勾股定理证明十篇

时间:2023-03-17 03:42:09

勾股定理证明

勾股定理证明篇1

关键词:勾股定理;历史;证明

中图分类号:G633.6 文献标志码:A 文章编号:1674-9324(2012)10-0106-02

在我国最古老的数学著作——《周髀算经》的开头,记载着一段周公(西周著名的政治家,公元前1100年左右)向商高(周时的贤大夫)请教数学知识的对话,昔者周公问商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,……以为勾广三,股修四,径偶五。既方之……”译文:从前周公问商高:“我私下听说你善于演算,请问远古者包牺氏(传说中的人物)对整个天空逐于量度之事是如何完成的,那天不能由台阶而上,地不能用尺寸来量,请问相关的数据是怎样产生的?”商高说:“……在对矩形(长方形)沿对角线对折时,会产生短边(勾)长为3,长边(股)长为4,斜长(弦)为5的直角三角形的比率。”故有人称之为“商高定理”。

勾股定理证明篇2

在同学们整个中学的学习生活和实际生活中,我们都会遇到有关直角三角形的计算和测量,那就是勾股定理的运用。我们老师不仅要教会同学们学会数学科学文化知识,更重要的是要让我同学们在日常生活中去灵活运用以及有关它存在的各种数学模型中。还要能感受我们今天的学习都是古代数学家们经过大量的实践与证明的得到的东西,探索数学知识从无到有的文化。勾股定理的发现与证明都是十分精彩的,在历史长河中,勾股定理是全世界人的伟大发现。

今天我们教科书上的多种证明,在此一一列举出来,可能对同学们学习数学以及培养数学兴趣有所帮助。并在今后的学习中铺平道路,对勾股定理有趣的文化有一个更加深刻的认识。

一、勾股世界

我国是最早了解勾股定理的国家之一,在我国最古老的数学经典著作《周髀算经》上记载着这样一段历史:西周开国之初(约公元前一千多年)有一个叫商高的数学家对周公(周武王的弟弟,封在鲁国当诸候)说:把一根直尺折成直角,两端连结起来构成一个直角三角形.它的短直角边称为勾,长直角边称为股,斜边称为弦。发现如勾为3,股为4,那么弦必为5。这就是勾股定理,又称商高定理。

在西方公元前六世纪到公元前五世纪希腊数学家毕达哥拉斯也发现这一定理,并给出了证明,但他的证明也已失传。后来欧几里得写《几何原本》时,给出一个证明留传至今(后文我们再补充,丰富同学们的视野)。因而西方称这一定理为毕达哥拉斯定理。这一定理在数学上有广泛的应用,而且工程技术,测量中也有许多应用。它在人类文明史上有重要的地位。

而在中国的有一位古代数学家赵爽在继商高之后证明了勾股定理。他这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系(与我们今天教科书上一些证明方法的大致类似)。既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有所发展。稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

二、勾股定理的多种证明方法(以教科书编排为序):

第一种证明:教科书P3,通过直接数出正方形A、B、C的小方格数,将不足一格的方格算半个。结果来看它们之间的关系。小方格数即为面积。由此方法可以得出正方形A、B的面积与正方形C的面积相等。

第二种证明:教科书P8,如图所示:

分析:正方形EFGH的面积=正方形ABCD-周围四个小三角形的面积。

计算:正方形ABCD边长为a+b,则面积为(a+b)2,小三角形的面积为,代入分析里面的公式得:(a+b)2 -4?a2+b2而正方形EFGH的面积也可表示为:c2,所以:a2+b2=c2

第三种证明:教科书P8,如图所示:

分析:正方形ABCD=正方形EFGH+小正方形EFGH周围的四个小三角形的面积。

计算:正方形EFGH的边长为b-a,则面积为(b-a)2,小三角形的面积为,代入分析里面的公式得:(b-a)2 +4祝ǎ?a2+b2,而正方形ABCD的面积也可表示为:c2,所以:a2+b2=c2

这里验证勾股定理的方法,据载最早是由三国时期数学家赵爽在为《周髀算经》作注时给出的。我国历史上将图中弦上的正方形称为弦图。这也是2002年世界数学家大会(ICM-2002)在北京召开的会标。如右图所示中央图案正是经过艺术处理的“弦图”,它既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!

第四种证明:教科书P11,是美国总统Garfield(伽菲尔德总统)于1876年给出的一种验证勾股定理的办法。整个事情经过是这样的:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是,伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

如图所示:

分析:四边形ABED是直角梯形,可通过求梯形的面积减掉两个小三角形的面积而得出ACB的面积。

计算:由梯形面积公式得梯形面积为[(a+b)祝a+b)]?,ADC与BEC的面积和为:ab,所以ACB的面积=梯形的面积-ADC与BEC的面积和,代入以上数据进行化简得:,由图中可知ACB的面积也可以表示为。因此 = ,最后得出: a2+b2=c2

第五种证明:教科书P13,是历史上有名的“青朱出入图”如图所示。刘徽在他的《九章算术注》中给出了注解,大意是:ABC直角三角形,以勾为边的正方形为朱方,以股为边的正方形为青方,以盈补虚,将朱、青二方并成弦方。依其面积关系有 2+b2=c2。“青朱出入图不用运算,单靠移动几块图形就直观地证出了勾股定理,真是“无字证明”!

第六种证明:教科书P15-16,

意大利文艺复兴时代的著名画家达・芬奇对勾股定理也曾进行了研究。他的验证勾股定理的方法可以从下面的实验中得到体现。

(1)在一张长方形的纸板上画两个边长分别为a、b正方形,并连接BC、FE(如图①示)。

(2)沿ABCDEFA剪下,得到两个大小相同的纸板Ⅰ,Ⅱ,如图②所示。

(3)将纸板Ⅱ翻转后与Ⅰ拼成如图③所示的图形。

(4)比较图①,图③中两个多边形ABCEEF和A’B’C’D’E’F’的面积,发现两个的面积是一样的。就能得出勾股定理的存在。

本种证明补充说明一下:同样两个纸板翻了下,就能证明,很明显,原图中剪掉的两个小三角形面积都在,翻一下只不过将剪掉的两个小正方形合并为一个正方形了,从而得出勾股定理的存在。

第七种证明:教科书P16,也是“无字证明”如图所示,过较大正方形的中心,作两条互垂直的线,将其分成4份,然后,将这四个部分围在四周,小正方形填在中间,恰好得到大正方形。

第八种证明(书本上没有列出):

欧几里德对直角三角形三边关系上有着独特的方法进行了论证,证明过程如图所示:

证明:在RtABC中,∠BAC=90埃AB、AC、BC为边向外有三个正方形:正方形ABDE,正方形ACGF,正方形BCHJ。连接DC、AJ。过A点作ANJH,垂足为N,交BC于M。先通过SAS,可得ABJ≌DBC, 因此它们的面积相等。而正方形ABDE的面积=2DBC的面积,长方形BMNJ的面积=2ABJ的面积。因此,正方形ABDE的面积=长方形BMNJ的面积。同理可得正方形ACGF的面积 = 长方形CMNH的面积。从而:BC2=AB2+AC2,即:a2+b2=c2。

勾股定理证明篇3

1本章内容概述

直角三角形是一种极常见而特殊的三角形,它有许多性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半.本章所研究的勾股定理,是直角三角形的非常重要的性质,有极其广泛的应用.平角的一半就是直角,空间中一条水平方向的直线和另一条铅垂方向的相交直线也相交成一个直角,直角是生产和生活中最常见的特殊角.勾股定理指出了直角三角形三边之间的数量关系,这就搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用.勾股定理不仅在平面几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基础,定理对现代数学的发展也产生了重要而深远的影响.没有勾股定理,就难以建立起整个数学的大厦.所以,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一.

本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理及其应用.

在第一节中,教科书安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程.教科书首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说故事,并让学生也去观察同样的图案,以发现等腰直角三角形这种特殊直角三角形下的特殊面积关系.在进一步的“探究”中又让学生对某些直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和以斜边为边长的正方形的面积,发现以两直角边为边长的小正方形的面积的和等于以斜边为边长的正方形的面积.然后对更一般的结论提出了猜想.

历史上对勾股定理证明的研究很多,得到了很多证明方法.教科书正文中介绍了公元3世纪三国时期中国数学家赵爽的证明方法.这是一种面积证法,依据是图形在经过适当切割后再另拼接成一个新图形,切割拼接前后图形的各部分的面积之和不变,即利用面积不变的关系和对图形面积的不同算法推出图形的性质.在教科书中,图17.1-6(1)中的图形经过切割拼接后得到图17.1-6(3)中的图形,证明了勾股定理.

根据勾股定理,已知两条直角边的长a,b,就可以求出斜边c的长.根据勾股定理还可以得到a2=c2-b2,b2=c2-a2,由此可知,已知斜边和一条直角边的长,就可以求出另一条直角边的长.也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长.教科书相应安排了两个例题和一个“探究”栏目,让学生学习运用勾股定理解决问题,并运用定理证明了斜边和一条直角边对应相等的两个直角三角形全等.

在第二节中,教科书首先让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形都是直角三角形,从而作出猜想:如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形.教科书借助勾股定理和判定全等三角形的定理(SSS)证明了这个猜想,得到了勾股定理的逆定理.勾股定理的逆定理是判定一个三角形是直角三角形的一种重要依据.教科书安排了两个例题,让学生学会运用这个定理.本节结合勾股定理的逆定理的内容的展开,穿插介绍了逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立.为巩固这些内容,相应配备了一些练习和习题.

2编写时考虑的几个问题

2.1让学生经历勾股定理及其逆定理的探索过程

勾股定理及其逆定理都是初等数学中的重要定理,同时,这两个定理也都是多数初中学生在教师的精心引导下通过探索能够发现并证明的定理,教学中要重视这两个定理的教学,在教学过程中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得两个定理的证明.

教科书对勾股定理的教学,设计了一个从特殊到一般的探索、发现和证明的过程.先是很特殊的等腰直角三角形,再到一些特殊的直角三角形,再到一般直角三角形的结论证明的赵爽证法的引入.这是一个典型的探索和证明的过程.类似地,对勾股定理的逆定理,教科书也设计了从特殊结论到一般结论的探索和证明的完整过程.

这样安排教学,有利于学生认识结论研究的必要性,培养学生对结论的探索兴趣和热情,培养学生发现、提出、分析和解决问题的能力和严密审慎的思考习惯.

2.2通过介绍我国古代研究勾股定理的成就培养民族自豪感

我国古代对数学有许多杰出的研究成果,许多成就为世界所瞩目和高度评价,在数学教学中应结合教学内容,适当介绍我国古代数学成就,培养学生爱国热情和民族自豪感.

我国古代对勾股定理的研究就是一个突出的例子.根据成书年代不晚于公元前2世纪西汉时期的《周髀算经》进行推算,有可能在公元前21世纪大禹治水时人们就会应用“勾三股四弦五”的特殊结论,公元前6、7世纪时人们还知道了勾股定理的一般结论并能灵活运用结论解决许多实际测量问题.约公元3世纪三国时期赵爽为《周髀算经》作注写《勾股圆方图注》,用“弦图”对勾股定理给出了一般的证明,这是我国对勾股定理一般结论的最早的证明.我国古代不仅较早独立地发现了勾股定理有关“勾三股四弦五”的一些特殊结论,而且也比较早使用了巧妙的方法独立证明了勾股定理一般结论,在勾股定理的应用方面也有许多深入的研究并达到熟练的程度.从《周髀算经》对勾股定理的多方面的论述,此书所记录的在公元前6、7世纪时在我国人们已经能够熟练且自信地把勾股定理应用到任意边长的直角三角形的事实,可以推测在比《周髀算经》成书早得多的时候,我国对勾股定理不仅知其然而且知其所以然,只是缺少文献明确记载对定理的论证.这些,都说明我国古代劳动人民的卓越聪明才智,也是我国对世界数学的重要贡献,是值得我们自豪的.

本章教科书结合教学内容介绍了我国古代对勾股定理的有关研究成果.在引言中介绍了现存的我国古代的数学著作中最早的著作《周髀算经》的记载“如果勾是三、股是四、那么弦是五”.勾股定理的证法很多,教科书为了弘扬我国古代数学成就,介绍了赵爽的证法.首先介绍赵爽“弦图”,然后介绍赵爽利用弦图证明命题1的基本思路.这些内容表现了我国古代劳动人民对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.正因为此,赵爽“弦图”被选为2002年在北京召开的世界数学家大会的会徽.教科书还在习题中安排了我国古代数学著作《九章算术》中的问题,展现我国古代在勾股定理应用研究方面的成果.

课本习题是一种重要的教学资源。在总复习教学中,通过探索课本典型习题的知识生长点、能力发展点、思想方法蕴涵点,挖掘课本典型习题的潜在教学价值,有利于激发学习兴趣,提高复习教学效率;通过反思、拓展、应用,完成习题教学的第二次飞跃。培养学生探究质疑精神,提高创新意识和实践能力。下面就一课本习题教学进行的再认识和再设计问题予以探究.

题目现行华师大版9年级《数学》上第24章《图形的相似》复习题C组第20题:

(1)已知,如图1,MN是ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足,求证:AA′+CC′=BB′+DD′.

(2)若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧(如图2),则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

图1图21质疑证法

华师大版配套教师用书提示:记O为ABCD两条对角线的交点,过O作OO′MN,垂足为O′。

(1)由梯形中位线定理,易证所需结论.

(2)由梯形中位线定理,可得BB′+DD′=2OO′;易可证AA′-CC′=2OO′,因而AA′=BB′+CC′+DD′.

根据提示,运用梯形中位线定理是关键,证明如下:

图3(1)证一:连结AC、BD交于O,过O作OO′MN,垂足为O′.

因为BO=OD,BB′∥OO′∥DD′,所以B′O′=O′D′。所以BB′+DD′=2OO′。同理AA′+CC′=2OO′。所以AA′+CC′=BB′+DD′.

证二:如图3,分别连结AC、BD交于P,过P作PHMN于H,连结C′P,并延长交A′A的延长线于W。因为BP=PD,BB′∥PH∥DD′,则B′H=D′H,所以PH是梯形BB′D′D的中位线。所以BB′+DD′=2PH.

又PCC′≌PAW,所以PC′=PW,CC′=AW,PH是WA′C′的中位线,所以WA′=2PH,所以AA′+CC′=2PH,所以AA′+CC′=BB′+DD′.

(2)猜想:AA′-CC′=BB′+DD′。证明(转化法):如图2,在ABCD外,另作M1N1∥MN,分别延长AA′、BB′、CC′、DD′交M1N1于A1、B1、C1、D1。由(1)证得:AA1+CC1=BB1+DD1。所以AA′+A′A1+C′C1-CC′=BB′+B′B1+DD′+D′D1,由于A′A1=C′C1=B′B1=D′D1,所以AA′-CC′=BB′+DD′.

问题分析对(1)的两种证明,关键性依据是“过梯形一腰的中点且平行于两底的直线必平分另一腰”,然后利用中位线性质获证,证明看似顺畅简洁,但现行华师大版数学教材中始终没有这样的学习内容,造成推理无依据,难消学生心中的疑虑。证法二中用到的结论“过三角形一边的中点且平行于另一边的直线必平分第三边”可以在教材P67开头部分找到依据.

这些结论如果补证,会增加学生负担;如果直接告诉这个结论,会增加学生理解难度。其实,还有适合学生的其他证法.

图4改进证法(1)如图4,分别过C、D作CHBB′于H,DPAA′于P。因为BB′∥AA′,AD∥BC,所以∠HBC+∠ABC+∠BAP=∠ABC+∠BAP+∠PAD=180°,所以∠HBC=∠PAD。又AD=BC,∠BHC=∠APD=90°,所以BHC≌APD。所以BH=AP。即BB′-HB′=AA′-PA′,由HB′=CC′,PA′=DD′,可得AA′+CC′=BB′+DD′.

(2)可仿(1)证明.

2质疑猜想

问题(2),在不给学生任何提示的前提下,学生的思考几乎呈散放、无序的状态,又测量因误差,容易导致误猜,实践证明学生很难获得有效的猜想。中科院院士张景中认为,一个题目,光想不动手,往往不得其门而入,动手做,常会有启发,代数问题,把字母代成数试一试,几何问题,多画几个图看一看,这比你冥思苦想效果好得多,学生通过数学实验,动手算一算、画一画、量一量,手脑并用,获得直接的感性认识,能最大程度地发挥其主观能动性,有利于右脑的开发,并能由此引发奇思妙想,产生大胆的猜想和创新。正所谓“直觉的产生要以逻辑分析为‘前奏曲’”。由此可见,猜想不是凭空乱想。教学中要教给学生猜想的方法和猜想的途径。猜想的方法主要有:归纳、类比、合情推理。猜想的途径主要是:观察、实验、探索。教学改进设计如下:

(1)实践操作,感知确认。试一试,测量这些线段,通过计算,它们有什么的关系呢?有人测得BB′=0。2cm,AA′=1。1cm,CC′=0。5cm,DD′=0。3cm,于是猜想:AA′+DD′=2(BB′+CC′)。还有BB′=0。25cm,AA′=1。1cm,CC′=0。55cm,DD′=0。3cm,于是猜想:AA′=BB′+CC′+DD′。谁的猜想更合理呢?再画一个图形试一试,发现:AA′=BB′+CC′+DD′更合理.

(2)通过引入辅助元素,转化为熟悉的问题或已经解决了的问题,通过推理获得猜想.

3变式探究

变式1:如果再作如下移动又如何呢?若直线MN向上移动,使点C、D在直线一侧,A、B点在直线另一侧(如图5),则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

勾股定理证明篇4

勾股定理是八年级学习的内容。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

(来源:文章屋网 )

勾股定理证明篇5

 

勾股定理的内容

 

搞清楚勾股定理的内容是有效实施教学的前提,具体的可以从代数和几何两个角度进行叙述.

 

1. 代数角度的叙述

 

文字表征:直角三角形两直角边的平方和等于斜边的平方.

 

符号表征:a2+b2=c2(a,b和c分别表示两直角边和斜边).

 

2. 几何角度的叙述

 

文字表征:一个直角三角形,以两直角边为边的两个正方形的面积之和等于以斜边为边的正方形的面积.

 

图像表征:如图1所示.

 

勾股定理的教育价值

 

一个知识的教育价值是多方面的,对于勾股定理这个内容,其教育价值和学科价值有如下几个方面:

 

1. 文化价值

 

从数学史上看,人们发现勾股定理、验证勾股定理及应用勾股定理的过程蕴涵着丰富的文化价值,我们在教学过程中注重这些数学史、研究过程,有助于激发学生的数学学习兴趣,在学习过程中体悟其存在的意义和实际价值.

 

2. 学科价值

 

从勾股定理的内容来看,其同时具有代数和几何的双重特征,是初中数学阶段几何与代数之间问题研究的一个重要桥梁,从勾股定理的证明方法来看,“演绎法”“变换法”和“代数法”三种方法教给学生,尤其是学生通过学习变换法(拼图法),能够帮助他们感受和理解运动与变换.

 

知识的教育价值不仅仅表现在概念和规律本身,在教学中还应该渗透知识探究和被发现的过程. 勾股定理的发现、验证整个过程均蕴含着丰富的、可渗透的思维素材,和学生一起探索和证明勾股定理,能够丰富学生的学习经验,感悟数学学习和不断探索未知的价值:

 

(1)学生在探索过程中,探究图形基本元素之间的关系、几何结构,而这一过程必然涉及空间推理和演算,从中学生能够感悟到数形结合的思想方法,同时体会推理和证明的力量.

 

(2)学生通过勾股定理的探索和证明,会自然而然地形成一种意识,那就是要了解我们生存的空间,必须要学习更多的数学工具,并合理地应用.

 

勾股定理知识系统内结构分析

 

数学知识具有较强的系统性和完整性,置于知识系统中,勾股定理与其他知识有着怎样的联系,学生在学习进程中又有怎样的连贯性呢?

 

1. 知识间的横向联系

 

《勾股定理》在初中阶段与其他数学知识内容密切联系,如无理数、三角函数、方程、四边形、圆等知识.

 

2. 知识间的纵向联系

 

从学生的学习进程来看,初中之前,学生在小学阶段对三角形的三边关系有了一个初步的了解:两边之和大于第三边;步入初中,学习勾股定理内容前,学生通过探索也对直角三角形的性质有了一定的了解:“斜边上的中线等于斜边的一半,30°角所对直角边是斜边的一半. ”

 

那么,勾股定理在这里又有怎样的作用呢?学习了这一内容后,学生可以进一步从边的角度来定量地刻画直角三角形的特征,由此进一步深化学生对直角三角形的认知.

 

学生从初中步入高中阶段后呢?勾股定理有没有其价值呢?学生在高中将要继续学习任意三角形中边长与角度之间的数量关系,在学习和理解正弦定理和余弦定理时,需要用到勾股定理,可以将勾股定理视作为余弦定理的一种特殊情况.

 

整个学习过程对直角三角形边角的关系,是从定性到定量,从一般到特殊再到一般的思维进程.

 

帮助学生学会勾股定理的教学策略

 

如何帮助学生学会勾股定理呢?

 

1. “探索猜想证明”法

 

笔者发现当前有部分教师在和学生探究勾股定理时采用的方法是:首先让学生测量直角三角形三条边的长,接着要求学生猜想三条边长之间存在怎样的数量关系,在学生猜想出三边之间的平方关系后,再证明勾股定理.

 

这样的方式有怎样的缺点呢?

 

笔者曾经也尝试过这种方式,看似逻辑性很好,但是关键在于学生不容易猜想出三边之间的平方关系,猜想卡壳了,后面的证明就出不来了. 为什么会出现这样的困难呢?原因有二:一是学生在测量时本身就有误差;二是从思维角度来看,学生的确很难想到平方关系.

 

2. 利用方格纸进行探究

 

提供如图2、图3所示的方格纸.

 

首先,让学生计算直角三角形三边的平方分别是多少,只要能计算出三边的平方,直角三角形三边之间的平方关系就很容易猜想出来.

 

这个时候学生会遇到怎样的困难呢?

 

因为直角三角形边长的平方实际上就是每边上的正方形的面积. 其中正方形1和正方形2的面积可以通过数方格的方法直接数出来,而斜边上正方形(正方形3)的面积的计算则有一定的困难.

 

新的问题又出现了,怎么办呢?方法又有两个.

 

(1)“割”,如图4、图5所示.

 

(2)“补”,如图6、图7所示.

 

上述在方格纸上运用内割法或外补法求斜边上正方形面积的活动蕴含了勾股定理的证明思路,由图5可得c2=(a-b)2+4ab,由图7可得(a+b)2=c2+4ab,化简之后就得到a2+b2=c2. 因此,利用方格纸探究可以帮助学生较顺利地猜想出直角三角形三边的关系,同时水到渠成地获得定理的证明,使勾股定理的学习一气呵成.

勾股定理证明篇6

在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标.

一、课程改革前对勾股定理的教学

(一)教学目标

1. 使学生掌握勾股定理.

2. 使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长.

(二)教学内容

1. 关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”.

2. 给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2.

3. 用拼图法推证勾股定理.

4. 勾股定理的应用:解决几何计算、作图及实际生产、生活的问题.

二、课程改革后对勾股定理的教学

(一)教学目标

1. 认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示.通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程.

2. 能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法.

3. 情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣.

(二)教学内容

1. 在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境).

2. 由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方.

3. 勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智.

4. 探讨利用拼图法验证勾股定理.

5. 勾股定理的实际应用.

三、两种课堂教学的对比

(一)教学理念和教学内容的不同

课改前传统的勾股定理的教学,重在掌握定理和应用定理.这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的记忆定理、被动认知和机械训练变形及运算技能的过程.这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”.

课改后勾股定理的教学从以下几方面进行:

1. 创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律.

2. 拼图验证定理——用数形结合的方法支持定理的认识.

3. 构建数学模型——学生体验由特例归纳猜想、由特例检验猜想.

4. 解决实际问题——熟练掌握定理,并形成运用定理的技能.

5. 勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情.

站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强.这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容.不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易.

(二)教师备课内容的不同

教改前对勾股定理的备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整.例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法.

定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望.一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的一条鱼,它们立刻飞去抓鱼,并且同时到到目标.问:这条鱼出现的地方离较高的树的树根有多远?

在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学. 由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错.

教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次.

为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行.

(三)学生学习方式的不同

对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式.这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如.但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象.

很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活.经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性.这不仅是社会发展的需要,同时也是促进学生自身发展的需要.学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣.利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展.

(四)教学效果的不同(见下表)

四、两种教学对比研究的结论

(一)新课程前后的教学各有优势与不足(见下表)

(二)新课程中几何教学需要注意的几个方面

1. 探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的.新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释.

2. 学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣.例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识.

3. 避免合作学习流于形式.(1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展.(2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任.(3)及时协调组内成员间的关系,有效解决组内出现的不利问题.(4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径.

4. 要注重教学活动目标的整体实现.新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡.为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标.

5. 不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握.基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体.数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系.

6. 重视合情推理及演绎推理的教学和训练.推理教学要转变并贯穿于数学教学的始终.教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力.对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明.当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力.

勾股定理证明篇7

已知ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l,l,l上,且l,l之间的距离为2,l,l之间的距离为3,则AC的长是()。

A.2 B.2

C.4D.7

这道选择题是有点难度的,需要学生作相应的辅助线,才能理清思路。如下图:过A,C两点作垂直于直线l的两条辅助线段AE,CF。有这两条辅助线后,相信只要知道直角三角形全等判定定理的学生都可以得到RtAEB≌RtBFC,所以有EB=CF,由勾股定理可以求得:

AB===,

AC===2。

所以这道选择题正确答案为A。

这道题目最终得以解决,用到了直角三角形的全等的判定,同时运用了两次勾股定理。有趣的是这道题本身还蕴含着勾股定理证明的一种方法,如果将上图中的直角梯形拿出来得到如下图形:两个全等直角三角形RtABC,RtBEF,两条直角边在同一条直线上,连接顶点A,E,构成一个直角梯形。

设直角三角形的三条边长分别为a,b,c,

显然S=(a+b)(a+b)=(a+2ab+b),

又S=S+S+S=ab+ab+c=(2ab+c)。

比较以上二式,便得a+b=c。

这一证明由于用了梯形面积公式和三角形面积公式,证明相当简洁。据说这个证明方法是美国第二十任总统伽菲尔德证明的。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法。这在数学史上被传为佳话。

关于勾股定理的证明古代中国和古希腊的两个证明同样十分简洁,十分精彩。

1.中国方法

由边长分别为a,b,c的四个直角三角形构成一正方形,如图,其中a、b为直角边,c为斜边。

由图:正方形是由4个全等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab;中间的小正方形边长为b-a,则面积为(b-a)。于是便可得如下的式子:

4×ab+(b-a)=c。

化简后便可得:a+b=c。

这就是初中几何教科书中所介绍的方法。这个对勾股定理进行证明的方法,据说是三国时期吴国的数学家赵爽所给出的方法。

2.古希腊方法

直角三角形三边AB=c,AC=b,BC=a直接在直角三角形三边上画正方形,如图:

容易看出,ABA′≌AA″C。

过C向A″B″引垂线,交AB于C′,交A″B″于C″。

ABA′与正方形ACDA′同底等高,前者面积为后者面积的一半,AA″C与矩形AA″C″C′同底等高,前者的面积也是后者的一半。由ABA′≌AA″C,知正方形ACDA′的面积等于矩形AA″C″C′的面积。同理可得正方形BB′EC的面积等于矩形B″BC″C′的面积。

于是,S=S+S,

即a+b=c。

这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

在欧几里得的证明方法中,以直角三角形三边为边作正方形,证明直角边上两个正方形的面积和等于斜边上的即可。其实勾股定理公式也可以变形为λa=λb+λc,也就是说,对任何相似形这个结论都等价。只要证明了勾股定理,就表明对任何相似形都成立。逆转过来看,只要对任一相似形证明等式的成立,就证明了勾股定理。

勾股定理证明篇8

关键词:预习;引导;训练

我国现行教育正面临从义务教育向素质教育的转变,这就要求教师在教学过程中不仅注重知识的传授,还要注重学生自主获取知识能力的培养。在初中数学教学过程中,有意识地对学生进行自学训练,有助于提高教学效果,增强学生自主思考和分析的能力。

一、初中数学教学中如何培养学生的自学能力

在初中数学中培养学生的自学能力可以从以下步骤开始:

1.明确教学目的

在新章节的教学过程中,教师先通读教材内容,明确教学目的然后对其进行分析,掌握重点难点。

2.预习与引导

对教学内容分析完成后,根据实际情况对学生的预习方向加以引导,要求其完成课前预习的部分,并进行思考,设计预习提纲就相关问题提问,让学生尝试自主寻找

答案。

3.习题训练

习题可分为两种类型,一是以掌握学习要点为主的基础知识题,二是灵活运用学习内容的提高训练题。通过解答习题,让学生掌握和提高对所学知识的自主运用能力和解题技巧。

二、以勾股定理为例的自学教案设计

以勾股定理的教学为例,自学教案的设计主要包括三个部分。

1.课前准备

教学目的:掌握勾股定理和勾股定理的逆定理。

教学分析:用数学公式对勾股定理进行证明。

预习提纲:

(1)勾股定理的内容和定义

(2)勾股定理的逆定理

(3)如何对勾股定理进行证明

(4)尝试解答:已知RtABC的两条直角边长分别为4 cm 和9 cm,求斜边长多少?

2.课堂教学

对勾股定理的课文内容详细讲解。

(1)勾股定理

直角三角形的两直角边的平方和等于斜边的平方。

即:直角三角形两直角边长度为a、b,斜边长度为c时,三边关系a2+b2=c2。

(2)勾股定理的逆定理

如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。

即:如果三角形的三边分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。

(3)勾股定理的证明

解说勾股定理的常见证明方法。

(4)勾股数

记住常见的勾股数,如3,4,5;6,8,10;5,12,13等,帮助提高学生的解题速度。

3.根据教学内容设计相关习题

例如:①下列说法正确的是( )

A.若a、b、c是ABC的三边,则a2+b2=c2

B.若a、b、c是RtABC的三边,则a2+b2=c2

C.若a、b、c是RtABC的三边,∠A=90°,则a2+b2=c2

D.若a、b、c是RtABC的三边,∠C=90°,则a2+b2=c2

②ABC的三条边长分别是a、b、c,则下列各式成立的是

( )

A.a+b=c B.a+b>c C.a+b

4.课后总结

就习题中学生错得较多的部分给予详细解答,确定辅导的重点、难点,巩固所学知识。

在初中数学教学过程中培养学生自学能力在提高教学效果的同时,有利于对学生进行全面的训练,帮助他们自主学习和独立思考。

参考文献:

勾股定理证明篇9

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来.

勾股定理:直角三角形两直角边的平方和等于斜边的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形.

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

4、定理与逆定理的应用

例1已知:如图,在ABC中,∠ACB=,AB=5cm,BC=3cm,CDAB于D,求CD的长.

解:ABC是直角三角形,AB=5,BC=3,由勾股定理有

∠2=∠C

CD的长是2.4cm

例2如图,ABC中,AB=AC,∠BAC=,D是BC上任一点,

求证:

证法一:过点A作AEBC于E

则在RtADE中,

又AB=AC,∠BAC=

AE=BE=CE

证法二:过点D作DEAB于E,DFAC于F

则DE∥AC,DF∥AB

又AB=AC,∠BAC=

EB=ED,FD=FC=AE

在RtEBD和RtFDC中

在RtAED中,

例3设

求证:

证明:构造一个边长的矩形ABCD,如图

在RtABE中

在RtBCF中

在RtDEF中

在BEF中,BE+EF>BF

例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

AD+AB+BC=3,AB+BC+CD=3

图3中,在RtDGF中

同理

图3中的路线长为

图4中,延长EF交BC于H,则FHBC,BH=CH

由∠FBH=及勾股定理得:

EA=ED=FB=FC=

EF=1-2FH=1-

此图中总线路的长为4EA+EF=

3>2.828>2.732

图4的连接线路最短,即图4的架设方案最省电线.

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业:

a、书面作业P130#1、2、3

b、上交作业P132#1、3

板书设计:

探究活动

台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

(1)该城市是否会受到这交台风的影响?请说明理由

(2)若会受到台风影响,那么台风影响该城市持续时间有多少?

(3)该城市受到台风影响的最大风力为几级?

解:(1)由点A作ADBC于D,

则AD就为城市A距台风中心的最短距离

在RtABD中,∠B=,AB=220

由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

故该城市会受到这次台风的影响.

(2)由题意知,当A点距台风中心不超过60千米时,

将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

该城市都会受到这次台风的影响

由勾股定理得

EF=2DE=

因为这次台风中心以15千米/时的速度移动

勾股定理证明篇10

关键词:勾股定理;探索;应用

一、教学目标

(1)知识与技能目标:用数格子(或割、补等)的方法体验勾股定理的探索过程,会初步运用勾股定理进行简单的计算和实际运用。

(2)过程与方法目标:在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。

(3)情感态度与价值观目标:在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理的由来,激励学生发奋学习。

二、教学重点及难点

重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

难点:用面积法探索勾股定理。

三、教学过程

(一)创设情境,提出问题

工人师傅用长为4米的直梯将一幅宣传横幅挂在墙上高3.4米的位置,如果梯子的底部离墙的距离是1.2米,请问工人师傅能不能完成任务?

设计意图:这样的设计是以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出本节课探究的主题。

(二)分类探究,发现定理

1.探究铺垫

观察下图,你知道正方形C的面积是多少吗?说说你的方法。

设计意图:学生通过合作交流,尝试探索方格中不同边长的正方形的面积求法,这样设计有利于降低新课的探究难度,为突破难点打下基础。

2.问题探究

例1:边数为整数的直角三角形

类型一:等腰直角三角形。

观察下图,你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

类型二:一般的直角三角形

由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

观察下图,你能发现各图中三个正方形的面积之间有何关系吗?

结论2:“以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

做一做:

(1)你能用直角三角形的边长,b,c来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以3cm,4cm为直角边作出直角三角形,并测量斜边的长度,(2)中的规律对这个三角形仍然成立吗?

结论3:直角三角形两直角边的平方和,等于以斜边的平方。

设计意图:由直角三角形三边长为边的三个正方形的面积关系,发现直角三角形三边的平方关系,初步得到勾股定理的内容.同时,引导学生具体画出一个直角三角形,通过计算,进一步验证勾股定理。

例2:边数不为整数的直角三角形

运用几何画板进一步验证上面的结论,改变直角三角形的三边的长度,学生发现结论仍然成立。

设计意图:由于边数为整数直角三角形的三边的平方关系,对于一般的直角三角形是否也成立?在这里,让学生画图探讨较为困难,因而利用几何画板进一步验证前面得到的结论,在此基A上,进一步探讨出本节课的重点----勾股定理。通过边数为整数和不为整数两方面的分类探究,充分地让学生经历了探索勾股定理的过程,得出的结论也更具有一般性,较好的突出了重点,突破了难点。

例3:勾股定理:

直角三角形两直角边的平方和等于斜边的平方.如果用[a,b,c]分别表示直角三角形的两直角边和斜边,那么[a2+b2=c2]。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名。(在西方文献中又称为毕达哥拉斯定理)

设计意图:通过介绍勾股定理由来的历史,激发学生热爱祖国,激励学生发奋学习。

(三)回归生活,应用新知

解决情境问题。

设计意图:让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

(四)知识拓展 ,巩固深化

1.情境题:

小明妈妈买了一部29in(74cm)的电视机,小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

设计意图:增加学生的生活常识,也体现了数学知识源于生活,并用于生活。

2.探索题:

做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

设计意图:提升难度,学生通过交流讨论的方式,拓展学生的思维、发展空间想象能力。

(五)课堂小结,概括要点

教师提问:

1.这一节课我们一起学习了哪些知识和思想方法?

2.对这些内容你有什么体会?与同伴进行交流。

在学生自由发言的基础上,师生共同总结:

1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用[a,b,c]分别表示直角三角形的两直角边和斜边,那么[a2+b2=c2]。

2.思想:分类讨论、特殊―一般―特殊、形结合思想。

设计意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动,培养学生语言表达和交流的能力。

(六)布置作业,思维延伸

1.教科书习题1.1。

2.思考:是不是任意的三角形的三边长都满足[a2+b2=c2]?若不是,你能探究出它们满足什么关系吗?和同学们交流。

设计意图:巩固基础知识;引发思考,强化认识勾股定理适用的条件。对于锐角三角形和钝角三角形,引导学生利用本节课的方法得出相应的结论,将本节课的研究方法延伸到课外。

参考文献:

[1]陈光林.《勾股定理》学习指南[J].中学生数理化(八年级数学)(北师大版),2007(Z2).