系统是数字化变电站自动化系统的命脉,它的可靠性与信息传输的快速性决定了系统的可用性。常规变电站自动化系统中单套保护装置的信息采集与保护算法的运行一般是在同一个CPU控制下进行的,使得同步采样、A/D转换,运算、输出控制命令整个流程快速,简捷,而全数字化的系统中信息的采样、保护算法与控制命令的形成是由网络上多个CPU协同完成的,如何控制好采样的同步和保护命令的快速输出是一个复杂问题,其最基本的条件是网络的适应性,关键技术是网络通信速度的提高和合适的通信协议的制定。

如果采用通常的现场总线技术可能不能胜任数字化变电站自动化的技术要求。目前以太网(ethernet)异军突起,已经进入工业自动化过程控制领域,固化OSI七层协议,速率达到100MHz的嵌入式以太网控制与接口芯片已大量出现,数字化变电站自动化系统的两级网络全部采用100MHz以太网技术是可行的。

四数字化变电站自动化系统发展中的主要问题

在三个层次中,数字化变电站自动化系统的研究正在自下而上逐步发展。目前研究的主要内容集中在过程层方面,诸如智能化开关设备、光电互感器、状态检测等技术与设备的研究开发。国外已有一定的成熟经验,国内的大专院校、科研院所以及有关厂家都投入了相当的人力进行开发研究,并且在某些方面取得了实质性的进展。但归纳起来,目前主要存在的问题是:(1)研究开发过程中专业协作需要加强,比如智能化电器的研究至少存在机、电、光三个专业协同攻关;(2)材料器件方面的缺陷及改进;(3)试验设备、测试方法、检验标准,特别是EMC(电磁干扰与兼容)控制与试验还是薄弱环节。

数字化变电站范文篇8

【关键词】:数字化;智能化开关;光电式电流

在当今的信息化时代中,数字化也越来越为人们所重视。数字化技术主要体现以下几个方面的特性:首先,数字化是数字计算机的基础,并且数字化是软件技术的基础,是智能技术的基础;其次,数字化是多媒体技术的基础,它为信息社会提供了基础。数字化变电站就是使变电站的所有信息采集,传输,处理,输出过程由过去的模拟信息全部转换为数字信息,并建立与之相适应的通信网络和系统。它的基本特征体现在设备智能化,通信网络化模型和通信协议统一化,运行管理自动化等方面。我国首座数字化变电站-翠峰变电站位于1998年3月3日建成投产,并于2006年3月27日改造为全数字化变电站正式投入运行。经过7个月的投产运行.各种数据采集、传输准确无误.运行平稳、安全、可靠.在全国处于领先地位.并达到国际先进水平.

1.数字化变电站的技术特点和应用

1.1一次设备的智能化

一次设备中被检测的信号回路和被控制的操作驱动回路都采用微处理器和光电技术的设计,这使常规机电式继电器及控制回路的结构简化了,传统的导线连接被数字程控器及数字公共信号网络所取代。可编程控制器代替了变电站二次回路中常规的继电器和其逻辑回路,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

1.2二次设备的网络化

变电站中常规的二次设备:故障录波装置、继电保护装置、电压无功控制、量控制装置、远动装置、同期操作装置、在线状态检测装置等,都是基于标准化、模块化的微处理机技术而设计制造,设备之间的通信连接全部采用高速的网络,二次设备通过网络真正地实现了数据、资源的共享。

1.3自动运行的管理系统

变电站运行管理系统的自动化包括电力生产运行数据、状态记录统计无纸化、自动化;变电站运行发生故障时,并且能够及时地提供故障分析报告,指出故障原因及相应的处理意见;系统能自动发出变电站设备检修报告。

要想在变电站内一次电气设备与二次电子装置均实现数字化通信,并具有全站统一的数据建模及数据通信平台,在此平台的基础上实现智能装置之间的互操作性。在一、二次设备之间同样实现全数字化通信,如果变电站内智能装置的数量急剧增加,全站智能装置必须采用统一的数据建模及数据通信平台,才能实现互操作性.

2.数字化变电站自动化系统的结构

数字化变电站自动化系统的结构在物理上可分为智能化的一次设备和网络化的二次备。在逻辑结构上分为三个层次:"过程层"、"间隔层"、"站控层"。各层次内部和层次之间采用高速网络通信。

过程层的典型设备有远方I/O、智能传感器和执行器,主要完成开关量和模拟量的采集以及控制命令的发送等与一次设备相关的功能。间隔层设备的主要功能包括汇总本间隔过程层实时数据信息,实施对一次设备保护控制功能,实施本间隔操作闭锁功能。实施操作同期及其他控制功能。站控层的主要功能包括通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库、按既定协约将有关数据信息送往调度或控制中心、接收调度或控制中心有关控制命令并转间隔层、过程层执行。

过程层与间隔层之间基于交换式以太网的串行通信方式在标准中称为过程总线通信,间隔层与变电站层之间串行通信方式称为站级总线通信。

3.数字化变电站技术中存在的问题

数字化变电站自动化系统的研究目前尚处于起步阶段,大部分精力集中在过程层方面,例如智能化开关设备,光电互感器、状态检测等技术与设备的研究开发。目前存在着许多问题:首先,研究开发过程中专业协作需要加强,比如智能化电器的研究至少存在机、电、光三个专业协同攻关。其次,材料器件方面的缺陷及改进。并且试验设备、测试方法、检验标准,特别是电磁干扰与兼容控制与试验还是薄弱环节。

4.数字化变电站的未来发展

数字化变电站技术的发展将会是个长期的过程,需要考虑与目前常规变电站技术的兼容性。

4.1过程层常规设备接入方案

过程层常规设备主要指互感器和断路器设备,具体应用就是采取非常规互感器技术和智能断路器技术,或智能断路器控制器技术,常规设备的接入方式主要有三种基本模式:常规互感器和常规断路器;常规互感器和智能断路器;非常规互感器和常规断路器。

4.2过程总线方案

在第二阶段中前面控制和测量数据的分离通信系统将合并到一起,控制和测量数据的合并减少了间隔接线的复杂性,但间隔层IED设备需要两个以太网口分别与过程总线和变电站总线连接。由于传送了来自合并单元的数字化电气量测系统的瞬时值,此种通信方式比第一阶段中的通信方式更快。出于这个原因将使用100Mbit/s以太网,通过过程总线保护装置的跳闸命令被发送到断路器。

4.3过程总线和站总线合并方案

由于第一,第二阶段中过程总线和变电站总线都使用了基于MMS应用层通信堆栈的以太网,和以太网的不断发展,使得变电总线联接构成一个通信网。并且不会影响变电站内部站的通信。

5.结束语

文章论述了数字化变电站综合自动化系统的特征、结构及其发展。数字化变电站自动化是一个系统工程,要实现全部数字化变电站自动化的功能,还有许多技术问题需要攻关解决,基于智能断路器技术的成熟度实现信息采集、处理、传输、从交流量的采集到断路器操作的全数字化应用;通过变电站总线与过程层总线的集成,实现数字化变电站集成型自动化的应用。

数字化变电站技术发展过程中可以实现对常规变电站技术的兼容,这意味着数字化变电站应用技术的发展可以建立在现有变电站自动化技术的基础上实现应用上的平稳发展和逐步突破,使新技术的应用能有机地结合电网的发展,未来在数字化变电站应用技术成熟的基础上将标志着新代数字化电网的实现。

参考文献

[1]周长久.国内领先的数字变电站技术[J].云南电业.2006,11:7.

[2]朱大新.数字化变电站综合自动化系统的发展[J].电工技术杂志.2001,4(2):20-22.

数字化变电站范文篇9

「关键词」变电站自动化数字化智能化

变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。

1、数字化变电站自动化系统的特点

1.1智能化的一次设备

一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

1.2网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

1.3自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

2、数字化变电站自动化系统的结构

在变电站自动化领域中,智能化电气的发展,特别是智能开关、光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元,如A/D变换、光隔离器件、控制操作回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器、数字化控制回路代替了常规继电保护装置、测控等装置的I/O部分;而在中低压变电站则将保护、监控装置小型化、紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。

数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC6185A通信协议草案定义,这三个层次分别称为“过程层”、“间隔层”、“站控层”。

2.1过程层

过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:(1)电力运行实时的电气量检测;(2)运行设备的状态参数检测;(3)操作控制执行与驱动。

(1)电力运行的实时电气量检测。

与传统的功能一样,主要是电流、电压、相位以及谐波分量的检测,其他电气量如有功、无功、电能量可通过间隔层的设备运算得出。与常规方式相比所不同的是传统的电磁式电流互感器、电压互感器被光电电流互感器、光电电压互感器取代;采集传统模拟量被直接采集数字量所取代,这样做的优点是抗干扰性能强,绝缘和抗饱和特性好,开关装置实现了小型化、紧凑化。

(2)运行设备的状态参数在线检测与统计。

变电站需要进行状态参数检测的设备主要有变压器、断路器、刀闸、母线、电容器、电抗器以及直流电源系统。在线检测的内容主要有温度、压力、密度、绝缘、机械特性以及工作状态等数据。

(3)操作控制的执行与驱动。

操作控制的执行与驱动包括变压器分接头调节控制,电容、电抗器投切控制,断路器、刀闸合分控制,直流电源充放电控制。过程层的控制执行与驱动大部分是被动的,即按上层控制指令而动作,比如接到间隔层保护装置的跳闸指令、电压无功控制的投切命令、对断路器的遥控开合命令等。在执行控制命令时具有智能性,能判别命令的真伪及其合理性,还能对即将进行的动作精度进行控制,能使断路器定相合闸,选相分闸,在选定的相角下实现断路器的关合和开断,要求操作时间限制在规定的参数内。又例如对真空开关的同步操作要求能做到开关触头在零电压时关合,在零电流时分断等。

2.2间隔层

间隔层设备的主要功能是:(1)汇总本间隔过程层实时数据信息;(2)实施对一次设备保护控制功能;(3)实施本间隔操作闭锁功能;(4)实施操作同期及其他控制功能;(5)对数据采集、统计运算及控制命令的发出具有优先级别的控制;(6)承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工方式,以提高信息通道的冗余度,保证网络通信的可靠性。

2.3站控层

站控层的主要任务是:(1)通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;(2)按既定规约将有关数据信息送向调度或控制中心;(3)接收调度或控制中心有关控制命令并转间隔层、过程层执行;(4)具有在线可编程的全站操作闭锁控制功能;(5)具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;(6)具有对间隔层、过程层诸设备的在线维护、在线组态,在线修改参数的功能;(7)具有(或备有)变电站故障自动分析和操作培训功能。

3、数字化变电站自动化系统中的网络选型

网络系统是数字化变电站自动化系统的命脉,它的可靠性与信息传输的快速性决定了系统的可用性。常规变电站自动化系统中单套保护装置的信息采集与保护算法的运行一般是在同一个CPU控制下进行的,使得同步采样、A/D转换,运算、输出控制命令整个流程快速,简捷,而全数字化的系统中信息的采样、保护算法与控制命令的形成是由网络上多个CPU协同完成的,如何控制好采样的同步和保护命令的快速输出是一个复杂问题,其最基本的条件是网络的适应性,关键技术是网络通信速度的提高和合适的通信协议的制定。

如果采用通常的现场总线技术可能不能胜任数字化变电站自动化的技术要求。目前以太网(ethernet)异军突起,已经进入工业自动化过程控制领域,固化OSI七层协议,速率达到100MHz的嵌入式以太网控制与接口芯片已大量出现,数字化变电站自动化系统的两级网络全部采用100MHz以太网技术是可行的。

4、数字化变电站自动化系统发展中的主要问题

在三个层次中,数字化变电站自动化系统的研究正在自下而上逐步发展。目前研究的主要内容集中在过程层方面,诸如智能化开关设备、光电互感器、状态检测等技术与设备的研究开发。国外已有一定的成熟经验,国内的大专院校、科研院所以及有关厂家都投入了相当的人力进行开发研究,并且在某些方面取得了实质性的进展。但归纳起来,目前主要存在的问题是:(1)研究开发过程中专业协作需要加强,比如智能化电器的研究至少存在机、电、光三个专业协同攻关;(2)材料器件方面的缺陷及改进;(3)试验设备、测试方法、检验标准,特别是EMC(电磁干扰与兼容)控制与试验还是薄弱环节。

数字化变电站范文篇10

「关键词」变电站自动化数字化智能化

变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。

1、数字化变电站自动化系统的特点

1.1智能化的一次设备

一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

1.2网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

1.3自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

2、数字化变电站自动化系统的结构

在变电站自动化领域中,智能化电气的发展,特别是智能开关、光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元,如A/D变换、光隔离器件、控制操作回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器、数字化控制回路代替了常规继电保护装置、测控等装置的I/O部分;而在中低压变电站则将保护、监控装置小型化、紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。

数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC6185A通信协议草案定义,这三个层次分别称为“过程层”、“间隔层”、“站控层”。

2.1过程层

过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:(1)电力运行实时的电气量检测;(2)运行设备的状态参数检测;(3)操作控制执行与驱动。

(1)电力运行的实时电气量检测。

与传统的功能一样,主要是电流、电压、相位以及谐波分量的检测,其他电气量如有功、无功、电能量可通过间隔层的设备运算得出。与常规方式相比所不同的是传统的电磁式电流互感器、电压互感器被光电电流互感器、光电电压互感器取代;采集传统模拟量被直接采集数字量所取代,这样做的优点是抗干扰性能强,绝缘和抗饱和特性好,开关装置实现了小型化、紧凑化。

(2)运行设备的状态参数在线检测与统计。

变电站需要进行状态参数检测的设备主要有变压器、断路器、刀闸、母线、电容器、电抗器以及直流电源系统。在线检测的内容主要有温度、压力、密度、绝缘、机械特性以及工作状态等数据。

(3)操作控制的执行与驱动。

操作控制的执行与驱动包括变压器分接头调节控制,电容、电抗器投切控制,断路器、刀闸合分控制,直流电源充放电控制。过程层的控制执行与驱动大部分是被动的,即按上层控制指令而动作,比如接到间隔层保护装置的跳闸指令、电压无功控制的投切命令、对断路器的遥控开合命令等。在执行控制命令时具有智能性,能判别命令的真伪及其合理性,还能对即将进行的动作精度进行控制,能使断路器定相合闸,选相分闸,在选定的相角下实现断路器的关合和开断,要求操作时间限制在规定的参数内。又例如对真空开关的同步操作要求能做到开关触头在零电压时关合,在零电流时分断等。

2.2间隔层

间隔层设备的主要功能是:(1)汇总本间隔过程层实时数据信息;(2)实施对一次设备保护控制功能;(3)实施本间隔操作闭锁功能;(4)实施操作同期及其他控制功能;(5)对数据采集、统计运算及控制命令的发出具有优先级别的控制;(6)承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工方式,以提高信息通道的冗余度,保证网络通信的可靠性。

2.3站控层

站控层的主要任务是:(1)通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;(2)按既定规约将有关数据信息送向调度或控制中心;(3)接收调度或控制中心有关控制命令并转间隔层、过程层执行;(4)具有在线可编程的全站操作闭锁控制功能;(5)具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;(6)具有对间隔层、过程层诸设备的在线维护、在线组态,在线修改参数的功能;(7)具有(或备有)变电站故障自动分析和操作培训功能。

3、数字化变电站自动化系统中的网络选型

网络系统是数字化变电站自动化系统的命脉,它的可靠性与信息传输的快速性决定了系统的可用性。常规变电站自动化系统中单套保护装置的信息采集与保护算法的运行一般是在同一个CPU控制下进行的,使得同步采样、A/D转换,运算、输出控制命令整个流程快速,简捷,而全数字化的系统中信息的采样、保护算法与控制命令的形成是由网络上多个CPU协同完成的,如何控制好采样的同步和保护命令的快速输出是一个复杂问题,其最基本的条件是网络的适应性,关键技术是网络通信速度的提高和合适的通信协议的制定。

如果采用通常的现场总线技术可能不能胜任数字化变电站自动化的技术要求。目前以太网(ethernet)异军突起,已经进入工业自动化过程控制领域,固化OSI七层协议,速率达到100MHz的嵌入式以太网控制与接口芯片已大量出现,数字化变电站自动化系统的两级网络全部采用100MHz以太网技术是可行的。

4、数字化变电站自动化系统发展中的主要问题

在三个层次中,数字化变电站自动化系统的研究正在自下而上逐步发展。目前研究的主要内容集中在过程层方面,诸如智能化开关设备、光电互感器、状态检测等技术与设备的研究开发。国外已有一定的成熟经验,国内的大专院校、科研院所以及有关厂家都投入了相当的人力进行开发研究,并且在某些方面取得了实质性的进展。但归纳起来,目前主要存在的问题是:(1)研究开发过程中专业协作需要加强,比如智能化电器的研究至少存在机、电、光三个专业协同攻关;(2)材料器件方面的缺陷及改进;(3)试验设备、测试方法、检验标准,特别是EMC(电磁干扰与兼容)控制与试验还是薄弱环节。