勾股定理的研究十篇

时间:2023-06-15 17:40:28

勾股定理的研究

勾股定理的研究篇1

关键词:勾股定理;定理证明;推广应用

1引言

自我国改革开放以来,国内政治、经济、社会、文化等诸多环境得以完善,从而吸引了大量外国企业、居民进入国内,给中国当代文化氛围、科学技术发展带来了较为深刻的影响。中外文化的交流,在一定程度上给整个世界学术界、实务界的发展提供更加鲜活的血液与动力。(删除)勾股定理作为世界范围内数学界最为伟大的发明之一,其是一个十分伟大的数学定理。迄今为止,勾股定理已经被利用多种方法给予证明,并在较多领域中得以推广。作为一个具有历史厚重感的数学定理,在当前中学教课书中也是仅仅列举了一种证明方法,而对其他方法的证明及其推广应用的介绍十分之少。为此,作者将在本文中针对勾股定理的证明方法进行研究,作者谨此希望能够利用本文的研究丰富当代中学生的视野,使他们能够利用对定理背后历史的探究,更好的掌握数学应用方法,为步入大学校园继续深造奠定坚实的基础,为社会主义现代化建设需求人才素质的提升做出自身贡献(删除)。

2勾股定理的证明方法研究

勾股定理作为一种举世闻名的数学定理,其(删除)现存的证明方法繁复多样,可根据主流的分类方法将其归为三类。在下文当中,作者将对前两种方法分别进行一种证明方法的研究。

第一,面积法。该种证明方法是由毕达哥拉斯所发明的,其当初所使用的面积法证明采用了分解的思路,具体如下图所示:

在两个绘制的图形当中,可以发现,毕达哥拉斯共设计出了八个大小完全相等的直角三角形。并对每个直角三角形的边进行了赋值,其中直角边的赋值分别为a与b、斜边的赋值为c。接下来,在上述八个直角三角形的位置周围绘制出了三个等边正方形。最终就形成了如上两个图形。在做好上述准备工作之后,就可开始对勾股定理进行了证明,其证明思路主要为利用正方形所具有的面积对定理进行证明。可以发现,左图当中将所有小矩形的面积进行相加,就等于整个大正方形的面积。并可得出如下公式:

(a+b)2=a2+b2+4×1/2×ab

在得出上述等式基础上,再将面积相等的方法应用于右图当中,也可以得出另一等式:

(a+b)2=c2+4×1/2×ab=c2+2ab

通过上述两个公式之间的合并,最终可以得到勾股定理的公式:a2+b2=c2

第二,拼接法。拼接法证明与面积法证明之间存在着较大差异。为此,可以先绘制以下图形,以便于利用拼接法进行更为准确的证明:

其通常所采用的方法之一具体由上图列示。该图形主要由四个大小相同的直角三角形所构成。并对每个直角三角形的边进行赋值,赋值方法与面积法基本相同。在此基础上,可利用上述拼接图形进行勾股定理的证明。由上图可以发现,DE=AF=HE=b,且角GDE为90度,也存在有FB=FG=BC=a,且角BCG为90度。因此,上图当中的两个四边形就可以利用已经为直角三角形的赋值进行替代表示。从而又可将上图分解为两个图形,并实现勾股定理的证明。

3勾股定理的推广应用研究

勾股定理不但可以在平面图形当中得以应用,更加可以在三维图形,乃至n维图形当中得以应用,并给解决诸多较为复杂的数学问题提供重要帮助。例如:假设ABC为等边三角形,D是该三角形内部的一点。如果假设角BDC为150度,并假设BD长度为2,CD长度为1。那么,AD的长度应当是多少。在上述旋转三角形边长求解的运算当中,就可以借助勾股定理的方法实现对最终答案的求解。该求解的主要利用图形的旋转将现有三角形ABC等位移动至三角形AEC处,从而构造出了一个新的等边三角形ADC。那么,依据这一思路之后,就可以利用对现有容易求解的方法对ED求解,并利用两者之间相等的思想,实现对目标边AD长度的求解。其中针对EC的求解就可以应用到勾股定理,并构造如下等式:DE=(DC2+CE2)1/2=51/2。进而也就求得了边AD的长度。通过这则案例可以得出结论,勾股定理在平面图形之外的立体多位图形当中可以实现推广与应用。

4结论

通过本文的研究,可以发现,勾股定理作为一个举世闻名的数学定理,其现存的证明方法繁复多样,可根据主流的分类方法将其归为三类:其一为面积法;其次为拼接法;另外一种为定理法。通过对不同方法的探究,作者以案例的方式对其中两种方法的大致证明思路提出了思考,并在此基础上对不同方法的推广应用进行了研究。作者谨此希望,能够利用本文的研究,给数学界勾股定理应用范围及深度的提升带来促进作用,也希望能够在未来求学过程中继续深入思考研究数学理论的相关问题。

勾股定理的研究篇2

一、新、老课程“勾股定理”的比较

1.课程内容的变化

新课程相对于老教材增加了“蚂蚁怎样走最近”这一节,并在教材中增加勾股定理的历史的相关素材,书中提供了较为丰富的历史或现实的例子来展示勾股定理的应用。

2.教学要求的变化

老教材对勾股定理的教学要求是:(1)使学生掌握勾股定理及其逆定理;(2)能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长,会用勾股定理判断一个三角形是不是直角三角形。

新课程下的勾股定理教学要求是:(1)经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;(2)掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;(3)掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;(4)通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。

由上可知,新课程下的勾股定理在已知直角三角形两边求第三边中,给出的两边数据相对于老教材简单得多,删去了烦琐的计算过程,勾股定理逆定理的理论证明,利用勾股定理的逆定理解题的数据均不会过大,通过古埃及的结绳来说明,省去了烦琐的证明过程。新课程中加强了勾股定理的实际运用,利用勾股定理及逆定理解决实际问题成了重点,例如:“蚂蚁怎样走最近”这一节突出了勾股定理及逆定理的实用性。书中提供了较为丰富的历史或现实的例子,来展示它们的应用,体现它们的文化价值,并且在知识发生过程中,作了较高要求。

3.课程关注点的变化

老课程比较关注运用勾股定理及逆定理的相关运算,即已知直角三角形两边长求第三边和判定一个三角形是否是直角三角形。新课程则强调了勾股定理在现实生活中起着重要作用,是数形结合的典范。

二、教学中应注意的问题及建议

1.重视实际情景

新课程创设实际情景,让学生感受到现实生活中勾股定理的应用,从实际情景抽象出勾股定理。因此,建议为学生创设丰富的实际情景,使学生经历知识发生的过程。在证明勾股定理逆定理中,可将一根绳子打上13个结,将绳子分成12等分,让三位同学上讲台,一位同学握住第1和第13个结,一位握住第4个结,一位握第8个结,创设此情景,让学生自己思考、分析,从而判断此三角形为直角三角形,最后归纳出勾股定理逆定理。

2.重视数形结合

新教材里,勾股定理的探索和验证过程中,数形结合有较多体现,渗透了代数运算与几何图形之间的关系。因此,建议在教学中应注意渗透这种思想,鼓励学生从代数表示联想到有关的几何图形,由几何图形联想到有关的代数表示,有助于学生认识数学的内在联系。例如:在探索勾股定理过程中,应引导学生由正方形的面积想到a2、b2、c2,而在勾股定理的验证过程中,教师又应引导学生由数a2、b2、c2想到正方形的面积。

3.重视实际应用

对于勾股定理,新教材不仅要求能从实际情景中抽象出勾股定理,而且要能将它用于实际问题中,从而体现出数学的应用价值。因此,建议在教学中充分利用教科书中的素材让学生体会这种应用,如古埃及人利用结绳的方法做出直角,利用勾股定理求出蚂蚁的最短路线等。

4.重视学生经历探索勾股定理的过程

新教材中安排了探索勾股定理、验证勾股定理、探索直角三角形的条件等活动。因此,建议在教学中不要直接给出结论,要鼓励学生,通过观察、实践、推理、交流等获得结论,发展空间观念和推理能力。例如教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动,教师应引导学生通过由特殊到一般的探索得到结论。

5.重视自主探究与合作交流

新教材自始至终为学生提供自主探索、合作交流、积极思考的空间和机会,课堂上引导学生主动参与探究或学习,激发学生学习数学的兴趣,调动学生的积极思维,督促每个学生都在这个过程中积极参与,从而培养探索与创新的精神。

6.重视爱国主义的渗透

勾股定理的研究篇3

 

勾股定理的内容

 

搞清楚勾股定理的内容是有效实施教学的前提,具体的可以从代数和几何两个角度进行叙述.

 

1. 代数角度的叙述

 

文字表征:直角三角形两直角边的平方和等于斜边的平方.

 

符号表征:a2+b2=c2(a,b和c分别表示两直角边和斜边).

 

2. 几何角度的叙述

 

文字表征:一个直角三角形,以两直角边为边的两个正方形的面积之和等于以斜边为边的正方形的面积.

 

图像表征:如图1所示.

 

勾股定理的教育价值

 

一个知识的教育价值是多方面的,对于勾股定理这个内容,其教育价值和学科价值有如下几个方面:

 

1. 文化价值

 

从数学史上看,人们发现勾股定理、验证勾股定理及应用勾股定理的过程蕴涵着丰富的文化价值,我们在教学过程中注重这些数学史、研究过程,有助于激发学生的数学学习兴趣,在学习过程中体悟其存在的意义和实际价值.

 

2. 学科价值

 

从勾股定理的内容来看,其同时具有代数和几何的双重特征,是初中数学阶段几何与代数之间问题研究的一个重要桥梁,从勾股定理的证明方法来看,“演绎法”“变换法”和“代数法”三种方法教给学生,尤其是学生通过学习变换法(拼图法),能够帮助他们感受和理解运动与变换.

 

知识的教育价值不仅仅表现在概念和规律本身,在教学中还应该渗透知识探究和被发现的过程. 勾股定理的发现、验证整个过程均蕴含着丰富的、可渗透的思维素材,和学生一起探索和证明勾股定理,能够丰富学生的学习经验,感悟数学学习和不断探索未知的价值:

 

(1)学生在探索过程中,探究图形基本元素之间的关系、几何结构,而这一过程必然涉及空间推理和演算,从中学生能够感悟到数形结合的思想方法,同时体会推理和证明的力量.

 

(2)学生通过勾股定理的探索和证明,会自然而然地形成一种意识,那就是要了解我们生存的空间,必须要学习更多的数学工具,并合理地应用.

 

勾股定理知识系统内结构分析

 

数学知识具有较强的系统性和完整性,置于知识系统中,勾股定理与其他知识有着怎样的联系,学生在学习进程中又有怎样的连贯性呢?

 

1. 知识间的横向联系

 

《勾股定理》在初中阶段与其他数学知识内容密切联系,如无理数、三角函数、方程、四边形、圆等知识.

 

2. 知识间的纵向联系

 

从学生的学习进程来看,初中之前,学生在小学阶段对三角形的三边关系有了一个初步的了解:两边之和大于第三边;步入初中,学习勾股定理内容前,学生通过探索也对直角三角形的性质有了一定的了解:“斜边上的中线等于斜边的一半,30°角所对直角边是斜边的一半. ”

 

那么,勾股定理在这里又有怎样的作用呢?学习了这一内容后,学生可以进一步从边的角度来定量地刻画直角三角形的特征,由此进一步深化学生对直角三角形的认知.

 

学生从初中步入高中阶段后呢?勾股定理有没有其价值呢?学生在高中将要继续学习任意三角形中边长与角度之间的数量关系,在学习和理解正弦定理和余弦定理时,需要用到勾股定理,可以将勾股定理视作为余弦定理的一种特殊情况.

 

整个学习过程对直角三角形边角的关系,是从定性到定量,从一般到特殊再到一般的思维进程.

 

帮助学生学会勾股定理的教学策略

 

如何帮助学生学会勾股定理呢?

 

1. “探索猜想证明”法

 

笔者发现当前有部分教师在和学生探究勾股定理时采用的方法是:首先让学生测量直角三角形三条边的长,接着要求学生猜想三条边长之间存在怎样的数量关系,在学生猜想出三边之间的平方关系后,再证明勾股定理.

 

这样的方式有怎样的缺点呢?

 

笔者曾经也尝试过这种方式,看似逻辑性很好,但是关键在于学生不容易猜想出三边之间的平方关系,猜想卡壳了,后面的证明就出不来了. 为什么会出现这样的困难呢?原因有二:一是学生在测量时本身就有误差;二是从思维角度来看,学生的确很难想到平方关系.

 

2. 利用方格纸进行探究

 

提供如图2、图3所示的方格纸.

 

首先,让学生计算直角三角形三边的平方分别是多少,只要能计算出三边的平方,直角三角形三边之间的平方关系就很容易猜想出来.

 

这个时候学生会遇到怎样的困难呢?

 

因为直角三角形边长的平方实际上就是每边上的正方形的面积. 其中正方形1和正方形2的面积可以通过数方格的方法直接数出来,而斜边上正方形(正方形3)的面积的计算则有一定的困难.

 

新的问题又出现了,怎么办呢?方法又有两个.

 

(1)“割”,如图4、图5所示.

 

(2)“补”,如图6、图7所示.

 

上述在方格纸上运用内割法或外补法求斜边上正方形面积的活动蕴含了勾股定理的证明思路,由图5可得c2=(a-b)2+4ab,由图7可得(a+b)2=c2+4ab,化简之后就得到a2+b2=c2. 因此,利用方格纸探究可以帮助学生较顺利地猜想出直角三角形三边的关系,同时水到渠成地获得定理的证明,使勾股定理的学习一气呵成.

勾股定理的研究篇4

一、确立主题、设计教案

华师大版八年级下册第19章第二节安排了勾股定理内容的学习,在教材的阅读材料中,有《九章算术》中的“葭生池中”的问题,这道题很有趣,能够调动学生的兴趣,因此,我决定给大家呈现一节利用勾股定理解决生活中实际问题的研究课,探讨教师应如何设计教案、把握教学,提高学生学习数学的积极性。

我们准备好教案后去请教两位数学特级教师,听取他们的意见和建议。两位专家对我们的教学设计给予了充分肯定,认为课题设计非常新颖,课程内容人文价值丰富,很好地体现了数学与生活的密切联系。两位专家还就讲课过程的设计给我们提出了中肯的意见。我们参考专家的意见和建议对教案进行了修改。

二、上课和观课

1.第一次上课

教学环节一:复习

①勾股定理的历史及内容(学生回答);

②勾股定理的变式(多媒体展示);

③应用勾股定理的必备条件,没有条件的话,如何解决?(学生回答,教师补充)

教学环节二:新课引入

①出示例题:名题鉴赏――“莲花戏水”(板书:勾股定理在生活中的应用);

12世纪的印度数学家婆什迦罗(Bhaskara)的著作中有一道“莲花戏水”的问题:

波平如镜一湖面,半尺高处出红莲。

亭亭多姿水中立,劲风吹来斜一边。

偏离原地两尺远,花贴湖面似睡莲。

请你动脑想一想,池塘水面多深浅?

②展示示意图,让学生思考并说出题目已知什么、要求什么(板书分析过程);

③挖掘图形中线段之间的关系;

④设未知数,根据勾股定理列出方程,求解;

⑤总结解决问题的方法:先将生活实际问题转化为数学问题,再利用勾股定理列出方程,解方程。

教学环节三:练习

应用归纳的解题方法,自己解决问题(学生朗读、思考后提问)

《九章算术》中的趣题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。问水深、葭长各几何?”(注:1丈=10尺)

教W环节四:小结和作业

①小结(提问):今天你学到了什么知识?你的哪方面能力得到了提高?

②作业:练习2。

2.听课教师评价

听课教师普遍认为课题设计新颖,以古代题目为背景,用优美的诗词创设问题情境,拓展了学生的思考空间。教学中渗透了应用意识,具体包括三层转化:一是实际问题转化为数学模型,即把实际问题数学化;二是把不可解的问题转化为可解的问题,构造直角三角形;三是把几何问题转化为代数问题,利用勾股定理构造方程。

3.在反思中发现课堂教学得与失

针对第一次试教的不足,我们把教学目标定位为“让学生成为学习的主人”,让学生经历知识发生、发展的过程,在实际问题数学化的过程中,学会学习、学会发现、学会创造。第二次教学对学生来说具有一定的挑战性,课堂的时空得到开放,学生的主体作用充分体现。课堂教学环环相扣,巧妙创设情境,注重与学生的情感交流,充分调动了学生的自主性和积极性。

三、分享成果

课例研究校本教研活动体现了教师的主体地位,使教师真正成为教研活动的组织者、建构者和创造者。每一位教师自始至终都融入研究活动中,与同伴合作,或讨论,或反思,提高了发现问题、分析问题、解决问题的能力,提高了实施新课程的能力。校本研修使教师产生了共鸣,激发了教师的教研热情。

勾股定理的研究篇5

1由中国结到勾股定理的证明方法

中国的文化既悠久又丰富,中国的民间艺术丰富,其中中国结就是中国民间艺术的智慧结晶.中国结从头到尾都是用一根丝线编结而成,每一个基本结又根据其形、意命名.把不同的结饰互相结合在一起,或用其它具有吉祥图案的饰物搭配组合,就形成了造型独特、绚丽多彩、寓意深刻、内涵丰富的中国传统吉祥装饰物品.勾股定理的发现可以从中国传统的吉祥装饰物品中体现出来,同样这种数学元素也反映在非洲的装饰品中[1],如此一来,这一素材又反映了数学多元文化的特点.具体地,图1展现了“结”的前后表面形状,图2是“结”形状的轮廓,包括可以看见的线条以及不可见的线条,由此可以看出中间是一个近似的正方形.

如果按照这个中国结的编织图形(图3)进行分割,通过截取变化(图4)便能得到并证明结论:SC=SA+SB.(图5)

2由纸风车到勾股定理的证明方法

纸风车是一种来自民间的折纸艺术,做法简单,制作后的纸风车形状具有数学对称美,而其形状又成为了证明勾股定理的良好素材.通过观察可以看出纸风车的形状成中心对称,将纸风车中的结点连接,大正方形被分割成一个小正方形和四个全等的四边形(图6).将图6中的几何图形进行如图7的拼接,可以巧妙地证明勾股定理.

3文化素材的教学应用

多元文化数学的进一步挖掘会使数学的教与学变得更加丰富多彩[2],从教学的角度思考勾股定理的教学,将上述的文化素材切入勾股定理的学习,将数学融入文化,并从学生认知规律出发设计一堂生动有趣的数学文化课堂.具体而言,上述文化素材可以通过两种方式加以应用.

一是在形成了有关勾股定理的猜想之后,展现中国结与纸风车等文化素材,通过数学化,将生活形状抽象为几何图形,然后再利用拼图游戏来直观化地验证勾股定理.这样做的目的有三.首先,适应学生的几何认知水平.荷兰学者范希尔夫妇经过理论和实践两方面的长期探索,指出学生的几何思维存在5个水平:直观(Visualization)、分析(Analysis)、推理(Inference)、演绎(Deduction)、严谨(Rigor)[3].初中学生的逻辑思维能力还不是太强,因此需要通过直观、操作等手段帮助学生理解抽象的几何关系与演绎逻辑.而借助中国结、纸风车等为载体抽象出来的几何图形,通过拼图能直观地验证勾股定理,这对于数学学习基础尤其是抽象思维能力较弱的学生而言是极为重要的,降低了思维难度,但同时又提高了学生的参与度、兴趣与信心.其次,密切数学与生活的关联.在很长一段时间里,学生学校的数学学习与其生活是相互割裂的.这样的学习也造成了很大的教育问题,即学生的数学学习未能被正当地赋值,甚至有人还提出数学无用论.因此,在教学中需要借助学生生活中常见的素材,并由此学习这些素材中蕴含的数学元素与数学关系,这也即是“数学生活化”的教学设计逻辑[4].这即是指,教师首先确立的是“勾股定理”这一数学维度上的学习目标,然后寻找到如中国结、纸风车等生活中常见的素材,并使之融入到教学之中,以实现“数学生活化”.再次,为了学生文化浸润式的学习.除了密切学生的现实生活与数学之间的关联之外,还要让学生体会到数学的文化厚重感.即借助富有中国传统特色的中国结、流传历史悠久的纸风车来学习数学,能让学生产生历史厚重感.

二是在学生已经学习了勾股定理之后,向学生展现中国结和纸风车图片,要求学生抽象出其中的数学元素,并由此探索这些数学元素之间的数学关系.与前一种将文化素材作为验证勾股定理的载体不同,这里将其后置到定理学习之后作为拓展性的问题让学生探索.这种用法的价值除了具有前述“密切数学与生活之间的关系”、“为了学生文化浸润式的学习”等两个方面之外,还有以下意义.首先,为了知识的巩固与活化.学生在学习了勾股定理之后,除了常规的练习之外,事实上更重要的是要将知识迁移到类似的但又不那么封闭与明确的情境之中.后者不仅在于巩固知识,同时也使知识得到活化.因为,无论是中国结还是纸风车,都需要学生作一定程度的数学化,并将不熟悉的问题化归为刚刚学习的勾股定理相关的问题,显然这就不仅仅是知识的巩固了.其次,从教育目标的角度来看,这种做法还期待培养学生“生活数学化”的能力.关于数学价值,不同的人也许有着不同的理解.但显见的是,在数学上研究越深入的人越能认识到数学的内在价值.造成这种现象的一个重要原因在于,数学的价值有时是非常内隐的,甚至很难为人所感知的.如果在教学中不去挖掘数学的内在价值,有时就会产生误导,甚至会认为数学只是用于计算.也正因如此,我们强调这些文化素材在数学教学中加以应用,就是希望所培养的学生能逐渐拥有用数学思考问题的意识和习惯,拥有用数学更好地组织生活的能力.就本案例而言,中国结与纸风车都是我们文化生活中所常见的,但我们更习惯于用工艺品(或艺术品)的角度来理解,而很少会从数学的角度研究这类物品.但事实是,当我们用数学的角度来理解生活中的这些事和物的时候,往往能带来惊喜:原来我们身边处处有数学.再次,有助于培养学生的数学学习习惯.过去我们所理解的数学学习习惯往往指的是学生伏在案头学习数学的习惯.我们认为,数学学习习惯除了上述方面外,一个更高的层次是学生随时而自然地会想着用数学的角度思考问题.后者当然是理想的状态,但教学中的有意识培养也能帮助学生朝着这个方向前进.其中一个重要的培养策略就是让学生尝试探索也许表面上与数学风马牛不相及的素材中的数学元素,除了中国结、纸风车,还有包括建筑物等素材.需要进一步说明的是,与前一种用法相比,这种用法对学生的数学要求也更高,当然所培养的探索能力也会更强一些.

总之,数学文化的观念已引起人们越来越多的关注,关于数学文化与数学课程教学的整合也是研究的热点问题之一.但关于富含数学元素的民俗文化的挖掘与教育学转换还比较有限,本文也是在这一方向上的一种努力.

参考文献

[1]张维忠.数学教育中的数学文化[M].上海:上海教育出版社,2011:233.

[2]唐恒钧,张维忠.民俗数学及其教育学转化-基于非洲民俗数学的讨论[J].民族教育研究,2014(2):115-119.

勾股定理的研究篇6

一、以勾股定理有关的背景知识为开端,培养学生的民族自豪感

在本章教学的第一节课我以这样的导语开始:勾股定理创造了世界的三个第一,因为它被称为世界第一定理,它的发现导致了无理数的发现,引发了数学的第一次危机,它是第一个不定方程它的解答就是著名的费尔马大定理,直到1995年数学家怀尔斯才将它证明。通过介绍勾股定理历史的导入激发了学生的猎奇心理和求知的欲望,同时也激发了他们的学习兴趣。此时我再接再厉继续创设情境:为纪念二千五百年前毕达哥拉斯学派成立,1955年希腊发行了一张邮票,图案由三个棋盘排列而成。这个图案是对数学上一个非常重要的定理的表达。在欧洲称它为毕达哥拉斯定理,在我国称它为勾股定理或商高定理。为什么一个定理有这么多名称呢?尽管希腊人称勾股定理为毕达哥拉斯定理或“百牛定理”,还有的国家称这个定理为“驴桥定理”,但据推算,他们发现勾股定理的时间都比我国晚,我国是世界上最早发现勾股定理这一宝藏的国家。通过介绍、展现与勾股定理有关的背景知识和故事,使学生不仅对勾股定理的发展过程有所了解,更重要的是让学生感受到勾股定理的丰富的文化内涵,不但拓展了学生的视野,激发了学生的探究热情,而且使学生感受到勾股定理的博大精深。从而激发了学生的学习兴趣、热爱祖国、热爱祖国悠久的文化的思想感情,培养学生的民族自豪感。

二、创设情境,挖掘大自然和数学科学之间紧密结合的素材,激发学生的探究欲望

在数学教材中还有许多与我们的现实生活紧密联系的事例,同时让学生自己动手搜集数学素材,在现实生活中发现数学中充满着许多美感和乐趣,图像的对称性之前,让学生搜集各种各样的树叶、建筑照片、风扇的叶轮等,在课堂教学中,让学生将这些素材通过折叠或旋转等手段观察它们是否能够完全重合,然后再分出哪些是通过折叠来实现的,而哪些又是通过旋转来实现的,使学生在动手时体会到这些实物的对称性,然后再将学生的注意力引导到平面图形上来,使学生体验到数学的美和应用价值之所在,发现科学和艺术能这么完美地结合在一起;体验到生活中竟然可以找出那么多和数学有关事,所以教学中,在使学生学到数学知识的同时,还让学生受到美的教育和激励,对学生进行美育教学,在数学中发现美,在生活中应用美、创造美,培养学生高尚的审美情操,形成学生的良好道德品质。

三、在课堂教学中将科学性、娱乐性和教育性兼于一体,激发学生的兴趣

众所周知,兴趣是最好的老师,但兴趣不是天生,它是在学习中逐渐培养起来的。一旦使学生对所学的知识产生兴趣,必将会转化成为深入探究和学习问题的动力,那么如何才能培养学生的学习兴趣呢?这就需要教师有意的搜集和独具匠心的巧妙设计。三角形的相关证明或计算问题中,若出现了线段的平方一般应考虑用勾股定理来解决,若题中没有直角三角形则应考虑做辅助线或翻折或旋转图形,构造直角三角形将问题转化到直角三角形中来解决,从而体会数学中的数形结合思想。

四、利用勾股定理让学生自己动手画图,唤起学生探求知识的欲望

勾股定理的研究篇7

[关键词]视障;勾股定理;教学设计

勾股定理的探索和证明蕴含着丰富的数学思想和研究方法,对数学发展具有重要作用。但是对于视障孩子来说,过于抽象,难以理解,学习起来比较困难。为了激发视障孩子的学习兴趣,拓展学生的思维,培养他们的创造性思维,我尽可能地把发展空间留给学生,鼓励学生勇于探索,引导学生学会观察、探索、分析、归纳,让学生在玩中学,学中玩,变“苦学”为“乐学”。本节课具体设计如下:

一、准备活动:智力拼图游戏

让学生用硬纸板动手剪四个完全一样的直角三角形,然后用这四个直角三角形拼外形是正方形的图形,要求三角形不能叠加,拼成的正方形中间可以有空隙。(动手剪直角三角形是为了让学生通过亲自操作感知直角三角形的特征,为动手拼正方形作准备。通过动手操作,一是发展学生的逻辑思维能力、动手操作能力、空间想象能力,发展其智力;二是为引入课题及本节课证明勾股定理作准备。)

二、创设情景,导入新课

多媒体显示2002年在北京召开的第24届国际数学家大会会徽,让低视力学生观察大屏幕上会徽图案,引导学生寻找与会徽上的图案一样的拼图。这就是我国汉代数学家赵爽证明勾股定理时用的图。学生思考:为什么用此图案作为2002年在北京召开的第24届国际数学家大会会徽?此图还曾被我国数学家华罗庚提议发射到其他星球,以此试探其他星球“人”是否存在,他认为只要宇宙人是“文明人”就能识别这个图形。学生思考:这又说明了什么?引出课题“勾股定理”,勾股定理是研究什么内容的定理呢?引发学生思考、探究欲望。(“好的开始是成功的一半”,在课程之处,迅速集中学生的注意力,把他们带进特定的学习情境,激发学生浓厚的学习兴趣和强烈的求知欲,这对这堂课教学的成败起着至关重要的作用。运用多媒体展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。)

三、探究发现(探究特殊的直角三角形三边关系)

1.观察邮票上的图案探究特殊直角三角形的三边关系,同时介绍古希腊数学家毕达哥拉斯。通过让学生触摸纪念毕达哥拉斯的盲用邮票图案,学生观察得到:这个特殊直角三角形的三边关系32+42=52。即这个直角三角形的两条直角边的平方和等于斜边的平方。2.对比古希腊数学家毕达哥拉斯并介绍我国勾股先师———商高。(由学生触摸西方国家邮票上的图案,发现此图案反映了直角三角形三边的数量关系。学生活动从“数小方格”开始,起点低、趣味性浓。学生在伟人的故事中进行数学问题的讨论和探索,在平淡无奇的现象中发现隐藏的深刻道理。让学生了解勾股定理的古老与神奇,激发了学生强烈的求知欲,激发了学生探究知识的愿望。)

四、巧设疑共探究(探究一般的直角三角形三边关系)

由特殊的直角三角形具有的特点抛出问题:是不是所有的直角三角形都具有这样的特性?让学生通过自己拼出的图形利用面积法自行探究任意直角三角形的三边关系,探究发现四个完全一样的直角三角形拼成一个中空的正方形,大正方形面积等于小正方形面积与4个三角形面积之和。四个完全一样的等腰直角三角形拼成的正方形等于四个三角形面积和。最后小组交流探究结果,得到勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。(学生利用自己拼出的图形证明交流,发展学生的发散思维能力、逻辑思维能力、合作交流能力。同时抛砖引玉介绍赵爽弦图,赵爽用几何图形证明代数恒等关系,具有严密性、直观性,是中国古代以形证数、形数统一的典范。“赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。通过中西方证明方法,让学生欣赏丰富多彩的数学文化,展示五彩斑斓的文化背景,激发了学生的爱国热情。

五、课堂小结

课堂小结是对学习内容的回顾,是对数学思想、方法的总结。让学生畅谈本节课的收获与感受,让学生注重知识体系的建构过程,培养了学生的良好反思习惯。

六、布置作业

勾股定理的研究篇8

初中学生的逻辑思维能力还不是太强,因此需要通过直观、操作等手段帮助学生理解抽象的几何关系与演绎逻辑.而借助中国结、纸风车等为载体抽象出来的几何图形,通过拼图能直观地验证勾股定理,这对于数学学习基础尤其是抽象思维能力较弱的学生而言是极为重要的,降低了思维难度,但同时又提高了学生的参与度、兴趣与信心.其次,密切数学与生活的关联.在很长一段时间里,学生学校的数学学习与其生活是相互割裂的.这样的学习也造成了很大的教育问题,即学生的数学学习未能被正当地赋值,甚至有人还提出数学无用论.因此,在教学中需要借助学生生活中常见的素材,并由此学习这些素材中蕴含的数学元素与数学关系,这也即是“数学生活化”的教学设计逻辑.这即是指,教师首先确立的是“勾股定理”这一数学维度上的学习目标,然后寻找到如中国结、纸风车等生活中常见的素材,并使之融入到教学之中,以实现“数学生活化”.再次,为了学生文化浸润式的学习.除了密切学生的现实生活与数学之间的关联之外,还要让学生体会到数学的文化厚重感.即借助富有中国传统特色的中国结、流传历史悠久的纸风车来学习数学,能让学生产生历史厚重感.

二是在学生已经学习了勾股定理之后,向学生展现中国结和纸风车图片,要求学生抽象出其中的数学元素,并由此探索这些数学元素之间的数学关系.与前一种将文化素材作为验证勾股定理的载体不同,这里将其后置到定理学习之后作为拓展性的问题让学生探索.这种用法的价值除了具有前述“密切数学与生活之间的关系”、“为了学生文化浸润式的学习”等两个方面之外,还有以下意义.首先,为了知识的巩固与活化.学生在学习了勾股定理之后,除了常规的练习之外,事实上更重要的是要将知识迁移到类似的但又不那么封闭与明确的情境之中.后者不仅在于巩固知识,同时也使知识得到活化.因为,无论是中国结还是纸风车,都需要学生作一定程度的数学化,并将不熟悉的问题化归为刚刚学习的勾股定理相关的问题,显然这就不仅仅是知识的巩固了.其次,从教育目标的角度来看,这种做法还期待培养学生“生活数学化”的能力.关于数学价值,不同的人也许有着不同的理解.但显见的是,在数学上研究越深入的人越能认识到数学的内在价值.造成这种现象的一个重要原因在于,数学的价值有时是非常内隐的,甚至很难为人所感知的.如果在教学中不去挖掘数学的内在价值,有时就会产生误导,甚至会认为数学只是用于计算.也正因如此,我们强调这些文化素材在数学教学中加以应用,就是希望所培养的学生能逐渐拥有用数学思考问题的意识和习惯,拥有用数学更好地组织生活的能力.

就本案例而言,中国结与纸风车都是我们文化生活中所常见的,但我们更习惯于用工艺品(或艺术品)的角度来理解,而很少会从数学的角度研究这类物品.但事实是,当我们用数学的角度来理解生活中的这些事和物的时候,往往能带来惊喜:原来我们身边处处有数学.再次,有助于培养学生的数学学习习惯.过去我们所理解的数学学习习惯往往指的是学生伏在案头学习数学的习惯.我们认为,数学学习习惯除了上述方面外,一个更高的层次是学生随时而自然地会想着用数学的角度思考问题.后者当然是理想的状态,但教学中的有意识培养也能帮助学生朝着这个方向前进.其中一个重要的培养策略就是让学生尝试探索也许表面上与数学风马牛不相及的素材中的数学元素,除了中国结、纸风车,还有包括建筑物等素材.需要进一步说明的是,与前一种用法相比,这种用法对学生的数学要求也更高,当然所培养的探索能力也会更强一些.

勾股定理的研究篇9

我有幸获得开课任务,上课内容是《勾股定理》第一课时。经历了一次试上,一次正式上课和两次反思,这次案例教学活动使我的教学观念受到了极大的冲击。以前我自认为有本科学历,又有一定的教学能力,担任初中数学教学应当没有任何问题。《勾股定理》这堂课至少上过五遍,基本上都是按照书上的方法引导学生去想,并且证明给学生看。这是第一次尝试寻找一种能让学生自己“发现”并自己证明勾股定理的方法。经过反思,我深切地体会到教学理念的重要性,必须以教学理念的提升指导和改进教学方法,规范课堂教学。

二、“勾股定理”教学设计说明

在数学教学过程中,学生的知识不应只是通过教师单纯地讲解与学生的简单模仿获得,而是通过数学活动,让学生渴望新知识,经历知识的形成过程,体验应用知识的快乐,从而使学生变被动接受为主动探究,增强学好数学的愿望和信心。为此,本节课主要设计了三个活动。

活动一:唤起学生对新知识的渴望。

学生为了解决现实生活中的一个朴实、可亲、有趣的问题,不断碰到困难,并不断在发现中解决,思维探究活跃,好奇心和探索欲望被激起。

活动二:学生在探索中体验快乐。

探索“勾股定理”是本节课的重点和难点。在整个探索过程中教师只是一个引导者、启发者,引导学生动手、观察、思考、实验、探索与交流;学生在整个活动中切身体验到发现“勾股定理”的快乐。从而培养了学生的探索精神和合作交流能力。

活动三:学生在问题设计中巩固勾股定理。

本节课是勾股定理的第一课,知识的应用比较简单,学生设计问题有一定的可行性。引导学生在掌握勾股定理的基础上自己设计问题,完善问题,并从老师的高度进行变题,学生的主体性得到了充分的体现。

整个教学设计遵循“重视预设、期待生成”的原则。

三、教学过程与反思

1.第一次试上,由我独立备课,从开始备课到上课结束,始终有两个疑问没有得到很好解决。

一是如何引出勾股定理。教学过程是让学生在正方形网格上画一个两条直角边a、b分别是3厘米和4厘米的直角三角形,量一下斜边长c是多少?紧接着让学生观察直角三角形的三条边在大小上有什么关系。事实上,由于缺乏足够的材料,而且量得的结果可能不一定是整数,因此很难得出正确的结论。另外,也有学生在探究时,根据两边和大于第三边得出a+b>c这个结论,认为这也是直角三角形三条边之间的关系,这便偏离了教师预先设定的学习目标。

二是勾股定理的证明。解决的方案:采用教材提供的方法,即教参上所说的数形结合的方法。通过恒等变形(a+b)■=4×■ab+c■,在教师的引导下作出联想,将四个全等的直角三角形拼在边长为(a+b)的正方形当中,中间又是一个正方形,而它的面积正好是c■,从而得出a■+b■=c■。其中的难点在于,让学生自己很自然地想到用拼图证明,对于大多数学生来讲,做到这一点几乎是不可能的。教师只能带领学生进行变形、联想、拼图等一系列的教学活动。教师的讲授时间明显多于学生的探究时间,尽管教师一直在讲,但是其中的来龙去脉还是很难交代清楚。

第一次反思:

(1)教师的讲授时间多于学生的探究时间原因在于:凭学生已有的知识尚无能力探究这个问题,学生“一路走来”只能回答“是”“对”,思维屡屡受阻,心智活动暴露在无所依托的危机之中。

(2)备课时,教师就发现了难点所在,但直到具体实施时仍束手无策,心有余而力不足,无法引导学生进行有意义的自主探究,这与教师自身的经验不足有很大关系。

(3)教师不仅要抓住教学中的难点,更要找到化解难点的办法。为学生向既定的探究目标迈进铺设适当的知识阶梯,当凭自己的能力无法做到时,应向专家请教,及时有效地解决教学中存在的问题,使自己在教法上能有所改进。

2.第二次上课通过集体备课,大家集思广益,针对前面两个难点重点设计,基本上解决了原有的问题。

设计方案是:将整个教学过程分成八节,每一节都清晰地展现在学生面前。

(1)创设问题情境,设疑铺垫。情景展示:小强家正在装修新房,周日,小强家买了一批边长为2.1米的正方形木板,想搬进宽1.5米,高2米的大门,小强横着放,竖着放都没能将木板搬进屋内,你能帮他解决这个问题吗?

(2)以1955年发行的毕达哥拉斯纪念邮票为背景,观察图形,你发现了什么?并说说你的理由。

图一 图二

(3)以小方格背景,任意画一个顶点在格点上的直角三角形,并分别以这个直角三角形的各边为一边向外作正方形,刚才你发现的结论还成立吗?其中斜放的正方形面积如何求,由学生探讨。(介绍割与补的方法)(图一)

(4)如图二,任意直角三角形ABC为边向外作正方形,上面的猜想仍成立吗?用四个全等的直角三角形拼图验证。

(5)介绍一些有关勾股定理的史料(赵爽的弦图、世界数学家大会会标、华罗庚建议用“勾股定理”的图作为与外星人联系的信号等),让学生感受到勾股定理的历史之悠久,激起学生的民族自豪感。

(6)应用新知,解决问题。

①解决刚才“门”的问题,前后呼应;

②直角三角形两边为3和4,则第三边长是?摇 ?摇。

例:一块长约120步,宽约50步的长方形草地,被不自觉的学生沿对角线踏出了一条斜路,类似的现象时有发生,请问同学们回答:①走“斜路”的客观原因是什么?为什么?②“斜路”比正路近多少?这么几步近路,值得用我们的声誉作为代价换取吗?

(7)设计问题,揭示本质。请学生概括用上述勾股定理解决问题的实质:已知两边求第三边长,并请学生设计能用勾股定理解决的简单问题。

(8)感情收获,巩固拓展。

①本节课你有哪些收获?

②本节课你最感兴趣的是什么地方?

③你还想进一步研究什么问题?

说明:(1)通过具体的生活情景,激起了学生对本节课的学习兴趣,使他们急于想知道直角三角形的三边到底存在着怎样的数量关系,激发了他们的好奇心和求知欲。

(2)学会了在小方格的背景下,用割补法求出邮票中斜放的正方形R的面积,同时为勾股定理的引出做好了充分的准备,为学生进行有意义的探究做好了铺垫。

(3)证明方法可以说已经摆在这里,但由于前面的教学中计算强调过多,而忽略了计算原理,致使撤去小方格背景时,学生在证明时出现障碍,想不到补4个直角三角形,或割成四个直角三角形和一个正方形计算斜放的正方形面积。为了解决这个问题,本节课在定理证明时有意用拼图的方法再次验证勾股定理。

(4)由于是勾股定理的第一课,应用较简单,学生设计具有一定的可行。引导学生在掌握定理的基础上自己设计问题,完善问题,并从老师的高度变题,学生的主体性得到了最好的发挥。

第二次反思:

(1)当猜想出直角三角形三边数量关系时,是不足以让学生信服的,因为猜想时直角三角形的三边均为整数,学生可能还存在疑虑:当直角边的长不是整数时,情况又如何呢?所以让学生从理性上确信这个猜想是必不可少的环节。为此,设计了任意三边的直角三角形是否存在这个问题。

(2)去掉背景和具体数值,在证明字母为边的直角三角形的勾股定理时,主要是没有了正方形网格作背景,学生不能快速产生正确的思维迁移,不易想到用割补法证勾股定理。但是前面有了邮票问题做铺垫,学生很自然地会联想到用割或补的方法计算以斜边为边长的正方形的面积,从而得出了一般的直角三角形的情况,获得了勾股定理。

如此设计,对于执教者来讲,最大的好处在于可以使学生的思维过程显性化,有利于教师对学生进行过程性评价,有利于及时指导学生在思维过程中存在的细节问题,还有利于教师进行教学过程的改进。

(3)在做勾股定理练习时,采用开放式教学法,由学生自己出题自己解决,既巩固新知识,又提高他们的学习兴趣。但由于学生在已知直角三角形的任意两边,求第三边时,不知道一个数开平方这一知识,会出现第三边不会算的情况。关于这点,我课前早有预料:如果有这种情况出现,就为下堂课做好铺垫;如果没出现这种情况,老师上课时也不提。

(4)在课堂小结时一改先前一贯做法,三个问题结束本节课。特别是后两个问题,当时学生是这么回答的:我最感兴趣的地方是割补法证明勾股定理;毕达哥拉斯怎么会从地砖上发现勾股定理的,我们平时也要多观察生活;我想知道勾股定理还有哪些证明方法;我想知道我的这副三角板中,如果已知一条边,能不能求出另外两条边。听课的老师们深深地被学生的这些问题感染了,情不自禁地给予了赞扬。这样的总结设计,把所学的知识形成了一个知识链,为每位学生都创造了获得成功体验的机会,并为不同程度的学生提供了充分展示自己的机会,尊重了学生的个体差异,满足了学生多样化的学习需要。特别是最后一个问题,把本课知识从课内延伸到了课外,真正使不同的人得到了不同的发展。

(5)学生在学习过程中旧问题解决,而新问题产生,使我真正认识到上好勾股定理这一堂课是不容易的。课改几年来虽然理念上有所转变,但要真正在课堂上能运用自如,还需要不断实践。

几个问题间的过渡语言,也是不断地修改,甚至一个问题要怎么问,问了后学生可能会出现哪些想法都做好了预设准备,更制定了应急方案。

四、教学理念的升华

开设一堂公开课,对我来说是提升教学水平的极好机会,也可以说是完成了一次认识的飞跃。

1.问题情境的创设,是引起学生兴趣的关键。

数学源于问题,源于实际问题解决的需要,学习也是如此。正如张奠宙先生所言:“没有问题的数学教学,不会有火热的思考。”问题是思维的起点,任何有效的数学教学必须以问题为起点,以问题为驱动,激发学生学习的欲望。

2.探究式学习是教学的最高境界。

传统的教学方法是灌输,是牵着学生的鼻子走。民族创新精神的形成,就要从青少年抓起。从这点上说,让学生自己学会探究知识的方法,养成探究的习惯,关系重大,教育者责任重大。

3.学会铺垫是教学艺术的精华所在。

对学生而言,学习是不断地从已知到未知的过程。从已知到未知之间存在一个“潜在距离”,如何把握这个“潜在距离”,并且为学生走过这个距离设置合适的阶梯,让学生“跳一跳”就能摘到“果子”,这是教学艺术的精华所在。本堂课“邮票中正方形的面积的计算”这一情境设计,就是十分成功的铺垫。

勾股定理的研究篇10

关键词:勾股定理 故事 自学 引导 巩固

时钟随着指针的移动嘀嗒在响:“秒”是雄赳赳气昂昂列队行进的兵士,“分”是士官,“小时”是带队冲锋陷阵的骁勇的军官。所以当你百无聊赖、胡思乱想的时候,请记住你掌上有千军万马;你是他们的统帅。检阅他们时,你不妨问问自己——他们是否在战斗中发挥了最大的作用?

——菲·蔡·约翰逊

数学教学实质上是数学思维活动的教学,在数学教学中要充分调动学生的主体作用,注重教学过程,改变被动接受知识的局面,实现课堂教学素质化,才能真正提高课堂教学质量和效率。下面说说我在教学中的做法,通过这个例子来具体地说明数学课上如何提高课堂效率。

课例:《勾股定理的证明》

教学目标:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的。它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一;它揭示了一个直角三角形三条边之间的数量关系;它可以解决直角三角形中关于边的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以便正确地进行运用。

例如,勾股定理证明教学过程中,教师可这样实施:

一、故事引入,激发兴趣

为了激发学生学习勾股定理的兴趣,可以由下列故事引入:三千多年前有个叫商高的人对周公说:把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。

这样引起学生的学习兴趣,激发学生的求知欲。

教师紧接着问:是不是所有的直角三角形都有这个性质呢?

教师要善于激疑,使学生进入乐学状态。这样做将学生的注意力吸引到课堂上来,学生全神贯注地听课,课堂效率得到提高。

二、自学教材,主动探究

教师将教材知识整合,制作成幻灯片,以此指导学生自学教材。通过自学感悟、理解新知,体现了学生的自主学习意识,锻炼了学生主动探究知识的能力,养成了学生良好的自学习惯。

1.通过自主学习,教师设疑或学生提疑。如:怎样证明勾股定理?通过自学,中等以上的学生基本都能掌握,这时能激发学生的表现欲。

2.通过合作探究,引导学生摆脱网格的限制,研究任意直角三角形三边的数量关系。渗透由特殊到一般的思想方法。

3.教师引导学生按照要求进行拼图,观察并分析;(学生每人准备四个大小一样的直角三角形)(1)这两个图形有什么特点?(2)你能写出这两个图形桔黄色部分的面积吗?(3)你得到什么结论?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先由某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

三、巩固练习,强化提高

1.出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生思维疲劳。

例1.某楼房三楼失火,消防员赶来救火,了解到每层楼高3米,消防员取来6.5米长的梯子,梯子的底部离墙基2.5米,请问消防员能否进入三楼灭火?

2.出示例1:学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次进行巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

四、归纳总结,练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

五、课后作业

1.课本第81页1、2、3题。

2.通过报刊、资料或上网查阅中外名人对勾股定理的证明方法以及勾股定理的发展史。

教学反思:本节课教学目标明确,重点突出,注重对知识形成过程的教学。但是在准备这节课时还是不够充分,比如引例比较简单,可以适当增加。在本节课后,我又搜集了一些关于勾股定理的典故,充实本节课的内容。

勾股定理的典故:

1.5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角,之后才渐渐推广。

2.金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来用,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。

3.到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13,他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是都是直角三角形?他搜集了许多例子,结果都对这两个问题作了肯定的回答。他非常高兴,杀了一百头牛来祝贺。以后,西方人就将这个定理称为“毕达哥拉斯定理”。

另外,合作探究和拼图部分给学生留的时间太少,应该给学生足够的时间进行思考,让学生发现问题并解决问题。