医学影像后处理十篇

时间:2023-09-22 17:58:18

医学影像后处理

医学影像后处理篇1

影像融合是大势所趋

“影像融合”是近来被国内医学影像界提及频率很高的一个词,7月19日,由中国医科院主办的“首届医学影像高峰论坛”在北京举行,该会议的主题即为“融合共赢”。复旦大学副校长、中华医学会放射学分会主任委员冯晓源在会议间隙接受《e医疗》专访时说:“影像医学必然要以影像为根本,但这个‘影像’不是CT、核磁等单种技术的图像,而是多种影像的融合。从目前以形态(解剖)为基础的诊断向功能诊断、分子水平诊断的发展过程中,影像融合是必经的阶段。”同样的内容,他在2012年的中华医学会放射学分会年会上也提到过。

中国医科大学附属盛京医院院长郭启勇认为,以内、外科为代表的临床学科对影像检查的依赖性日益增加;以产前诊断为代表的特殊学科对影像检查的需求认识不断加深;综合影像诊断的重要性被临床广泛认知……知识附加值在影像诊断中将日益显现。

诚然,影像对于临床有着非常重要的作用,而影像医学的发展也必须围绕临床进行,因为作为“医技科室”的影像科,其终极目的必然是为“医”提供服务。

影像融合概念的提出,与医学的发展方向有着直接的关系。未来医学的发展将朝着以预测(Predictive)、预防(Preventive)、个性化(Personalized)和参与性(Participatory)为特征的P4医学方向进行,这正在逐渐成为医学界的共识。冯晓源认为,个性化医学将是新医学模式的核心之一,而影像医学检查技术,将可能是个性化医学的核心和基础。改变诊断模式,适应新医学发展的要求,不仅能改变影像医学式微的趋势,更能让其走向具有广阔前景的康庄大道。影像融合,是大势所趋。

随着科学技术的发展,越来越多的影像检查设备开始提供标准DICOM格式的影像数据,从技术上解决了影像融合的问题。而影像学科因细分而导致的碎片化,却在阻碍着影像融合的进行。中国影像医学奠基人之一、中国工程院院士刘玉清教授一直提倡“大影像”,他呼吁所有的影像部门一起工作,把基于不同成像原理组成的图像放在一起,并在此基础上提取有用的信息进行融合。冯晓源认为,影像的融合更应该是学术上的融合,是各学科知识点在融合的图像上的呈现。他说:“影像医学应该从原来提供单纯的影像学信息――主要是形态学信息――向提供生物学信息进行转变。”

事实上,影像融合现在已经不仅仅只是影像医学的愿景,有些医院已经开始了相应的实践,中国医科大学附属盛京医院就是其中的一个先行者。目前,该院已经尝试将不同学科领域(如化学、计算机、生物工程)的人才引入影像学科,企图打造一个全新的融合影像学科。

三维重建与PACS

根据医学图像所提供的信息,可将图像分为解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)。解剖图像以较高的分辨率提供了脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像分辨率较差,无法提供脏器或病灶的解剖细节,但它提供的脏器功能代谢信息是解剖图像所不能替代的。由于成像原理的不同所造成的图像信息局限性,使单独使用某一类图像的效果并不理想。这就需要对影像进行包括图像融合在内的图像后处理,三维重建是其中的内容之一。

所谓图像后处理,是指对获取的图像进行处理、使之满足各种需要的一系列技术的总称,最典型的技术包括图像分割和三维重建。通过一定的图像分割操作,切除任意不感兴趣的数据集,仅保留要处理的部分。分割技术可以使医生排除无关图像的干扰,看得更清楚,自然得出的诊断结论也更准确。而三维重建则是根据一系列二维的医学图像,经过多重处理,提取不同物体的边界数据,得出物体的三维模型,并允许对模型进行显示、旋转、缩放等操作。三维模型的重构可以为医生提供多角度立体的视角,从而使医生方便、快捷地对病灶进行定量的分析和处理,提高诊疗水平和效率。

三维影像的获取有两种方式:设备获取和PACS获取,设备获取可分为CT、MR等设备自带工作站和专业的三维影像工作站。专业三维影像工作站功能强大,能够提供信息更丰富、品质更精细的三维图像,而另外两种途径获取的图像品质相对较差。

PACS作为一个获取、存储并提供调阅医学图像的综合应用平台,其看图模块能对图像进行各种二维处理,而三维处理功能并不是所有医疗信息化厂家提供的PACS产品都支持的功能。PACS可以集成三维后处理功能,这样就可以进行影像的三维重建。PACS是一个数字运行的平台,是一个更大的概念,重建后的三维影像可以通过PACS进行存储、传输和查看。

融合了三维影像后处理功能的PACS,以所获取的DICOM图像为基础,对其进行重建、分割等处理操作,使医生可以更全面地观察医学影像,从而扩充了PACS看图模块的功能,取得了更理想的诊疗效果。把图像分割和三维重建技术结合起来使用,将最大限度地发挥后处理功能。诊断医生通过医学PACS系统得到患者的图像信息,在看图模块中进行简单的处理之后,如果发现还不足以做出确切的诊断,就可以利用三维影像后处理系统先重建出患者检查部位的三维立体模型,分割操作可以去除不感兴趣的干扰部分,各种旋转平移操作可以给医生更多的信息,最终做出合理的诊断。

综上所述,三维影像后处理系统处理的影像来源主要是PACS,各方面都要得到PACS的良好支持,既可以成为PACS的辅助模块,也可以单独成为一个独立的软件系统。

三维重建的医学应用

三维影像的应用主要体现在临床上,比如在做手术时查看病灶和周围血管及组织之间的关系,帮助临床医生进行手术计划的制订。《中国放射学杂志》编辑部主任高宏说:“3D影像技术在疾病的诊断、治疗和基础研究方面有着广泛的应用,在肿瘤疾病上的应用更为广泛,很多肿瘤的介入治疗和放射治疗都是通过三维成像引导来完成治疗计划的制订的。”

除了高宏提到的肿瘤疾病的治疗,三维影像在骨科、心血管等临床外科的应用也较普遍。北京大学第一医院泌尿外科要求每个肾癌病例都要进行三维重建,有着一套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等等。该院呼吸内科开创了用呼吸内镜把肺气肿病变切除的手术,该院影像科主任王霄英评价:“内科把外科的活干了,开拓了一个全新的领域。”

不仅仅是在临床,目前三维重建在诊断、教学和科研方面的应用也已经初具规模。郭佑民认为,三维影像在放射科的应用会越来越多,“对于放射科医师而言,除了观察断面图像之外,结合3D技术可以为临床提供更多更丰富的诊断依据。”他说。

并不是所有的影像从业者都认可郭佑民的观点,在采访中部分放射科主任认为,作为诊断工具来讲,三维影像对放射科的帮助并不大。放射科医生一直都是通过二维影像做诊断,经过多年的专业训练之后,他们已经可以透过二维影像在脑海中重建三维结构,此外,三维影像并没有提供更多与诊断相关的信息。倒是对临床医生而言,三维影像更能帮到他们。

青岛大学医学院附属医院副院长董则在科研方面进行了探索,国家“十二五”科技支撑计划课题“小儿肝脏肿瘤手术治疗临床决策系统开发” 就是由他领衔的。董和他的团队希望在国际上首次将中国各年龄阶段儿童和成人肝脏进行数字化虚拟测量,建立中国儿童肝脏数据库和小儿肝脏肿瘤立体模拟手术系统。

在教学方面,郭佑民认为3D影像与2D影像相结合,有利于学生对影像学结构图像的理解和应用。“因为医学生从学习人体解剖课程开始,就逐步地建立了人体组织和结构的空间概念,而对横断面的2D图像理解不够透彻。借助3D图像可以更好地对照和理解每一幅2D图像与3D图像的关系,为后续的学习奠定基础。”他说。

三维重建的发展方向

三维重建在医学上的应用已经较为普遍,其重要性正在越来越多地得到认可。如何充分利用三维影像的优势,更好地为医学服务,学术、临床及产业界都在进行着积极的探索。

影像引导的放射治疗

影像引导的放射治疗(IGRT)是一种前沿技术,通过放疗前以加速器自带的CT进行扫描,采集并重建三维图像,与治疗计划图像配准后再实施治疗。这样可以克服因治疗摆位和肿瘤位置移动所造成的误差,确保在精确照射肿瘤的同时,将对其周围正常组织的损伤降到最低限度,全方位提高效果。它在三维放疗技术的基础上加入了时序的概念,可以说是一种四维技术。

IGRT可从定位、计划到治疗实施和验证等方面创造各种解决方案。它充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸运动、小肠蠕动、膀胱充盈、胸腹水、日常摆位误差、肿瘤增大/缩小等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,在患者进行治疗前和治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时监控,并能根据器官位置的变化调整治疗条件,使照射野紧紧“追随”靶区,做到真正意义上的精确治疗。

高级影像中心

四川大学附属华西医院目前正在计划建立AVC(Advanced Visualization Centre,高级影像中心,也称3D中心或三维中心)。

西门子大中华区影像和知识管理总经理王峻介绍,AVC模式是以临床需求为中心而设计的影像信息系统,其所有的活动都是围绕着临床的某些诊疗需求而设计的。他说:“AVC改变了传统影像科的工作模式,使其更贴近临床科室的需求。AVC把大量之前只有在放射科才能访问到的高级图像处理软件的浏览权限向临床科室开放,使临床医生大为获益。AVC模式还将改变放射科的报告不受临床科室重视的尴尬状态,使得放射科的检查、处理和报告可以全面地为临床治疗服务,并为临床医生提供大量其需要的辅助信息。相信AVC能为医院诊断和治疗这两个重要的医疗行为找到更好的合作模式。”

华西医院放射科高级工程师王跃介绍,AVC所特有的各种结构化报告,能协助放射科在临床科室的亚专业和放射科的亚专业之间形成对接,这种一对一的沟通和协作,可以为临床中的不同疾病和亚专业提供更准确而有用的个性化、专业化报告,在提高放射科医生诊断报告价值的同时,也能提高放射科报告的利用率和实用性。

王跃说:“AVC的建设不仅能够大大加强放射科与临床科室的互动,使得临床更加需要放射科的工作以便更好地为患者服务,而且能够提升放射科自身的实力和水平。AVC代表了未来的放射科-临床科室工作模式,完全可以称为诊疗模式的一次革命。”

3D医学打印

据《健康报》今年7月报道,北京大学第三医院骨科刘忠军带领的团队在脊柱及关节外科领域研发出了几十个3D打印脊柱外科植入物,其中包括颈椎椎间融合器 、颈椎人工椎体及人工髋关节在内的三个产品已经进入了临床观察阶段。报道称,已经有近40位颈椎病患者和髋关节病患者在签署知情同意之后,植入了3D打印出来的骨骼。

3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。3D打印技术又称“增材制造”,长期以来被应用于制造珠宝、电子产品和汽车部件模型,然而如今的工业3D打印机也在造福医疗领域,它们已经可以定制人体肝脏和肾脏的模型,而科学家们也正在研究如何用3D打印机打印胚胎干细胞和活体组织,目标是制造出能够直接移植到受体者身上的人体部位,先进的3D打印机目前已经开始走进医院。

医疗行业(尤其是修复性医学领域)存在大量的定制化需求,难以进行标准化、大批量生产,而这恰是3D打印技术的优势所在。目前,3D打印技术在助听器材制造、牙齿矫正与修复、假肢制造等领域已经得到了成功应用,且应用已经相对比较成熟。

但是,要想走进全球各地成千上万的医院手术室,3D打印技术还面临许多障碍:第一,用于制造器官模型的3D打印机售价在25万美元至50万美元,小医院难以负担;第二,大多数医生不会使用3D打印机,所以医院还需要技术人员来操作3D打印机并把医疗图像转换为可以打印的3D数据。

医学影像后处理篇2

随着信息时代的到来,数字化、标准化、网络化作业已经进入医学影像界,并以奔腾之势迅猛发展,伴随着一些全新的数字化影像技术陆续应用于临床,如ct、mri、数字减影血管造影(digitalsubtractionangiography,dsa)、正电子体层成像(positiveelectrontomography,pet)、计算机放射摄影(computedradiography,cr)及数字放射摄影(digitalradiography,dr)等,医学影像诊断设备的网络化已逐步成为影像科室的必然发展趋势,同时在客观上要求医学影像诊断报告书写的计算机化、标准化、规范化。医学影像存档与通讯系统(picturearchivingandcommunicationsystems,pacs)和医学影像诊断报告系统应运而生并得到了快速发展,使整个放射科发生着巨大变化,提高了影像学科在临床医学中的地位和作用。

概述

pacs是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的、旨在全面解决医学图像的获取、显示、存贮、传送和管理的综合系统[1-4]。pacs分为医学图像获取、大容量数据存贮、图像显示和处理、数据库管理及用于传输影像的局域或广域网络等5个单元[2,4]。

pacs是一个传输医学图像的计算机网络,协议是信息传送的先决条件。医学数字影像传输(dicom)标准是第一个广为接受的全球性医学数字成像和通信标准,它利用标准的tcp/ip(transfercontrolprotocol/internetprotocol)网络环境来实现医学影像设备之间直接联网[3]。因此,pacs是数字化医学影像系统的核心构架,dicom3.0标准则是保证pacs成为全开放式系统的重要的网络标准和协议。

1998年我院放射科与航卫通用电气医疗系统有限公司(gehangweimedicalsystems,简称gehw)合作建成医学影像诊断设备网络系统,它以dicom服务器为中心服务器,按照dicom3.0标准将数字化影像设备联网,进行医学数字化影像采集、传输、处理、中心存储和管理。

材料与方法

一、系统环境

(一)硬件配置

1.dicom服务器:戴尔(dell)poweredge2300服务器(奔腾ⅱ400mhzcpu,128mb动态内存,9.0gb热插拔sici硬盘×2,nec24×scsicd-rom,yamaha6×4×2cd-rw×2,etherexpresspro/100+网卡;500w不间断电源(ups)。

2.数字化医学图像采集设备:螺旋ct:gehispeedct/i,dicom3.0接口;磁共振:gesignahorizonlxmri,dicom3.0接口。

3.医学图像显示处理工作站:sunadvantagewindows(简称aw)2.0,128mb静态内存,20in(1in=2.54cm)彩显,1280×1024显示分辨率,dicom3.0接口。

4.激光胶片打印机:3m怡敏信(imation)969hqdualprinter。

5.医学图像浏览终端:7台,奔腾ⅱ350~400mhz/奔腾ⅲ450mhzcpu,64~128mb内存,8mb显存,6gb~8.4gb硬盘,15in~17in显示器,10mbps以太网(ethernet)网卡,ethernet接口。

6.医学影像诊断报告打印服务器:2台图像浏览终端兼作打印服务器。

7.激光打印机:惠普(hp)laserjet6lgold×2。

8.集线器(hub):d-linkde809tc,10mbps。

9.传输介质:细缆(thinnet);5类无屏蔽双绞线(utp);光纤电缆。

10.网络结构:星形总线拓扑(starbustopology)结构。

(二)软件

1.操作系统:螺旋ct、mri、aw工作站:unix;dicom服务器:windowsnt4.0server(英文版);图像浏览及诊断报告书写终端:windowsnt4.0workstation(中文版)。

2.网络传输协议:标准tcp/ip。

3.网络浏览器:netscapecommunicator4.6。

4.数据库管理系统:interbaseserver/client5.1.1。

5.医学图像浏览及影像诊断报告系统开发软件:borlandc++builder4.2。

6.医学图像浏览终端:gehwadvantageviewerserver/client1.01。

7.医学影像诊断报告系统:gehw医疗诊断报告1.0。

8.刻录机驱动软件:gear4.2。

(三)系统结构

螺旋ct、mri和aw工作站按照dicom3.0标准通过细缆连接到主干电缆(细缆)上形成总线拓扑结构的dicom网络;dicom服务器与各图像浏览及诊断报告书写终端通过双绞线以集线器(hub)为中心连接成星形拓扑结构的ethernet网络;二者再通过集线器连接成星形总线拓扑结构的pacs。螺旋ct、mri、aw工作站各自通过光纤电缆与激光胶片打印机相连,进行共享打印。本pacs由如下各子系统构成:

ct/i:gehispeedct/i;aw2.0:sunadvantagewindows2.0;mri:gesignahorizonlxmri;dicom:digitalimagingandcommunicationsinmedicine;ethernet网络:以太网络;t-bnc:同轴电缆接插件t型连接器;terminator:终结器;transceiver:收发器;utp:无屏蔽双绞线;thinnetcoaxialcable:细同轴电缆

1.数字化图像采集子系统:从螺旋ct、mri等数字化影像设备直接产生和输出高分辨率数字化原始图像至dicom服务器,供中心存储、打印、浏览及后处理。

2.数字化图像回传子系统:将中心存储的图像数据回传给螺旋ct、mri等数字影像设备,供打印、对比参考及后处理(三维重建等)。

3.医学图像处理子系统:在aw工作站及各图像浏览及诊断报告书写终端上进行调节窗宽/窗位、单幅/多幅显示、局域/全图放大、定量测量(ct值、距离、角度、面积)、连续播放和各种图像标注等。

4.医学影像诊断报告书写子系统:书写规范、标准的医学影像诊断报告。

5.图像中心存储子系统:图像短期内(5~7天)保存在dicom服务器的硬盘中,当图像数据累积到一定数量(650mb)时,将其刻录到cd-r(compactdisk-recordable,刻录盘)盘片上作为长期存储。

二、医学图像浏览及影像诊断报告系统

医学图像浏览及影像诊断报告系统使用的软件包是由航卫通用电气医疗系统有限公司(简称gehw)提供的advantageviewerserver/client1.01。该软件以windowsntserver/workstation4.0为操作平台,分为服务器端和客户端两部分:服务器端软件负责完成医学图像的传输、中心存储、数据库管理等任务;客户端软件具有医学图像浏览和影像诊断报告书写功能。

服务器端软件包括图像浏览、图像管理、光盘数据库和系统设置4个模块。(1)图像浏览模块具有简单的图像浏览功能;(2)图像管理模块包括存储、删除、图像输出等子模块,在这些子模块中通过以患者姓名、年龄、性别、ct号、检查序号、检查类型、检查日期等为关键词在dicom服务器硬盘、光盘上查询所需图像并进行相关处理;(3)光盘数据库模块储存有每张光盘图像检索信息以备查询;(4)系统设置模块管理各输入输出设备的ip地址等。

医学图像浏览软件具有强大的图像处理功能,可以通过网络从dicom服务器硬盘、光盘上调阅所需图像,并进行图像浏览和后处理。它包括窗宽窗位、图像、几何、网络、显示格式、连续播放等功能模块:(1)窗宽窗位模块通过预定义、用户自定义及精确设定窗宽窗位,使图像得到最佳显示,另外还可以通过鼠标左键进行调节;(2)图像功能模块可以对图像进行放缩(1~300倍)、滤波、对比度(-100~100)、旋转(0~360°)、三原色(rgb)色彩处理;(3)几何功能模块可以将图像垂直或水平翻转、加网格、负片处理、定量测量(ct值、距离、面积、角度)及标注等。经过后处理的图像可以直接输出至诊断报告系统或以不同文件格式存盘以供制作幻灯片。

医学影像诊断报告系统软件镶嵌于医学图像浏览软件内,可以在浏览图像后直接书写诊断报告。医疗诊断报告主窗体上的输入项如姓名、性别、年龄、ct号、检查序号及检查日期可直接从数据库获取,报告日期由系统自动生成,科别、报告模板等项通过下拉菜单选择。检查所见、印象两项可直接从诊断支持库提取正常或常见病、多发病的检查所见、印象,直接或经局部修改后形成诊断报告主体。程序提供了撤消、剪切、复制、粘贴、清除、全选、字体等编辑功能。该软件可输出4种格式的诊断报告,其中可包含1~2幅典型图例。用户可通过1个或多个关键字段检索和调阅诊断报告。

结果

在上述pacs的硬件设备安装、组网完成后,在基础网络连接(tcp/ip)和dicom水平传输这2个层次上,对pacs进行整体调试,成功地实现了数字化图像在pacs内的传送、中心存储、易机图像处理、不同操作系统(unix和windowsnt)不同格式图像(adv和dic)在dicom3.0标准水平的相互兼容和影像交流,以及pacs内影像诊断报告的书写、共享、打印等功能。1999年初pacs正式用于我科的ct及mri室,显著提高了科室的工作效率及管理水平。

讨论

数字技术、计算机技术和网络技术的飞速发展带动了医学影像技术的突飞猛进的发展,同时也推动了医生工作模式的变革:要求医生逐渐习惯于在显示器的荧光屏上观看医学图像;通过计算机检索和调阅医学图像,并且调节窗宽窗位;通过计算机网络随时获取所需的医学图像及诊断报告等相关信息。

一、传统的医学图像处理方式存在的问题

(1)保存胶片需要很大的存放空间。(2)在显影、定影、冲洗、烘干、归档等环节上要耗费大量的人力和财力。(3)胶片库手工管理效率低,查询慢且容易把胶片归错档。(4)数年后由于胶片的老化使其上的图像变得模糊不清,给再次查阅和科研工作带来极大的不便。(5)把ct、mri等图像硬拷贝到胶片上,固定的窗宽、窗位已经丢失了大部分原始信息,保留的只是操作医师认为有用的信息,图像无法后处理,丢失了对病人复诊和其他医师认为是有用的诊断信息。

二、pacs在影像学科中的应用价值

(1)利用pacs网络技术,在ct、mri等影像科室之间能快速传送图像及相关资料,做到资源共享,方便医师调用、会诊以及进行影像学对比研究,更有利于患者得到最高的诊断治疗效益。(2)pacs采用了大容量可记录光盘(cd-r)存储技术,实现了部分无胶片化,减少了胶片使用量和管理,减少了激光相机和洗片机的磨损,降低了显定影液的消耗,节省了胶片存放所需的空间,降低了经营成本。(3)避免了照片的借调手续和照片的丢失与错放,完善了医学图像资料的管理,提高了工作效率。(4)可在不同地方同时调阅不同时期和不同成像手段的多幅图像,并可进行图像的再处理,以便于对照和比较,为从事医学影像学工作的医务人员和科研人员提供方便的工作、科研和学习的条件。(5)有利于计算机辅助教学,进一步提高教学质量。运用pacs可无损失地储存图像资料,待日后调阅发现有价值且符合教学内容要求的图像,标上中英文注释,利用powerpoint软件制作成教学幻灯片,采用大屏幕多媒体投影仪示教。

规范的医学影像诊断报告书写功能,可打印出图文并茂的影像诊断报告。

三、诊断报告规范化、计算机化

(1)基本项目要求规范化。诊断报告中反映病情的一般项目齐全,备查项目比较完整。(2)报告的专业术语规范化。内容表述清楚,主次分明,先描述阳性征象,后描述阴性征象,先描述主要病变,后描述次要病变,描述部分与结论一致。(3)基本格式规范化。先一般项目,再描述图像情况,然后作结论表述,最后还有做其他进一步检查的建议。

医学影像后处理篇3

【关键词】医学;影像;物理;技术

【中图分类号】R-0 【文献标识码】B 【文章编号】1671-8801(2015)03-0272-02

当前时代背景下的医学影像物理和医学影像技术发展以依靠功能成像为主,核心点即为人体心理生理成像和人体心理功能成像。我们通常所说的生理成像也就是基础性参数成像,此项内容以生理参数形式在人体内部进行分布,上述分布形式需要相关人员进行数据重建才能获得,之后在此基础上还要给予其数次分析和详细计算。心理成像技术的复杂性显而易见,由于多少会联系到实验设计的准确性,成像设备设定过程中要对其进行被试控制以达到预期效果。但是心理成像临床精神疾病诊疗实验才会起突破最大的一个点,内生物法分析动态成像和反义核酸水动态成像是现下医学领域多次讨论和研究的科学问题之一,上述成像方法和成像技术会对医疗机构改革造成重大影响。

一、医学影像物理要点分析

1.X射线成像要点分析

1970年之后出现了X射线断层成像技术,X射线断层成像技术是较为传统的影像技术之一,以也是最为成熟的成像方法之一,X射线断层成像技术速度之快足可以完成对心脏进行动态成像,将显像增强剂XCT成像技术进行科学合理融入,可对血管病变进行检查,同时也可对血脑屏障病灶破坏与否进行适时检查,此项技术实质上归属于功能成像的基本范畴之内。需要注意的是,病人体内剂量接收和病人片厚接收过程中,医生均应进行折中筛选,对比度因素提高和相关空间分辨率提高,二者会受到一定制约因素影响,但是多模态集成成像基本装置中,新型PET和MRI都相继问世,在某种程度上为用户提供质量方法选择权限,软件水平元素和硬件水平元素之上的医学影像集成有时呈多模态发展趋势,此类状况也是未来发展趋势之一。

2.核磁共振成像要点分析

采集技术以成为操作主选,其发展态势偏于良性化,但是气体成像确是商业首选,肺部现象中的体现尤为突出,当下MRI基本功能成像设备应用范围内,主要分为人脑认知功能成像内容,此种内容旨在对人体大脑工具机制进行实时性的心理测量,并在诊断过程中可以为肿瘤疾病等提供相应可靠治疗信息,之后在此基础上为体内肿瘤发展阶段信息以及相关体内肿瘤扩散程度信息等且进行及时准确判断,一般情况下,其以人脑功能可视化工具形式产生。MRI设备通过不断更新与调整,其已然达到了10Tesla的高超操作水准,具体性结构系统发杂程度相对于设备维护因素和设备功能开发因素而言,其是及其重要的。单从数据采集角度而言,微电子技术会被适当应用到体素水平研究上,通过并行采集技术完成编码技术脱离,使得MRI成像速度得到稳步提升。

3.超声波成像要点分析

UI实质上以非电离辐射成像模态形式产生,主要分为平面成像产品和对应断层呈现产品两种,因为二维成像才是其重要组成部分和重点操作环节,还有就是血液流动彩色杜普勒成像仪器设备的合理接入,此项产品便难以流通,三维成像技术和相关三维技术产品普及程度不高,但是我们此处所谈及的三维也并不是真正意义上的三维,其主要是指将二维切片进行叠加,在叠加之后得到所需的准三维图像。需要注意的是,UI仪器设备发展过程中极有可能超过X射线成像,并会成为医学影像工作中的首选医学工具。应该了解到,超声波成像具备成像安全可靠和操作价格低廉等优异性,所以诊断治疗和介入治疗以及相关影像检测环节等都会得到不断发展与完善,其数量基础性增长速度已然超乎人类想象。

二、医学影像技术要素分析

处于首位层次上的工作和与处于首要层次上的硬件相关的软件关系尤为密切,二者主要对成像装置操作部件控制内容进行承担,与此同时,数据采集内容和图像预处理内容以及相关图像重建内容等也被包含在内,并且也需要将临床数据信息进行采集,之后在此基础上对其加以分析。依据长远角度而言,医学软件和医学硬件的结合是医学领域发展过程中的必然需求,以此种模式便可有效提高医学水平的竞争力度。次要层次软件核心针对环节是对机械数据进行分析和处理,需要医护人员相互配合才能完成正规操作,现下我国没有形成三位一体合作机制,现有商业软件开发仍旧落后与他国。PACS技术的出现有力补漏了技术空缺,节点设置将成像设备作为主要内容,多模态形式之上的医学影像资料信息会被不同类型专业图像处理平台加以处理以有效满足基础性医院临床工作需求。上述软件与图像工作平台相互联系,之后在此基础上在于与PACS进行对接,以此种模式来完成局域网节点创建,适时通过与医院就医病人接诊过程进行病人具体信息录入,完成优良性质为主的图像站创建。此时需要在作出科学合理病情诊断的同时打印出相关病情报告,图像站中的工作人员可以对同意病人进行数据信息采集,然后与图像配准环节有机融合,只有这样才能在一定程度上提高医院对病人的治疗质量和诊断效率。

结束语

综上所述,医学影像物理和医学影像技术是当前物理学整体中的核心分支结构,需要对成像问题和图像处理问题以及相关医学图像临床应用问题等有所了解。与此同时,物理问题内容和算法内容以及对应软件设计内容也是其中重点,疾病诊断医学影像内容和疾病治疗医学影像内容以及疾病科研医学影像内容都是重要人体信息载体,合理分析影响物理和技术可促进行业内部的稳定发展。

参考文献:

[1]周洁,白木.21世纪的医学影像[J]. 医疗保健器具. 2001(02)

[2]陈卫国,黄信华,张雪林,王晋豫.医学影像存储与传输系统构建策略和实施的初步体会[J]. 中华放射学杂志. 2002(10)

[3]威廉・亨达.21世纪的医学影像[J]. 医疗保健器具. 2003(06)

医学影像后处理篇4

关键词:医学影像科;急诊处理;临床分析

Abstract:Objective:Emergency treatment and significance analysis of medical image Branch.Methods:40 cases were handled properly in the medical imaging department, we have achieved a good clinical effect and no complications occurred in the late follow-up, no deaths.Results:40 cases were accepted in the medical imaging department, emergency treatment, we have achieved a good clinical effect, and no complications occurred in the late follow-up, no deaths. Conclusion:Department of Radiology, Emergency treatment of patients, the clinical significance of accurate and timely and reasonable treatment of certain emergencies, rapid, accurate and scientific to provide an effective imaging report information for clinical diagnosis reasonable basis, which will help expand the targeted clinical interest to save the patient therapy.

Key words:Medical Imaging Division; emergency treatment; clinical analysis

【中图分类号】R445 【文献标识码】A 【文章编号】1672-3783(2012)06-0180-02

1 前言

在医学影像科对急诊工作进行开展,在临床急诊中有着极为重要的意义,是临床急诊工作的一个关键性环节。急诊工作的顺利开展需要医学影像科的相关人员为其提供准确的影像学资料,这就需要影像科的医技工作者必须具备一定的检查技巧和检查技术,将工作流程进行简化,尽量减少急诊患者在医学影像科的就诊时间,为抢救工作的顺利开展争取赢得更多的宝贵时间。为避免在医学影像科出现应急措施及检查操作不当的问题,以下将结合2009年2月至2011年5月来我院医学影像科接受急诊处理的40例患者的临床资料进行回顾性分析,其具体情况如下。

2 资料与方法

2.1 一般资料:2009年2月至2011年5月我院医学影像科共对40例患者进行急诊处理,女18例,男22例;年龄在25-76岁之间,平均年龄为45.67岁;患病与就诊距时间在10分钟到5小时之间,平均为0.25个小时。其中,因交通事故而需急救的患者21例,机械性损伤的患者9例,高空坠落伤的患者10例。头部20例,脊柱3例,躯干部2例,胸腹部3例,颈部8例,骨盆4例。

2.2 急救的原则:对于多创伤的患者,其抢救必须先于诊断及治疗,采用优先处理的原则,以保障致命性损伤患者的生命安全,为患者争取更多的抢救时间,快速的实施抢救。

2.3 进行急诊的处理

2.3.1 观察患者的病情变化:将院前的抢救工作做好,观察并记录病人的脉搏、呼吸、意识、心率、睦孔、血氧的饱合度、出血量、尿量、血压、出血量、伤情变化等,为病情判断、病情的预见都有着直接的影响,有利于后期的指导治疗。

2.3.2 对药物治疗进行观察和护理:对正在进行静脉滴注的患者,要加强对其观察,观察有无药物不良反应,滴注的速度也要进行合理控制,不能触碰到患者的注射部位。

2.3.3 接诊的一般程序: 在接到急诊科CT检查摄片及申请单的第一时间,就应该对其进行仔细的观察和阅读,对患者的病情进行准确的把握,如果申请单的字迹有不清楚的情况出现,不能进行胡乱猜侧,必须与临床医师取得联系后再进行确认,并与患者家属进行沟通,了解其详细病情并制定出合理的处理方案。为了保障最佳的抢救时机,对于某些程序比较繁杂的事项可以在后期进行处理,而对于那些直接进影像科的急诊患者,临床医生需先对其进行急救处理后,再进行CT检查或撅片,避免意外的发生。

2.3.4 做好检查的准备:依照患者的申请单,对其家属进行简单快速的病情询问后,再制定出最佳的检查方案。在检查的过程中,检查质量会受到检查参数的影响,检查参数必须准确的设置及调节。初始的图像是后期处理的条件基础,某些患者可以通过对图像进行处理后而对病情进行进一步的了解。摄片时可选择规格较大的片盒、平板探侧器、数码板等,患者的要有利于常规的检查,这样才可以得到准确的影像学资料,若患者受到限制,其选择尽量让患者可以接受,但应准确、迅速、轻柔。原则上应减少患者的变动,可以对机架的移动性及X线球管加以利用,尽量在一种姿势下完成多部位的身体检查。

2.3.5 检查的具体操作:操作人员必须对设备的性能、技术指标、操作步骤等进行熟悉,熟练的掌握正常人体各部位的检查参致及检查位置,操作的过程中要轻巧适度,在确保诊断价值的前提下,迅速的进行检查,为临床救治赢得更充分的时间。依照病人临床的表现和初步的诊断结果,对检查的部位、检查参数、角度进行准确地判断,做出具体的诊断报告,为临床治疗提供更多的影像学信息。对于昏迷、病危的患者为减少对其进行搬动,可以在推送平车及担架上进行摄片,而对于某些必须进行的移动的患者,要慎重操作,准确迅速的完成检查;外伤或胸腹部疾病的患者,需要对其进行站立式的检查,了解其是否出现腹腔脏器穿孔及血气胸等情况,不能进行站立的患者,可取半卧位或坐位进行检查,病情十分严重的患者,可以将诊断床进行倾斜,以尽量得到检查效果。

2.3.6 出具诊断报告:当检查结束后,要在第一时间出具患者的急诊报告,在对重要的阳性征象不遗漏的情况下,影像的描述可以尽量的简化。若患者在检查时受到了的制约,无法得到准确的检查结果,给影像的实际诊断带来了困难,也应该尽量提供较有价值的影像信息,确保临床抢救的顺利进行。

2.3.7 与患者进行心理上的沟通:在医务工作中沟通也是其重要环节,在影像科的急诊处理中也显得十分重要。突发事件发生后,患者会出现焦虑、急躁、恐惧等心理,缺乏必要的思想准备,医护人员要积极的与其进行沟通,做好心理上的护理,让其重新树立战胜病魔的信心,积极主动的接受治疗。

2.3.8 树立风险意识:在急诊中给危重的患者进行检查时,如多发性骨折、颅脑外伤等,需要得到临床医师的陪同,当意外出现时,临医师可以立即采取协的处理措施。

3 结果

在影像科对40例急诊患者进行妥善的处理后,取得了良好的临床效果,影像报告单的出具也准确、及时、清晰。

4 讨论

急诊的病情极为的复杂和多变,对影像科的工作也有越来越高的要求。操作不当,便有可能延误病情,失去最佳就诊时机,给临床的救治工作带来不便。在日常的工作处理中,影像科在保障病人生命安全的同时,也要快速的出具影像报告。若出现了异病同形、同病异影的情况,可以结合患者的临床病症及有关的检查资料,对患者进行确诊。在进行急诊处理的过程中,存在着较大的风险性,因此,必须进行科学的风险防范,对突发事件进行及时的应急处理,努力的做好每一个环节,避免意外的出现,为临床医师提供更多的影像学信息,保障急诊工作的顺利开展。

参考文献

[1] 郑西川,吴允真,胡滨.区域医疗医疗影像信息共享计划的进展和面临的挑战[J].中国医疗器械信息,2009(10)

医学影像后处理篇5

一、医学图像存储与通信系统结构分析

1.硬件结构

1.1影像采集。硬件系统主要完成对各类医学影像数据的收集、管理以及应用,对于采集设备其主要功能就是获取各类信息数据,如CT、CR、ECT、内镜、核磁共振以及超声波成像等[1]。现在所应用的数字化影像设备可以直接从各类医学仪器上完成影像数据的采集,并且可以将非DICOM标准格式转换为DICOM格式。

1.2影像存储。对于医疗行为中所产生的各类图像,可以通过服务器、磁盘列阵等对其进行存储管理。因为系统中应用计算机技术与网络技术,对各类影像数据的存储可以直接上传到数据库中,可以更方便的实现数据的共享。其中,系统所应用的网络设备主要包括高度宽带网络系统,以及存储区域网络等。

1.3显示设备。系统中所应用的显示设备,必须能够满足各类影像数据的显现需求,同时可以保证医疗诊断图像的有效处理,为后续医疗活动提供更充分有效的数据支持。

2.软件结构

2.1影像归档。以系统数据等级为依据对各类影像数据进行登记划分,并做好系统存储设备的管理,并将近期需要使用的影像数据上传到在线设备上,其余暂时不用的则可以上传到离线或者移动存储设备上[2]。另外,还应结合医生实际应用需求,将各类所需数据资料上传到客户端,在对病人病情进行分析研究时,可以更快速的完成对信息的调取与应用,提高信息应用效率。

2.2数据库。日常医学工作会产生大量影像数据信息,要想完全完成所有信息数据的管理,必须要对系统配置图形数据传输、图像处理以及数据库管理软件,不但可以将各类医疗图像与诊断报告等数据资料上传到系统数据库中,同时系统服务器还可以实现对各类数据的分类整理,最终将其上传到相应的存储介质中,并以满足实际需求为目的,实现不同介质之间信息的交换与转存。

2.3系统管理。系统设计应满足群集与服务器的分级管理,支持不同系统之间数据的交换与互联,并且可以同时完成对多个系统的协调性指挥与控制,按照设计工作流程完成对整个工作站的管理。

2.4处理应用。系统还应对各类影像数据进行格式转化或者压缩处理,并且要求在医生客户端能够实现对病人影像资料的显示与基本处理,如影像回放、多切面重建、三维重建以及出据诊断报告等。另外,对于系统来说,医生查询与应用的所有影像数据信息必须是实时的,应将显示时间控制在2s范围内。

二、医学影像存储与通信系统实际应用分析

1.医学影像数据采集

随着DICOM标准的逐步应用,可以将可以以直接或者间接的方式,将医疗行为产生的图像转换成系统可以存储与处理的数字化形式。以下三个方面阐述了DICOM是医学影像数据交换的主要标准,第一:定义了图像通过点对点、网络方式、文件方式等进行交换的方法和规范;第二:定义了病人信息以及相关病人图像参数和格式信息;第三:所有医疗图像、诊断报告等数据的收集、整理以及存储等行为都可以利用计算机来实现,其中图像数据资料的采集处理主要就是利用图像采集卡完成设备模拟视频信号与数据信号的转变,最终可以通过软件完成数字信号的接收并形成图像信息,并且使用专业化图像采集设备进行数字化处理后采集[3]。

2.影像数据存储与管理

医院所应用系统的存储模式和管理流程主要分为在线、近线和离线存储以及管理等类型。在具体是规划系统时,保证系统提供商可以对医疗图像数据存储管理各类模式间的迁移过程,就维护与控制等方面提供自动执行以及管理能力。并且要求系统可以实现对超大规模数据库管理系统的控制,完全实现对数据库内所有图像资料的管理与应用。必须要求其有能力处理超大数据的运转,传统的实践表明,在医院中每天都会生出医学图像会非常多来增加进系统的数据库中。目前,系统数据通常要分级存储,即:对于常用数据保存3-6个月的影像资料,并存储在在线设备中;过期数据保存在近线设备或者离线设备,保存时限为5年之内;保存超过5年的影像资料在离线设备中保存。随着存储上设备的日益小型化、大容量化,图像保存的相应成本逐渐降低,存储设备的空间限制在不断减少,可以在更大程度上满足系统各类图像信息的存储与控制,提高了各项图像的应用效率。

3.影像显示与处理

医学图像存储与通信系统具有较好的处理功能和人机界面,在实际应用中,满足不同操作水平医生实际应用需求。这就对系统功能的完全性有了更高的要求,保证其具有数据存储、数据查询、图像显示以及图像处理等功能,并且可以通过良好的人机界面来达到图像缩放、编辑、旋转等处理,保证可以在各方面促进医生对疾病的确诊速度与准确性,提高医院对系统的要求。

三、医学影像存储与通信系统应用所存问题

对于医学图像存储与通信系统来说,虽然目前在研究上已经取得了一定的成果,但是受开发经费影响,现在很多医院所用系统设备仍比较陈旧,缺少标准数字接口,尤其缺少可以利用网络传输医学图像的设备。对于很多医院来说,受建设规模以及自身经济等因素影响,系统设备投入力度不足,再加上医学人员计算机操作水平比较低,日常操作不规范,如果后期设备维护不到位,很容易导致设备发生故障,这样就会对医疗活动产生影响。另外,现有开发的HIS/RIS系统忽略了标准化问题,不能顺利与系统集成。从总体上来看,我国对此项系统的研究效果还比较低,仍存在各种技术问题,还需要做更进一步的研究分析。

医学影像后处理篇6

【关键词】数字图像;医学;影像

1研究对象及方法

在本次研究过中我们挑选了8例肺癌患者,其中男性患者和女性患者各有5例。经过手术以及组织病理检验证实这八位患者均换有肺癌,所有患者均进行CT检查以及PET全身影像。两项检查之间的间距不超过一周。其中,PET中采用的是PET仪,需要患者在检查之前进食六小时,注射麻醉剂,一小时后平躺呼吸进行透射扫描交替进行数据采集。CT检查所使用的是GELightspeedultraspiralCT。患者屏住呼吸之后进行胸部的扫描。数据传输过程中,PET发射扫描和所获得的三维容积数据文件格式为*.V,而CT检查的数据为连续横断面断层图像数据。可以利用计算机传入pc客户端。对于CT图像需要进行三维重建,可以利用三线性内插法来获取三维容积数据。在像素转化时也可以采用三线性内插法将两组检查的三维容积数据转化为同等像素大小的三维数组,在数据转换中可以将两组数据转化为八位字节的数据,经过ps软件处理之后来获得256个灰度级的像素灰度值,最终要进行图像的输出,获得的PET和CT融合图像,需要以容积重组技术来进行三维立体呈现。分别获得不同断层的融合图像,能够显示在计算机屏幕上,也可形成多种文件格式进行储存。

2研究结果

如下图所示是脑部XCT的影像,左图是最初的CT图像,成像参数值密布处于低值区域,而右图是经过Ps软件处理之后的CT影像。比较两种CT影像最终要进行图像的输出,获得的PET和CT融合图像,在具体利用ps软件过程中的步骤如下所示:首先,在计算机界面运行ps软件打开最初的图片左图像,点击调整之后,打开曲线对话框,曲线是用途较广的色调调整命令,能够利用该功能来调整图像的亮度,对比度等,在这个对话框中,红色标代表源图像的色调,而纵坐标代表调整之后图像的色调,在进行曲线调整过程中,首先需要在曲线上的点单击,并左键拖动即可改变曲线的形状,当曲线向左弯曲时,表示色调变亮,反之色调变暗。点击低值区域的某个点并拖动曲线可以看到图像会随着拖动范围而发生变化,清晰度也会发生一定程度的变化。除此之外,还需要调整不同的点的调整曲线,直到最CT图像呈现最理想化,点击确定之后,就可以完成图像的调整。通过观察,我们发现这八位肺癌患者所有的病灶能够CT图像上明确定位,并且影像人员可以清晰的看出病灶与周围解剖结构的关系,将这种交互式的三维容积图像能够利用计算机ps软件进行处理前,对于计算机的性能要求不高,计算效果较快,所有的操作可以在十分钟之内完成。在医学影响中常用的PET和CT图像可以融合为PET图像来提供患者的解剖信息,由于这些影像空间分辨率较低,而且单从PET图像上很难看出患者的病灶与周围组织结构的解剖关系。然而,通过计算机ps软件对PET-CT图像进行计算和处理,能够提高影像人员对于患者诊断的准确性,具有一定的临床价值。

3计算机对医学影像的重要性

从根本上来说现在医学影像是利用电离辐射的性质以及物质相互作用规律,利用现代化技术来进行采集医学成像的数据,遵循一定的数学方法来重建数字图像,因而需要深入分析医学图像所隐藏的信息,并控制好图像质量。然而,对于影像人员来说,仅具备医学知识是不够的,还需要具备有关计算机数学知识等相关理论作为保障。我们从医学影像的显示器上可以准确看出每条线,每幅图片和动态图,然而对于计算机来说,会将这些图像作为数据,进行可操作二进制数,不同数据分别代表了不同的生物信息,呈现给我们不同的视觉,也就是构成了不同的数字图像。在医院中常见的CT影像是一种体层像,首先需要通过一定的方法收集体层投影数据,然后通过数学算法比如滤波反投影法,对所收集到的数据进行分析处理,最终获得二维数据分布,根据这些分布图能够转换为灰度分布,进而能够得到CT像。由于在二维数据中相对应的每个数据都为整数,因此,在CT图像的灰度分布中,每一个区域代表一个灰标,也被称为是像素,像素矩阵构成了CT像,因此CT像也属于是一种数字图像。

4讨论

医学影像后处理篇7

1 医学影像融合的必要性

1.1 影像的融合是技术更新的需要 随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。

1.2 影像的融合弥补了单项检查成像的不足 目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。

1.3 影像的融合是临床的需要 影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。

2 医学影像融合的可行性

2.1 影像学各项检查存在着共性和互补性为影像的融合奠定了基础 尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。

2.2 医学影像的数字化技术的应用为影像的融合提供了方法和手段 现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。

3 医学影像融合的关键技术

信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。

图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的一些参数,它被广泛应用于放射治疗和立体外科学[3];(2)表面相合(SFIT)法:SFIT法又称头和帽法。其原理:所有融合影像上可识别的同一解剖结构表面之间的均数平方根(RMS)距离最小,其中,可用手工或半自动的边缘探测规则从每种影像的一系列图片得到的器官外部轮廓就是表面;头代表从较高分辨率影像中获得的表面模型;帽子代表从较低分辨率影像中获得表面的一系列独立的点[4];(3)空间力矩配对:协调中心点和主轴(PAX),使PAX惯性力距最小,融合时包括计算偏心和旋转以协调PAX和比例[5];(4)交叉相关法:此法基点是两种影像的相关系数值最大(接近)。主要用于同一种显像方式影像的融合[6]。以上4种融合方法可分为两大类:(1)前瞻性融合法:在显像采集时使用特别措施(如协调器具,外部标志等);(2)回溯性融合法:在显像采集时不采取特别措施。

近年来,有学者从另外的角度将融合技术归纳为单模融合、多模融合和模板融合[2]。(1)单模融合:是指将同一种影像学的图像融合,多用于治疗前后的对比、疾病的随访观察、疾病不同状态的对比、运动伪影和设备固有伪影的校准等方面;(2)多模融合:是指将不同影像技术的图像进行融合,包括形态和功能成像两大类,多模图像融合主要是将这两类成像方法获得的图像进行融合,其意义在于克服功能成像空间分辨率和组织对比分辨率低的缺点,发扬形态学成像方法各种分辨率高、定位准确的优势,最大限度地挖掘影像学信息,直接进行不同成像方法之间的比较,多用于神经外科定位手术、制定治疗计划等方面;(3)模板融合:是指将患者的图像与模板(解剖或生理图谱等)图像融合,这种方式也适用于不同患者的图像融合,主要用于正常结构的统计测量、不同患者同一类病变的比较、监测生长发育和衰老进程等方面。

4 医学影像融合的临床价值

利用计算机技术对获取的影像信息进行处理,并将其成果应用于临床已成为现代医学影像学发展的主要方向。通过影像的融合,将多项检查成像进行综合分析、处理,再现出全新的、高质量的影像,对于临床的价值主要体现在3个方面:(1) 对影像诊断的帮助:融合后的影像能够清晰地显示检查部位的解剖结构及毗邻关系,有助于影像诊断医生全面了解和熟悉正常组织、器官的形态学特征;通过采用区域放大、勾画病变轮廓、增添病变区伪彩色等手段,能够增加病变与正常组织的差异,突出显示病灶,有助于诊断医生及时发现病变,尤其是早期不明显的病变和微小病变,避免漏诊;在影像中集中体现出病灶在各项检查中的典型特征,有助于诊断医生做出更加明确的定性诊断,特别在疑难疾病的鉴别诊断中,作用更为显著[7]。(2) 对手术治疗的帮助:在影像的融合中,采用了图像重建和三维立体定向技术,充分显示出复杂结构的完整形态和病灶的空间位置,同时清楚地显示出病变与周围正常组织的关系;对于临床制定手术方案、实施手术以及术后观察起了重要作用[8]。(3) 对科研的帮助:影像的融合集中了多项检查的特征,同时体现了解剖结构,病理特征,以及形态和功能的改变,并对影像信息做出定性、定量分析,为临床进一步研究疾病提供了较为完整的影像学资料。

5 医学影像融合的应用前景

目前,图像融合主要应用于体层成像。随融合技术的不断发展,其在非体层成像方法中的应用逐渐增多。已有研究将血管内超声与二维X线血管造影图像进行融合,认为融合图像能克服超声显示冠状动脉形态的局限性、准确重建出血管的解剖结构、反映血管的真实弯曲[9]。

以医学成像技术为基础,结合影像诊断、影像导航、介入治疗和外科等学科所形成的计算机辅助科学是计算机在医学应用新的发展方向。图像融合技术有助于计算机辅助科学的成熟,特别是三维图像融合的研究与开发。

随着PACS在医院逐渐推广应用,为多种影像学技术的综合应用提供了广阔空间,加速了图像融合的发展。有人利用图像融合建立自动识别警告系统,校正PACS进行图像存储及归档的错误[10]。

远程医学是网络时代产物,是实现医学资源全球共享的方式。图像融合在远程医学中有广阔的应用前景。如进行远程手术,将多模图像融合成多参数、仿真人体模型,配准到术中真实器官上,可有效指导制定远程手术计划,有助于顺利实施手术[11]。

综上所述,医学影像的融合是利用计算机技术将多项检查成像的特征融合在一起,重新成像;影像融合既保留了原有的后处理技术,又增添了新的内容;它是信息融合技术、数字化技术、计算机技术等多项技术的综合和在医学影像学应用的深入和扩展。医学影像的融合将会带动医学影像技术的又一次更新,并将是影像医学新的发展方向。

【参考文献】

1 康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.

2 Hill DL.Medical image registration.Phys Med Biol,2001,46:R1-R45.

3 Liehn JC,Loboguerrero A,Perault C,et al.Superimposition of computed tomography and single photon emission tomography immunoscintigraphic images in the pelvis:validation in patients with colorectal or ovarian carcinoma recurrence.Eur J Nucl Med,1992,19:186-194.

4 Turkington TG,Jaszczak RJ,Pelizzari CA,et al.Accuracy of registration of PET,SPECT,and MR images of a brain phantom.J Nucl Med,1993,34:1587-1594.

5 Alpert NM,Bradshaw JF,Kennedy D,et al.The principal axis transformation:a method for image registration.J Nucl Med,1990,31:1717-1722.

6 Bacharach SL,Douglas MA,Carson RE,et al.Three-dimensional registration of cardiac positrom emission tomography attenuation scans.J Nucl Med,1993,34:311-321.

7 丁里,朱之庄,武绍远,等.标准化神经影像融合技术及临床应用研究.中国医学影像技术,2000,16(2):88.

8 汪家旺,罗立民,舒华忠,等.CT、MRI图像融合技术临床应用研究.中华放射学杂志,2001,35:604.

9 Cothren RM,Shekhar R,Tuzcu EM,et al.Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography.Int J Card Imaging,2000,16:69.

医学影像后处理篇8

关键词:医学彩色图像;图像分割;作用

大量的医学图像多是通过各种显微成像仪来获取,这些医学图像和别的图像工业物体图等又不同。医学图像成像机理多种多样,数据结构变化复杂,数据信息量大,因此其具有独有的特点:

1、医学图像多为多个像的图像。由于细胞在组织中分布密集,毗邻较近甚至挤压连结在一起,所以在图像编辑时会存在粘连和重叠现象;而在切片时,由于切片的任意性,不可避免的也会出现细胞的粘连。

2、单个像的医学图像会出现采集图像的边界不够清晰。这是因为受各种噪声(例如水珠和其它附着物等),摄像设备分辨率不够,样本制作不同和光照不均匀等各种因素的影响,使图像采集的清晰度不够,阳性背景与对照背景的分界线不太明显。

根据医学图像的以上这些特点,在对医学彩色图像进行图像处理前,图像分割占有十分重要的作用。在研究和应用图像时,往往只对图像中某些具有独特性质和特定的的区域目标或前景感兴趣。根据每幅图像的组成结构以及应用需求来将图像分割成若干个互不交集的子区域,人们就要从图像中把识别和分析的目标或前景分离提取出来,分离提取出来以后才有可能完成对目标进行测量和对图像进行处理。所以图像分割就是指把感兴趣的目标与背景分离出来,并按照不同的含义把目标分割开来,也就是提取目标。

例如:在对免疫组化的彩色图像进行处理时,先要进行图像分割,图像分割也是免疫组化彩色细胞图像中阳性细胞的提取、定量分析的重点。好的免疫组化彩色细胞图像分割法能对阳性细胞进行计量分析,并且能进行形态分析等,免疫组化彩色细胞图像分割问题的解决对临床病理医生的定量分析、百分比计量具有重要的作用。显微图像的分割法目前在医学图像处理中,仍然是国际研究的重点课题之一。在临床诊断研究、医学科研研究、病理诊断分析、医学影像信息处理、计算机辅助疾病诊断等方面,图像分割的应用范围十分广泛。在这些图像处理应用中,图像分割是不可缺少的一步,且也是最关键一步。医学彩色图像进行图像分割时其意义有以下几点:

1、可以为穿刺、放化学治疗、外科手术等方案中提供病灶的位置、分布区域面积的定位目标。

2、可以定位建立感兴趣区域的病灶信息数据库,测量一些病灶的几何的、统计的、病理的特征数据。

3、可以为治疗效果评价、病理诊断分析、临床研究诊断提供解剖结构、病灶等相关信息形态学依据。

医学图像分割的基本原理就是将图像分割成若干个互不交集的子区域的过程。在分割的子区域中,它们是相互分开的,当像素是在相同的子区域内时,则应当是连通的,连通是集合中的任意两点之间都存在着完全属于这个集合的连通路径[5]。

目前,图像分割有很多方法,归根到底,主要有三种不同的途径:

1、以图像的边界为对象来进行分割,直接确定区域间的边界来实现分割。

2、以区域为对象来分割,根据图像的灰度、色彩、变换关系等相似特征来划分图像的子区域,并且将各个像素划到相应区域称区域法。

3、对图像边缘像素进行检测,然后再进行分割。

这三种是不同的方法,是互补的,有时适合选择一种分割方法,在另外的情况下要选择另外一种,有时将这些方法合在一起分割效果更好。图像分割没有通用的、标准的、唯一的方法。分割方法主要包括:灰度阈值分割法、边缘检测法、区域分割法和聚类法等。以免于组化的彩色图像分方法:基于色度学准则先建立一个彩色图像的色度学准则,将彩色图像粗分割成只有阳性图像;然后在此基础上用分割法对粗分割后的图像分割,提取阳性细胞;最后对分割后的阳性细胞图像进行修正,从而计算出阳性细胞的个数和面积。

图像分割是指把图像空间中所要的对象或一些有意义的区域分割出来,使这些区域能和背景分割开,提取出图像中感兴趣的目标,特别是可将细胞图像的特征参数自动测量出来。分割的好坏会直接影响到后续图像分析图像分割是数字图像处理中的关键步骤。因此,图像分割在医学彩色图像图像处理中占了非常重要的作用,是图像处理中从图像预处理到图像分析处理最为关键的一步骤。一方面它对特征测量、特征提取及度量有重要的影响作用,是目标表达的基础;另一方面,对图像分析和理解在图像分割后更加容易。

参考文献:

医学影像后处理篇9

DICOM(digital imaging and communications in medicine,医学数字影像传输)标准为在标准网络框架内不同来源的医学数字影像设备间互联、影像相互交流和操作提供了技术实现的可能性。由于该标准对具体的实现机制并未作强制性规定,允许各医学影像设备商灵活地采用相应亚标准完成对DICOM标准的支持,因此,对不同来源的DICOM影像设备间的互联(interconnectivity)和互操作性(interoperability)及其程度需通过测试才能确定其实际兼容状况。我院构建的DICOM标准PACS(picture archiving and communication systems,影像存档及通讯系统)包括了GE公司和Siemens公司2个不同的PACS亚系统,我们对两者的互联及互操作性作了实测,现报告如下。

材料与方法

一、设备

1. Siemens亚系统包括螺旋CT、数字胃肠机、胶片数字化仪、照相服务器、2台影像显示工作站。MagicView1000(以下简称MV,为Siemens医学影像后处理软件平台)安装在2台显示工作站(DRC104和DVC01)内,采用Siemens内部网络协议PACSnet(支持ACR/NEMA 2.0标准)实现网络功能,对DICOM3.0标准的支持则通过加装DICOM网关(DICOM gateway)软件Magic Link(版本VA10A)而实现。该版本的Magic Link支持DICOM storage service class的SCU(service class user)和SCP(service class proveder),可接收(作为provider)和送出(作为user) 供存储DICOM影像。

2. GE亚系统包括数字血管造影机、心脏血管造影机和1台影像显示工作站,该工作站内装有医学影像后处理软件系统Advantage Windows 2.0(以下简称AW),其内置有DICOM3.0接口系统(ID/Net V3.0),亦支持DICOM storage service class(作为SCU和SCP),可直接接收和送出DICOM影像。

两个亚系统的DICOM影像通过兼作DICOM网关的MV和AW实现相互交流。

二、测试对象

测试的影像包括螺旋CT影像(Siemens Somaton Plus 4A),血管造影影像(GE DLX/LCA)以及AW工作站内预装的CT(GE Hispeed)和MRI(GE Signal l.5T)范例影像。

三、研究方法

(1) 比较分析DICOM conformance statement (DICOM遵从性陈述)以评估互联和互操作性的可行性及程度;(2) 通过系统的DICOM 日志文件观察应用间网络连接、DICOM影像传送以及相关的系统消息以监测MV和AW间DICOM互联状态,并利用系统的“dump”功能,比较已传输的影像文件头(image file header)包含的基本特征信息确定DICOM 信息对象(DICOM information object)传输的完整性;(3) DICOM影像互操作性研究,即以MV和AW的所有影像显示、测量和后处理功能对所接收到的DICOM影像进行操作和处理。

结果

一、DICOM conformance statement比较(见表1)

表1 conformance statement 相关参数比较 DICOM参数 Magic Link ID/NET3.0 功能描述

storage class CT, MR, CR,

SC,NM, US① CT, MR, XA,

RF, SC① 作为SCU和SCP

conformance level level 2 level 2 充分支持

TCP/IP Port 50082 4006 DICOM影像I/O

DICOM对象类型(DICOM object class): 包括CT(computer tomography)、MR(magenatic resonance)、CR(computer radiography)、XA(X-ray angiography)、SC(secondary capture)、 RF(radiology fluorography)、 NM(nuclear medicine)、 US(ultrasound)等。另外,表中其余外文及缩写均为医学数字影像传输(DICOM)标准中的专用术语和参数,用中文表示反而不易理解,特此说明

从表1可见,Magic Link和ID/NET3.0均支持CT、MR和SC storage class,但XA storage class不被Magic Link支持。

二、互联及传输过程观察

传送相互支持的影像对象类型(如CT、MR、SC),互联两端的系统日志示应用间的连接和协商过程均正常,并报告影像传输成功完成,被传输影像序列出现在接收方“Work List”中。当试图从AW传送血管造影影像(对象类型XA)到MV,网络互联显示失败,AW的DICOM系统日志显示错误提示:“remote node did not accept any usable SOP classes",但将其转换为对象类型SC后重新传输则成功。

三、dump结果比较

在MV, 选择“Image/ NEMA Dump”选单可展示指定的DICOM影像文件头的相关信息于屏幕;在AW则可在UNIX指令模式,调用可执行程序dump image data完成此项任务。我们对选定的DICOM影像在传输前后分别进行了dump操作并比较,结果表明所有类型的影像文件的 DICOM影像相关信息的传输是完整的。

四、DICOM影像相互操作测试

在MV对来自AW的CT、MRI和血管造影(对象类型SC)的DICOM 影像作后处理评价功能测试,AW亦相应地对来自MV的DICOM CT 影像进行处理和评价(结果见表2)。除MV的三维影像处理外(AW无三维影像处理功能),所有评价和处理功能均顺利实现。三维影像处理初测操作失败,屏幕提示错误:“imput folder not valid”,在重新建立一新的AF(actual fodler)文件夹,将影像拷贝至该文件夹后,再重调用各三维处理功能,则最大信号强度投影MIP、多平面重建(MPR)和三维表面重建处理均顺利通过测试。

表2 DICOM影像在MV(Magic View 1000)和AW

(Advantage Windows 2.0)上相互处理的结果

应用功能 MV AW  应用功能 MV AW

影像处理

影像评价

加/减影处理 + N  角度测量 + +

(add/sub)

边缘强化 + N  影像注释(annotation) + +

旋转和镜像 + +  距离测量(distance) + +

影像联接(link) + N  剖面CT值分布(profile) + N

放大(zoom in/out) + +  兴趣区统计学分析 + +

放大镜(magnify glass) + +  像素透镜(pixel len) + N

卷动影像(scorolling) + + 三维(3D)影像处理

窗宽/窗位 + +  最大信号强度投影(MIP) ± N

多平面重建(MPR) ± N

3D 表面重建(SSD) ± N

注:+ 测试成功;±经转换后测试成功;N无此功能

讨论

一、实现不同来源的医学成像设备的互联和影像的互操作性,是发展DICOM标准最根本的目的[1-3]

影像设备的多源性是医学影像学科普遍具有的特点,是实现医学影像学环境网络化所面临的最大挑战[3],亦是长期制约PACS成为开放系统的关键因素。DICOM3.0标准的基本目标即实现不同医学影像学系统和设备间的完全互联和影像的互操作性,为医学影像网络化发展开拓了广阔的前景。所谓DICOM互联系指应用实体(appilcation entity,如MV和AW)间建立联接,并以遵从DICOM协议的方式交换DICOM信息(DICOM messag)。DICOM影像互操作性指应用实体间相互处理和操纵DICOM影像的能力(包括简单的窗宽/窗位调节到复杂的三维重建),通常称为功能互操作性(functional interoperability)。由于DICOM3.0标准并未明确规定DICOM信息模式(DICOM information mode)中的信息对象的调用方式,使不同的医学影像产品商提供的医学影像应用软件在实现对DICOM影像的处理和功能操作的方式上可能存在差异[4],因此,需进行实测研究才能确定不同来源的影像设备间DICOM影像互操作性及程度。

二、研究DICOM conformance statement 是确定互联性和互操作性的首要步骤

任何被声称支持DICOM标准的医学影像设备,必须提供其相应的DICOM conformance statement文件[1],通过比较研究此文件,用户即可初步确定两个DICOM设备间的互联性和某些简单的应用功能的互操作性。研究的要点着重于两方面:(1) SOP(service object pair) class 支持范围。MV与AW之间能够直接实现互联和CT、MR DICOM影像的互传,皆因Magic Link 和ID/NET3.0都支持CT、MR storage class 的SOP;而对于血管造影影像,则因Magic Link 不支持XA storage class,不能直接由AW传至MV, DICOM互联过程被中断,只有当转换为SC class,满足了Magic Link所支持的SOP class后才能被成功地传送。一个医学影像应用实体能提供至少一个SOP(譬如CT storage class),即可声称为“full DICOM”。由此可见,声称full DICOM的影像设备间,并非一定能实现DICOM水平的互联。因此,SOP class支持范围是决定互联性的关键。(2) 确定遵从性水平(conformance level)。DICOM标准第3部分将遵从性规定为3个水平层次,即level 0、1、2:level 0仅支持部分用户定义的影像属性;level 1支持DICOM IOD(information object definition)的Type 1和Type 2属性;level 2则充分支持所有IOD 和Type 1、Type 2、Type 3属性[4]。Magic Link VA10A和ID/Net3.0均提供了完全的 level 2支持,这是两者间互操作性的理论保证,因此遵从性水平是确定DICOM影像互操作性的基础。

三、DICOM信息对象完整传送是实现互操作性的关键[5]

在充分支conformance level 2的两个应用实体间成功地完成DICOM信息对象的传送,应能满足实现常规的影像显示、测量和评价等功能互操作性要求。但是,对于复杂的功能操作,如三维重建,由于其可能要求某些影像采集设备特定的和比较精确的几何参数定义(如空间坐标系统和参照系统等),因此,其互操作性需测试后才能确定。在我们的测试中,在初始文件夹(folder)中调用三维处理功能失败,拷贝至应用软件环境中重建的文件夹后则处理成功,说明 MV的三维影像处理功能所要求的相关属性和参数均已被完整地传输和转换,初次调用处理失败,可能是应用软件系统对影像文件管理方式实现的差异或不足所致。

我们对MagicView 1000和Advantage Windows 2.0间DICOM互联和DICOM影像互操作性测试的实践表明,DICOM标准是完成不同来源的医学数字化影像系统间互联和影像互操作性最直接、最有效的手段。可实现很好的相互兼容性。

参考文献

1 Bidgood WD, Horii SC, Prior FW, et al. Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Informat Associat, 1997, 4:199-122.

2 Mattheus R. European standardization efforts: an important framework for medical imaging. Euro J Radiol, 1993, 17:28-37.

3 Horii SC, Bidgood WD. Network and ACR-NEMA protocols. RadioGraphics, 1992,12:537-548.

医学影像后处理篇10

[关键词] 放射学信息系统;计算机;述评

伦琴发现X线为放射学的发展奠定了基础,在其后的100余年中,随着各种新型成像技术不断出现及改进,放射学由单纯的X线成像发展到包括CT、MRI、超声、核医学、计算机放射成像(CR)、数字放射成像(DR)等各种数字化成像技术的现代影像学阶段。成像技术的改进,同时也引起了包括思维模式、工作流程、管理方式等一系列改变与挑战。20世纪70年代初期CT的问世,成为传统放射学步入现代影像学时代的革命性标志,在其后的时期里逐渐出现了各种各样的成像技术,但根本进展为影像医学的数字化,后者使得医学影像学进入了迅猛发展的时期。

1 医学影像数字化进展

1.1 CT技术进展 CT是20世纪70年代初期发展起来的新型成像技术,主要特点是:横切面、断层、数字化图像,彻底改变了近百年来传统X线图像结构重叠、信息单一的缺陷,使得成像技术和图像读取、分析方式发生了质的变革。近30年来,CT的发展一直围绕着扫描速度(数据采集速度)、图像清晰度(空间分辨率和密度分辨率)及扫描范围(数据采集范围和方位)的和谐统一而进行。初期CT采用的是间歇式进床步进式扫描的单纯层面成像方式,主要机型为常用的第1~3代CT,存在的主要问题为扫描速度慢,时间分辨率差及信息丢失、遗漏等缺陷。滑环技术的出现为螺旋扫描奠定了基础,后者采取X线球管旋转与进床同步进行的扫描方式,解决了扫描速度、图像清晰度与扫描范围之间的矛盾,使得三者得到了完善的结合。在此基础上相继开发出的双层、四层、八层及当今最先进的六十四层CT,则更加体现了成像速度快、图像清晰度高、扫描范围大的优点,使得以前不能行CT检查的部位或器官,能够进行CT检查,极大拓展了CT的应用范围,如血管成像、三维成像(仿真内窥镜)、灌注成像及心脏成像等,为活体检查提供了极具实用价值的工具。多层CT的下一个换代产品将是采用平板探测器的容积CT(Vo- lume CT ),届时CT将不再是单层或多层扫描,而是某个特定解剖范围的整体扫描。

1.2 MR技术进展 MRI自20世纪80年代中期应用于临床后,已成为现代影像学的重要成像手段之一。就成像速度、图像清晰度及临床应用范围而言,MRI进展主要表现在电子学、梯度场和射频场等方面,与此密切相关的脉冲序列和实时成像技术的发 展,极大拓宽了检查的适应证和检查深度,除常规的二维和三维成像功能外,还可进行MR血管造影(MRA)、弥散(dif-fusion)、灌注(perfusion)、功能成像(fMRI)、MR波谱分析(MRS)、显微成像及实时成像等。实时成像是指在人体功能活动的同时进行成像,可显示人体功能活动时组织结构的相应变化,即所谓MR透视,可进行实时血管造影、心脏成像、介入检查和其他功能成像。fMRI目前主要利用血氧水平依赖法(BOLD)成像,通过检测组织内血氧代谢变化(含氧血红蛋白和脱氧血红蛋白)而产生信号对比。主要用于脑皮质和脊髓功能定位,以确定肿瘤与中枢神经功能区的关系。弥散成像反映分子水平水分子的运动状况,根据不同组织或病变内水分子弥散运动的差别产生图像对比,并可测量组织的弥散系数(ADC值),主要用于鉴别不同类型水肿(如血管源性、细胞毒性和间质性水肿)、肿瘤、炎症与梗死,以及白质纤维束的走行。灌注成像通过测量血流通过时间(MTT)和脑血流容积(rCBV)等参数,以观察毛细血管水平血流运动及分布状况,主要用于脑血管病变及肿瘤性病变的检查。MRS通过观察病变区域代谢产物(如乳酸盐、肌酐、胆碱等)的变化情况,分析病变的性质。目前,本技术处于初期临床应用阶段。

1.3 常规X线技术进展 常规X线检查在现代医学影像学中仍占有非常重要的地位,约占所有影像检查的48%。近年来传统X线检查方法的主要进展也是图像数字化。在X线源不断改进的同时,通过改进信息接收与处理技术,由过去的模拟数据输出转变为数字化输出。数字化图像的主要优点为可进行图像后处理及网上传输与交流。模数转换的方式包括:①传统X线胶片经扫描后变成数字图像,但有数据丢失;②影像增强器取得模拟信号,经模拟转换后,以模拟信号输出,如DSA;③CR,也称影像板放射成像技术;④DR,也称电子成像板放射成像技术。后两者为目前已广泛应用的数字X线影像技术,也使得常规X线技术成为真正数字化图像。

1.4 其他成像技术 SPECT、PET及超声等也已成为数字化成像技术,尤其是前二者是在CT基础上发展起来的影像技术,在采集信息的手段上明显有别于传统的核素扫描,克服了普通核素扫描定位准确性差的缺点,PET还可反映器官和组织的功能代谢信息。

1.5 图像融合技术 前瞻性地将采集的多幅图像处理为一幅图像的技术,称为图像融合技术。而将所采集的多幅图像处理为一幅图像的技术,称为图像叠加技术。现有的各种成像技术,所得图像各有特点,如解剖结构和功能图像等。融合方法可由图像的单纯叠加而成,也可经两种不同设备合成一种新的单一设备而成,如CT-PET结合,则融合了CT显示解剖结构清晰与PET显示病变及功能异常敏感性高的优点,克服了CT显示病变敏感性低而PET显示解剖结构差的缺点。目前,已有少量该型设备成功用于临床。其他类似的融合设备技术也有应用,如CT血管造影、MRI血管造影等。

1.6 图像存储与传输系统 随着影像技术的进展,尤其是能获取大量数据信息的多层CT、MRI等先进设备的广泛应用及各种检查方法的增多,获取的图像和信息量呈几何级数增长。若这些影像资料仍停留于原始的处理方式和传统的管理方法上,已远远不能满足临床业务的需要,并可能成为阻碍医院发展的“瓶颈”。因此,有必要使用一种全新的方式来管理、存储、传输和使用这些信息。计算机网络技术的图像存储与传输系统(PACS)的诞生,使解决这一矛盾成为了可能。PACS主要由三大部分构成:图像获取、存储与处理、显示系统。一般而言,PACS应与放射科的各种成像设备(包括CR/DR、CT、MRI、DSA、SPECT、PET、US等)、放射信息系统(RIS)及医院信息系统(HIS)实现平滑连接,通过对图像及文字的存储、传输、调用等功能,达到院内信息共享、提高诊疗效率与质量、无胶片化管理、克服时间及地域限制、模拟手术、甚至远程会诊等目的。因此,PACS应成为医院诊断链和治疗链中最重要的环节和医院实现真正数字化的基础。

2 影像数字化带来的挑战

2.1 思维方式变化 经过百余年的发展,传统放射学诊断已形成了固定的思维模式,即以X线片为信息载体,反映的主要是组织或器官病变的大体病理信息,诊断思维分析主要以形态学改变为依据。随着现代影像医学的发展,影像学已由二维图像转变为三维图像和动态图像,由单纯诊断转变为诊断加治疗,由过去的大体、宏观观察转变为宏观加微观(细胞、亚细胞、分子水平)和流动信息观察,由过去单纯的解剖学形态观察转变为解剖形态加功能观察,由真实影像转变为真实加虚拟影像,由单一科室转变到全院、甚至通过互联网链接全世界。所有这些变化,也必然要求影像科及临床科室医师的诊断思维模式随之发生改变,必须同时兼顾宏观与微观、静态与动态、结构与功能、形态与成分等分析。

2.2 工作流程变化 影像诊断中,现代影像学检查手段获得的呈几何级数增长的各种信息及PACS电子式“软拷贝”取代了传统的“硬拷贝”(照片),必然会有意或无意地受到习惯势力的阻碍。由于我国的计算机普及程度尚不广泛,大多数医务人员对计算机操作并不十分熟练,特别是老一代的医生,一般均习惯于 传统的观片灯阅片方式。尤其是在需要反复对比多幅新老图像时,使用多联观片灯最为简捷。使用PACS后,传统的“观片写报告”方式也将被“荧光屏+直接微机报告”或“荧光屏+口述录音+微机报告”所替代,这种新型的方式截然不同于以往。另外,在信息采集与处理方面,也将出现信息采集在先,资料重组、显示及处理在后,最后只把经处理后有用的资料经PACS有效传输到相关科室的方式。这种工作流程的改变,也是对传统方式的一种挑战。因此,在这方面还应着力培养影像专业医师尽快更新观念和意识、增强网络意识、重新组织影像科室的诊断作业流程。

2.3 影像检查手段的合理使用与医疗费用问题 影像检查消费与检查所用设备、检查内容及方法等密切相关。传统放射学主要基于X线检查(如正位、侧位平片),检查手段单一、简单,耗时及耗材较少,诊断分析相对容易。尽管普通CT获取的信息数据量明显多于X线平片,但仍以二维断层切面为依据,用少量普通胶片即可承载其所有图片信息。因此,上述二者的使用及相关费用并不太高。但螺旋CT、MRI及CR/DR等数字设备应用后,尽管其能在短时间内用不同的方法、从不同的方位(如矢状位、冠状位、横轴位)、不同的层次(如大体解剖水平、分子水平、流动信息等)获得大量的图像信息,利于诊断和治疗,但这些图像信息也带来了相应的挑战。一是如此大量的图像若仍由传统沿用的“X线片”作为载体,将引起极大的资源浪费,也增加了病人的费用。如一次颅脑MRI平扫加增强扫描,若同时使用多序列、多方位检查,将一次性产生几百幅图像。若病人同时应用CT、CR/DR或核素扫描,甚至CT、MRI三维扫描及重建,产生的图像将更多。若病人因病需要多次复查,其产生的图像及相关费用将难以想像。二是尽管PACS的实施使无胶片放射学成为可能,但病人仍需一份自带片以备外诊使用,但如此大量的“X线片”图像将给诊断分析、携带及保存带来困难。因此,检查手段的合理使用与组合为现代医学影像学所面临的另一个挑战,这要求影像科及临床医生必须熟知各种影像学检查手段的适应证与禁忌证(即比较影像学),根据不同病变或同一病变的不同时期,采用最佳的影像学检查手段,如急性或超急性期脑梗死以MRI检查最为敏感,急性期脑出血则以CT检查更敏感。影像学医师还需清楚如何选择检查的最佳方位(如横轴位、冠状位或矢状位等)及最佳方法(如增强扫描、动态扫描、灌注成像、弥散成像等)。如此,可在充分满足医、教、研需要的同时,最大限度地缩短检查时间,节省病人开支,避免无谓的资源浪费。