数字水印技术范文10篇

时间:2023-04-09 20:34:16

数字水印技术

数字水印技术范文篇1

秘密共享源于经典密码理论,是指将共享的秘密在一个用户集团里进行合理分配,以达到由所有集团成员共同掌管秘密的目的[7,8]。秘密一旦被共享,集团里任何单个成员都能且仅能在集团中其它成员的同意下合作得到该秘密。一个秘密共享体制由秘密的分发者D、参与者集合P={P1,P2,…,PN}、接入结构Γ、秘密空间S、分配算法、恢复算法等要素构成,其中Γ是由P的某些子集作为元素组成的集合,即Γ2Γ,其元素称为Γ的授权子集。一个P上的满足一般接入结构Γ的秘密共享方案是指:

(1)对于Γ的任何一个授权子集A∈Γ,A中的全体成员可以利用他们所拥有的秘密份额来恢复秘密S;

(2)对于Γ的任何一个非授权子集BP,BΓ,B中的成员无法利用他们的秘密份额来重新恢复秘密S。

秘密共享的概念最早由Shamir和Blakley在1979年提出,并给出(r,n)秘密共享门限方案。所谓(r,n)(其中r、n为正整数,且r≤n)秘密共享门限方案是指在用户数为n的用户集团内共享某个秘密(如K)的方法。在这个方法中,任意r个属于集团的用户都能合作计算出K的值,但当用户个数少于r时不能计算出K。如n个用户间共享一个密钥K,每个用户i持有一个密钥碎片ki(i=1,2,3,…,n),基于其中任意不同的r(r≤n)个密钥碎片ki1,ki2,…,kir(1≤i1,i2,…,ir≤n)都可以恢复出密钥K,而由任意r-1个或更少的密钥碎片都不能得出关于密钥K的信息。

应用(r,n)秘密共享体制,攻击者必须获得超过一定数量(门限值r)的秘密碎片才能获得密钥,这样提高了系统的安全性;当某些碎片(不超过n-r个)丢失或被毁时,利用其它秘密份额仍然能够获得秘密,这样提高了系统的可靠性。在恢复秘密K时,参与者必须提供正确的秘密份额,否则恢复会失败,不正确的秘密份额又称为恶意子密。秘密共享体制在实际当中应用广泛,可用于分散重要的信息,如通信密钥的管理、数据安全、银行网络管理、导弹控制发射等。

对于联合数字水印来说,其嵌入过程与一般水印的嵌入过程相同。但是在联合用户的应用背景下,当检测过程不成功时,嵌入单一联合数字水印不具备分辨单个联合用户的能力。例如设用户为A、B,当水印检测成功时,即可认定用户A、B都为具有部分联合所有权的用户,而且A、B一起拥有对水印作品的所有联合所有权。但当水印检测不成功时,无法分辨下列三种所有权分布情况:

(1)用户A、B皆为不合法的联合用户。

(2)仅用户A为不合法的联合用户。

(3)仅用户B为不合法的联合用户。

为了分辨单个联合用户,除了嵌入生成的长度为2L的联合数字水印W外,用户A可以嵌入自己的长度为L的水印W1,同时用户B也嵌入属于用户B的长度为L的水印W2。这样检测结果可能有以下情形:

(1)成功检测到所有水印:W、W1、W2。

(2)水印W、W1检测不成功,仅成功检测水印W2。

(3)水印W、W2检测不成功,仅成功检测水印W1。

(4)所有水印检测均不成功。

对以上情形分别判断为:

(1)所有水印被成功检测,用户A、B都为合法联合用户。

(2)仅成功检测水印W2,那么仅用户B都为合法联合用户。

(3)仅成功检测水印W1,那么仅用户A都为合法联合用户。

(4)所有水印均不能被成功检测,用户A、B都不具备联合所有权。

[摘要]本文简要介绍数字水印技术的定义,给出了数字水印系统框架的描述,并大致介绍了联合数字水印的一些思想。针对DCT变换在比特率较低时,会出现明显块效应的缺点,提出一种采用Gabor变换的嵌入方法,使联合数字水印技术更加完善。

[关键词]数字水印联合数字水印秘密共享体制离散余弦变换DCT

参考文献:

[1]陶亮,陶林.DGT与DCT在图像编码中的性能比较.

[2]陈海永.DCT域图像水印算法的研究.

[3]陶亮,庄镇泉.二维实值离散Gabor变换与DCT在图像编码中性能的比较.200.

数字水印技术范文篇2

秘密共享源于经典密码理论,是指将共享的秘密在一个用户集团里进行合理分配,以达到由所有集团成员共同掌管秘密的目的[7,8]。秘密一旦被共享,集团里任何单个成员都能且仅能在集团中其它成员的同意下合作得到该秘密。一个秘密共享体制由秘密的分发者D、参与者集合P={P1,P2,…,PN}、接入结构Γ、秘密空间S、分配算法、恢复算法等要素构成,其中Γ是由P的某些子集作为元素组成的集合,即Γ2Γ,其元素称为Γ的授权子集。一个P上的满足一般接入结构Γ的秘密共享方案是指:

(1)对于Γ的任何一个授权子集A∈Γ,A中的全体成员可以利用他们所拥有的秘密份额来恢复秘密S;

(2)对于Γ的任何一个非授权子集BP,BΓ,B中的成员无法利用他们的秘密份额来重新恢复秘密S。

秘密共享的概念最早由Shamir和Blakley在1979年提出,并给出(r,n)秘密共享门限方案。所谓(r,n)(其中r、n为正整数,且r≤n)秘密共享门限方案是指在用户数为n的用户集团内共享某个秘密(如K)的方法。在这个方法中,任意r个属于集团的用户都能合作计算出K的值,但当用户个数少于r时不能计算出K。如n个用户间共享一个密钥K,每个用户i持有一个密钥碎片ki(i=1,2,3,…,n),基于其中任意不同的r(r≤n)个密钥碎片ki1,ki2,…,kir(1≤i1,i2,…,ir≤n)都可以恢复出密钥K,而由任意r-1个或更少的密钥碎片都不能得出关于密钥K的信息。

应用(r,n)秘密共享体制,攻击者必须获得超过一定数量(门限值r)的秘密碎片才能获得密钥,这样提高了系统的安全性;当某些碎片(不超过n-r个)丢失或被毁时,利用其它秘密份额仍然能够获得秘密,这样提高了系统的可靠性。在恢复秘密K时,参与者必须提供正确的秘密份额,否则恢复会失败,不正确的秘密份额又称为恶意子密。秘密共享体制在实际当中应用广泛,可用于分散重要的信息,如通信密钥的管理、数据安全、银行网络管理、导弹控制发射等。

对于联合数字水印来说,其嵌入过程与一般水印的嵌入过程相同。但是在联合用户的应用背景下,当检测过程不成功时,嵌入单一联合数字水印不具备分辨单个联合用户的能力。例如设用户为A、B,当水印检测成功时,即可认定用户A、B都为具有部分联合所有权的用户,而且A、B一起拥有对水印作品的所有联合所有权。但当水印检测不成功时,无法分辨下列三种所有权分布情况:

(1)用户A、B皆为不合法的联合用户。

(2)仅用户A为不合法的联合用户。

(3)仅用户B为不合法的联合用户。

为了分辨单个联合用户,除了嵌入生成的长度为2L的联合数字水印W外,用户A可以嵌入自己的长度为L的水印W1,同时用户B也嵌入属于用户B的长度为L的水印W2。这样检测结果可能有以下情形:

(1)成功检测到所有水印:W、W1、W2。

(2)水印W、W1检测不成功,仅成功检测水印W2。

(3)水印W、W2检测不成功,仅成功检测水印W1。

(4)所有水印检测均不成功。

对以上情形分别判断为:

(1)所有水印被成功检测,用户A、B都为合法联合用户。

(2)仅成功检测水印W2,那么仅用户B都为合法联合用户。

(3)仅成功检测水印W1,那么仅用户A都为合法联合用户。

(4)所有水印均不能被成功检测,用户A、B都不具备联合所有权。

[摘要]本文简要介绍数字水印技术的定义,给出了数字水印系统框架的描述,并大致介绍了联合数字水印的一些思想。针对DCT变换在比特率较低时,会出现明显块效应的缺点,提出一种采用Gabor变换的嵌入方法,使联合数字水印技术更加完善。

[关键词]数字水印联合数字水印秘密共享体制离散余弦变换DCT

参考文献:

[1]陶亮,陶林.DGT与DCT在图像编码中的性能比较.

[2]陈海永.DCT域图像水印算法的研究.

[3]陶亮,庄镇泉.二维实值离散Gabor变换与DCT在图像编码中性能的比较.200.

数字水印技术范文篇3

【关键词】数字水印;隐蔽性;鲁棒性

随着信息时代的到来,特别是Internet的普及,信息的安全保护问题日益突出。当前的信息安全技术基本上都以密码学理论为基础,无论是采用传统的密钥系统还是公钥系统,其保护方式都是控制文件的存取,即将文件加密成密文,使非法用户不能解读。但随着计算机处理能力的快速提高,这种通过不断增加密钥长度来提高系统密级的方法变得越来越不安全。另一方面,多媒体技术已被广泛应用,需要进行加密、认证和版权保护的声像数据也越来越多。数字化的声像数据从本质上说就是数字信号,如果对这类数据也采用密码加密方式,则其本身的信号属性就被忽略了。最近几年,许多研究人员放弃了传统密码学的技术路线,尝试用各种信号处理方法对声像数据进行隐藏加密,并将该技术用于制作多媒体的“数字水印”。

一、数字时代的密写术———数字水印

数字水印(DigitalWatermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取。数字水印是信息隐藏技术的一个重要研究方向。嵌入数字作品中的信息必须具有以下基本特性才能称为数字水印:

(一)隐蔽性

嵌入水印后的数据与原始数据相比,应感觉不到差别。嵌入水印后的数据不应该包括人们可以感觉到的失真而造成原始数据质量下降,这是一个具有主观性的属性,因而目前没有一个定量的标准来衡量。

(二)鲁棒性

所谓鲁棒性是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持完整性或仍能被准确鉴别。嵌入水印后的数据经受对数据一些恶意的处理,譬如滤波、再量化、抖动等以及一些蓄意的攻击后,应该还能得到嵌入的数据。

(三)密钥的唯一性

即不同的密钥不应产生等同的水印。

(四)检测的可靠性

水印检测出错的概率应小于某一合适门限值。这一特性描述了水印检测算法必须具有一定的确信度。

二、数字水印的分类

数字水印技术可以从不同的角度进行划分。

(一)按特性划分

按水印的特性可以将数字水印分为鲁棒数字水印和脆弱数字水印两类。

(二)按水印所附载的媒体划分

按水印所附载的媒体,我们可以将数字水印划分为图像水印、音频水印、视频水印、文本水印以及用于三维网格模型的网格水印等。

(三)按检测过程划分

按水印的检测过程可以将数字水印划分为明文水印和盲水印。明文水印在检测过程中需要原始数据,而盲水印的检测只需要密钥,不需要原始数据。

(四)按内容划分

按数字水印的内容可以将水印划分为有意义水印和无意义水印。有意义水印是指水印本身也是某个数字图像或数字音频片段的编码;无意义水印则只对应于一个序列号。

(五)按用途划分

按水印的用途,我们可以将数字水印划分为票据防伪水印、版权保护水印、篡改提示水印和隐蔽标识水印。

(六)按水印隐藏的位置划分

按数字水印的隐藏位置,我们可以将其划分为时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。

三、数字水印的应用

多媒体技术的飞速发展和Internet的普及带来了一系列政治、经济、军事和文化问题,产生了许多新的研究热点,以下几个引起普遍关注的问题构成了数字水印的研究背景。

(一)数字作品的知识产权保护

数字作品的版权保护是当前的热点问题。由于数字作品的拷贝、修改非常容易,而且可以做到与原作完全相同,所以原创者不得不采用一些严重损害作品质量的办法来加上版权标志,而这种明显可见的标志很容易被篡改。“数字水印”利用数据隐藏原理使版权标志不可见或不可听,既不损害原作品,又达到了版权保护的目的。然而实事求是地说,目前市场上的数字水印产品在技术上还不成熟,很容易被破坏或破解,距离真正的实用还有很长的路要走。(二)商务交易中的票据防伪

随着高质量图像输入输出设备的发展,特别是精度超过1200dpi的彩色喷墨、激光打印机和高精度彩色复印机的出现,使得货币、支票以及其他票据的伪造变得更加容易。另外,在从传统商务向电子商务转化的过程中,会出现大量过度性的电子文件,如各种纸质票据的扫描图像等。即使在网络安全技术成熟以后,各种电子票据也还需要一些非密码的认证方式。数字水印技术可以为各种票据提供不可见的认证标志,从而大大增加了伪造的难度。

(三)声像数据的隐藏标识和篡改提示

数据的标识信息往往比数据本身更具有保密价值。没有标识信息的数据有时甚至无法使用,但直接将这些重要信息标记在原始文件上又很危险。数字水印技术提供了一种隐藏标识的方法,标识信息在原始文件上是看不到的,只有通过特殊的阅读程序才可以读取。这种方法已经被国外一些公开的遥感图像数据库所采用。此外,数据的篡改提示也是一项很重要的工作。现有的信号拼接和镶嵌技术可以做到“移花接木”而不为人知,因此,如何防范对图像、录音、录像数据的篡改攻击是重要的研究课题。基于数字水印的篡改提示是解决这一问题的理想技术途径,通过隐藏水印的状态可以判断声像信号是否被篡改。

(四)隐蔽通信及其对抗

数字水印所依赖的信息隐藏技术不仅提供了非密码的安全途径,更引发了信息战尤其是网络情报战的革命,产生了一系列新颖的作战方式,引起了许多国家的重视。网络情报战是信息战的重要组成部分,其核心内容是利用公用网络进行保密数据传送。迄今为止,学术界在这方面的研究思路一直未能突破“文件加密”的思维模式,然而,经过加密的文件往往是混乱无序的,容易引起攻击者的注意。网络多媒体技术的广泛应用使得利用公用网络进行保密通信有了新的思路,利用数字化声像信号相对于人的视觉、听觉冗余,可以进行各种时(空)域和变换域的信息隐藏,从而实现隐蔽通信。

四、数字水印的未来

数字水印技术还有很多其它用途,并且其应用领域还在不断扩大。除了技术发展,市场营销和商业规划也极为重要,并且需要有深度的分析与战略计划。技术推广和普及也必不可少,以保证市场为接受数字水印技术做好准备。对此提出一些想法。

第一,如何利用水印算法,在网络环境中解决多媒体信息安全问题,成为了当前一个研究热点。多媒体信息的安全问题是:安全传递、访问控制和版权保护。通迃加密解密可以实现前两个目的,但是,解密后的数据可以随意在网络上分布、传播。在数字内容中嵌入唯一的标志(即数字水印),在出现争端纠纷时,根据提出的水印,可以证明真正的版权拥有者,或者找出非法传播的人。但是,这些应用只是被动的在争端发生时才体现出来,而且由于缺乏相应的法律支持,这些想法没有真正的实施。因此,有人提出数字水印,利用移动技术,在网络上自动搜寻非法或未授权的数字媒体内容,但是,其前提是主机需要安装相应的程序,因而带来了新的安全问题。我们提出在网络通信路上,如在路由器中加入水印检测算法(数字水印),在网路上检测非法传播,从而杜绝网络上数字媒体内容的非法传播。

第二,目前关于多播体系下嵌入水印的方案有人已经提出。但是,在此方案下的水印需要满足的具体特性,还没有详细的考察。传统的多播基于Internet首先要研究多播体系下的水印算法需要满足的特性,然后,针对特性设计相应的水印算法。

第三,数字影院的建设需要利用数字水印保护,通过嵌入不同版本的水印,跟踪非法泄漏。其中,对于小规模的应用,只要嵌入鲁棒水印,就可以很好地满足要求。对于大规模应用,则主要考虑共谋攻击。另外,还要结合数字影院的体系结构,如果采用多播,则要结合网络特性和压缩编码。

第四,提出activewatermark概念。首先,在媒体中嵌入不同等级的水印,决定用户的权限,在网络中检测提取水印,路由器根据这些水印的权限,决定是否转发,并且提供截获的详细报告。其次,在防火墙中嵌入水印模块,对出去的媒体内容,提取水印,根据水印判断是否为重要的内容,不能外泄,对局域网的多媒体内容提供有效保护;对传进来的多媒体内容,可以根据提取的水印判断员工是否有权使用,从而防止出现不必要的违法侵权行为。

【参考文献】

[1]周瑞辉,荆继武.信息安全的新兴领域--信息隐藏[J].计算机应用研究,2001,(7).

数字水印技术范文篇4

[论文摘要]电子商务的迅速发展,使电子商务安全问题不容忽视。从数字水印技术的信息隐藏、不可见性,鲁棒性,安全性等特点出发,把数字水印技术应用到电子商务安全保护中,解决电子商务安全中的数字作品版权信息验证,电子票据保护,身份鉴别、篡改提示等问题。

互联网技术的日新月异,使电子商务的发展变得更加迅猛。同时网络中一些不可预料的危险环节,也使电子商务安全问题成为人们关注的焦点。传统的认证和访问控制技术、密码技术并不能全面解决电子商务安全问题,所以一种新兴的信息安全技术——数字水印技术被应用到电子商务中。

一、数字水印定义、功能及原理

数字水印是信息隐藏技术的重要分支。所谓数字水印(DigitalWatermarking)是指嵌入数字载体(包括多媒体、文档、软件等)中的数字信号,它可以是图像、文字、符号、数字等所有可以作为标识的信息。数字水印既不影响原始载体的正常使用及存在价值,也不容易被人感知。

通过隐藏在载体中的标识信息即数字水印,可以达到验证和确认内容提供者、购买者、隐藏信息或判断载体是否被篡改等目的。

数字水印算法的原理大都相同,即对时(空)域或变换域中的一些参数进行微小的变动,在某些位置嵌入一定的数据,生成数字水印,当需要检测时,从载体中提取水印,与原水印进行比较,检测水印是否被篡改等。近年来研究者从不同角度提高和改进数字水印算法,其实都是以提高水印的鲁棒性为目的的。

典型的数字水印算法有以下几类:空域算法,变化域算法,压缩域算法,NEC算法,生理模型算法等。

二、数字水印的特点和分类

根据数字水印的定义及功能,可以看出数字水印具有以下几个特点。

不可见性:数字水印作为标识信息隐藏于数字作品中,对拦截者而言,应不可见。

安全性:数字水印应当具备难以篡改或伪造的要求,并应当具有较低的误检测率和较强的抵抗性

鲁棒性:在经过多种信号处理过程后,数字水印仍能保持部分完整性及检测的准确性。

脆弱性:能直接反映出水印是否遭受篡改等。

根据不同标准,数字水印分为以下几类。

按照水印特点划分:鲁棒性水印和脆弱水印。

按照水印隐藏位置划分:时域数字水印、空域数字水印、频域数字水印等。

按照水印检测过程划分:明文水印和盲水印。

按照水印是否可见划分:可见水印和不可见水印。

按照水印内容划分:有意义水印和无意义水印。

当然,数字水印还可以按照用途、水印载体等多种方式来划分成更多的小类,这里不再一一列举。三、数字水印技术在电子商务中的应用

数字水印技术在电子商务中的应用集中表现在电子商务安全保护问题中。电子商务安全可以分为网络安全和信息安全。网络安全复杂且受多种因素影响,要解决电子商务安全问题,必须把信息安全作为问题切入点。

目前,电子商务信息安全方面已经使用到了加密技术,安全认证技术等多种安全保护技术,但仍有部分问题得不到解决。

首先,电子商务中数字作品的版权保护问题。在知识产权体系日益完善的今天,版权问题已经成为人们关注的焦点问题,也是数字作品提供者必须正视的问题。研究者试图寻找一种方法,既不损害原作品,又达到版权保护的目的,于是,与传统水印功能几乎相同的“数字水印”被应用到电子商务中。数字水印技术利用信息隐藏原理使版权标志不可见或不可听,“悄然”存在与数字作品之中。

目前应用数字水印来解决版权保护问题多用在软件作品中,比较著名的就是IBM公司的“数字图书馆”软件的数字水印功能,以及Adobe公司的Photoshop软件中集成了Digimarc公司的数字水印插件。

其次,电子交易中的电子票据的防伪问题。随着商务活动电子化和自动化的转变,许多交易活动都转变为电子交易,其中电子票据的安全保护变得犹为重要。数字水印技术可以在交易双方的电子票据中嵌入交易时间和签名等认证信息,使交易过程具有不可抵赖性。而且数字水印技术在电子票据中隐藏了不可见的标识信息,无形中也增加了不法分子伪造篡改票据的难度。水印还具有法律效力,可以在交易出现法律纠纷时,作为证据使用。

还有,身份验证信息的真伪鉴别问题。目前,用于信息安全的加密技术对于电子形式的身份验证信息具有良好的保护功能,但无法作为书面凭证进行鉴别。而通过使用数字水印技术,把电子身份验证信息隐藏到普通的凭证图像当中,使身份凭证具有不可复制和不可抵赖等特性,实现了电子信息和书面信息的双重保护。

重要标识信息的隐藏和篡改提示。许多交易作品的使用必须依赖作品中一些标识信息,如果直接把此类信息标注在原始作品上,会引起一些不必要的麻烦,而利用数字水印技术就可以把重要信息隐藏在原始作品中,通过特殊的阅读程序(水印检测工具等)来读取。数字水印技术还可以用于数字信号的篡改提示,通过水印的状态来检测数字信号是否遭到篡改。

通信过程的信息隐藏。用于信息安全保护的常用方法是对数据进行加密,这样往往更容易引起攻击方的注意,从另一个角度出发,在人类视觉、听觉等无法感知的范围之内,对各种时(空)域、变换域进行微小的改变,从而实现信息隐藏,达到通信过程信息安全保护的目的。

四、结束语

数字水印技术作为一种新兴的安全保护技术应用到电子商务中,表现出其显著的作用和功效,因为区别于传统的数据加密技术或安全认证技术,为信息安全保护领域带来了新思路。但是,由于目前数字水印技术本身并不完善,应用到电子商务中还存在很多实际的问题。例如,水印检测的简便性,水印的鲁棒性,等等,这些也将作为研究者进一步努力的方向。

参考文献:

数字水印技术范文篇5

互联网时代的到来为数字媒体的传播提供了前所未有的便捷,目前越来越多的多媒体信息(包括图像、视频、音频等各种类型数据)都采用网络形式进行和交流。由于数字作品极其容易进行复制和修改,如何保护数字作品原创者的版权成为摆在计算机和电子行业专家学者面前的一个研究问题,这时数字水印技术应运而生,为解决这一难题找到一条出路。数字水印(DigitalWatermarking)技术是指研究如何将一些标识信息(即数字水印)嵌入到数字媒体(包括图像、音频、三维模型、数字文本、软件等)中的技术。广义的数字水印包括可见水印(例如新闻图片、影视作品中常见的可见版权标记)和不可见水印两类。可见水印目前已经广泛用于各大主流媒体和视频网站,例如新浪网等门户网站均在其网站图片上添加醒目标志,防止他人非法转载复制,优酷网亦在其视频内容上添加标志注明版权,但需要指出的是可见水印将会对原有媒体的内容进行一定程度的破坏,影响读者和观众的观感。为解决这一问题,可采用不可见水印,既不影响原载体的使用价值,也不易被人类感知系统察觉到,而通过这些隐含的标识信息,则可以达到确认版权、判断媒体是否被篡改等目的,与可见水印相比具有更广泛的应用范围,为学界研究之重点。数字水印技术利用数据的冗余性隐藏版权标志,目前已经初步开始进入商业化应用阶段:例如由IBM公司开发的“数字图书馆”软件可使用数字水印功能,Adobe公司开发的Photoshop软件集成了数字水印插件(Digimarc公司制作)。《信息安全》作为大学的一门新开课程,有责任向学生介绍数字水印技术这一信息安全领域的新兴研究热点,让学生了解本学科领域的最新研究方向和趋势,扩大学生的知识面,开拓他们的视野。

2《信息安全》课程引入数字水印技术的可行性分析

不可否认,让本科学生学习数字水印技术存在一些难点,例如需要掌握和了解一些数学方面的知识、了解一些媒体编码(例如图像、音频及三维图形)的基础理论,但这并不会影响学生学习这门技术,原因如下:(1)计算机类专业和电子类学生已经学习了《高等数学》、《线性代数》、《概率论》等相关的数学课程,对基本的数学知识已经有一定的掌握和了解,在《线性代数》课程中已经学习了基本的矩阵变换理论,稍加学习变通即可了解和熟悉图像的编码格式。对于一些较难的数学变换理论,例如DCT变换、FFT变换、奇异值分解等,只需向学生介绍基本的概念,至于具体的实现方法则可以使用MatLab等计算软件来完成。(2)可采用MatLab软件作为教学和实验平台工具。Matlab是近年来最通用的科学计算应用软件之一,它具备结构简单、容易上手、计算高效、图形图像处理功能完备等特点。利用MatLab编写数字水印算法便捷、高效,大幅减少了编程方面的工作量。主要体现在这些方面:(a)MatLab可以方便快捷地实现多种格式图像(例如BMP位图文件、JPG压缩图像文件等)的读取、显示和存盘;(b)对于采用矩阵表示的数字图像来说,MatLab具有强大的矩阵运算功能,例如DCT变换、FFT变换、小波变换、奇异值分解等,这些如果依靠其他编程语言如C++,需要耗费大量的编程精力,而采用MatLab则可以利用系统自带的图像处理工具箱轻松完成;(c)为判断某一数字水印算法的抗攻击性,需要对携带水印的图像进行一些模拟仿真攻击实验,而MatLab自带了一些图像处理的函数,例如添加各类图像噪声、图像滤波等,这些都可用于含水印图像的抗攻击性能模拟仿真。(3)改革《信息安全》课程的考核方式。可以让学生完成2~3个常见的数字水印算法来作为本门课程的一次大作业,或者直接以课程设计的方式来完成。学生通过完成本次作业或课程设计,不仅可以加深对数字水印理论和概念的理解,还能学习和掌握MatLab这一有力计算软件的使用方法。有了本次作业或课程设计的基础,感兴趣的学生更可以进一步对水印算法拓展和延伸,加大难度,作为以后毕业设计的一个课题来做。对于优秀的学生,更可以结合教师的科研课题,在教师指导下,提出新颖的观点和方法,研究成果可以发表在科技期刊上。

3结语

数字水印技术范文篇6

论文摘要:从信息论的角度,针对基于高斯噪声信道的数字水印容量作了初步探索。在详细阐述图像数字水印基本原理和水印信道的构造及生成方式的基础上,针对高斯信源分布具有最大的不确定性、能够在所有的二阶随机分布中提供最大信息熵的特点,重点分析了在高斯分布情况下的整个水印信道通信过程;并引入平均互信息理论,给出了基于高斯的水印信道容量的最大通信速率;同时分析了加性噪声信道下的容量问题,将高斯分布扩展到了非高斯分布,给出并优化了容量计算表达式,同时利用MATLAB软件工具给出了非高斯信源水印容量与受限失真度的二维和三维关系仿真曲线;最后结合实际给出了结果分析。

论文关键词:数字水印;信道容量;高斯噪声信道;攻击信道;信息论;

0引言

数字水印可视为通信理论的一种应用[2]。随着对数字水印算法可靠性要求的提高,目前的数字水印不论在数学理论上和技术上均不成熟,对数字水印系统的公式描述仍然没有统一的定论,在数字水印系统最终性能方面存在较多的不确定性[1,7,8]。这些均可以从信息论的角度上寻求解决出路。

数字水印系统分为水印嵌入编码,攻击信道,和水印译码三个模块。这里,我们对一般数字水印模型提出了改进,在水印嵌入之前加入待嵌入信号预处理,给出了对于水印通信模型的更加恰当的描述,如图1。

根据改进系统框图,数字水印的实施过程可分为如下步(只考虑图像水印):

(1)密钥生成:在进行水印处理之前,随机密钥经伪随机信号发生器生成,并在编码和译码端可知;该密钥与待嵌入消息M和原始载体信宿相互独立。

(2)形成水印信号:通过一预处理器对消息M作压缩或编码预处理,同时还可利用原始载体信宿提供的边信息进行预编码,保证水印的唯一性,改善误码率,提高通信容量。

(3)水印嵌入:待嵌入消息水印信号M通过某种算法,与密钥进行相关处理,被嵌入长为N的载体序列中,生成的图像水印可表示为,且。

(4)攻击信道:该生成水印在传输过程中将会受到恶意攻击导致其中的W信号被去除而生成被修改的信号。

(5)提取或检测水印:借助原始载体图像(私有水印或非盲水印),或不依赖原是图像(公开水印或盲水印),利用相关接收机、匹配滤波器、最大后验概率译码规则(MAP)来提取或检测水印。1、信道容量的数学分析

水印的信道容量是所有可达速率的上限。根据理论分析表明[1,7,8],它由如下三个参量决定:嵌入失真,攻击失真,以及载体信宿的概率分布函数{PS}。

可以证明:当原始载体信源的功率(方差)为,那么对于公开水印和私有水印,其信道容量均不超过。其中:首先定义区间:

,(10)

通过计算,当时,可以得到区间为空域。当区域非空时,定义水印容量

=(11)

特别的,当载体信源S满足零均值,方差为且独立同分布的高斯分布时,公开水印与私有水印具有相同的水印信道容量,且该容量正好等于上限。

2、信道容量计算公式的简化

上述容量计算公式过于复杂,可进行如下化简,根据水印的信道容量公式(11),我们有

==

=(12)

而前面(10)已经定义区间:

根据上面的推导,可把暂看作常量,那么容量C决定于中间变量的取值,即根据适当的选取值得到最大化的C;但实际上由(10)式我们可以看到的取值范围又由决定。经过适当的约束和简化,最终我们可以得到

(13)

但考虑到,当时,实际上这种攻击对水印是完全无效的[5];因而攻击者不会采用。所以进一步给出攻击失真的取值范。在小范围失真下,即,有,所以可得到小范围失真条件下的容量近似公式:

(14)

根据上式,我们可以看到在小范围失真情况下,容量与载体信源的统计概率分布无关。当时,根据上式,可以得到容量C=0.5bit/Symbol。

3、模型的约束性优化和扩展

为了更好的理解水印系统,简化分析,可引入加性噪声信道的概念。对比乘性信道,加性噪声信道具有统计分布参数(如方差)简单加的特点,这对模型的分析十分有利。实际上,目前关于信息论的许多研究都从加性噪声信道分析入手[1,5]。

可以将经攻击伪造后的消息Y写成如下形式:

其中,,。(15)

图2数字水印博弈模型

根据上式,可将水印理解成一种带有边信息的通信博弈[2]。将理解为被传输的信号,同时受到加性噪声S的破坏(这里将载体信源看作相对于的加性噪声);S在传输端可知。而可以理解成一种可加性干扰信号,该信号由决定。那么,当失真测量为简单的差度量度时,该失真度由加在上的干扰限制决定。特别的,在本例中,因,系统失真由加在被传输的上的总干扰功率决定,即功率受限。同样的,如果,那么可加性干扰信号也是功率受限信号。

考虑信道的输出为,其中输入的功率受限为;S为任意的功率受限且各态历经的过程,并假设S仅在编码的时候是可知的,而在解码是是未知的。为一稳态高斯过程,对编码和译码均不可知。假设S和相互独立,其联合概率分布与独立。

考虑S和均为满足独立等同概率分布的随机变量;特别的,S任意分布(可以为非高斯分布),而满足零均值,方差为的高斯分布。也为满零均值,方差为的高斯分布,并且与S和的联合概率独立。同时设辅助随机变量。那么,有

,(16)

可以证明,在条件下,随机变量和不相关,且相互独立。因和均为高斯分布,那么也满足高斯分布。又因S和相互独立,所以随机变量与也相互独立。这样,可以推出如下结论:

(17)

同时,与独立表明:

(18)

所以,综合上述两式,可以得出:

(19)

上式最后一等号的成立是因为满足零均值,方差为的高斯分布;满足零均值,方差为的高斯分布;同时考虑的是加性噪声,因此两个,联合分布的方差即为两者方差的简单和。根据高斯分布的熵公式[6]很容易得出上述结论。

数字水印技术范文篇7

关键词:数字水印JPEC2000小波变换迭代函数系

随着多媒体和网络技术的迅速发展与广泛应用,数字化媒体(如数字图像、数字视频和音频等)的传输和获取变得越来越便捷,一方面促进了人类信息的共享,推动了社会的进步,而另一方面由于其极易复制且复制后的媒体质量与原版几乎没有差异,因此也带来了数字多媒体的版权问题。数字水印技术作为版权保护的重要手段而得到了广泛的研究和应用。

现有图像数字水印算法基本上可分为两类:空间域方法和变换域方法。空域法通过直接改变图像某些像素的灰度值来嵌入水印,如LSB、扩展频谱[1]等;而变换域方法先把图像做某种变换,例如DCT、DWT,然后通过改变某些变换系数嵌入水印[2,3]。随着JPEG2000和MPEG-4标准的建立,目前大量的数字水印技术研究集中在DWT域,因为在DWT域嵌入水印可以提高水印对最新图像压缩处理的攻击。但是在DWT域嵌入水印也有其弱点,例如抵抗缩放等几何形变攻击能力较弱。文献[4]介绍了一种基于IFS(IteratedFunctionSystem)的可以抵抗几何形变的空域数字水印方法。此方法的缺点是嵌入的水印信息只能是英文字母,而且对部分字母识别能力较差,水印抵抗JPEG压缩攻击的能力较弱。本文采用具有实际意义的汉字和二值图像作为水印,利用IFS生成可抵抗几何形变的双重数字水印信息,并且嵌入DWT域低频区域系数矩阵,以提高其抵抗常见图像处理攻击的能力。经实验证明,该方法对常见的攻击有较好的鲁棒性,同时满足了水印信息的不可见性。

1水印的嵌入原理

1.1自相似水印分形图的生成

二维IFS是研究二维图像分形压缩和编码的基础,通过对图像的旋转、缩放和扭曲、反演等变成另一自相似图像。将汉字水印信息转化为自相似分形图,也就是将汉字水印信息转化为自相似水印分形图的IFS变换参数。IFS的基本形式为:

其中θ、α、ι1、ι2、e、f分别为旋转角度、扭曲角度、坐标轴伸缩比例和平移参数。

汉字存储编码有区位码和机内码。这里将区位码转化为IFS参数。常用汉字的区码M范围为16~55,定义映射F:M→θ

θ=F(M)=8×(M—15)+4(2)

(2)式是先将M转化为1~40整数,编为6位二进制编码(000001)~(101000),再在其后面添加(100),则M对应编码为(000001100)~(101000100)。通过上述变换将汉字信息区码转化为仿射变换的旋转角度,变换后θ的范围是[12,324]。

又由于常用汉字的位码N为1~94。定义映射G:N→[aa,bb]→[a,b]

[aa,bb]=G(N)=[((N+5)div(10))+6,((N+5)mod(10)+6)];(3)

[a,b]=[(aa×16+8)/250,(bbx16+8)/250](4)

其中(3)式是将N变换为6~15之间的一个整数对;(4)式是将变换所得整数对分别进行二进制编码,再在各个编码后添加(1000),为保证仿射变换的压缩性,全部除以250。通过上述变换后,a,b范围是[0.416,0.992],其中[a,b)是一个实数对。

将θ、a、b值代人上述仿射变换公式中,令α=0,e、f的值根据具体情况而定。假设水印信息W1为{S1,S2,S3:其中Si是常用汉字},根据上面定义的影射转化为迭代函数系{R2;ω0,ω1,ω2,ω3}。其中ωi(对应Si,ω0对应(θ0=0,a0=b0=1),作为第一水印检测的参考图。由于上述两个变换都是一对一映射,可以很容易求得其反变换过程。

取第二水印W2为一幅KxK的二值图像,分别通过上述变换ωi将第二水印信息影射为一个大小为2K×2K的自相似水印分形图W.映射方式如图1所示。

1.2水印嵌入方法

数字水印的嵌入步骤如下:

(1)将原始图像进行L层小波分解得到3L+1个子带。选择L使其低频子带A系数为与自相似水印分形图W大小相同的矩阵。

(2)引入一个与自相似水印分形大小一致的二值图像B。此图像的单数行为101010…,而其偶数行为010101…,或互换。

(3)从自相似水印分形图W中取像素W(i,j)。

(4)如果W(i,j)值为0,则令A,(i,j)=A(i,j),转入第(6)步。

(5)如果W(i,j)值为1,从参考图像B中取对应像素B(i,j);如果B(i,j)=1,则令A(i,j)=A(i,j)+d;否则,令A(i,j)=A(i,j)-d。其中d>0,取值视载体图像而定。

(6)重复(3)、(4)、(5)直到取完自相似水印分形图W中的所有像素点。

(7)利用修改后的系数矩阵进行小波反变换,重构带有水印信息的原始图像。

图2

1.3水印检测方法

在自相似水印的提取算法中,用到了拉普拉斯(Laplace)算子与两个矩阵像素块E、F,其中E=[101;010;101]3×3,F=[010;101;010]3×3。

(1)将带有水印信息的图像进行L层小波分解,提取出低频子带系数矩阵。

(2)利用拉氏算子的图像边缘检测功能由待检测的系数矩阵A’生成与其大小一致的三值(0,1,2)图像G。具体生成算法如下:

①拉氏算子计算G(i,j)=A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)-4A(i,j)。

②如果G(i,j)>ε,则令G(i,j)=0;否则如果G(i,j)<-ε,则令G(ij)=1,否则G(i,j)=2。其中ε>0,其大小与d取值有关(下面ξ同ε)。

③重复上述两步,直到生成三值图像G。计算G的第1行列和最后1行列时用第2行列和倒数第2行列替代。

(3)用W表示提取出的自相似水印分形图。由三值图像G生成W的算法如下:

①从G中取以G(i,j)为中心的3x3像素块,记为G33。

②统计G33与E、F块对应位置上像素值相同的像素点个数,分别记为SE和SF。

③如果SE>ξ或者SF>ξ,则令W(i,j)=1;否则令W(i,j)=0;ξ>0。

③重复前三步,直到取完上面所有的点。求第1行列和最后1行列的补救方法与上面求三值图像的方法

(4)从W’中提取汉字水印信息。在二值图像W中对各部分任意取三个对应点,根据变换公式确定对应变换系数,将系数变换为汉字的区位码即可得对应汉字信息。

2实验结果

2.1双重水印信息的鲁棒性测试

实验中载体图像采用512x512的标准LENA灰度测试图像,第1水印信息使用“王小林”三个汉字,第2水印信息采用128x128的带有“理工科技”四个字的二值图章图像,原始载体图像小波分解时采用紧支双正交的db3小波(使用该小波函数可以减少提取自相似水印分形图时采用的替代措施),分解层级L为1。实验中d取16,ε取4,ξ取8。水印信息为二值图像,用肉眼可观察各种攻击后的检测效果,所以将检测出的双重水印图像与嵌入前的双重水印图像并放在一起,以便对照水印嵌入前后的差别(检测结果中左半部分为嵌入前双重水印图像,右半部分为检测出的双重水印图像)。常见的攻击测试,包括JPEG图像压缩(压缩因子40~90)、均值和高斯滤波、图像在不同灰度级上的量化、A/D及D/A转换、缩放、旋转、部分剪切、噪声叠加等。其测试结果如图2所示。

2.2第1汉字水印信息的提取

如果需要提取第1水印,则将提取出的双重水印图像置于一坐标系中,对应每一部分图形块取出对应的三个点坐标,根据对应三个点的坐标数值代人仿射变换公式,求出对应部分图形的对应变换ωi的参数,再根据水印转化公式的反变换确定出对应汉字的区位码信息,进而确定出对应的汉字。如图3和表1所示。

表1由自相似水印分形图像取出的对应点确定对应汉字信息

点第1个点第二个点第三个点旋转角度横轴缩放a纵轴缩放b对应区码对应位码水印汉字

参考点43,1632,3249,54011

第一个字183,90196,96194,792440.9920.4164585王

第二个字25,20238,20456,1992580.9280.8004801小

第三个字229,224229,206207,1951480.7360.9923354林

2.3峰峰信噪比

本文采用峰峰信噪比(PSNR)作为嵌入水印后重构图像质量的客观评价指标,其计算公式为:

其中,f(i,j)与f''''(i,j)为嵌入水印前后图像的灰度值,MSE为均方误差。

按式(5)、(6)来计算,本算法嵌入水印后的峰峰信噪比PSNR=30.1550dB;由文献[5]可知,当PSNR超过30dB时,人的视觉很难分辨出原始图像和重构图像的差异。因此本算法完全满足水印信息的不可见性。

2.4水印检测的相关性

由于本算法所采用的水印为二值数字图像,为了客观表示检测出的水印信息与原水印信息的相近程度,定义相关系数为:

ρ:WEQU/WALL(7)

其中,WEQU=[相同位置W=W的个数];[正确检测的水印像素数目],WALL=[W像素总数]。本实验中WALL=256x256。

由以上定义可知,ρ不但表示了水印信息前后的相关程度,而且也表示出了水印信息检测的正确率,即水印信息被正确检测出的百分比率。ρ越大意味着水印信息的鲁棒性越强。本实验结果如表2所示。

由表2可以看出,对带有水印信息的图像进行各种常见的攻击后,水印信息检测的正确率都大于57%,说明该算法对常见攻击具有较强的鲁棒性。

表2各种功击后自相似水印检测相关关系数表

攻击名无攻击时A/D、D/AJPEG(40)JPEG(50)JPEG(60)JPEG(70)JPEG(80)JPEG(90)

ρ0.88550.88550.82240.85980.86330.85260.86840.8783

攻击名放大到1.25缩小到0.75反转15℃部分剪切均值滤波高斯滤波纳盐噪声高斯噪声

数字水印技术范文篇8

1监测业务和技术的现状及分类

目前国内大多数广播电视台站的自动监测系统都只针对音频信号的质量好坏和信号的有无进行监测,而对于音频信号的来源及内容等安全方面的监测任务则更多地采用循环播放、人工监听的方式…。人工方式不仅效率低,而且不及时。应州于广播电视安全监测系统的音频信号监测技术从业务层面上可分为音频的内容监测和音频的质量监测。音频的内容监测主要是对采集的信息的收集、整理、解析和应用等过程中所出现的错误、疏漏、不当及不和谐、敏感信息的检查和把关,它关注的是音频所表述的具体内容。音频的质量监测主要是对已经制作完成的广播电视节目在音频信号的生成、处理、传输和收发过程中出现的干扰、噪声、电平过低、中断和信源突变等状况所进行的实时监控和更正,它注重的是音频信号的质量及来源的正确性。二者虽然针对的业务层面不同,却彼此依赖相互联系。音频内容的好坏会直接影响到音频质量的高低,音频质量的高低也会直接影响终端听众对信息内容的获取量和正确率。总之,对音频内容和质量的监测都是为了保证听众能收到正确、优质和不间断的音频信号。目前,可应用于音频信号监测任务的技术可分为音频比对技术、音频识别技术、数字水印技术这三大类。

2音频比对技术

音频比对技术是利用数字音频的时域或频域特征或属性来分析两段音频序列的相似度,再相似度的大小来判断这两段音频序列播放的是否是相同或相似的内容。其大概流程如图1所示。首先,将要处理的2路音频序列通过多路音频采集卡采集到设备中,并进行滤波、增益补偿等处理;其次,将得到的2路音频信号进行模数转换,再对得到的数字信号进行压缩处理;然后,提取2路信号的特征参数或者属性;最后,比较提取出来的参数或者属性,得出2路音频信号的相似度,再由相似度来判断2路信号是否相同或者相似。滤波和增益补偿等预处理是为了滤除音频中的噪卢、干扰脉冲及平衡音频的电平差等。

压缩处理是为了减少音频中相关性较低和不相关的参数,减少后续工作量,提高处理的实时性(目前比较流行的压缩算法是利用小波函数压缩)。参数和属性的提取是从音频流中以帧为单位提取出2路音频的质心、均方根、Mel倒谱系数以及音高、振幅、带宽、能量等。音频比对是利用上一步提取的参数或属性进行计算和比较,将比较结果同预先设定的阈值进行对比,得出最终结果。音频比对技术在实现时不考虑音频的具体内容,它只注重音频序列的关键参数和属性的相似度。目前对音频技术的应用需求更多的还是涉及到音频的语意和具体内容方面,这项技术的适用领域相对来说比较小,但是它基本上能满足广播电视的质量监测的任务需求。

3音频识别技术

音频识别技术主要以语音为研究对象,许多资料亦称之为语音识别技术。它是指让系统依据语音和人声的特性、事先建立好的语音模板库或人类的大脑神经系统的活动原理对人们发出的声音或者保存的语音数据进行逐字逐句识别并转化为文本、对语音的特征语意进行判断和响应或者执行特定的命令任务的技术。从说话者异同方面,可以将语音识别系统分为特定人语音识别系统、非特定人语音识别系统和多人语音识别系统。从语音的产生和输入的方式,可以将语音识别系统分为孤立词语音识别系统、连接词语音识别系统和连续语音识别系统。

从语音包含的词汇量大小,可以将语音识别系统分为小词汇量语音识别系统、中等词汇量语音识别系统和大词汇量语音识别系统。语音识别技术从方法和实现层面总体可以分为三种:基于语音基元的共有特性和声学属性的方法,基于模板的建立和匹配的方法,基于人工神经网络的方法。声学属性的方法又细分为基于动态时间规整方法(DTW)的语音识别技术、基于隐马尔可夫理论(HMM)的语音识别技术和基于矢量量化算法(VQ)的语音识别技术等。基于模板匹配的语音识别技术大致流程如图2所示。其中自“参数属性提取”之前的处理过程与上文介绍的音频比对技术的过程基本相同,此处不再赘述。提取参数之后需要先使用一定的训练算法对提取出来的参数进行训练以建立声学模板库,有了声学模板库就可以对输入的语音数据进行识别了。识别的过程就是将输人的语音的特征或参数同模板库进行计算和比较,得出最终结果。现在人们研究和使用的较多的语音识别的主流技术是基于隐马尔可夫理论(HMM)的语音识别技术,它可以胜任大词汇量、非特定人和连续的语音识别任务,并且识别准确率已基本达到了实用水平。相比之下,基于人工神经网络的语音识别技术的应用前景则更被人们看好,但它是一门尚处于实验探索阶段的新兴技术。音频识别技术更注重于音频的语义和内容,所以它基本上能满足广播电视的内容监测的任务需求。

4数字水印技术

数字水印技术是指在不影响质量和不易被发觉和篡改并且可以被授权者识别出来的要求下将水印(防伪)信息嵌入到图像和音视频等的原始数字数据中,以实现数字作品的版权确认和保护。数字水印技术隶属于信息隐藏学,早期主要用于图像处理技术,后来扩展到了文本和视频领域,最近人们又开始研究将其应用到音频信号中。数字水印技术一般包含嵌人过程和提取验证过程,其大概的流程如图3和图4所示。数字水印在技术实现上通常分为可见水印(明文水印)技术和不可见水印(盲水印)技术。由于容易被察觉和受到攻击,可见水印技术目前已经不再被人们看好。不可见水印技术有着不影响原始数据的质量和不易被察觉等的优点,正逐渐成为人们研究的热点。不可见水印技术的实现方法大体可以分为在空间域中实现的方法和在变换域中实现的方法两种。

在空间域中实现的方法是在时域内直接对信号的值进行修改并嵌入水印信息,这种方法有着计算简单、计算量小和兼容有损压缩的信号和滤波的信号等优点,但为了保持水印的隐蔽性,它能嵌入的水印的信息量极为有限。在变换域中实现的方法是先将信号进行一定的变换,如快速傅里叶变换、离散小波变换、Z变换和离散余弦变换等,然后再将水印嵌入变换后的信号中。与在空间域中实现的方法相比,这种方法有着隐蔽性强、容易结合、可嵌入的水印信息量大和兼容压缩数据等优点;不足之处是计算复杂而且计算量大,不适用于大数据量和对实时性要求高的系统。

数字水印技术范文篇9

1.1供应链的流程主要包含:备件生产、采购、储备与库房建设、管理等一系列流程,需要设备供应商、采购商与用户等轮流接手,将电力物资在此供应链上顺承。因此,只有保证各个环节所获取的信息准确无误,才能进一步确定最终信息的正确性,进而防止信息在传播过程中遭受恶意攻击破坏。如果发现文档被篡改,合理的进行篡改定位,可以及时发现被改动的信息,防止导致严重的后果。

1.2文本数字水印技术文本数字水印技术利用文本文档的冗余空间,完成水印信息的嵌入,以达到隐蔽通信、真伪鉴定、内容认证等目的。文本数字水印技术结合人类视觉系统(HVS),在肉眼感知系数变化不超过不可感知的范围内,通过微调文档格式或改变文档内容嵌入水印信息,以达到所需目的。基于微调文档格式的水印算法主要是在肉眼不可分辨的阈值内,轻微改变行间距、字符间距及字符属性嵌入水印信息,此类水印算法鲁棒性较好,可以抵抗一定的攻击,透明性高,容量大;通过改变文档内容嵌入水印信息的方法主要是依靠同义词替换和等价句式替换完成水印信息的嵌入,此类算法鲁棒性高于基于格式嵌入水印的算法,但是,由于引起了内容的变化,透明性较差,容量较小。

2基于字符颜色的文本水印算法

电力物资供应链中文档的可信传输,针对算法的透明性与鲁棒性要求较高,即不能发生易察觉的变化,引起攻击者的兴趣,保证文档内容不能发生变化导致歧义的同时还必需保障算法具备较好的鲁棒性以抵抗攻击。因此,本文采取基于改变字符颜色嵌入水印信息的水印算法。根据人眼视锥细胞对颜色的敏感度测试可知,肉眼对颜色的RGB分量敏感度不同,对红色最敏感,绿色次之,蓝色最弱。为了保证嵌入水印信息具备更好的透明性,本算法不改变字符颜色的R位,而采用修改字符颜色G分量的低三位,B分量的低四位,完成水印信息的嵌入。

2.1水印信息潜入规则水印信息的预处理过程为了提高安全性,本算法结合密码学,对水印信息进行预处理,使用汉明编码对加密后的信息进行编码。基于线性同余法实现了水印信息嵌入位置的随机化。线性同余伪随机序列的迭代公式为:xi+1=(axi+c)(modm)其中,m为最接近文档字符总数的素数,a∈(2,m),c小于m且与m互素。步骤1:输入密钥信息,并将其转化为二进制序列K=k1k2k3…km;步骤2:输入水印信息,并将其转化为二进制序列W=w1w2w3…wn;步骤3:针对密钥与水印序列进行循环取模,获得加密后的二进制序列M=m1m2m3…ml,其中,l=max{m,n};步骤4:基于(7,4)汉明编码增加监督码,以实现错位纠正的目的,即可获得预处理后的二进制序列H=h1h2h3…ht,其中,t=7*l/4,hi∈0,1,1≤i≤t。水印信息的嵌入步骤1:文档初始化,将字符颜色均设置为黑色,即RGB(0,0,0);步骤2:遍历文档,统计字符数N,判断预嵌入空间是否足够;步骤3:根据水印信息预处理部分所得的位置,对于字符(jj<N),嵌入水印信息的间隔标识S,进行水印信息的循环嵌入,即修改字符的RGB值,此时,RGB分别被修改为(0,0,1),(0,0,2);步骤4:选定字符j,若j<N,则执行步骤7;否则判断间隔标识,标识嵌入完成执行步骤5,未完成则执行步骤1;步骤5:hi=1时,修改当前字符为RGB(0,1,1);修改下一个字符为RGB(0,1,2);hi=0时,修改当前字符为RGB(0,2,0);修改下一个字符为RGB(0,2,1);步骤6:重复执行步骤1-5嵌入信息。步骤7:嵌入完成,保存文档。

2.2水印信息的提取步骤1:输入密钥,将其转换成二进制序列K;步骤2:遍历文档,查找RGB被修改的位置,根据嵌入的规则,提取“1”,“0”,得到二进制序列S;步骤3:通过对S解码和纠错,得到二进制序列M;当imod7=0时,计算校正子,如果3位校正子全为0,则水印未被篡改,如果得到其它值,对其进行篡改定位并进行一位错码纠正,去除监督位。步骤4:对二进制序列M与密钥K进行循环取模,可以得到水印信息的二进制序列,再对其进行转换,得到输入的水印信号。

3实验结果与实验分析

本实验随机选取3篇包含中、英文字符的word文档为测试文档,对其进行水印信息的嵌入和提取,以及攻击实验,其中,嵌入的测试水印信息为“电力物资123”。

(1)透明性分析:该算法的透明性设计充分考虑了HVS,满足肉眼不可分辨字符色彩有所变化的范围。同时,由图1和图2对比所见,嵌入信息后的文档与原始文档并无差异。

(2)鲁棒性分析:该算法的鲁棒性较强,由于此算法采用循环嵌入水印信息的方式,因此,含有水印信息的文档只要有一个完整的水印信息没有被攻击破坏,就可以完成该水印信息的检测提取。该算法可以抵抗除了全篇字符颜色攻击外的其他格式攻击,同时,在针对一部分字符遭受颜色攻击时可以成功进行篡改定位。针对内容攻击,该算法的鲁棒性亦较强,只要全篇内容没有均遭受攻击,嵌入的水印信息就可以被正确检测。

(3)容量分析:该算法基于改变字符RGB值完成水印信息的嵌入,一个字符可以完成一个字节信息的嵌入,容量很大,但是,算法中结合了纠错机制,即汉明编码,每7个码字包含4个信息位,纠正1比特错误。因此,平均两个字符可以完成一个字节水印信息的嵌入,容量可以满足基本的使用。综上,该算法具备透明性、容量较大的特点,可以实现针对内容进行隐蔽通信,不易引起对手的兴趣,该算法鲁棒性较强,可以抵抗一定的攻击,同时该算法具备一定的篡改定位性能,进一步保障了文档的安全传输。

4结束语

数字水印技术范文篇10

关键词:地理信息;涉密;技术;应用

随着智能、数字化时代的来临,地理信息数据的应用变得越来越广泛,手机定位、互联网导航等地理信息数据服务越来越多地走进百姓生活。同时,与互联网、车联网、物联网、大数据和云计算等技术的融合也越来越紧密。高分辨率影像数据源的获取越来越方便,给地理信息数据的采集带来了便利;但也造成地理信息是没有“秘密”的假象。实际上,面对地理信息产业的快速发展,国家对地理信息安全监管从未放松,《测绘法》(2017版)第八章第四十七条规定“地理信息生产、保管、利用单位应当对属于国家秘密的地理信息的获取、持有、提供、利用情况进行登记并长期保存,实行可追溯管理[1]”,即被定密为秘密级及其以上的涉密地理信息在获取、持有、提供、利用的整个过程中都要做到可追溯[2],地理信息安全不容忽视。本文探讨了涉密地理信息应用中存在的问题,论述分析了安全技术,并提出了安全技术在涉密地理信息分发中的使用方法。

1涉密地理信息应用中存在的问题

在网络化、数字化时代,地理信息的复制、拷贝、传输十分方便快捷,但由此将引发严峻的泄密、盗版、侵权、无法追责等安全问题[3]。涉密地理信息应用中存在的问题包括保密与广泛应用、泄露(或倒卖)和统一监管不力等。

1.1保密与广泛应用问题

涉密地理信息的保密特征使得其在应用过程中遇到了矛盾:一方面,应用领域迫切需要高精度、高质量的涉密地理信息;另一方面,涉密地理信息管理部门又因安全问题不得不严格控制和限制涉密地理信息的使用[4]。随着地理信息应用的拓展,保密与应用之间的矛盾日益突出。保密的价值在于防止泄露国家秘密,危害国家安全利益;而应用的价值在于促进地理信息产业的快速发展。若因涉密地理信息的保密要求而“因噎废食”,并扼杀地理信息应用的话,保密也就彻底失去了意义[5]。因此,若只强调涉密地理信息的保密而不使用,则失去了涉密地理信息的使用价值;若要充分发挥涉密地理信息的使用价值,就必须使其在保密可控的状态下应用。

1.2泄露(或倒卖)问题

涉密地理信息使用者可能有意或无意泄露、甚至倒卖数据给其他用户,其他用户又可泄露或倒卖给更多的用户。这样的违法行为根本无法查清,因为一份数据可分发给多个用户,即使发现了违法用户,也无法追查和认定是谁泄露的。这种情况间接导致了涉密地理信息的严重违法和侵权行为,且屡禁不止,因此涉密地理信息的安全性显得更加突出[4]。

1.3统一监管不力问题

地理信息是国家经济建设、国防建设和科学研究等的支撑性成果,具有十分广泛而重要的应用。长期以来,地理信息数据安全管理落后于数字化、信息化、大数据时代对地理信息“可追溯”和“可控制”的安全需求。因此,必须应用相应的科技手段对涉密地理信息从获取、持有、提供到利用的整个过程实施安全监管,仅依靠“人”来对该过程实施监管,难以有效防范或消除对涉密地理信息的安全威胁。统一监管不力主要表现在涉密地理信息分发管理模式基本还停留在签订保密协议层面上,无法实现“版权追溯”和“权限控制”[4]。

2安全技术

根据涉密地理信息数据量大、保密严、成本高、用户广、违法多、追究难等特点,为实现对涉密地理信息的“版权追溯”和“权限控制”,提高对涉密地理信息安全的保护能力,云南省测绘资料档案馆(中心)与“南京吉印”联合开发了用于涉密地理信息数据分发的地理数据安全控制系统,并升级了已有的地理数据版权保护水印系统。

2.1地理数据安全控制系统

地理数据安全控制系统能对涉密地理信息进行加密、解密、授权管理和访问控制,能严格控制涉密地理信息的使用范围、期限、平台和权限等,在涉密地理信息使用到期后自动失效,从而实现对涉密地理信息全生命周期的主动控制,防止涉密地理信息的泄密和非法传播,保护涉密地理信息安全,做到事前防范。系统功能结构如图1所示,分为服务端和客户端,其中服务端功能包括授权管理、数据加密、数据解密、日志管理、数据续期;客户端功能包括授权访问、数据编辑、到期失效、联网报警。系统支持的数据平台包括ArcGIS、AutoCAD、ENVI、ERDAS、Pho⁃toshop、SkylineTerraexplorer、Windows照片查看器、AdobeReader、MicrosoftOffice等。

2.2地理数据版权保护水印系统

地理数据版权保护水印系统能在多种类型和格式地理数据中不可见地嵌入数据的版权、用户、发单编号、人员、备注和时间等信息,并能从数据中检测出嵌入的信息,从而发现数据违法和泄密源头,有效解决数据的版权追溯、责任区分、违法追究等安全问题,实现数据的可追溯管理,保护数据安全,做到事后追责。系统功能结构如图2所示,包括水印信息生成、水印信息嵌入和水印信息检测。系统支持shp、mdb、fgdb、e00、dwg、dxf等格式的矢量数据(DLG),bmp、tif、jpg、png、img等格式的栅格数据(DOM、DRG);tif、grid、bil、img等格式的DEM数据。

3涉密地理信息分发中安全技术的应用

涉密地理信息一直都是按照上级主管部门审批索取函的许可内容、范围、种类和精度规定准备,并签订使用许可协议后进行分发的。从政策管理上无法解决涉密地理信息安全问题,迫切需要从技术上提供有效的解决方案。地理信息安全技术为涉密地理信息安全提供了可能的解决途径。按照“自律事中、强化事后”的原则,目前主要采用的地理信息安全技术方式包括3种[4,6]。

3.1涉密地理信息授权

将涉密地理信息进行加密,通过对客户端授权,控制加密数据的使用范围,数据用户只能在授权的客户端(计算机或移动设备)上使用,但无法将加密的数据拷贝到其他客户端上;设置授权时限,在时间期限内可正常使用数据,超过时间期限,用户则无法再使用该数据,若需继续使用该数据,则必须向具有涉密地理信息行政审批管理权的部门重新申请授权数据延期。该方法适用于公司中标项目索取的涉密地理信息分发。

3.2涉密地理信息嵌入数字水印

利用数字水印技术,将数据版权、用户信息、发单编号、分发或领取人员、分发时间和备注信息等数字水印信息与涉密地理信息紧密结合,并嵌入、隐藏在多种格式的涉密地理信息中,成为涉密地理信息不可分离的一部分。通过数字水印信息中的内容,可确定版权拥有者、跟踪侵权行为、认证涉密地理信息内容的真实性等,特别是通过嵌入的用户信息,可有效保护涉密地理信息版权、追踪涉密地理信息使用过程、检查非法获取涉密地理信息来源等。一旦发现存有或使用违法涉密地理信息,可通过数字水印系统检测到涉密地理信息的用户信息,直接追究索取涉密地理信息用户的责任。因此,通过嵌入索取涉密地理信息用户的各种信息,可有效威慑涉密地理信息的有意或无意泄露,对于加强用户责任心、确保涉密地理信息安全、促进涉密地理信息共享具有重要意义和作用,能有效解决涉密地理信息版权难以追溯、责任难以区分、违法难以追究等安全问题。该方法适用于各级人民政府及其有关部门和军队因防灾减灾、应对突发事件、维护国家安全等公共利益的需要,事业单位承担项目和公司中标项目索取的涉密地理信息分发。

3.3涉密纸质地形图粘贴二维码标识

分发涉密纸质地形图时,在原纸质地形图保密号和涉密测绘成果购领证的基础上,增加了由地理数据版权保护水印系统生成的二维码标识即时贴。将发单编号、索取单位、适用项目、索取时间等信息形成二维码标识,实现一图一码。简单实用的二维码标识具有独立性(唯一性、存储信息大)、可追溯(跟踪、防窜图)、防伪(大数据防伪)、二维码溯源(微信扫一扫即可方便获取溯源信息)等特点,能让涉密纸质地形图的跟踪管理“可视”、“可控”、“可追溯”[7]。该方法适用于各种比例尺纸质地形图的分发。

4结语

目前,涉密地理信息在空间定位和空间分析业务系统中的应用越来越广泛;而业务系统的环境要求越来越开放,使得业务系统对涉密地理信息的管理越来越难。另外,“数据恐慌”现象在涉密地理信息使用者中也是真实存在的,越来越多的涉密地理信息使用者谈到涉密数据会“谈数色变”,而将涉密地理信息“束之高阁”。管理层对涉密地理信息安全的关注方向越来越多地放在数据生产、保管使用、计算机管理、制度和场所建设等环节上,并制定了严格的管理制度、涉密信息系统分级保护技术要求和法律法规进行约束[5]。不能说对涉密地理信息安全的担心是多余的或没有根据的,但也不能滑入“数据恐慌”或“束之高阁”的深渊,只能利用、完善和推广数字水印、安全许可等安全防控新技术、管理乃至监管方法,在安全和应用中找到最佳的平衡。地理信息数据具有定位准、精度高、涉密广等安全特征,与国家安全、国防安全息息相关,一旦泄密,直接危及国家、国防安全[3]。在地理信息数据的广泛应用中,必须深刻认识到地理信息安全问题的重要性,坚持严格规范监管与广泛应用相结合,加强对涉密地理信息使用情况的跟踪检查和事前防范、事中事后监管,做到“秀才不出门便知天下事”,确保国家主权、安全和发展利益。同时,全面提升防范、监管能力水平,充分利用地理信息安全技术,把维护国家地理信息安全的战略主动权牢牢掌握在自己手中,保障地理信息数据安全,促进地理信息数据共享和使用。在“合理保密、充分应用”的原则下,使地理信息数据在安全的前提下发挥最大的作用,为国家和国防服务。

参考文献

[1]全国人民代表大会常务委员会.中华人民共和国测绘法[M].北京:中国法制出版社,2017:16

[2]徐韬.再谈地理信息保密问题[EB/OL].(2018-02-27)[2020-09-23].

[3]朱长青.地理信息安全前沿技术与应用[EB/OL].(2020-07-29)[2020-09-23].

[4]朱长青,周卫,吴卫东,等.中国地理信息安全的政策和法律研究[M].北京:科学出版社,2015

[5]杜跃进.数据安全能力将成为大数据时代的重要竞争力[EB/OL].(2017-06-30)[2020-09-23].

[6]科技工作者之家.用『新』守护国家地理信息安全:『吉印』创新发展纪实[EB/OL].(2020-04-24)[2020-09-23].