信息光学原理十篇

时间:2023-12-01 17:31:30

信息光学原理

信息光学原理篇1

【关键词】大学物理教学;光电信息科学与工程;专业特色

【Abstract】How to reflected photoelectric information science and engineering specialty in college physics teaching is a pressing matter of the moment for us. In this paper, to improve the learning interest of the students, taking the knowledge of electrical polarization theory for example, we proposed the methods on reforming teaching means and content for college physics teaching on the based of difference specialty according to the exploration and practice of college physics teaching.

【Key words】College physics teaching;Photoelectric information science and engineering;Specialty feature

0 引言

对于地方高校而言,由于生源质量的下滑和学生一进校就感受到的就业压力,许多学生对一门课程的认识首先就是学习这门课程有什么用,这门课程学起来难不难。基于这种出发点,学生对于大学物理这门工科专业必修课程的学习兴趣不大。上课不专心听讲,课后不复习,作业不认真,在网络上搜寻答案,学习效果自然不明显,对大学物理的重要性认识不够,从而影响后续专业基础课程与专业课程的学习,进而影响其全面发展[1]。

我们执教光电信息科学与工程专业的大学物理学课程已四届,每年都在思考一个问题:怎样在大学物理的教学里体现光电信息科学与工程专业的专业特点? 通过对教学内容的细致分析,在教学中穿插光电信息科学与工程专业的专业特点,不仅使学生自觉或自发地认识到大学物理的重要性,而且大大提高了大家学学物理课程的兴趣,培养了进一步学习后续知识的热情和对未知专业知识的渴求。

本文首先分析大学物理在光电信息科学与工程专业中的位置,然后以电介质极化理论为例,分析它与光电信息科学与工程专业的结合点,在教学实践中充分体现专业特色,并对大学物理与我校工科专业的结合作了出展望。

1 大学物理在光电信息科学与工程专业中的位置

目前我们将大学物理设置在大一,先修课程只有高等数学,后续相关专业基础课程有物理光学、光电子技术基础、激光原理等;后续专业课程有光纤通信原理与技术、光电传感与检测技术、光显示技术等。从课程设置的关联和大学物理课程本身的内容,我们可以看到大学物理在光电信息科学与工程专业中处于基础性位置。教学的目的主要是使学生认识并理解一些物理现象,掌握大学物理的一些基本概念,熟悉大学物理理论体系的一些基本实验。

鉴于大学物理在光电信息科学与工程专业中的基础位置,我们在教学实践中,分析一些物理现象的基本原理时,经常将物理现象与激光技术、光通信、光电检测等领域的实际问题结合起来,引导同学们一起讨论是否可以用相同的物理原理解释,激发大家对光电信息科学与工程专业的学习兴趣,激励学生对基本物理原理和概念的学习热情。

2 大学物理中的光电信息科学与工程专业特色

2.

电介质的极化虽由外电场引起, 但因极化电荷对外电场有影响,因而极化后,介质中的总场强应为外电场与极化电荷激发电场的叠加,而P则不仅与外电场,而且与总场强有关。由于光是一种电磁波,当光波在介质(晶体)中传播时,光频电场会引起介质的电极化。当课程内容讲授至此,我们可以拓展[3]:在激光出现以前,当光波在介质中传播时,不会出现其他频率的光。而两束以上的光波在介质中传播时,光波之间也不会发生相互作用,服从独立传播原理,不改变各自的频率。当它们在介质相同区域相遇时,则服从线性叠加原理。诸如:光对于介质的折射、反射、衍射、散射和双折射等现象。但介质的电极化强度与光频电场之间的关系,除了线性关系之外,还有非线性的高次项。非线性光学产生的原理可作如下解释:分子是由原子组成的,分子中的电子被束缚在原子核的周围运动,如果外加一个电磁场(光也是一种电磁场),则这种运动将受到扰动,如果外场是一种谐振场,则电子会产生和外电场相同的谐振,正负电中心不重合就诱导产生了一种“极化”,从而产生诱导偶极矩P。

通常,一般光源的光频电场强度Ej较小,这样高次项的电极化强度都很弱,可以忽略不计,只用到式(4)中的第一项,即式(3)。而激光是一种具有极强光频电场的光源,式(4)中第二、三项等非线性项就可产生重要作用,可观测到不同的非线性光学现象。

2.2 其他知识点的光电信息科学与工程专业特色

对于光电信息科学与工程专业的学生,我们可以从光和信息两个层面对其他很多物理现象进行阐述和讨论,体现光电信息科学与工程专业的特色[4-5]:如光的全反射现象是光纤通信技术的基础;压电效应和逆压电效应,广泛应用的光纤电场量传感器,是基于这一原理实现的;磁致伸缩效应或法拉第磁光效应是光纤磁场量传感器的工作基础;帕尔贴效应是半导体激光器温度控制的关键技术。

我们在大学物理课堂上强调红外、可见光、紫外等光频电磁波,讨论它们的产生、发射、传输、接收和检测等, 介绍光通信、光检测等相关专业方向在现代信息技术中的地位和发展状况。这样不仅在教学实践中突出光电信息科学与工程专业的“光”与“信息”这两个基本特色, 激发学生学习相关专业课程的浓厚兴趣,而且学生对学习光电信息科学与工程的信心大大增强,同时也提高我们在专业建设和学科建设中的前后一贯性。

3 结论

本文以电极化理论为例, 在讲解大学物理内容的基础上, 通过深入或外延的方式,寻找与光信息专业后续相关专业课程知识的结合点,通过教学实践,使光信息专业大一的本科生对专业产生学习的热情,培养大学生对本专业的浓厚兴趣,树立继续学习本专业的信心。近四年的教学证明,在大学物理教学中主动体现光信息科学与技术专业特色, 不仅实现了预期的专业建设和学科建设的目的, 而且有助于提高教师在学生心目中的地位。

就我校实际情况而言,如化工、生物专业的学生认为热学与专业课程联系最为紧密而力学和电磁学往往与专业联系不大,电子、计算机等专业的学生认为电磁学联系最为紧密而力学、热学、近代物理部分与专业的联系相对较低。因此,对不同专业的学生所讲授的内容应该有所侧重,应依据各专业的特点对物理学的各部分内容有所侧重和增减教学内容,使学生明确感受到物理与自己的专业密切相关,使物理教学兼顾专业基础课教学和专业技能的需要。

【参考文献】

[1]董少光.大学物理教学与理工科学生学习现状的思考[J].中国西部科技,2008, 7(40):73-75.

[2]罗益民,余燕.大学物理[M].2版.北京:北京邮电大学出版社,2010.

[3]张静江,宋淑梅.非线性光学与光学教学[J].大学物理,1999,18(5):35-39.

信息光学原理篇2

关键词:阿贝成像原理;空间滤波;MATLAB;信息处理

光学信息处理技术是通过傅立叶变换方式,进行光学频谱分析,调制频谱信息,运用空间滤波技术来实现光学信息处理。德国科学家阿贝在1873年提出了一个二次成像理论,在相干光源的照射下,透镜成像基本过程。首先,物体表面发出光线,经过物镜之后,在焦平面后面产生衍射,所得到的物像便是第一次相干光衍射的结果;然后,这次由衍射所得到的图像又作为新的相干光源,这个新的光源发射出的光线经过第二次干涉,又得到一个新的像,这个图像便是第二次衍射后所得的像[1-2]。空间滤波实验也引发了人们的关注,运用到传感器、测速信号基频消除、目标检测及高频GPS定位等[3-7]。本文着重研究空间滤波原理,并在MATLAB环境下对阿贝-波特实验进行仿真,实验仿真结果清晰,利于观察分析。

1 空间滤波原理

空间滤波是利用傅立叶变换透镜对光信息进行空间变换,在空间频谱面上,利用滤波器对空间频谱信息进行选择性通过,改善图像成像。空间滤波实验采用三个傅立叶透镜组成的系统,设图像的透过率为l(x1,y1),滤波器透过率为F(fx,fy),则频谱面后的光波复振幅为

式(4)中“*”为卷积运算符号,若滤波器采用不同的振幅函数透过率,则可以影响图像成像特点。

2 阿贝-波特空间滤波实验仿真

运用MATLAB的技术,根据空间滤波原理。进行阿贝-波特空间滤波实验仿真,首先由计算机程序生成光栅。

2.1 方向滤波器

方向滤波器只允许一排与透光方向一致的频谱信息通过。首先利用MATLAB构建水平方向滤波器,借助该滤波器来探讨阿贝-波特实验在水平方向滤波器下的现象。光波通过该滤波器后,所得的图像和滤波器的方向呈垂直分布。所得的图像全部是垂直的,没有水平方向上光栅分量,得到光栅在频谱面上水平方向的信息分量决定了像的垂直部分。将水平光栅向任意方向旋转,便能得到特定方向的光栅滤波器。为了实验仿真结果更清晰,同时也为了实验的准确性,我们将水平滤波器特定的旋转45度,这样所得的图像便于观察。结果分析与水平滤波器完全一样,滤波器只允许与其垂直的光栅分量通过。将水平方向光栅旋转90度得到竖向滤波器,该滤波器只允许中央一排竖直方向的频谱分量通过,所得结果只有水平方向的光栅分量,这更加印证了方向滤波器只能让与其垂直方向的光栅分量的频谱通过。

2.2 圆孔低通滤波

构建圆孔低通滤波器,进行滤波仿真实验。图1为低通滤波器仿真结果,图1(a)为输入图像,图1(b)为圆孔低通滤波器图像,图1(c)为输出图像。通过在频谱面加在低通滤波器来观察输出图像的变化,加载低通滤波器之后,只允许低频信息通过,高频信息被阻挡,像平面上所成的像,亮度较大,但是比较模糊,图像边缘轮廓信息丢失。从理论上讲,如果光学信息在傅里叶变换时没有丢失,那么这两次变换时理想的过程,那么物和像就是一样的。但是由于滤波器的作用范围是一定的,不可能将所有的频谱信息都百分之百的通过,所以,会有损失一部分高频信息。这与实验中物镜会受直径所限制,总会有角度太大的高频信息不能够进入物镜,损失部分信息也是必然的。

2.3 高通滤波器

构建高通滤波器,如图2(a)所示,进行阿贝-波特空间滤波的高通滤波实验。图2为高通光阑滤波实验仿真结果,与低频滤波实验截然相反,低频信息不能通过,高频滤波的通过,导致图像轮廓清晰但亮度减弱。这和低频滤波器的现象形成鲜明对比,也验证了高频频谱远离光轴。高频信息由于集中在离光轴远的地方,而低频信息都聚集在光轴附近,这正是高通滤波器的作用原理。阻挡低频信息,允许高频成分通过。图像之所以清晰是因为高频滤波能显示物体的精细部分,由于高通滤波器将低频滤波过滤了,导致图像亮度减弱。

3 结束语

综上,输入图像是二维正交光栅时,在频谱加载方向滤波器,在像平面得到与方向滤波器透光方向垂直的光栅分量图像。输入“光学实验”图像,在频谱面加上低通滤波器时,允许低频信息通过。所以形成图像亮度较强,但是边缘轮廓模糊不清;而在频谱面加入高通滤波器时,形成图像轮廓清晰,亮度明显减弱。说明高频信息由于集中在离光轴远的地方,而低频信息都聚集在光轴附近。实现阿贝-波特实验仿真操作,便于观察分析。

参考文献

[1]杨述武,赵立竹,沈国土,等.普通物理实验(光学部分)[M].高等教育出版社,2008.

信息光学原理篇3

关键字 信息时代;网络通信;三值光纤;通信原理

【中图分类号】TN929.11文献标识码:B文章编号:1673-8500(2013)01-0025-02

对于三值光纤通信是现代通信技术中一中新的通信技术,其主要是采用了线偏光的两个互相垂直的稳定的偏振趋向和零光强来完成光的三值编码调制出三值码元进行网络信息传输,这项新的技术进一步的提高了传统光纤的通信容量,同时这项技术实现了先偏光等通信手段的实用化,进一步加强了光纤的通信能力,极大的发展了通信技术,而且光的多值码元的编码还能提高光数字网络的信息传输率和频带的利用率。

1线偏振光的波动理论和在光纤中的传输原理

1.1三值光纤通信是一种新的通信技术,其理论基础主要是线偏振光在光纤中的波动理论。光纤通信中采用了电磁波频谱近红外光区的1300nm和1500nm两个低损耗的波段,但在光纤的通信中一般都是用经典的电磁波理论作为光纤通信的理论基础。光波属于横波,是由垂直于传播方向的,也是由其中相互正交的电场矢量和磁场矢量的简谐振动交替变换而产生的一种矢量波。当光波在物质间相互作用时,电场对物质的电场力要远大于磁场对电子的作用力,所以一般使用电场强度的振动来作为光波的振动,同时用电场强度的矢量端点在空间中的运动轨迹来表示光波的偏振状态,由于矢量的振动方向在空间中的取向是不对称性的,这样就使光波具有了偏振性。

1.2在研究线偏振光的波动中,光束中的光线的偏振状态在时间和空间中的变化是相同的,所以光束都完全是偏振光。同时光波的偏振形态一般分为完全偏振光、非偏振光、部分偏振光、有线偏振光、圆偏振光、椭圆偏振光、有自然光、有部分线偏振光、部分圆偏振光、部分椭圆偏振光等七种,由于是在不同的媒质中对光波进行形态的描述,因此我们可以采用米勒矩阵法、复平面法、琼斯矩阵法等表述方法对光波在传输过程中的偏振形态进行表示。

1.3在光纤的波动理论中,一般采用Maxwell的方程作为理论基础来研究电磁波在光纤波动中光纤的波动,来解释光纤理论和波动原理。同时由于存在不同的光纤材料和某些环境的因素对光波的线偏振态的产生了一定程度的影响,使光纤的纤芯在光纤的横截面上的折射率的分布造成了影响,致使折射率发生了一定程度的变化,使其变成沿轴向不均匀的分布,对光波的偏振形态造成了影响。

2三值光纤通信原理

2.1三值光纤通信是采用了束线偏振光承载信息的方式,利用水平线偏振态、垂直线偏振态和零光强来表示不同的信息值,形成了三值的光信号,通过有关的通信元器件,来完成信息的加工和三值光纤通信,一起组合成了完整的三值光纤通信技术。由于存在光纤的材料、通信元器件和外界环境等因素,光信号的线偏振态在传输过程中会受到这些因素的影响而发生变化,需要使用偏振控制器才能获得稳定的光信号,所以三值光纤实现了可以直接利用卫星激光进行通信,同时还能提高通信容量。

2.2对于三值光纤通信的系统原理,其主要是由三值光信号编码器、光信号解码器、偏振补偿器、电信号转换电路等组成。(如图1所示)。

图中所表示的是在发射端输入电信号输入变换器,转换成控制信号通过控制三值光纤信号编码器,其中在光源处再输出线偏光调制成三值光脉冲序列,配合前面的步骤就输出三值光信号进入光纤网络传输到接收端口,然后利用偏置电压控制器来控制偏振补偿器对接收的三值光信号进行有关调整,再传输进入三值光信号解码器输出有关的电信号来反馈一定的信号传输进入偏置电压控制器,偏置电压控制器就会根据电信号进行相应的调整来再次对偏振补偿器进行相应的调整,当得到稳定的电信号后传入电信号输出变化器中,最后接收电信号。其中三值光信号的编码器是在电信号的控制下,利用旋光器中电控旋光效应等来调整光源所发出的线偏光来获取三值光脉冲序列。而三值光信号解码器是把接收的三值光信号使用偏振分光棱镜,沿两个不同的光路对光信号进行解码并传输。同时偏振补偿器是接收的三值光的同步码序列,分两个不同的线路的固定的相位差来补偿电信号,通过识别同步码的信号,是否启动偏振补偿器,并不断地调整偏置电压控制器,促使零光强脉冲宽度达到设计的标准宽度,通过控制接收的光信号来使输出光时设计的偏振光。

2.3在三值光纤通信过程中会使用到到光学元器件(包括偏振分光镜、旋光器和偏振片等),其中旋光器是利用SLM通过对线偏振光的振动面旋转90°来获得互相垂直的线偏振光。而三值光缆的通信系统的主要是由三值光发送机、三值光接收器和再生器等组成,其中基本上是通过对两值光缆网对三值光纤通信进行纵向编码来实现三值光纤通信的信息传输量和频带的利用率。同时三值光信号的发送机原理是通过直接调制或间接调制三值光发送机,来使机器不间断的输入光信号,以达到对三值光信号的发送。其次是三值光信号的接收机是通过直接检波的原理来完成对三值光信号的接收工作。在整个三值光纤通信过程中,衔接的都比较紧密,而且每个环节都需要严格按照规范的操作进行,这样才能保证获取稳定的三值光信号,以保证整个三值光信号的传输通信。

总结:本文主要对三值光纤通信原理进行了浅要地论述和探讨,进一步研究和了解了三值光纤的通信技术。在对进行网络通信技术的研究过程中,我们需要掌握过硬的专业知识,并结合国内外先进的光纤通信技术,进一步对光电子信息技术、计算机科技和光纤通信技术等进行研究,认真分析研究三值光纤的通信原理,加强对三值光纤的利用,使我国在光电子信息技术能够得到长足的发展和进步。

参考文献

[1]徐坤,谢世钟.《高速光纤通信中的偏振模色散及其补偿技术》[J],半导体光电,2000年01期

[2]金翊.《三值光计算机原理和结构》[D],西北工业大学,2002年

[3]张华清.《通信网时钟同步方案》[J],北京广播学院学报(自然科学版),1999年02期

信息光学原理篇4

论文摘 要:回顾了全息术的历史,阐述了全息术的基本原理,然后介绍了全息术在实际中的应用及其发展方向。

我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅(强弱),位相(同相面形状)和波长(颜色)。如果能得到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已被广泛地应用于近代科学研究和工业生产中。

1 全息术的历史和发展阶段

1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验证实这一想法,即全息术,并制成世界上第一张全息图。盖伯本来是为提高电子显微镜的分辨率而提出的设想,虽然未能用电子波证实其原理,但用可见光证实了。从第一张全息照片制成到20世纪50年代末期,全息图制作具有以下共同特点:全息图都是用汞灯作为光源;而且是所谓同轴全息图,即物光和参考光在一条光路上得到的全息图。这一时期的全息图被称为第一代全息图,标志着全息术的萌芽。第一代全息图存在两个严重问题,一个是再现的原始像和共轭像分不开,另一个是光源的相干性太差。因此在这十多年中,全息术进展缓慢。

1960年激光的出现,提供了一种高相干度光源,为全息技术发展提供了可能。针对第一代全息技术出现的问题,利思和乌帕特尼克斯(1962)提出,将通信理论中的载频概念推广到空域中,用离轴的参考光与物光干涉形成全息图,再利用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光。该方法被称为离轴全息术,这是全息术发展的第二阶段。第二代全息术解决了光源的问题,并且在立体成像、干涉计量检测、信息存贮等应用领域中获得巨大进展,但是激光再现的全息图失去了色调信息。

科学家们开始致力于研究第三代全息图到。这是用激光记录,而用白光再现的全息图,在一定的条件下赋予全息图以鲜艳的色彩。第三代全息术已经在很多领域的到了应用,例如:像全息、反射全息、彩虹全息、模压全息等。

激光的高度相干性,要求全息拍摄过程中各个元件、光源和记录介质的相对位置严格保持不变,这也给全息技术的实际使用带来了种种不便。于是,科学家们又回过头来继续探讨白光记录的可能性。第四代全息图应该是白光记录白光再现的全息图,它将使全息术最终走出有防震工作台的黑暗实验室,进入更加广泛的实用领域。

2 全息术的基本原理和特点

全息术是一种“无透镜”的两步成像法,它能在感光胶片上同时记录物体的全部信息,即物体光的振幅和位相。全息照相过程分全息记录和再现两步:第一步称为波前记录(全息记录);第二步物体的再现(重现)。

波前记录依据的是干涉原理,物光波和参考光波相干叠加而产生干涉条纹。干涉条纹的反衬度记录了物光波前的振幅分布,干涉条纹的几何特征(包括形状、间距、位置)记录了物光波前的位相分布。就是说,全息图上的强度分布记录了物光波的全部信息-振幅分布和位相分布,它们分别反映了物体的明暗和纵深位置等方面的特征。应当指出,任何感光底片都只能记录振幅(或者说强度)的分布,而不能直接记录位相分布,全息照相之所以能记录位相分布,是利用了参考光波把它转化成了干涉条纹的强度分布。假如没有参考光波,或者它与物光波不相干,波前上的位相分布是不可能记录下来的。

波前再现的理论依据是衍射原理,照明光波(再现光)经过全息图衍射后出现一个复杂的光波场。全息图的衍射波含有三种主要成分,即物光波(+1级衍射波),物光波的共轭波(-1级衍射波),照明光波的照直前进(零级衍射波)。在现代记录和重现的全息照相装置中,这三种衍射波在空间彼此分离,互不干扰,便于人们用眼睛或镜头去观测物光波的虚像或其共轭波的实像。

全息术的原理决定了它所记录的全息图有下列特点:

(1)三维性——因为全息图记录了物光的相位信息,图像具有显著的视差特性,可以看到逼真的三维图像。

(2)不可撕毁性——因为全息图记录的是物光与参考光的干涉条纹,所以具有可分割性。它被分割后的任一碎片都能再现完整的被摄物形象,只是分辨率受到一些影响。

(3)信息容量大——同一张全息感光板可多次重复曝光记录,并能互不干扰地再现各个不同的图像。

(4)全息图的再现相可放大或缩小——因为衍射角与波长有关,用不同波长的激光照射全息图,再现相就会发生放大或缩小。

3 全息术的主要应用及其发展方向

全息术经过60年的发展,已与计算机技术、光电技术以及非线性光学技术紧密结合,成为一种高新技术,扩展到医学、艺术、装饰、包装、印刷等领域,在一些发达国家还兴起了全息产业,并且正在形成日益广阔的市场,实用前景非常可观。本文介绍全息术中几个应用较为广泛、产业化较成熟的领域并说明其发展方向。

3.1 全息存储

全息存储是依据全息术的原理,将信息以全息照相的方式存储起来,它利用两个光波之间的耦合和解耦合,可以把信息存储和信息之间的比较(相关)、识别,甚至联想的功能结合起来,也就是可以把信息存储和信息处理结合起来。用于全息信息存储的记录介质较多,可永久保存信息的全息图用银盐干板、银盐非漂白型位相全息干板、光聚合物及光致抗蚀剂等;可擦除重复使用的实时记录材料有光导热塑料、有机或无机光折变材料等。全息存储在存储容量方面具有巨大的优势,原因是:

(1)全息存储具有存储容量大的优势。用感光干板作为普通照相记录信息时,信息存储密度的数量级一般为105bit/mm2;用平面全息图存储信息时,存储密度一般可提高一个数量级达106bit/mm2;如果用体全息图存储信息时,存储密度可高达1013bit/mm2。

(2)全息存储具有极大的冗余性,存储介质的局部缺陷和损伤不会引起信息丢失。

(3)全息存储具有读取速率高和能并行读取的特点,每个数据页可包含达1Mbit的信息,写人一页的时间在100ms左右,读信息的时间可以小于100μs,而磁盘的寻址时间至少需要10ms。

当前,在世界范围内掀起了全息存储研究的热潮,并取得很大的进展,其主要表现在:

(1)存储容量迅速提高和性能不断改善,并逐步走向实用化。例如,1994年美国加州理工学院在1cm3掺铁妮酸锉晶体中记录了1000幅全息图,同年,斯坦福大学的一个研究小组把经压缩的数字化图像视频数据存储在一个全息存储器中,并再现了这些数据而图像质量无显著下降。 1999年美国加州理工大学利用空-角复用技术,在同一块在掺铁铌酸锂晶体中存储了26000幅全息图。北京清华大学实现了在掺铁妮酸铿晶体中的同一空间位置记录1500幅全息图,并研制了具有紧凑结构的灵巧型全息存储装置。

(2)实用化的全息存储系统逐渐推出。例如,1995年由美国政府高级研究项目局(ARPA )、IBM公司的Almaden研究中心、斯坦福大学等联合成立了协作组织并在美国国家存储工业联合会(NS1C)支持下川,投资约7000万美元,实施了光折变信息存储材料(PRISM)和全息数据存储系统(HDSS)项目,预期在5年内开发出具有容量为1T bit数据,存储速率为1000MB/s的一次写人或重复写人的全息数据存储系统。同样的研究在法国、英国、德国和日本等国家也正在加紧进行。

近几年来,光电子技术和器件取得了系列重大进展,为全息存储器提供了所必要的高性能半导体激光器、液晶空间光调制器、CCD阵列探测器等核心元器件,全息存储的理论和方法的发展使这项技术日趋成熟然而,美中不足的是全息图的寿命问题尚待解决,虽然张泽明、谢敬辉等对Ce:Fe:LiNbO3晶体的全息存储和热定影进行了理论和实验研究,从方法上给出了记录角度越大,光栅周期越小,热定影所需最小离子数密度越高,存储系统的整体性能越好,但是目前还未解决的一个难题是寻找合适的记录材料。无疑,这将成为全息存储界研究的热门课题。

3.2 显示全息

显示全息技术是在激光透射全息图的基础上来制作各种类型的全息图,如白光反射全息图、白光透射全息图等,各种类型的显示全息图可用于舞台布景、建筑、室内装饰、投影等;再如,以动态显示的全息技术、层面X射线照相术、3DCAD技术、3D动画片、雷达显示、导向和模拟系统等,每3年一次的显示全息国际会议上都有全息界泰斗展出令人吃惊的全息图,它们充分展示了全息技术创造性的魅力和艺术的美。

显示全息目前主要有两大类:第一类是Lippmann全息图,制作方法有Denisyuk的单光束法和Benton的开窗法。第二类是S.A. Benton的彩虹全息图,这是一种透射式显示全息图,可在白光照明下再现立体图像,且图像的颜色随观察的位置的变化而变化,从红到紫如雨后彩虹而得名。随着高质量记录材料的发展,随后的一些研究者和艺术家不断追求更实用的拍摄技术,如假彩色编码和真彩色反射全息图等。美国光学学会主办的《Applied Optics》和《Optics Letters》在20世纪80年代都有关于这方面的论文报道。由SPIE主办的《Holosphere》和美国全息制造商协会主办的《Holography News》以往和近年都不断地报道有关显示全息图的最新制作技术和商业信息。但从这些报道情况来看,显示全息存在不足主要表现在:

(1)视角范围、图像体积有限;

(2)没有获得特别有效的全息图的计算方法;

(3)由于全息计算数量巨大,导致动态显示异常困难。克服以上不足,将可能成为显示全息研究的几个热点。

近年来,显示全息技术掀起一场数字化变革,数字合成全息技术为全息三维显示开辟了前所未有的应用前景。随着计算机运行速度的提高和高分辨空间调制器件的发展,利用显示全息的大视场、大景深、全视差、真彩色、可拼装、价格低廉等特性,在不久的将来开发出真正意义的全息电影和全息电视,为显示全息技术创造良好的商业前景。

3.3 模压全息

模压全息是1979年RCA公司为解决视频标准件的全息拷贝而提出的,它是将全息术和电镀、压印技术结合起来,使全息图的制作产业化,用白光再现时,可得到色彩鲜艳逼真的三维图像,并可通过印刷方式大批量生产,使得它在许多领域得到广泛的应用,以商品形式走向市场。模压全息的制作主要分为三个阶段:激光摄制原片全息图;电成型制金属模板;模压复制。这三个阶段生产工艺和技术要求都比较高,因此,模压全息作为安全防伪首当其冲,是安全防伪技术的一个里程碑。正如全息图的新奇性、强烈的视角效果、制作的难度以及易于应用在钞票的包装上,不能去除性、价格低廉、容易验证等特点,使它很快占领了防伪领域。模压全息是一种技术与艺术结合的高科技产品,无论在高档商品促销、名优商品的防假冒或在有价证券(如信用卡、钞票、护照签证)的防伪和加密以及图书、印刷、印染、装磺、纪念邮票和广告标牌等都有采用模压全息技术,并备受使用者青睐。

模压全息出现于20世纪70年代,80年代中期已形成了一种产业,90年代达到了鼎盛时期。本世纪初,随着防伪技术要求的不断提高,模压全息技术又有了新的突破:美国斑马图像公司推出了二维图像的数字化采集和拍摄技术;2003年,苏州大学研制成功并已批量生产“数码激光全息照排系统”;同年,倪星元、张志华等成功研制了可替代传统镀铝防伪薄膜的透明TiO2激光全息防伪薄膜。这些模压全息的一个个技术突破,使防伪功能有了提高,让激光全息防伪技术达到新的境界。

模压全息产业在我国起步较晚,但发展速度迅猛,目前国内已有100多条模压全息生产线。为了使模压全息技术健康发展,我国模压全息产业发展必须在三个方向上引起重视:首先是开拓全息烫金材料,取代金膜和银膜,其次开发全息包装材料,实现立体防伪包装,第三个方向是模压全息技术和现代印刷术相结合,体现传统的美术效果和现代科技的艺术魅力。

3.4 全息干涉计量

全息干涉计量术是将不同物光,在不同的时间记录在同一张全息干板上,然后利用全息术的空间波前再现原理,非接触地对物体表面进行三维测量而获得信息。全息干涉计量术是全息应用的一个重要方面,它能实现高精度非接触性无损测量,比一般光学干涉计量有很多优点。一般光学计量只能测量形状比较简单、表面光度很高的零部件,而全息计量方法则能对任意形状、任意粗糙表面的物体进行测量,测量精度为光波波长λ的数量级。目前,全息干涉计量术在方法上先后发展了实时全息干涉法(单次曝光法)、二次曝光全息干涉法、时间平均全息干涉法、双波长干涉法以及双脉冲频闪全息干涉法,此外,J.A.Leendertz开辟了全息干涉计量术的另一个新的分支-激光斑纹计量术。随着光电技术、计算机技术、CCD器件及光纤技术的飞速发展,使得全息干涉计量技术在信息采集和处理上更为方便、快捷和可靠,并得以在恶劣环境条件下对某些物理量进行定时测量。再加之相移技术、外差技术和锁相技术等,可使测量精度提高到λ/100或更高。

全息干涉计量在20世纪80年代美国等西方先进国家已产业化,我国在20世纪80年代初有几所大学和科研单位的研究项目通过鉴定,其中有些达到当时的先进水平。经过近几年的开发和研制,我国在全息干涉计量测试设备方面主要发展有:

(1)用于测试火箭发动机喷雾化特性的YSCI型离子瞬态激光全息测试仪;

(2)用于激光热核聚变稠密等离子体电子密度测量的SPQ-1型四分幅皮秒紫外线激光全息探测仪;

(3)包括记录、再现、图像处理三部分的瞬态激光全息干涉计量测试系统;

信息光学原理篇5

论文摘要摘要:回顾了全息术的历史,阐述了全息术的基本原理,然后介绍了全息术在实际中的应用及其发展方向。

我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅(强弱),位相(同相面外形)和波长(颜色)。假如能得到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已被广泛地应用于近代科学探究和工业生产中。

1全息术的历史和发展阶段

1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验证实这一想法,即全息术,并制成世界上第一张全息图。盖伯本来是为提高电子显微镜的分辨率而提出的设想,虽然未能用电子波证实其原理,但用可见光证实了。从第一张全息照片制成到20世纪50年代末期,全息图制作具有以下共同特征摘要:全息图都是用汞灯作为光源;而且是所谓同轴全息图,即物光和参考光在一条光路上得到的全息图。这一时期的全息图被称为第一代全息图,标志着全息术的萌芽。第一代全息图存在两个严重新问题,一个是再现的原始像和共轭像分不开,另一个是光源的相干性太差。因此在这十多年中,全息术进展缓慢。

1960年激光的出现,提供了一种高相干度光源,为全息技术发展提供了可能。针对第一代全息技术出现的新问题,利思和乌帕特尼克斯(1962)提出,将通信理论中的载频概念推广到空域中,用离轴的参考光和物光干涉形成全息图,再利用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光。该方法被称为离轴全息术,这是全息术发展的第二阶段。第二代全息术解决了光源的新问题,并且在立体成像、干涉计量检测、信息存贮等应用领域中获得巨大进展,但是激光再现的全息图失去了色调信息。

科学家们开始致力于探究第三代全息图到。这是用激光记录,而用白光再现的全息图,在一定的条件下赋予全息图以鲜艳的色彩。第三代全息术已经在很多领域的到了应用,例如摘要:像全息、反射全息、彩虹全息、模压全息等。

激光的高度相干性,要求全息拍摄过程中各个元件、光源和记录介质的相对位置严格保持不变,这也给全息技术的实际使用带来了种种不便。于是,科学家们又回过头来继续探索白光记录的可能性。第四代全息图应该是白光记录白光再现的全息图,它将使全息术最终走出有防震工作台的黑暗实验室,进入更加广泛的实用领域。

2全息术的基本原理和特征

全息术是一种“无透镜”的两步成像法,它能在感光胶片上同时记录物体的全部信息,即物体光的振幅和位相。全息照相过程分全息记录和再现两步摘要:第一步称为波前记录(全息记录);第二步物体的再现(重现)。

波前记录依据的是干涉原理,物光波和参考光波相干叠加而产生干涉条纹。干涉条纹的反衬度记录了物光波前的振幅分布,干涉条纹的几何特征(包括外形、间距、位置)记录了物光波前的位相分布。就是说,全息图上的强度分布记录了物光波的全部信息-振幅分布和位相分布,它们分别反映了物体的明暗和纵深位置等方面的特征。应当指出,任何感光底片都只能记录振幅(或者说强度)的分布,而不能直接记录位相分布,全息照相之所以能记录位相分布,是利用了参考光波把它转化成了干涉条纹的强度分布。假如没有参考光波,或者它和物光波不相干,波前上的位相分布是不可能记录下来的。

波前再现的理论依据是衍射原理,照明光波(再现光)经过全息图衍射后出现一个复杂的光波场。全息图的衍射波含有三种主要成分,即物光波(+1级衍射波),物光波的共轭波(-1级衍射波),照明光波的照直前进(零级衍射波)。在现代记录和重现的全息照相装置中,这三种衍射波在空间彼此分离,互不干扰,便于人们用眼睛或镜头去观测物光波的虚像或其共轭波的实像。

全息术的原理决定了它所记录的全息图有下列特征摘要:

(1)三维性——因为全息图记录了物光的相位信息,图像具有显著的视差特性,可以看到逼真的三维图像。

(2)不可撕毁性——因为全息图记录的是物光和参考光的干涉条纹,所以具有可分割性。它被分割后的任一碎片都能再现完整的被摄物形象,只是分辨率受到一些影响。

(3)信息容量大——同一张全息感光板可多次重复曝光记录,并能互不干扰地再现各个不同的图像。

(4)全息图的再现相可放大或缩小——因为衍射角和波长有关,用不同波长的激光照射全息图,再现相就会发生放大或缩小。

3全息术的主要应用及其发展方向

全息术经过60年的发展,已和计算机技术、光电技术以及非线性光学技术紧密结合,成为一种高新技术,扩展到医学、艺术、装饰、包装、印刷等领域,在一些发达国家还兴起了全息产业,并且正在形成日益广阔的市场,实用前景非常可观。本文介绍全息术中几个应用较为广泛、产业化较成熟的领域并说明其发展方向。

3.1全息存储

全息存储是依据全息术的原理,将信息以全息照相的方式存储起来,它利用两个光波之间的耦合和解耦合,可以把信息存储和信息之间的比较(相关)、识别,甚至联想的功能结合起来,也就是可以把信息存储和信息处理结合起来。用于全息信息存储的记录介质较多,可永久保存信息的全息图用银盐干板、银盐非漂白型位相全息干板、光聚合物及光致抗蚀剂等;可擦除重复使用的实时记录材料有光导热塑料、有机或无机光折变材料等。全息存储在存储容量方面具有巨大的优势,原因是摘要:

(1)全息存储具有存储容量大的优势。用感光干板作为普通照相记录信息时,信息存储密度的数量级一般为105bit/mm2;用平面全息图存储信息时,存储密度一般可提高一个数量级达106bit/mm2;假如用体全息图存储信息时,存储密度可高达1013bit/mm2。

(2)全息存储具有极大的冗余性,存储介质的局部缺陷和损伤不会引起信息丢失。

(3)全息存储具有读取速率高和能并行读取的特征,每个数据页可包含达1Mbit的信息,写人一页的时间在100ms左右,读信息的时间可以小于100μs,而磁盘的寻址时间至少需要10ms。

当前,在世界范围内掀起了全息存储探究的热潮,并取得很大的进展,其主要表现在摘要:

(1)存储容量迅速提高和性能不断改善,并逐步走向实用化。例如,1994年美国加州理工学院在1cm3掺铁妮酸锉晶体中记录了1000幅全息图,同年,斯坦福大学的一个探究小组把经压缩的数字化图像视频数据存储在一个全息存储器中,并再现了这些数据而图像质量无显著下降。1999年美国加州理工大学利用空-角复用技术,在同一块在掺铁铌酸锂晶体中存储了26000幅全息图。北京清华大学实现了在掺铁妮酸铿晶体中的同一空间位置记录1500幅全息图,并研制了具有紧凑结构的灵巧型全息存储装置。

(2)实用化的全息存储系统逐渐推出。例如,1995年由美国政府高级探究项目局(ARPA)、IBM公司的Almaden探究中心、斯坦福大学等联合成立了协作组织并在美国国家存储工业联合会(NS1C)支持下川,投资约7000万美元,实施了光折变信息存储材料(PRISM)和全息数据存储系统(HDSS)项目,预期在5年内开发出具有容量为1Tbit数据,存储速率为1000MB/s的一次写人或重复写人的全息数据存储系统。同样的探究在法国、英国、德国和日本等国家也正在加紧进行。

近几年来,光电子技术和器件取得了系列重大进展,为全息存储器提供了所必要的高性能半导体激光器、液晶空间光调制器、CCD阵列探测器等核心元器件,全息存储的理论和方法的发展使这项技术日趋成熟然而,美中不足的是全息图的寿命新问题尚待解决,虽然张泽明、谢敬辉等对Ce摘要:Fe摘要:LiNbO3晶体的全息存储和热定影进行了理论和实验探究,从方法上给出了记录角度越大,光栅周期越小,热定影所需最小离子数密度越高,存储系统的整体性能越好,但是目前还未解决的一个难题是寻找合适的记录材料。无疑,这将成为全息存储界探究的热门课题。

3.2显示全息

显示全息技术是在激光透射全息图的基础上来制作各种类型的全息图,如白光反射全息图、白光透射全息图等,各种类型的显示全息图可用于舞台布景、建筑、室内装饰、投影等;再如,以动态显示的全息技术、层面X射线照相术、3DCAD技术、3D动画片、雷达显示、导向和模拟系统等,每3年一次的显示全息国际会议上都有全息界泰斗展出令人吃惊的全息图,它们充分展示了全息技术创造性的魅力和艺术的美。

显示全息目前主要有两大类摘要:第一类是Lippmann全息图,制作方法有Denisyuk的单光束法和Benton的开窗法。第二类是S.A.Benton的彩虹全息图,这是一种透射式显示全息图,可在白光照明下再现立体图像,且图像的颜色随观察的位置的变化而变化,从红到紫如雨后彩虹而得名。随着高质量记录材料的发展,随后的一些探究者和艺术家不断追求更实用的拍摄技术,如假彩色编码和真彩色反射全息图等。美国光学学会主办的《AppliedOptics》和《OpticsLetters》在20世纪80年代都有有关这方面的论文报道。由SPIE主办的《Holosphere》和美国全息制造商协会主办的《HolographyNews》以往和近年都不断地报道有关显示全息图的最新制作技术和商业信息。但从这些报道情况来看,显示全息存在不足主要表现在摘要:

(1)视角范围、图像体积有限;

(2)没有获得非凡有效的全息图的计算方法;

(3)由于全息计算数量巨大,导致动态显示异常困难。克服以上不足,将可能成为显示全息探究的几个热点。

近年来,显示全息技术掀起一场数字化变革,数字合成全息技术为全息三维显示开辟了前所未有的应用前景。随着计算机运行速度的提高和高分辨空间调制器件的发展,利用显示全息的大视场、大景深、全视差、真彩色、可拼装、价格低廉等特性,在不久的将来开发出真正意义的全息电影和全息电视,为显示全息技术创造良好的商业前景。

3.3模压全息

模压全息是1979年RCA公司为解决视频标准件的全息拷贝而提出的,它是将全息术和电镀、压印技术结合起来,使全息图的制作产业化,用白光再现时,可得到色彩鲜艳逼真的三维图像,并可通过印刷方式大批量生产,使得它在许多领域得到广泛的应用,以商品形式走向市场。模压全息的制作主要分为三个阶段摘要:激光摄制原片全息图;电成型制金属模板;模压复制。这三个阶段生产工艺和技术要求都比较高,因此,模压全息作为平安防伪首当其冲,是平安防伪技术的一个里程碑。正如全息图的新奇性、强烈的视角效果、制作的难度以及易于应用在钞票的包装上,不能去除性、价格低廉、轻易验证等特征,使它很快占领了防伪领域。模压全息是一种技术和艺术结合的高科技产品,无论在高档商品促销、名优商品的防假冒或在有价证券(如信用卡、钞票、护照签证)的防伪和加密以及图书、印刷、印染、装磺、纪念邮票和广告标牌等都有采用模压全息技术,并备受使用者青睐。

模压全息出现于20世纪70年代,80年代中期已形成了一种产业,90年代达到了鼎盛时期。本世纪初,随着防伪技术要求的不断提高,模压全息技术又有了新的突破摘要:美国斑马图像公司推出了二维图像的数字化采集和拍摄技术;2003年,苏州大学研制成功并已批量生产“数码激光全息照排系统”;同年,倪星元、张志华等成功研制了可替代传统镀铝防伪薄膜的透明TiO2激光全息防伪薄膜。这些模压全息的一个个技术突破,使防伪功能有了提高,让激光全息防伪技术达到新的境界。

模压全息产业在我国起步较晚,但发展速度迅猛,目前国内已有100多条模压全息生产线。为了使模压全息技术健康发展,我国模压全息产业发展必须在三个方向上引起重视摘要:首先是开拓全息烫金材料,取代金膜和银膜,其次开发全息包装材料,实现立体防伪包装,第三个方向是模压全息技术和现代印刷术相结合,体现传统的美术效果和现代科技的艺术魅力。

3.4全息干涉计量

全息干涉计量术是将不同物光,在不同的时间记录在同一张全息干板上,然后利用全息术的空间波前再现原理,非接触地对物体表面进行三维测量而获得信息。全息干涉计量术是全息应用的一个重要方面,它能实现高精度非接触性无损测量,比一般光学干涉计量有很多优点。一般光学计量只能测量外形比较简单、表面光度很高的零部件,而全息计量方法则能对任意外形、任意粗糙表面的物体进行测量,测量精度为光波波长λ的数量级。目前,全息干涉计量术在方法上先后发展了实时全息干涉法(单次曝光法)、二次曝光全息干涉法、时间平均全息干涉法、双波长干涉法以及双脉冲频闪全息干涉法,此外,J.A.Leendertz开辟了全息干涉计量术的另一个新的分支-激光斑纹计量术。随着光电技术、计算机技术、CCD器件及光纤技术的飞速发展,使得全息干涉计量技术在信息采集和处理上更为方便、快捷和可靠,并得以在恶劣环境条件下对某些物理量进行定时测量。再加之相移技术、外差技术和锁相技术等,可使测量精度提高到λ/100或更高。

全息干涉计量在20世纪80年代美国等西方先进国家已产业化,我国在20世纪80年代初有几所大学和科研单位的探究项目通过鉴定,其中有些达到当时的先进水平。经过近几年的开发和研制,我国在全息干涉计量测试设备方面主要发展有摘要:

(1)用于测试火箭发动机喷雾化特性的YSCI型离子瞬态激光全息测试仪;

(2)用于激光热核聚变稠密等离子体电子密度测量的SPQ-1型四分幅皮秒紫外线激光全息探测仪;

(3)包括记录、再现、图像处理三部分的瞬态激光全息干涉计量测试系统;

信息光学原理篇6

[关键词] 网络支付 信息安全 量子计算 量子密码

目前电子商务日益普及,电子货币、电子支票、信用卡等综合网络支付手段已经得到普遍使用。在网络支付中,隐私信息需要防止被窃取或盗用。同时,订货和付款等信息被竞争对手获悉或篡改还可能丧失商机等。因此在网络支付中信息均有加密要求。

一、量子计算

随着计算机的飞速发展,破译数学密码的难度也在降低。若能对任意极大整数快速做质数分解,就可破解目前普遍采用的RSA密码系统。但是以传统已知最快的方法对整数做质数分解,其复杂度是此整数位数的指数函数。正是如此巨额的计算复杂度保障了密码系统的安全。

不过随着量子计算机的出现,计算达到超高速水平。其潜在计算速度远远高于传统的电子计算机,如一台具有5000个左右量子位(qubit)的量子计算机可以在30秒内解决传统超级计算机需要100亿年才能解决的问题。量子位可代表了一个0或1,也可代表二者的结合,或是0和1之间的一种状态。根据量子力学的基本原理,一个量子可同时有两种状态,即一个量子可同时表示0和1。因此采用L个量子可一次同时对2L个数据进行处理,从而一步完成海量计算。

这种对计算问题的描述方法大大降低了计算复杂性,因此建立在这种能力上的量子计算机的运算能力是传统计算机所无法相比的。例如一台只有几千量子比特的相对较小量子计算机就能破译现存用来保证网上银行和信用卡交易信息安全的所有公用密钥密码系统。因此,量子计算机会对现在的密码系统造成极大威胁。不过,量子力学同时也提供了一个检测信息交换是否安全的办法,即量子密码技术。

二、量子密码技术的原理

从数学上讲只要掌握了恰当的方法任何密码都可破译。此外,由于密码在被窃听、破解时不会留下任何痕迹,用户无法察觉,就会继续使用同地址、密码来存储传输重要信息,从而造成更大损失。然而量子理论将会完全改变这一切。

自上世纪90年代以来科学家开始了量子密码的研究。因为采用量子密码技术加密的数据不可破译,一旦有人非法获取这些信息,使用者就会立即知道并采取措施。无论多么聪明的窃听者在破译密码时都会留下痕迹。更惊叹的是量子密码甚至能在被窃听的同时自动改变。毫无疑问这是一种真正安全、不可窃听破译的密码。

以往密码学的理论基础是数学,而量子密码学的理论基础是量子力学,利用物理学原理来保护信息。其原理是“海森堡测不准原理”中所包含的一个特性,即当有人对量子系统进行偷窥时,同时也会破坏这个系统。在量子物理学中有一个“海森堡测不准原理”,如果人们开始准确了解到基本粒子动量的变化,那么也就开始丧失对该粒子位置变化的认识。所以如果使用光去观察基本粒子,照亮粒子的光(即便仅一个光子)的行为都会使之改变路线,从而无法发现该粒子的实际位置。从这个原理也可知,对光子来讲只有对光子实施干扰才能“看见”光子。因此对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,这实际上就是一种不同于传统需要加密解密的加密技术。在传统加密交换中两个通讯对象必须事先拥有共同信息――密钥,包含需要加密、解密的算法数据信息。而先于信息传输的密钥交换正是传统加密协议的弱点。另外,还有“单量子不可复制定理”。它是上述原理的推论,指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就必须先做测量,而测量必然会改变量子状态。根据这两个原理,即使量子密码不幸被电脑黑客获取,也会因测量过程中对量子状态的改变使得黑客只能得到一些毫无意义的数据。

量子密码就是利用量子状态作为信息加密、解密的密钥,其原理就是被爱因斯坦称为“神秘远距离活动”的量子纠缠。它是一种量子力学现象,指不论两个粒子间距离有多远,一个粒子的变化都会影响另一个粒子。因此当使用一个特殊晶体将一个光子割裂成一对纠缠的光子后,即使相距遥远它们也是相互联结的。只要测量出其中一个被纠缠光子的属性,就容易推断出其他光子的属性。而且由这些光子产生的密码只有通过特定发送器、吸收器才能阅读。同时由于这些光子间的“神秘远距离活动”独一无二,只要有人要非法破译这些密码,就会不可避免地扰乱光子的性质。而且异动的光子会像警铃一样显示出入侵者的踪迹,再高明的黑客对这种加密技术也将一筹莫展。

三、量子密码技术在网络支付中的发展与应用

由于量子密码技术具有极好的市场前景和科学价值,故成为近年来国际学术界的一个前沿研究热点,欧洲、北美和日本都进行了大量的研究。在一些前沿领域量子密码技术非常被看好,许多针对性的应用实验正在进行。例如美国的BBN多种技术公司正在试验将量子密码引进因特网,并抓紧研究名为“开关”的设施,使用户可在因特网的大量加密量子流中接收属于自己的密码信息。应用在电子商务中,这种设施就可以确保在进行网络支付时用户密码等各重要信息的安全。

2007年3月国际上首个量子密码通信网络由我国科学家郭光灿在北京测试运行成功。这是迄今为止国际公开报道的惟一无中转、可同时任意互通的量子密码通信网络,标志着量子保密通信技术从点对点方式向网络化迈出了关键一步。2007年4月日本的研究小组利用商业光纤线路成功完成了量子密码传输的验证实验,据悉此研究小组还计划在2010年将这种量子密码传输技术投入使用,为金融机构和政府机关提供服务。

随着量子密码技术的发展,在不久的将来它将在网络支付的信息保护方面得到广泛应用,例如获取安全密钥、对数据加密、信息隐藏、信息身份认证等。相信未来量子密码技术将在确保电子支付安全中发挥至关重要的作用。

参考文献:

[1]王阿川宋辞等:一种更加安全的密码技术――量子密码[J].中国安全科学学报,2007,17(1):107~110

信息光学原理篇7

关键词:信息光学;光学工程;课堂实验

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2016)51-0258-02

一、前言

信息光学是一门理论与实践相结合的课程,单纯地依靠课程教学,学生难以领会掌握其理论和应用的本质。实验是检验物理理论的标准,是物理推导过程的可视化和具体化。在学生建立完整的物理概念和导出正确物理规律的课堂教学中,实验能化抽象为具体,能引导学生观察和思考,激发他们求知和探索物理规律的欲望。信息光学课程理论推导较多,物理过程比较复杂,同时可操作的物理实验相对较多,因此从众多的实验中挑选合适的实验,精心设计实验过程,合理拓展实验内容,是信息光学课程实验需要重点思考的一个方面。它对课程教学具有积极的促进作用,能够更为有效地提高学生对知识的理解,提高学生对信息光学课程学习的兴趣。

二、结合课程教学,合理设计实验

信息光学课程内容比较多,从光的衍射传播、光的相干干涉、光的空间滤波到光的相干处理和非相干处理,但是课程实验开设数目非常有限,因此合理设计信息光学课程实验,让实验涵盖信息光学课程教学内容是非常有必要的。根据课程教学内容,设计了全息光栅、彩虹全息、空间滤波和白光光学处理四个实验,它们涵盖了信息光学课程的基本知识点,且相互关联。(1)全息光栅。全息光栅实验利用两路平面波相干叠加获得全息光栅干涉条纹和干板的记录,并对记录的全息干板进行再现和光栅参数测试。空间频率是学生难以掌握的一个基本概念,通过实验与理论相结合,结合数学表达式和几何图形,使学生理解一定空间频率的平面波所代表的物理内涵。同时利用两路平面波相交产生干涉条纹和全息光栅的再现,使学生掌握光的干涉和光的衍射。如果把二维的平面全息扩展到三维,可以进一步了解到体全息图,分析透射全息图和反射全息图的内涵和区别。(2)彩虹全息。彩虹全息是激光记录白光再现的全息图,它突破了激光记录激光再现全息图的局限性,采用自然光就可以观察到三维图像。该实验在制作全息图时增加狭缝,再现时由于色散效应,不同波长下狭缝的位置不同,从而在不同的观察角度就可以透过狭缝看到不同颜色的全息像。该实验可以完成一步彩虹全息和二步彩虹全息的实验内容,不仅涵盖了全息制作的原理和彩虹全息图的基本原理,同时深入了解了全息图的色模糊。(3)空间滤波。空间滤波实验利用4f系统,把物体放置在物平面,在频谱面插入不同类型的滤波器,在输出面可以观察到经过滤波后的输出图像,是光信息处理的典型光路和典型应用。通过该实验,让学生在空间频率、光的衍射基础上进一步掌握阿贝二次成像的基本理论、物体空间频谱和空间滤波等基本原理。(4)θ调制假彩色编码。θ调制假彩色编码是白光光学处理的典型应用,它是在相干光处理和非相干光处理的基础上,通过采用点光源降低白光的空间相干性,引入光栅提高白光的时间相干性的一种处理方法。θ调制假彩色编码实验表明4f空间滤波系统同样能灵活进行非相干处理,同时抑制了相干光处理的一些弊端,能清晰地体现光的空间相干性和时间相干性在相干处理的重要性。θ调制图像频谱的观察,能更浅显地理解空间频率的概念。

信息光学原理篇8

关键词: 相位恢复算法; 数字水印; 全息图二值化; 盲检测

中图分类号: TN919?34; O438 文献标识码: A 文章编号: 1004?373X(2013)16?0085?04

0 引 言

数字水印技术是信息安全研究领域的重要分支,已成为目前数字产品版权保护研究的热点。基于信息光学理论的数字水印技术具有高鲁棒性、大容量、高加密维度、高处理速度等特点,近年来得到广泛关注与重视[1?6]。2002年,日本学者Takai和Mifune最早提出利用全息技术,将二维数字全息图作为待嵌入的水印信息的方法[7]。Chang等改进了这个方法,提出在离散余弦变换域嵌入数字全息图的技术[8],实验表明全息水印具有良好的抗剪切能力。陈大庆等提出了基于相位恢复和数字全息技术的图像水印方法[9],该方法采用相位恢复算法将得到高对比度的全息图,具有很好的稳健性。

以上方案嵌入的全息图均为灰度图,信息量较大。相同条件下,在宿主图像中嵌入的水印信息量越大,水印的透明性和鲁棒性就会相对越差。因此为了减少嵌入信息量,进一步提高全息水印的实用性,2011年,李国明等提出在计算出数字全息图的基础上,进一步对全息图进行二值化,将二值化后的全息图作为水印嵌入载体图像中[10]。但由于直接对全息图二值化,对全息图本身是一种破坏,损失了一定的全息信息,再现像质量有所下降。在上述方案的基础上,本文提出一种基于相位恢复算法的计算全息图二值化改进方法。该方法采用相位恢复算法将水印信息编码为虚拟入射物波的纯相位函数,同模拟参考光波发生干涉,得到对比度很高的计算全息图,二值化后作为待嵌入的水印信息。仿真实验证明改进方法具有更好的鲁棒性。

1 计算全息图二值化

1.1 传统傅里叶计算全息图二值化

将水印图像的灰度值[m(x,y)]作为物光波的振幅,并通过一个[-π,π]范围内的随机相位模板调制,以达到平滑傅里叶谱的目的。物光波复振幅为:

[o(x,y)=m(x,y)exp[iφ(x,y)]] (1)

其傅里叶变换为:

[O(ξ,η)=o(x,y)exp[-2πi(ξx+ηy)]dxdy] (2)

然后同参考光相干涉,设参考光表达式为:

[R(ξ,η)=R0exp[2πi(aξ+bη)]] (3)

式中a,b是空间频率, 决定参考光波的传播方向。相干后的光场分布为:

[H(ξ,η)=O(ξ,η)+R(ξ,η)2=O(ξ,η)2+R(ξ,η)2+ O*(ξ,η)R(ξ,η)+O(ξ,η)R*(ξ,η)] (4)

式中,第一、二项为全息图的晕轮光和中心亮点,对再现像的质量有很大影响,可以通过计算参考光和物光的功率谱密度加以去除。

[H(ξ,η)=O*(ξ,η)R(ξ,η)+O(ξ,η)R*(ξ,η)] (5)

式(5)可用来恢复原始像及共轭像,对[H(ξ,η)]进行二值化,并制作二值全息图。

全息图的再现是用照明光的表达式与全息图相乘,并通过傅里叶逆变换得到再现像的光强分布。为简化计算,假设照明光波振幅为1,相位为0,傅立叶逆变换得到的重构图像为:

[oR(x,y)=H(ξ,η)exp[2πi(ξx+ηy)]dξdη] (6)

将式(3),式(5)代入式(6)就可以得到重构光场为:

[oR(x,y)=o(x-a,y-b)+o*[-(x+a),-(y+b)]] (7)

适当地选择a,b的值,使原始像和再现像分离。

图1为128 pixel×128 pixel原始信息经过传统傅里叶全息法得到的二值化全息图及其再现像(经二值处理),可以明显看出,再现图像质量有所下降。

1.2 基于相位恢复算法计算全息图以及全息图二值化

相位恢复算法是一种通过已知光场强度来确定相位分布的技术,包括GS算法、POCS算法、HIO算法等。GS算法的原理图如图2所示,通过在空间域和频域之间进行傅立叶正反变换来回迭代,并在空间域和频域中分别应用空间域和频域约束限制条件,具体步骤概括为:

(1) 给定一个初始随机相位[?(x0,y0)](取值范围为[-π,π]),乘以物光波振幅[m(x,y)],构成入射波复函数[f(x,y)],并对[f(x,y)]做傅里叶变换,得到频谱函数[F′(μ,ν)]。

(2)引入频域限制条件,去除振幅信息,只保留[F′(μ,ν)]的相位部分[F(μ,ν)],对其做傅里叶逆变换得到[f′(x,y)]。

(3)运用空域约束条件,取[f′(x,y)]的相位部分与物光波振幅[m(x,y)]构成新的入射波函数,并进入下一次循环。

(4)重复以上过程,直到[f′(x,y)]与期望值[m(x,y)]的差异小于预设值为止。随着迭代次数的增加,输出函数逐渐收敛,最终得到所需要的相位信息。设最佳相位分布为[F(μ,ν)],以上过程可用公式表示为:

[FT{m(x,y)exp(i?(x,y))}=F(μ,ν)=exp(jψ(μ,ν))] (8)

采用大小为128 pixel×128 pixel的黑白太极图案,同等条件下,传统傅里叶干涉全息和相位恢复法计算全息图对应的灰度直方图如图3所示,可发现传统方法灰度值相对集中,相位恢复算法得到的全息图灰度值分散且具有更高的对比度。所以经过相位恢复算法后的二值全息图比传统傅里叶二值全息图损失的信息量更少,大大提高了再现像的质量。

图4为相位恢复算法二值化全息图和对应的再现像。可以明显看出,该方法比传统傅里叶二值全息图的再现像质量有很大改善。

2 全息水印的嵌入和提取

采用上文的二值全息图作为待嵌入的水印信息,为了提高水印的抗压缩能力,将水印嵌入在宿主图像离散余弦变换(DCT)域中。DCT变换是正交实变换,它有良好的能量压缩能,考虑到人眼对高频成分的失真不太敏感,而压缩、滤波等操作主要破坏高频信息,将水印信息嵌入到宿主图像DCT系数中低频成分上。

2.1 嵌入算法

设原始载体图像[X]是[N1×N2]像素的灰度图像,水印图像[H]是[M1×M2]像素的二值全息图,水印嵌入原理图如图5所示。

具体的嵌入步骤如下:

(1)通过逐行扫描,将二值水印信息[H]转化为一维水印序列[W]:

[W={w(i)=0 or 1 , 0≤i

(2)采用Logistic方程产生混沌序列,对[W]进行混沌置乱加密。消除了水印像素之间的空间相关性,并提高了水印的抗剪切能力。同时将Logistic方程的初始值作为密钥,提高了水印的安全性。

在非线性系统中,混沌是普遍存在的现象,混沌序列具有对初始条件和微小扰动的高度敏感性、非收敛性、非周期性、运动轨迹的遍历性、随机性和类似噪声等特点,这些特点使得混沌序列广泛应用于水印的加密。

最典型、应用最广泛的产生混沌序列的方法是Logistic映射方法。Logistic映射形式定义如下:

[xk+1=μxk(1-xk)] (10)

式(10)中,初始值[x0∈(0 ,1)]且[x0≠0.25 ,0.5, 0.75]。当[μ=4]时,系统工作于完全混沌状态,[X]在[(0 ,1)]内遍历。混沌状态对初始值极其敏感,所以取不同的初值,可以得到不同的结果,将[x0]的取值作为密钥。对于一维水印序列[W],通过以下步骤实现空间置乱:

①选取初始值[x0],产生一个一维混沌序列[m(i)],其元素个数为[M1 ×M2]的整数倍;

②将[m]序列按照公式(11)进行预处理,使得[m]序列转化为一个整数序列,且[m(i)∈[1 , M1 ×M2]];

[m(i)=ceilm(i)×M1 ×M2] (11)

③从[m]序列第一个元素开始,按照下述公式对水印序列置乱,其目的是根据[m]序列,将一维水印序列[W]中的对应位置元素对调。

[a=W(i) ;W(i)=Wmodm(i) , M1 ×M2+1; Wmodm(i) , M1 ×M2+1=a] (12)

(3)将宿主图像按照像素8×8分块,并对各个分块作DCT变换。

(4)利用Matlab软件生成两组取值较小、相关性很小且服从高斯分布的一维四位随机序列[K1],[K2]。

(5)分别计算原始载体图像每个分块的方差,根据方差的大小线性调整水印在各个分块上的嵌入强度。逐个读取置乱后的一维水印序列,若[w(i)=1],嵌入[K1];否则,嵌入[K2],按照加法准则将水印信息嵌入到各个分块的中低频系数上。

2.2 提取算法

水印提取就是水印嵌入的逆过程。首先,将含有水印的图片8×8离散余弦变换,读取嵌入水印部分的DCT系数;然后,分别检测出其与[K1],[K2]的相关性,比较大小,得到一维二值序列;最后,利用密钥,反置乱,并最终还原为二维二值全息图。通过傅里叶反变换或者光学再现,就可得到原始的水印信息。在提取全息水印时无需原始宿主图像,实现了水印的盲检测。

3 仿真实验

通过Matlab软件仿真验证了本文所提出的全息二值水印方法的稳健性,并且进一步跟传统傅里叶全息二值水印进行对比,验证该方法的优越性。

3.1 水印的嵌入和提取

采用上文制作的128 pixel×128 pixel太极图案的相位恢复算法二值全息图作为待嵌入的水印信息。宿主图像采用512 pixel×512 pixel的灰度Lena图,如图6(a)所示。图6(c)为相位恢复算法的二值全息图,进行混沌置乱后嵌入宿主图像DCT域的中低频区域,图6(b)为嵌入水印后的图像。图6(d)为提取的二值全息图,通过计算机或光学全息再现可得到清晰的原始信息,如图6(e)所示。

3.2 与传统傅里叶全息二值水印的对比试验

为了验证相位恢复算法二值全息水印对各种图像处理方法的抗攻击能力,在相同的嵌入条件下与传统傅里叶全息二值水印方法进行对比。采用峰值信噪比(PSNR)来客观评价嵌入算法对宿主图像的影响。采用归一化互相关系数(NC)定量衡量水印的原始信息和提取信息的相似度。

JPEG压缩对比实验如图7所示。图7(a)~(c)是压缩质量分别为80,70,60时,传统傅里叶全息二值水印法的水印再现像,图7(d)~(e)是本文方法的水印再现像。表1是两种方法对比实验的PSNR和NC。可以看出,在相同嵌入条件下,两种方法的PSNR相近,说明这两种方法的JPEG压缩效果相近,而本文提出方法的NC系数优于传统傅里叶全息二值水印方法。

剪切对比实验。把含水印图像分别切掉10%~40%,然后提取水印信息,结果如图8所示。图8(a)~(d)是传统傅里叶全息图二值水印法的结果,图8(e)~(h)是本文全息二值水印法的结果。表2是两种水印方法剪切对比实验中提取出的水印信息的归一化互相关系数(NC)。可见本文方法具有更好的抗剪切能力。

4 结 语

本文提出了一种基于相位恢复算法的二值全息水印方法,该方法采用相位恢复算法得到高对比度全息图,再将该全息图二值化,大大减少了传统傅里叶全息图直接二值化造成的信息丢失,改进了全息二值水印技术。在宿主图像子块离散余弦变换域的中低频部分嵌入水印,由于水印是二值化的全息图,因此具有较大的水印嵌入量。提取水印时无需原始宿主图像参与,实现了盲检测。通过仿真实验证明,与传统方法相比,本文方法具有更好的稳健性。该方法能够成为数字产品版权保护的有效方案。

参考文献

[1] 张静娟,史伟诗,司徒国海.光学信息隐藏综述[J].中国科学院研究生院学报,2006,23(3):289?296.

[2] KISHK S, JAVIDI B. Watermarking of three?dimensional objects by digital holography [J]. Optics Letters, 2003, 28(3): 167?169.

[3] SEO D H, KIM S J. Interferometric phase?only optical encryption system that uses a reference wave [J]. Optics Letters, 2003, 28(5): 304?306.

[4] OKMAN O E, AKART G B. Quantization index modulation?based image watermarking using digital holography [J]. Opt. Soc., 2007, 24(1): 243?252.

[5] 尉迟亮,顾济华,刘薇,等.基于数字全息及离散余弦变换的图像数字水印技术[J].光学学报,2006,26(3):355?361.

[6] 孟祥锋.基于迭代相位恢复算法和相移干涉术的光学信息安全技术的研究[D].济南:山东大学,2008.

[7] TAKAI Nobukatsu, MIFUNE Yuto. Digital watermarking by a holographic technique [J]. Applied Optics, 2002, 41(5): 865?873.

[8] CHANG H, TSIAN T. Image watermarking by use of digital holography embedded in the DCT domain [J]. Applied Optics, 2005, 44(29): 6211?6219.

信息光学原理篇9

【关键词】全息;防伪;存储;全息透镜

全息技术一门正在蓬勃发展的光学分支,主要运用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透射)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像。也就是全息技术所记录不是图像,二是光波。全息学的原理适用于各种形式的波动,如X射线、微波、声波、电子波等。只要这些波动在形成干涉花样时具有足够的相干性即可。光学全息术可望在立体电影、电视、展览、显微术、干涉度量学、投影光刻、军事侦察监视、水下探测、金属内部探测、保存珍贵的历史文物、艺术品、信息存储、遥感,研究和记录物理状态变化极快的瞬时现象、瞬时过程(如爆炸和燃烧)等各个方面获得广泛应用。随着全息技术的快速发展,全息技术的产品正越来越多地走向市场、应用于现代生活中。

一、全息技术的应用前景

全息技术的应用非常广泛,并不断被应用于新的领域,以下列举了全息技术的部分重要应用。

(一)全息显示

全息显示主要利用全息照相能重现物体三维立体图像的特点,因全息片能给出和原物大小一样、细节精美、形状逼真的三维图像,所以是极有发展前景的应用之一。它可以用来复制历史文物艺术珍品、全息肖像、全息装饰品和全息风景画等也可用于超景深照相,使远距离到近距离的物体同时记录在一张全息底片上。而从其再现像中逐次按不同距离分层观测,不受普通照相景深的限制。全息显示常用的全息术有:透射和反射全息、像面全息 彩虹全息、真彩色全息、合成全息和模压全息等多种类型。其中除透射全息图需要用激光再现外,其余都可用自光再现,从而使在自昼自然环境中可观察到三维景像。近年来模压全息逐步进入到人们生活中,并受到人们的欢迎和喜爱模压全息把浮雕艺术和照相艺术相结合,用多层次体现三维空间,极具有观赏价值它除了作为艺术全息品便于携带和保存外,已广泛用于防伪标识、贺卡、商标、纪念封和图书插图等领域,国内外都已形成一种巨大的产业。

(二)全息干涉计量

全息干涉量度,其操作的基本程序与全息记录相似,只是在记录时根据需要进行一次曝光(实时全息干涉法)、两次曝光(双曝光全息干涉法、夹层全息法)和连续曝光(时间平均全息干涉法)。它们都是根据波面干涉原理,在再现象上出现一系列干涉条纹。这些条纹代表了沿观察轴线方向的等位移轮廓线。条纹间隔代表的位移量大致等于记录中所用相干光源波长的一半。

一次曝光全息干涉法。它同光学干涉原理是一样的。用一般全息术记录一张物体未经变形时的全息图。再将这张全息图精确地放在原记录位置上。由原参考光作照明光,让它在原物位置产生再现像。被研究的物体在原来位置作微小变形,同时也用激光照明。全息图衍射的原始物波和物体散射的物波会产生干涉条纹,条纹的形状就反映了物体的形变。这种方法可以观察物体的形变过程,因此也叫实时全息干涉法。二次曝光全息干涉法。在同一张全息图上记录同一物体变形前后的二张全息图。它记录了物体在不同时刻的二个波面。再现时,二个波面之间产生干涉,称为两次曝光全息干涉。通过条纹的计算,可以确定物体的形变和位移。二次曝光全息将物体形变的二种状态冻结在全息图里,可以保存,在没有原物时也能再现这种变化。但是一张全息图只能保留一种比较状态。

夹层全息。用二张全息干板分别记录物体二个状态的物波信息。记录时,用一对全息干板放在特制的可以精确定位的全息片架上。曝光、显影后,每张全息图放在原来的位置都能精确地再现原物波。

二、全息防伪技术

防伪与我们的生活息息相关,将全息技术应用于防伪领域可以大大提高防伪功效。如第二代身份证上的视读防伪:当以适当角度看身份证正面时,会有长城标志出现,变换角度,长城标识的颜色会发生变化。从全球角度看,第一个将全息图片作为防伪标识的产品是Johnny Walke Whishy(一种威士忌),该酒的销售额较以前增加了45%。上世纪90年代全息防伪迎来首个鼎盛时期,无论高档商品促销、名优商品的防假冒或有价证券(如信用卡、钞票、护照签证)的防伪和加密以及图书、印刷、印染、装潢、纪念邮票和广告标牌等等,都普遍采用激光模压技术。该技术在八十年代末九十年代初传入我国,1990年至1994年期间,全国各地引进生产线上百条。全息主要防伪技术主要包括如下四个方面:

1. 激光全息标识定位烫印技术

全息烫印的原理是:在烫印设备上通过加热的烫印模头将全息烫印材料上的热熔胶层和分离层加热熔化,在一定的压力作用下,将烫印材料的信息层全息光栅条纹与PET基材分离,使铝箔信息层与承烫面黏合,融为一体,达到完美结合。(1)该技术要求印刷厂家拥有精密定位烫印设备,并要求印刷厂的相关设备有能适应定位烫印的要求,具有精密的走步和定位功能,因此造假者很难制假。(2)定位烫印与包装物本身有机融合为一体。同时经过合理的设计可以大大提高包装物的质量和档次,这样无论在防伪力度还是美观方面,都提高了一大步。(3)定位烫印可实现调整大规格自动化生产,与高速印刷设备配套,满足了印刷厂家的生产工艺要求。(4)防伪标识烫印到包装盒上后无须覆膜,可满足绿色包装的要求,比普遍采用不干胶全息防伪贴标前进了一大步,并且彻底解决了防伪标识的重复使用问题。

2. 全息标识上的加密技术

该技术是在防伪标识中设置特殊的加密记号以增强防伪效果。其原理是在物体与全息底板之间加一个编码器,使得物光发生畸变;只有用该特定的解码器才能重现物体,否则,只能出现一些散斑。因此,该技术具有较高的防伪功能,常用于一般商品的防伪。

3. BOPP激光全息防伪收缩膜包装防伪技术

该技术是发展起来的新型防伪技术。由于该技术对BOPP收缩膜基材有特殊要求,购买和开发BOPP生产设备造价昂贵,从而在源头上堵住了造假者制假的可能性和可行性。激光全息防伪收缩膜在生产中首创采用宽幅全息透明模压技术与加密全息图像防伪技术相结合,并巧妙解决了热压与基材热收缩的矛盾;在使用中通过BOPP防伪收缩膜两个表面提供热封,将被包装物整体包裹;在拆包时必须先撕开BOPP防伪膜,而这样也就破坏了原防伪膜的完整性。由于该防伪手段技术层面复杂、防伪力度高,工艺精细、外观精美,被中国防伪行业协会激光全息技术专业委员会给予很高的评价。BOPP生产线高昂的价格和热封型热收缩膜复杂的加工工艺,加上透明全息防伪图像和隐秘的微缩密码,使得那些分散的中小型工厂极难制假。

4.全息存储中的复用技术

全息光存储实际上还是一种光盘存储技术,采用复用技术,可大幅度地提高 存储容量和系统性能。在各种未来高密度光存储技术中,全息光存储以其所具有的高存储容量、高存储密度、高信息存储冗余度和超快存取速度等优点一直为人们所重视。

空间复用技术是将记录介质的二维平面划分成不同的区域,在每一个区域中单独存储一幅全息图。空间复用技术是发展得最早的复用技术,主要适合于平面型记录材料,存储材料中的存储格式类似于硬盘和光盘。空间复用技术的优点是:由于相邻的全息图在空间并不重叠,因此再现出的页面之间可以完全避免串扰噪声,每个全息图的衍射效率也都可以达到单个全息图所能达到的最大衍射效率。此外,由于存储的所有全息图都可以采用相同的参考光角度,因此系统的光路设计和构架相对简单。单纯空间复用技术的主要缺点是不能充分利用存储材料的厚度来增加系统的存储容量,因此没有充分利用全息存储技术的潜力实现最大存储容量。

为了弥补空间复用技术的缺陷,人们提出了体积复用技术。体积复用技术分为三种:角度复用、位相复用和波长复用。当然,全息光存储的发展也还存在着诸多的难题,首当其冲的就是必须寻找一种同时兼具性能、容量和价格方面综合优势的存储材料,这也是全息光存储发展过程中必须解决的关键问题之一。其次,从加工生产方面来看,如何以较低的生产成本实现加工,特别是有关激光、空;和光调制器和探测器阵列的对准,对于工程人员来说依然是一个巨大的挑战。最后,要实现合适的性能价格比,全息光存储如果不够便宜,就难以找到市场,普通的PC机用户不会为了性能上一定的改善而付出高额的费用。

三、全息透镜

全息成像是尖端科技,全息照相和常规照相不同,在底片上记录的不是三维物体的平面图像,而是光场本身。常规照相只记录了反映被报物体表面光强的变化,即只记录的光的振幅,全息照相则记录光波的全部信息,除振幅外还忘记录了光波的们相。即把三维物体光波场的全部信息都贮存在记录介质中。 全息照相是一种无透镜的两步成像。原理是:利用物光和参考光干涉在感光胶片上记录一幅干涉图样,呈错综复杂、透明度不同的花纹,称为全息(即全息照片),相当于把胶片制成一不规则的光栅,然后利用全息图对适当照明光的衍射,把原三维影像提取出来。后一过程称为重现。全息图是一个天然的信息存储器,可把“冻结”了的景物重新“复活”在人们眼前。由于这一独特性能全息图有极其广泛的应用。如用于研究火箭飞行的冲击波、飞机机翼蜂窝结构的无损检验等。现在不仅有激光全息,而且研究成功白光全息、彩虹全息,以及全景彩虹全息,使人们能看到景物的各个侧面。全息三维立体显示正在向全息彩色立体电视和电影的方向发展。

除用光波产生全息图外,已发展到可用计算机产生全息图。全息图用途很广,可作成各种薄膜型光学元件,如各种透镜、光栅、滤波器等,可在空间重叠,十分紧凑、轻巧,适合于宇宙飞行使用。使用全息图贮存资料,具有容量大、易提取、抗污损等优点。 全息照相的方法从光学领域推广到其他领域。如微波全息、声全息等得到很大发展,成功地应用在工业医疗等方面。地震波、电子波、X射线等方面的全息也正在深入研究中。

四、全息技术的展望

全息照相的应用潜力是巨大的,这一新技术将会在工业、医学、国防、公共安全等各个领域全面展开,产生显著的社会效益和经济效益。

作为一门新兴学科,全息技术还处在蓬勃发展阶段,随着科技的进一步发展和科技人员的努力全息技术的应用必将迎来它更辉煌的明天。

参考文献:

[1] 王仕. 信息光学理论与应用(第二版)[M].北京邮电大学出版社,2009.2

[2] 王典民.激光全息照相技术[M].吉林科学技术出版社.1993.2.

[3] 葛宏伟,裴敏.激光全息技术在防伪领域中的应用[J].华中理工大学学报,1997.

[4] 李明.激光全息技术的发展及应用趋势研究[J].激光杂志 2005

[5] 陶世荃.光全息存储[M].北京工业大学出版社,1998.12

[6] 于美文.光全息学及其应用[M].北京理工大学出版社,1996.8

[7] 中国防伪协会组编.中国防伪战略[M].中国标准出版社,1997

作者简介:

信息光学原理篇10

如今,人类已经进入了信息社会,信息存储技术作为信息交换、处理的基础得到了广泛重视。早在上世纪50年代,存储材料和器件的研究已经广泛开展。在早期的研究中,受技术、原理等限制,对存储器所使用的材料以无机半导体材料为主。以这种材料为介质的开关及存储器件,由于其成熟的技术和稳定的性能,在当今信息社会里得到了广泛的应用。

随着计算机、网络、通信、电子商务等技术的发展,对存储器的要求越来越高。但由于光刻技术的限制,使得生产成本随尺寸变小成指数增长,无机半导体材料已逐渐达到其研究开发的极限。有机功能材料具有体积小、重量轻、组成结构多变、易加工、成本低等优良特性,以它为基础的存储技术获得了各国科学家的关注,进而得到了迅速的发展。以有机分子材料取代传统无机材料制备新型的高密度、超快速、高稳定性的存储器件就在不远的将来。

按照存储方式的不同,有机存储器件可分为电存储器件和光存储器件。这两种存储器分别以电信号和光信号为媒介,将信息存储到有机薄膜上。

有机电存储器件

有机电存储器件的原理是:有机功能材料在一定的电场作用下可发生导电态的转变,由绝缘态跃迁为导电态,相当于计算机存储器中的“0”态和“1”态,外加的电信号就是用于信息的“写入”或者“擦除”。它具有存储密度大、响应速度快、制作工艺简单、形态易于控制和成本低廉等优点。

要实现存储的功能,还要具备以下特点:在室温下可发生双稳态的快速跃迁;跃迁的临界电压低;导电态在改变前后要能明显区分;跃迁时间短;热稳定性良好;电场撤除时,状态维持时间足够长;抗疲劳性强。

器件的结构采用金属/介质层/金属的薄膜夹层结构。介质层可以是单一有机材料、有机材料/无机半导体双层结构、有机材料/金属/有机材料结构。介质层上下两侧的金属作为电极输入电信号,一般使用金、银、铜、铝和ITO等。

近年来,关于有机电存储器方面的研究取得了长足的进步:总结出了多种有机电双稳态特性的机理;用扫描探针显微镜在有机膜上进行超高密度信息存储获得很大的成功;器件的制作工艺不断提高,提出了在薄膜器件中引入金属氧化物层以改善有机电存储器性能的方法;研制出了新型的以结构决定性能的有机电存储器,器件能够达到很高的擦写次数,并具有更高的热稳定性;以有机材料和无机半导体材料相结合的有机电存储器已做到接近实用水平。

美国普林斯顿大学的科学家在《Nature》杂志上报道一种新型的一次写入、多次读取的存储器,这种存储器利用聚合物PEDOT制备,基板使用柔韧性好的不锈钢,具有存储密度高、存储速度快、制作工艺简单、可弯曲的优点。理论上在1mm2面积的器件上可以存储100Mbit的信息,写入时间小于1秒。并且制造这种器件不需要高温等苛刻的工艺条件,成本低廉。这种器件极有可能在小面积信息存储(如手机、可移动存储器、闪存等) 中获得应用。

有机光存储器件

有机光存储的原理是:能够吸光的存储介质被激光器照射时吸收能量,使局部产生瞬时高温而发生分解、熔化或变形等不可逆的物理化学变化,产生小坑或小泡等微小的记录点,从而导致记录点处与未记录点处对激光反射率的较大不同,用一强度恒定的并与记录激光具有同一波长的低功率密度的激光器扫描光盘,已变化的介质薄膜部分所反射回来的光强发生改变,通过信息还原系统读出信息。

光存储材料是发展光存储技术的核心和关键。作为光存储介质的材料应满足以下要求:灵敏度高,能够快速写入和读取;具有良好的光、热、化学稳定性,能够长时间保存所记录的信息;其吸收光谱及反射光谱与激光光源相匹配;抗疲劳性能好;无毒。与无机材料相比,有机材料具有许多优点:存储密度高,可超过1013bit/cm;导热性差,抗磁能力强,噪声干扰小;具有较低的熔点和软化温度,存储灵敏度高;可用甩胶涂布法制备,结构易于加工,生产成本低;材料的光学、热学性质可通过改变分子结构来调节;毒性小,环境污染少。