汽车空调范文10篇

时间:2023-04-06 01:44:37

汽车空调

汽车空调范文篇1

χdo=(0.3+1.0)/2=0.65

由此,可计算其余参数的平均值。动力黏度μcore的平均值为

μcore=[χ/μr+(1-χ)/μ1]-1=[0.65/11.446+(1-0.65)/266.78]-1=17.212kg/(m·s)

每一散热板制冷剂质量流量

qmr,eq''''=qmr/11=0.042/11=3.8182×10-3kg/s

散热板内孔的制冷剂质量流速qmr,A为

qmr,A=qmr,eq''''/(1/4·π·D2h,r)=0.0038182/[3.1416/4×

(3.7265×10-3)2]kg/(m2·s)=350.077kg/(m2·s)

雷诺数Recore为

Recore=qmr,A·Dh,r/μcore=350.077×3.7265×10-3/(17.212×10-6)=75794

干度平均值为

χdo=0.49+627Recore-0.83=0.49+627×75794-0.83=0.54587

由上面的计算可以看到,制冷剂干度从0.3~0.54587~1变化,后还有过热蒸气区。因此很难准确估计每一阶段所占的百分比,只能凭经验估计。在此,取过热蒸气区为20%,于是可以计算出干燥点之前的两相区约为28%,干燥点之后的两相区约占52%。

(1)干燥点之前的两相区,取χ=0.417,则在散热板内孔内,制冷剂气液两相均匀紊流工况的Lockhart-Martinelli数Xtt和关联系数F(Xtt)分别为

Xtt=[(1-χ)/χ]1-W/2(ρl/ρv)0.5(μv/μl)n/2

=[(1-0.417)/0.417]1-0.3/2(1285.86/15.712)0.5(11.446/266.78)0.3/2=7.5

F(Xtt)=(1+2.30/Xtt2)0.374=(1+2.30/7.5)0.374=1.0151

制冷剂两相流折算成全液相时,在折算流速下的表面传热系数αl为

αL=A[qmr,A(1-χ)Dh/μl]-hqmr,A(1-χ)cP1

=0.341[350.077(1-0.417)3.7265×10-3/266.78×10-6]-0.3×350.07×(1-0.417)13532.2W/(m2·s)

=7966.028W/(m2·s)

制冷剂两相流的表面传热系数αr为

αr=αLPRl0.296F(Xtt)

=7966.028×3.9680.296×1.0151W/(m2·s)=12160

(2)过热区制冷剂侧的雷诺数Reeq,r,普朗特数Prv,努塞尔数Nu,表面传热系数av分别为

Reeq,r=(qmr,ADh,r)/μv=(350.077×3.7265×10-3)/(11.446×10-6)=113950

Prv=0.8471

av=(Nu×λv)/Dh,r=(50722×12.034×10-3)W/(m3·k)=1638W/(m3·k)

(3)干燥点之后的两相区取χ=0.766,则把Xd0=0.5458带入干燥点之前的两相换热公式,计算得ad0=11165W/(m2·s),于是ar为

ar=av+{1-[(X-Xd0)/(1-Xd0)]1.5}×(ad0-av)

=1638+{1-[(0.766-0.54587)/(1-0.54587)]1.5}×(11165-1638)W/(m3·k)=7950W/(m3·k)

最后,平均表面传热系数可为

ār=(12160×28%+7950×52%+1638×20%)W/(m3·k)=7866W/(m3·k)

5.3.7计算总传热系数及传热面积

如忽略管壁热阻及接触热阻,忽略制冷剂侧污垢热阻取空气侧污垢热阻ra=0.0003(m3·k)/W,则传热系数k为

k=1/[(1/ār)Aa/Ar+ra+1/aeq,a]=1/[(1/7866)0.706555/0.113+0.0003+1/323.3]W/(m3·k)=238.777W/(m3·k)

对于对数平均温差为

∆tm=(Tal-Ta2)/ln{(Ta1-Te)/(Ta2-Te)}=(27-7.25)/ln{(27-2)/(7.25-2)}℃=12.655℃

由于板翅式蒸发器的流程较少,而且在流道转弯处制冷剂与空气成顺流流动形式,因此按纯逆流方式计算的对数平均温差偏大。另外,湿工况在增大空气侧表面传热系数的同时也增加了液膜热阻,因此空气侧的实际表面系数低于计算结果。综合两个方面的考虑,传热系数与对数平均温差之积预乘上一个修整因子,ψ=0.65,则所需总传热面积(以外表面为基准)A0为

A0=Qe/(4k)=29311/(4×238.777×12.6555)m2=14.9m2

与前面计算出15.167m2的相对误差不大

5.3.8计算空气侧阻力损失∆Pa

空气侧摩擦阻力因子ƒ为

ƒ=5.47RePL0.72hL0.37(lL/hF)0.89PL0.2hF0.23

=5.47×4300.72×0.4144550.37×(6.8/7.9)0.891.10.27.90.23

=71.98×10-3

则空气侧阻力损失∆Pa为

∆Pa=4ƒ·WF/Dh,a·ρ·v2a,max

=4×71.98×10-3×0.065/(2.792×10-3)×1.1025×5.872Pa

=278.313Pa

最后根据空气阻力和风量选择风机。

5.4膨胀阀

丹佛斯(DANFOSS)TDEN型膨胀阀适用于HFC134a制冷剂。其选型方法是根据给定的工况,膨胀阀两端的压力降和蒸发器的负荷,经制冷剂液体过冷度修正后,查该型号的技术手册。

5.4.1确定TDEN型热力膨胀阀两端的压力降根据所给定的工况

系统中制冷剂液体流经管路、管弯头、干燥过滤器、视液镜、电磁阀等部件,其压降之和设为∆P1=66kPa多流程供液的蒸发器前需安装液体分配器,其压降设为∆P2=65.67kPa。由于整个系统压力平衡,则有

Pe=Pc-∆PTXV-∆P1-∆P2

于是,热力膨胀阀端的压力降∆PTXV为

∆PTXV=Pc-Pe-∆P1-∆P2=1681-349.63-66-65.67=1200kPa=12bar

5.4.2蒸发器负荷的过冷修正

根据丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册规定,当热力膨胀阀前的制冷剂液体过冷度偏离4k时,蒸发器的制冷量必须进行修正。修正方法是将所需制冷量除以下表所给的修正系数得到修正的蒸发器制冷量。

在阀前的制冷剂液体过冷度为∆tsc=5℃,修正系数为1.013,则修正蒸发器制冷量Qe,s''''为

Qe,s''''=29.311kw/1.013=28.9kw

则每只蒸发器的修正制冷量Qe,s″为Qe,s″=28.9kw/2=14.52kw

5.4.3根据∆PTXV、te、Qe,s″确定应匹配的热力膨胀阀容量

由于热力膨胀阀的制冷量,必须等于或稍大于修正后的蒸发器制冷量,因而可按∆PTXV=12bar,te=5℃,Qe,s″=16.8kw>14.52kw,在丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册的有关参数中,查到TDEN5.8能够满足整个制冷系统匹配的要求,因此,选用两个TDEN5.8型。

第6章空调系统的性能匹配

汽车空调系统的性能匹配所要解决的问题,是在成本经济预算与运行经济预算,以及汽车动力配置方案允许的条件下,如何使汽车空调系统各组成部件,特别是对系统性能起主要决定作用的压缩机,膨胀阀,冷凝器总成及管系等部件,在额定运行工况(设计工况)匹配得最合理,以使各部件性能以至系统性能,在该工况得以最大限度地发挥,工作最可靠,并且还具有一定的适应最大负荷工况和恶劣运行工况运行能力。

汽车空调系统图

1压缩机;2高压软管;3冷凝器;4冷却风扇;5干燥储液器;

6高压软管;7膨胀阀;8蒸发器;9风机;10吸气管。

6.1压缩机的匹配

从系统匹配和成本经济、运行经济角度考虑,车用空调系统在额定运行工况(通常把该工况作为设计工况)应选配多大容量,多少输入功率,多高转速的车用空调压缩机,这是汽车空调系统设计在完成空调负荷计算后首要解决的问题为此,必须进行车用空调压缩机的选型计算,包括设计工况计算和变负荷工况计算。

6.1.1车用空调压缩机选配的依据

当车身结构确定后,车用空调系统设计的第一个任务,就是进行车厢空调负荷的设计计算。一般空调负荷计算,包括额定工况和最大负荷工况的负荷计算空调负荷计算的结果是车用空调压缩机选配的依据。

额定工况是指有关行业标准所规定的车用空调系统运行工况。如CJ/T134—2001《城市公交空调系统技术条件》规定,城市公交空调客车空调系统的额定运行条件是:冷凝器总成的环境温度为35℃,相对湿度为60%;蒸发器总成进风的干球温度为≤28℃,湿球温度为19.5℃。有时,设计工况也可以按所设计车辆在当地经常运行的条件综合考虑来确定,但须按有关行业标准所规定的车用空调系统运行工况加以校核。额定工况必须确定的参数有:冷凝器总成环境气象参数,蒸发器出口制冷剂过热度,压缩机吸气管路的压力降等。

最大负荷工况是指车用空调系统按额定工况设计好后,在特定运行条件下,所能达到的具有最大制冷能力的运行工况。一般当汽车在环境温度较高的烈日下长时间暴晒后,车用空调系统刚起动时刻的运行工况,就属这一特定运行工况。最大负荷工况的参数也包括上述额定工况的各项参数。

6.1.2压缩机与发动机的传动比及压缩机转速的确定

在非独立式车用空调系统中,压缩机都是由主发动机通过离合器的吸合和带传动系统来驱动。压缩机的转速与主发动机的直接有关,两者之间的传动比除与主发动机的转速有关外,主要取决于压缩机的最高连续转速。传动比的确定,对于非独立式车用空调系统制冷性能的发挥和压缩机工作的可靠性至关重要。汽车发动机的转速范围比较宽,一般在700~2400r/min之间,汽车在停驶(发动机怠速传动)和低速状态时,发动机转速低空调的转速也低会造成空调系统的制冷能力不足。汽车高速行驶时,发动机和压缩机的转速较高、空调制冷能力强劲、压缩机的耗能也高,对于安排非独立车用空调机组的城市公交空调客车,采用循环离合器控制制冷系统运行时,这一影响尤其明显。因为这类空调客车需要的制冷量较大,一般都是安装一台活塞式车用空调压缩机,由于它受到往复运动结构特点的限制,只能以较大的传动比来提高其转速,主要是防止发动机一旦高速运转时,导致压缩机因转速超出极限范围而损坏。

由上述可知,采用循环离合器控制方式控制制冷系统运行的非独立式车用空调系统,其压缩机在额定空调工况转速的确定,须考虑发动机与压缩机之间的传动方式和它们的传动比。比如,汽车在正常行驶状态下,当发动机转速为1440r/min时,若传动比为1:1.25,则压缩机的转速就可达到1800r/min。

6.1.3压缩机与冷凝器、蒸发器的性能匹配

压缩机作为制冷系统的一个组成部件,其上游部件是蒸发器总成。下游部件是冷凝器总成。它们之间的性能是相互影响的,当蒸发器内制冷剂蒸发温度Te(或压缩机吸气压力Ps)变化时,压缩机的输气量会变化,而压缩机制冷量Qe,c、制冷剂冷凝温度tc都会变化。因此,在选配或设计冷凝器和蒸发器时,应当与所选配的压缩机性能相匹配,并且三者性能要综合考虑,才能充分发挥各个部件的作用。

6.2冷凝器总成的匹配

冷凝器总成,从系统匹配角度来讲,所关心的是冷凝器总成的整个性能,不仅包含冷凝器的换热性能,而且包括冷凝器与冷凝器风机、风道的空气流来匹配性能,冷凝器总成与压缩机、蒸发器总成的匹配性能。

6.3蒸发器总成的匹配

蒸发器总成,从系统匹配角度来讲,所关心的是蒸发器总成的整个性能,不仅包含蒸发器的换热性能,而且包括蒸发器与蒸发器风机、风道的空气流来匹配性能,蒸发器总成与压缩机、冷凝器总成的匹配性能与接流机构(如热力膨胀阀)。制冷剂分配器的匹配性能,从整车空调效果的角度来考虑,甚至还包括蒸发器总成与车室内风道设计,风口布置的匹配性能。这就需要在蒸发器总成的风机选配时,风机的风量确定,不仅要考虑蒸发器总成中风道的阻力特性,好要考虑车室内风道的阻力特性。

6.4热力膨胀阀与压缩机、冷凝器、蒸发器组成的匹配

上面讨论压缩机、冷凝器总成、蒸发器总成三部件匹配时有一个前提条件,即假定热力膨胀阀的容量适应系统在规定工况范围内的运行需要,能够调节进入蒸发器的制冷剂流量所润湿,但若热力膨胀阀的容量匹配不合理的,比如配置的热力膨胀阀容量偏小时,就会出现热力膨胀阀对蒸发器总成的供液不足,此时换热器的总传热系数将下降,除了配置的热力膨胀阀容量偏小这一情况以外,还可能由于充注入系统的制冷剂量太少,或由于液体管道内摩擦产生的压力降过高,或由于膨胀阀阀门和蒸发器的位置比冷凝器高(如在内置式非独立车用空调系统中),使进入膨胀阀的液体中含有制冷剂蒸气而导致对蒸发器的供液不足。当冷凝器的环境温度较低时,也很容易发生车用空调冷凝器中制冷剂冷凝温度下降得很低,致使膨胀阀两端的压差不够大,导致蒸发器供液不足。这些情况最终导致蒸发温度和蒸发压力过低,制冷剂流量大为减小。

由此可知,热力膨胀阀的容量匹配不可忽视,而且热力膨胀阀的容量除与压缩机、冷凝器、蒸发器三部件匹配情况有关外,还与系统中管系的配置,蒸发器的位置等情况密切相关。制冷剂在管路系统与干燥过滤器、视液镜、电磁阀、液体分配器等配件和换热器中的流动阻力,一定要估算得符合实际,才能使热力膨胀阀的容量匹配得合理。

热力膨胀阀容量的匹配方法,须根据有关的标准和所选热力膨胀阀产品的技术要求而定。

第7章风道设计、风机选型及降噪技术

7.1风道设计

经过处理的送风和回风都必须通过风道才能进入和离开车室,而且车内的送、回风量能否达到要求,则完全取决于风道系统的压力分布以及风机在该系统中的平衡工作点。所以风道布置将直接影响车内的气流组织和空调效果。同时,空气在风道内流动所损失的能量,是靠风机消耗电能予以补偿的,所以风到布置也直接影响汽车空调系(如下图和附图一所示)

7.1.1车空调风管的选择

(1)风管材料及断面选择

风管用材料应表面光洁,质量轻,安装方便,并有足够的强度、刚度、且抗腐蚀、寿命长、价格低廉。

一般汽车空调多用厚度为0.75~1.2mm的薄钢板,铝合金,镀锌薄钢板或塑料(聚氯乙烯)板制造。新型汽车空调系统还有采用玻璃纤维板风道。它对空调管道保温、消声起到良好的效果。

汽车空调系统选用的风管,主要有矩形和圆形两种截面。矩形风管高度低,容易与汽车构造配合安装,但加工制作和保温较困难。圆形风管管道阻力小,保温方便。随着城市公交车的大力发展,对城市公交车的要求越来越高。

(3)汽车空调风管的风速选择

汽车空调风管的风速应根据系统布置、送风量、风管结构及送风噪声要求等因素而定。表所示为汽车空调风管的风速选择。

汽车空调风管的风速选择

7.1.2汽车风管的保温

为了减小空气在风道输送过程中的冷、热量损失以及防止低温的风道表面温度较高的环境下结露,汽车空调中的风管都要保温。

保温材料目前使用的种类很多。如聚苯乙烯泡沫塑料等,它们的导热系数大多在0.12(W/m·℃)以内。通过保温层管壁的传热系数与管壁间有空气流动,影响保温效果。

当风道布置在室外时,要做好防雨防潮措施,以及防止室外噪声随风道传入车内的措施。

7.1.3阻力计算

本风道设计有关参数参照相似车型;风道内空气的流动阻力包括摩擦阻力和局部阻力

(1)摩擦阻力

力系数λ为0.15,再计算风道的水利半径Rs=A/P=ab/2(a+b)=0.05m,矩形风道当量直径Dv=4Rs=0.2m。工程上用等流量当量直径较为方便。工程设计手册中有线算图,计算时可为参考。

∆Pm=λ·l·ρ·v2/(8·Rs)=4.4Pa

(2)局部阻力

a、百叶窗口16个ZA=12.2Pa

b、变径弯头(90℃)2个局部阻力系数ξ为0.91

c、分叉三通(F2/F1=0.8),管段的局部阻力系数ξ为0.2,对应总流速4.5m/sZ=27.45Pa

管道总阻力大约为40Pa,考虑到安全因素,安全因素增加15%则风机所需要40×1.15=46Pa

再加上蒸发器所需278.313Pa的压力,确定总的所需送风量为4000m3/h。

7.2降噪技术

7.2.1风管内的空气阻力和改进风管结构

对一定的送风系统,风机转速愈小、风压愈低,则风机噪声也愈低;在保证车室换气量的条件下,总送风量不必选过大,以利于降低风管内空气流速和减小风管空气流动阻力,风管内空气流动产生噪声,主要由于边界层产生涡流及其涡流区的压力和流速的变化;另外,气流遇到障碍物和风管内表面粗糙也引起气流噪声。因此,风管内的空气流速不宜选择过大;对风管弯头、三通管接头、变截面过度段、调节风门等应作成流线型、渐缩型或设置导流叶片,以减小气流阻力和避免引起气流的涡流。

7.2.2风管之间的连接结构

在通风系统的吸、排风口及空气分配器与风管之间应设置适当长度的喇叭管,而在空气分配器出风口尽可能增加出风格栅面积或装置导风叶片等,以减小空气动力噪声。

由于风机的振动,当风速和风压变化时,会引起风管振动而产生噪声。为此,除了在风机进、出口设置减振软管外,在风管穿过车壁的部位也应以软管相连接,并避免风管与车壁直接刚性接触,以减少风管振动传给车壁。

7.3风机的选择

第8章管道布置及要求

8.1管道的布置

当冷凝器位置高于压缩机,而且冷凝器的环境温度高于压缩机的环境温度时,排气管在离开压缩机后先下一段再向上,并且,在排气管中设置单向阀当压缩机的竖向长度超过8m时,应根据其排气管的竖向长度,在靠近压缩机的管段,则不允许出现呈下凹形状的“液囊”弯管。

8.2管路的设计布置

高压液体管应按可能遇到的最低冷凝压力和相应的最大制冷量进行设计,选择合适的管径,以保证膨胀阀前后一定的压力差。同时,还应避免在水平的管路上弯成向上凸起的“气囊”,低压液体管应能保证冷却盘管各并联通道供液均匀,并且能保证回油。

8.3吸气管

在顶置式大客车非独立空调中,吸气管路都比较长,有的达8m,如果不注意吸气管路的阻力特性影响,使制冷系统的制冷量明显下降。难以达到设计所预期的效果。

由此可知,有的车用空调制造商为了节省吸气管路的制造成本采用较小直径的吸气管道,致使其中制冷剂流动阻力增大,是得不偿失的,也是不可取得,一般来说,在压缩机选型时,压缩机制造商都在压缩机的产品使用说明书中指明了压缩机的吸、排气接管的尺寸,按照其规定设计吸、排气接管比较合理。

在管路设计方面,还要注意系统中的回油,这也是影响系统运行安全可靠方面的问题。除了应严格按照压缩机产品说明书要求的润滑油加注量,加注与制冷剂相匹配的润滑油外在管路设计和布置时,应考虑如何使制冷剂中携带的冷冻油容易返回到压缩机中来。

吸气管路布置的注意事项如下:

(1)在车用空调系统中,一般蒸发器的安排位置都在压缩机之上,应在蒸发器的上部设计成一个倒U形弯,以防压缩机停车时流体流入压缩机而引起压缩机再起动时的液击。

(2)为防止由于润滑油加注过多所造成的液击事故,对这类车用空调系统,可在吸气管道出口段安装—油分离器让多余的润滑油留在油分离器中,不至于进入压缩机造成液击。

(3)在系统中只有单台压缩机时,其吸气管道入口处不能装设U形集油弯管,因有了集油弯管,停机后再起动时,会有大量的油进入压缩机,可能产生液击现象。

第9章空调系统的配置要求和试验规范与标准

城市公交客车空调的试验规范与标准,可参考中华人民共和国建设部2001年4月20日,2001年10月1日开始实施的中华人民共和国城镇建设行业标准:CJ/T134—2001《城市公交空调客车空调系统技术条件》,国家机械工业局在2000年11月6日的汽车空调行业标准:QC/T658—2000《汽车空调整车降温性能试验方法》。

9.1城市公交空调客车的运行特点

城市公交空调客车与城镇间长途运输空调客车相比,有如下不同的运行特点:

(1)城市公交空调客车的车速较慢,一般在20km/h左右。

(2)车站距离较短,车速变化频繁,怠速状态较多。

(3)车门开启频繁,车内乘员的密度和流动性较大。

(4)运行环境恶劣,运行时间较长,有的达18h。

9.2城市公交空调客车制冷系统的配置及其与车身结构匹配的要求

城市公交空调客车的运行特点,要求其制冷系统具有车速慢时,仍有较大的能满足乘员舒适性需求的空调制冷量,因此,CJ/T134—2001《城市公交空调客车空调系统技术条件》对其制冷系统的工作,要求在制冷系统运行后的30min内,能达到如下性能:

(1)出厂新客车的车内外平均温度差必须大于7℃,在用车的车内外平均温度差必须大于5℃,而且当车厢外环境温度部高于38℃时,车厢内的最高温度不允许超过30℃。

(2)在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方1.2m处的位置,所测的温度最大温差不超过3℃。

(3)出厂新客车,在单人与二人座椅纵向中心和多人座椅均分两点所处的纵向垂直截面上,沿垂直方向距坐垫表面上方635mm处与沿水平方向距靠背250mm的交点处,以及同一纵向垂直截面内,距地板上方50mm处,所测定的乘员头部温度应低于其足部温度2~5℃。

(4)风道各出风口的风量应基本均匀,风速应不大于6m/s,也不小于3m/s。为达到上述制冷效果,必须对城市公交空调客车的空调系统配置及车厢围护结构的隔热性能与密封性能提出更高要求。

在制冷系统配置方面,标准规定必须按照两种计算方法计算,结果中的大值作为配置依据,选择制冷设备的容量。其一时按单位车厢容积装机制冷量计算,非独立式机组每1m3车厢容积需590~630W制冷量,独立式机组每1m3车厢容积需550~590W制冷量;其二是按额定乘员数人均装机制冷量计算,每个额定乘员需530W制冷量。额定乘员数按车厢内座位数加上每1m3走道面积站3个乘员计算。蒸发器风机风量匹配则按额定乘员数人均装机冷风量80m3/h计算。必须注意的是,鉴于各国制冷设备标定容量依据的测试条件不一致,所选择的制冷设备,其标定的容量最大值应不低于按QC/T656—2000《汽车空调制冷装置性能要求》行业标准测定的额定制冷量的93%,否则仍会达不到制冷系统配置的要求。

所有上述制冷系统的配置还须受以下噪音指标的约束:

(1)在怠速状态时

车内辅助发动机或汽车发动机与压缩机安装处的上方,以及车顶回风口或换气设备处的噪音不大于74dB(A);车外辅助发动机或汽车发动机处的噪音不大于84dB(A)。

(2)在车速为30时

独立机组的车内噪音不大于80dB(A);非独立机组的车内噪音不大于84dB(A)。在车厢围护结构的隔热性能方面,空调车的车身结构应采取有效可靠的隔热保温措施,必须选择热导率小[小于0.038W/(m·k)]的隔热材料和隔热结构,在车厢体的关键部位,如车厢顶部(尤其时车厢左右两侧的顶部)、车厢地板(尤其是发动机顶部的地板)和热桥部位等处,加强隔热保温。衡量车厢围护结构隔热保温能力的标准是:在夏季,降温能力达到30min关闭制冷装置后,客车保持原30km/h的车速继续运动,车厢内气温上升到与外界气温相差1℃的时间不小于10min

在车厢围护结构的密封性能方面,必须注意车门门缝、车窗门缝、地板上维护与检查孔板的接缝,以及前围板的接缝等处的密封结构,保证其密封的质量。密封性能应符合国家标准GB/T12478—1990《客车防尘密封性试验方法》、GB/T12480—1990《客车防雨密封性试验方法》的规定。

9.3城市公交空调客车采暖系统的配置及其车身结构匹配的要求

在采暖系统的配置方面,要求暖风装置提供的采暖热量,必须使温带型空调客车的车内温度,在升温能力测试开始后30min内达到15℃以上;亚热带型空调客车在升温能力测试开始后30min内车内温度达到12℃以上、驾驶员足下温度达到15℃以上。为此温带型空调客车应按额定乘员数人均采暖热量520W以上来选择采暖设备的容量,按额定乘员数人均暖风量不小于20m3/h来选择暖风机的容量;亚热带型空调客车,应按额定乘员数人均采暖热量460W以上来选择采暖设备的容量,按额定乘员数人均暖风量不小于15m3/h来选择暖风机的容量。所有采用加热器的采暖系统,都应符合有关的规定,如QC/T634—2000《汽车水暖式暖风装置》等规定。

对于暖风管道布置及其雨车身结构的匹配,则应达到以下要求:

(1)采暖系统启动后的30min内在车辆纵向轴线上,距车辆前、后的挡风玻璃各1.5m和车辆中部三个离地板上方400mm处的位置,所测得的最大温差不得超过5℃。

(2)出厂新客车,在单人与二人座椅纵向中心和多人座椅均分两点所处的纵向垂直截面上,沿垂直方向距坐垫表面上方635mm与沿水平方向距靠背250mm的交点处,以及同一纵向垂直截面内,及地板上方50mm处,采暖系统启动后30min内,所测定的乘员头部温度应低于足部温度2~5℃。

(3)暖风管道出风口的风量应基本均匀,最大风量不大于4m/s,且不能直接吹向乘员的身体部位。暖风管道应有隔热层,凡乘员容易触到的暖风管道表面温度和暖风出口温度不得大于50℃。

采暖系统对车身结构隔热保温性能与密封性能的要求,与制冷系统的要求相同。衡量车身围护结构隔热保温能力的标准是:在冬季,升温能力试验进行到第30min,关闭暖风装置后,客车保持原车速(20km/h)继续运行,车厢内温度下降到与外界气温相差1℃的时间不小于10min。

采暖系统所有设备的配置还应受其工作噪音的制约,即在客车停驶、仅采暖系统和通风装置工作时,工作噪音不得大于75dB(A)。

9.4城市公交空调客车通风换气装置的配置

城市公交空调客车由于密封性能较好,为保证车厢内的空气的洁净度和舒适度,在制冷系统和采暖系统都不工作的季节,能向车厢内不断输送新鲜空气,应设置通风换气装置。它可以由安装在车厢顶部的两台通风换气扇组成,也可以通过空调系统中,具有蒸发器风机转速单独控制功能和新风门调节功能的控制系统,与调节机构跟风道系统联合组成。不管哪一种通风换气装置,其配置都应达到如下性能要求:最大装机通风换气量,应大于按额定乘员数人均新风量10m3/h的计算结果。而且在通风换气设备满负荷工作时,车内气流速度不能大于0.5m/s。在停车及发动机不工作时,通风换气装置处的车内噪音不能大于65dB(A)。

9.5城市公交空调客车空调系统的整车性能试验,包括制冷系统、采暖系统、通风换气装置和除霜系统实验。

(1)制冷系统性能试验

试验应在晴天少云、有日光直射、气温不低于30℃、风速小于5m/s的气候条件下进行,在用车(出厂新车使用一年后的城市公交空调客车)可以空车进行试验,出厂新车则应乘坐不小于额定乘员数80%的乘员,并使城市公交空调客车保持在30km/h的速度行驶才能进行。不管新车还是在用车,车辆在试验前都必须在日光下停车,门窗全开,使车内外温度平衡后才可进行试验。试验开始后,要求车辆必须全部关闭门窗,开启空调机,并全部打开各出风口,独立式空调制冷装置开至最高档,非独立式空调装置的压缩机转速稳定在最高(1800±100)r/min,风机开最高档,所有可调风口处于最大出风位置。

风量与风速可用带集风罩的风速仪进行测量,应在开机10min后的5min内,记录所有风口的平均出风口风速并计算总出风量。

噪音的测量应在无顶棚的空旷场地上进行,在测量中心点25m半径范围内不应有较大的反射物,测量场地本底噪声不得大于65dB(A)。车外噪声测量中心点距压缩机组中心点5m,距车厢地板高度1m,测点与机组间除本车车身外应无其他遮挡物。车内噪声测试点有三点:在压缩机组中心位置的地板上方1.2m处,回风口中心的车厢地板上方1.2处,客车纵向对称中心平面内的地板上方1.2m处。车内外的测量点重复测量两遍,记录每次测量的结果,取平均值。

降温能力试验时,按前述要求的测点位置布置温度与湿度测点。在空调运转后的前10min,每隔2min记录一次,以后每隔5min记录一次车内各点及回风口温度,直至30min结束。与此同时,测量空调机组出风口(最靠近机组出风口的风道出风口)及回风口(距回风口平面距离200mm的纵、横向轴线中心)的干、湿球温度,记录在数据记录表中。

保温能力试验,按前述是在降温能力进行到第30min时关闭制冷装置,并使汽车继续保持原速(30km/h)运动的条件下进行的,每隔2min测量记录一次车内温度,至第40min为止。

(2)采暖系统性能试验

试验应在环境温度-15~-5℃、风速不得大于5m/s、晴天或阴天的气候条件下进行。试验前汽车必须露天停放,并且门窗全开,使车内外温度平衡。试验时,新车乘员不少于额定乘员数的80%,在用车可以空车进行试验。

风速与风量测量时,应关闭客车门窗,暖风装置开最高档(对于余热式暖风装置,发动机在额定转速下),开机10min后的5min内,记录所有出风口的平均速度,并计算总出风量。

噪声测量时,应停驶客车、关闭所有门窗、暖风装置开最高档(对于余热式暖风装置,发动机在额定转速下),在暖风装置中心位置的地板上方1.2m处,客车纵向对称中心平面内的地板上方1.2m处选择三点,重复测量两次,记录平均值。

升温测量时,应将测量点布置在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方400m处的位置上。在用车的车辆处于怠速状态,关闭所有的门窗和除霜门口,独立式暖风装置开至最高档,非独立式暖风装置的发动机最高转速稳定在1800r/min左右,暖风装置也开至最高档。出厂新车除满足这些外,还应要求车内乘员数不少于额定乘员数的80%,并且客车应保持在201km/h的车速状态下行驶。试验时,在暖风装置运行后的前10min,每隔2min记录一次,以后每隔5min记录一次车内各点的温度,直至30min结束。

新车保温能力测量,紧接在升温能力测量后进行,即当升温能力试验进行到第30min时,将暖风装置关闭,而客车仍继续保持20km/h的车速行驶,每隔2min测量记录一次车内温度,至第40min为止。

(3)通风换气性能试验

通风换气性能试验主要是测定通风换气量、车内气流速度和通风换气装置除的噪声。通风皇权测量时,应把测定布置在换气扇出风口三个面积相等的同心圆环各自的面积等分线,与相互垂直的两条直径线的交点上,总共有12个测点(图12-5)在紧贴换气扇出风口的平面上,或在换气扇出风口临时安装的、断面尺寸与风口相同、长度为500~1000m的短管出口平面上,用风速仪测出各点的风速。然后,取各测点测试数据的算术平均值,作为换气扇的出口风速。单台换气扇的送风量即可由下式求出:

qv=3600pR2qP

式中qv—单台换气扇的送风量(m3/h)

R—换气扇出风口半径(m)

qP—各测点风速的算术平均值(m/s)

对于空调系统中具有蒸发器风机转速单独控制功能和新风门调节功能的通风换气装置,其通风换气量的测量方法,与制冷系统性能测试时风量与风速的测量方法相同。

车内气流速度测量时,应关闭客车门窗,当换气扇启动第10min时,在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方1.2m时,开始测量各点车内气流速度,但不要直接接受换气扇出风的影响。

通风换气扇装置除的噪声的测量点,应在距离换气装置中心500m除,测量时,换气装置开最高档。

(4)除霜系统性能试验

除霜系统实验的目的是检查和测试空调客车在严寒条件下使用时,前挡风玻璃除霜装置的技术性能。

除霜系统性能实验应在无日光照射、气温为-15~-10℃、风速不大于5m/s的气候条件下进行。实验车辆应处于良好的技术状态,其除霜装置应调整到最大工作状态,利用采暖热风除霜的暖风装置应工作正常。实验道路应是平坦、硬实、无积雪、车流少的公路。实验仪器除测量范围为-50~50℃、最小为0.5℃的多点温度计、可暂停式秒表、综合气象仪、风速仪、发动机转速表、照相机、描绘除霜图形的特种笔外,还需要造霜用的喷枪、其喷嘴直径为1.7mm、工作压力为(350±20)kPa,液流量为395ml/min、距喷嘴200mm处形成喷射锥直径为1.7mm、工作压力为(300±50)mm。

实验前后分别用综合气象仪测试大气温度、湿度、气压和风速、风向,取算术平均值作为外界环境平均气候参数,并将数据记录在表中。实验前,需打开客车所有门窗,使车内外温度平衡,还需用含甲醇的酒精或其他类似去污剂,清除前挡风玻璃内外表面上的油污,待干后用清洗剂进一步擦拭,最后再用干棉布擦净。

实验时,在规定的环境温度下,关闭所有门窗,用喷枪以(350±20)kPa的工作压力,使前挡风玻璃整个外表面生成0.44g/cm3的均匀冰霜融化至最低能见度时,客车开始行驶,随着除霜面积的增大,逐步提高行驶速度。行驶过程中,每隔5min在前挡风玻璃内表面,描绘一次除霜面积踪迹图或拍摄照片,记录驾驶区上、中、下部位温度及驾驶员对视野的反应。与此同时,测量各除霜喷口的风速。实验进行40min后或除霜面积达到稳定状态时,即可结束实验。

结论

在12m长的公交客车上本次只做了制冷系统的工作,采用了冷暖和一的结构,通过空气混合来调整湿度,根据冷风量了热风量的比例进行混合来达到冬暖夏凉的温度、湿度及空气新鲜度的调节。汽车空调系统大量采用工程塑料。以减轻自重,如加热器壳体、风机壳体、风道等。蒸发器采用了管带式、冷凝器用了平行流式结构,热交换效率高、结构合理、性能先进,为驾驶员和乘员提供舒服的工作环境,能够满足使用要求。

制冷设备的与其采暖设备的相对安装采用组合式,因为结构简单、成本低。

制冷设备设计:a、压缩机压缩机型式分为曲柄连杆式、斜盘式、摇盘式、旋叶式、螺杆式、滚动活塞式、容积窝旋式等。曲柄连杆式压缩机是开发应用最早的,结构可靠,维修方便。摇盘式压缩机结构紧凑,外形尺寸小,质量轻,近年来被广泛采用。本车选用BOCKFKX50/660K型压缩机。b、冷凝器采用全铝管管带式冷凝器,散热效果好、生产率高。c、蒸发器采用全铝管管带式蒸发器,工艺性好,能够达到性能要求。d、膨胀阀为内均压式温式膨胀阀。e、保护装置当制冷系统的工作出现不正常时,压力、温度过高或过低,为了不引起那个部件或设备发生损坏,就需要在系统中安装保护装置。(在本次设计中没有具体选型)

汽车空调系统的性能匹配所要解决的问题,是在成本经济预算与运行经济预算,以及汽车动力配置方案允许的条件下,如何使汽车空调系统各组成部件,特别是对系统性能起主要决定作用的压缩机,膨胀阀,冷凝器总成及管系等部件,在额定运行工况(设计工况)匹配得最合理,以使各部件性能以至系统性能,在该工况得以最大限度地发挥,工作最可靠,并且还具有一定的适应最大负荷工况和恶劣运行工况运行能力。

参考文献

《汽车空调技术》方贵银李辉1999机械工业出版社

《汽车空调》郝军2001机械工业出版社

《制冷原理》吴业正2002西安交通大学出版社

《工程热力学》何雅玲第三版西安交通大学出版社

《空气调节》邢振禧2001中国商业出版社

《传热学》杨世铭陶文铨第三版高等教育出版社

《汽车空调实用技术》阙雄才陈江平2002机械工业出版社

《全国通用风道设计手册》1995中国建筑工业出版社

《全国通用风道设计图表》1995中国建筑工业出版社

《中型汽车空调设计》报告宋晓梅2003长春汽车研究所

《汽车空调原理与维修》2002西安交通大学出版社

汽车空调范文篇2

关键词:暖通空调系统;诊断;制冷剂蒸汽压图和蒸汽压表

即使是在简单维护方面,暖通空调系统无疑也是最为苛刻的,需要在车辆其他任何地方都不会用到的极其特殊的设备和复杂的技术。鉴于客户的高度重视,再结合车辆集成、保养和诊断方面的复杂程度来看,显然暖通空调系统值得所有从事相应工作的汽车维修师进行详细了解。

1制冷剂流体的主要特性

鉴于空调系统需要状态变化,用于评定某种流体用作制冷剂的价值时主要依据的特性是它的蒸汽压图,可以详细评估以下特性。1.1低压饱和温度。空调应用制冷剂的沸点通常远低于0°C。回路低压侧压力为几巴就会使沸点升高至所需水平,即略高于0°C。例如,水就不能作为制冷剂使用:即使低压侧压力远低于大气压力,水开始蒸发的温度仍会高于任何空调应用要求的温度(例如,即使绝对压力低至0.1bar,水仍然会在50°C才开始蒸发)。1.2高压饱和温度。回路高压侧也应考虑到:制冷剂应能在压缩时冷凝,在膨胀时提供足够的冷却能力,无需压缩至极高压力从而降低可靠性同时增加成本、管件复杂性和泄露风险。最后,还需要考虑到流体的固相:回路中的温度和压力绝对不能使流体接近冻结成固态,否则无疑会导致回路部件严重受损。1.3其他要求。制冷剂还需要具备一些性质,尽管这些性能与系统性能没有直接关联。流体最好无毒并呈化学惰性(不易燃且无腐蚀性)。这些特性对于汽车应用尤其重要:发生泄漏时,由于内部空间非常有限而且密封良好,会导致制冷剂在很短时间内就达到很高浓度。此外,法律对于制冷剂的臭氧消耗潜势(ODP)和全球变暖潜势(GWP)有着非常严格的要求。在过去几十年间,这些不断变化的环保要求正是从一种制冷剂转换到另一种制冷剂背后的推动力,对于所有应用(汽车、制冷、民用住宅系统等)都是如此。

2制冷剂蒸汽压图和蒸汽压表

目前使用的制冷剂为:R-134a和R-1234yf,其制冷剂蒸汽压图和蒸汽压表如下:R-134a和R-1234yf蒸汽压图(国际单位):上面介绍了车用制冷剂(R-134a和R-1234yf)的压力-温度特性。为了便于参考,数据同时以表格和图标形式提供,以国际单位表示。请注意,如服务领域常见,所有注明的压力均相对于标准海平面大气压力,因此不能直接与机械压力表读数比较(例如空调维修设备上的读数)。如果您从车辆压力传感器上读取了高压侧压力,请记得在参考表格之前减去1bar(传感器读数是绝对值,不是相对值)。

3汽车空调维修过程中的应用

制冷剂蒸汽压图和蒸汽压表是最基本和最重要的诊断工具之一,它们可以让您以一种非常简单直接的方式了解回路内部的制冷剂状态:第一步:测量回路的一个压力。第二步:在表中找到对应的饱和温度。第三部;测量回路不同位置的温度,与饱和温度比较。结果解释如下:温度读数低于饱和温度:该部件内部制冷剂完全处于液态。两个温度之差称为过冷。冷凝器出口管直至膨胀阀会存在这种情况。温度读数等于饱和温度:该部件内部制冷剂是液体与蒸汽的任意比例混合物。只有冷凝器和蒸发器内部会存在这种情况。如果其他部件发现这种状态,说明系统有问题。温度读数高于饱和温度:该部件内部制冷剂完全处于汽态。两个温度之差称为过热。压缩机吸入管和排放管、蒸发器出口管和膨胀阀蒸汽口会存在这种情况。

4诊断工具

本文不在详细介绍空调系统检漏工具。我们根据本文讨论课题介绍压力检测和温度检测工具。4.1空调维修设备。又称RRRR机(用于制冷剂回收、循环和重新充注)是一个箱子大小的多功能仪器,通过它可以执行各种与制冷剂回路维修和诊断相关的任务。与很多功能单一的简单工具相反,空调维修设备是一个非常复杂的机器,因此使用它需要经过充分的培训,小心谨慎,甚至还要对它自身进行保养。尽管压力表总是出现在维修设备上,但它们也可以作为独立仪器用于方便地读取回路最重要的参数,无需将整台设备搬来搬去。记住,每连接一个压力表,都不可避免地会导致回路损失微量制冷剂,这是因为阀门和仪器之间的空间充满的制冷剂在断开时会排出。对于维修设备尤其是如此,它可能无法正确消除其长管中残留的制冷剂。4.2数字温度计和探头。建议使用温度计来补充压力表提供的信息,从而全面了解系统工作情况。数字温度计具有方便的标准接口,可以连接不同类型的温度探头,从简单经济的裸露热电偶到可以更精确地测量回路管道的接触探头。在进行这种固体表面测量时,应确保探头表面充分紧密接触,等待读数稳定。焊在金属带背面。金属带非常薄,很容易弯曲,可以更好地贴合表面,快速达到相同温度。封闭护罩只有一侧开头,限制了经过传感器的气流,这种气流可能导致其温度偏离表面温度。往往在维修空调过程中,空调泄露故障通过检漏仪会很方便迅速的检查出故障点,并进行合理维修。而在大部分非泄露的空调故障维修过程中,很多师傅会束手无策,我们通过检测系统压力,和空调制冷剂系统表面温度然后对照制冷剂蒸汽压图和蒸汽压表,确认当前制冷剂状态,会很方便判断出系统故障点。

参考文献

[1]MaseratiAcademy.空调控制系统诊断及维修高级教程.玛莎拉蒂学院技术文献,2015.

汽车空调范文篇3

【关键词】汽车空调系统制冷剂故障诊断

一、汽车空调系统的组成与工作原理

现代汽车空调系统主要有制冷和供暖、通风三大功能,实现汽车车厢内温度、湿度、气流和洁净度的人工调节。

目前大多数的中小型汽车制冷系统采用的都是蒸气压缩式制冷循环,这种系统在设计和制造上的技术已十分成熟,它主要由空调压缩机、冷凝器、节流装置和蒸发器等组成,见下图。

该系统是利用制冷剂由液态变为气态时需要吸收气化潜热的原理而达到制冷目的:压缩机对气态工作介质(制冷剂)进行压缩,高温高压制冷剂气体流过管道被冷凝器降温,经储液干燥器干燥后成为高压液体,再经膨胀阀节流降压形成低温低压的较低能量液体。此液体在蒸发器内吸收由通风系统送来空气的热量而蒸发,达到制备冷空气、降低温度的目的。

轿车空调装置一般布置在轿车车头主发动机侧面。冷凝器与散热器安装在发动机之前,这样发动机可以驱动风扇实现风冷,而且轿车行驶时,迎风也会增加冷却效果。

汽车供暖系统多采用水暖式、空暖式两种工作方式。水暖式采暖时,制冷系统停止运行,发动机的工作热水通过热水阀进入热交换器,用风扇(与蒸发器共用)将吸热后的升温的外界空气从热风送风格栅送入车厢内。汽车空暖式采暖系统可以回收汽车发动机排除废气的热量来加热空气,构成气气热管换热器,发动机排出废气和进入车厢采暖空气互不泄漏的,工作安全可靠。

汽车通风系统主要实现汽车内外空气的流通,达到换气和热交换的目的。通常可用马达驱动鼓风机风扇,通过各种风门的调节来实现风量的改变。

二、汽车空调常规使用与维护

1.正确使用汽车空调操控按钮。汽车空调控制面板上标识一般采用英文缩写,使用时要清楚各按钮的含义方法,以免因为操作不当导致制冷效果不好。

2.要避免空调频繁启动、关闭,尽量避免因频繁启动、关闭而引起的机械故障。

3.由于工作环境复杂,相对于家用空调,汽车空调更需要经常进行检查、维护:每季度需进行检查和维护的有管路、接头、制冷剂数量、冷凝器、蒸发器、热力膨胀阀和压缩机等;每三季度需进行检查和维护的有储液干燥器和鼓风机等。

三、汽车空调系统故障的检测与诊断

汽车空调出现故障,一般观念认为空调不凉就需要添加制冷剂,其实并不是这么简单。汽车空调系统出现故障的原因很多,需根据实际检测设备情况、故障现象进行检测与诊断。

1.汽车空调故障的DIY诊断

所谓DIY(doityourself)诊断,即在车主在不具备专业检测诊断设备设施情况下自己根据简单仪器或经验、感觉进行检测、诊断。

在检查高、低压管温度之前将空调设置到最大制冷:风量最大、直吹、空气内循环、A/C开关打开。此时出风口的温度,大约在5℃~10℃左右为正常。支起发动机盖确认电扇与压缩机均运转,如未运转,则松开高压管的保护盖,用利物轻轻按压高压排气顶针,看是否有强劲的制冷剂溢出,如有说明空调的故障在电路系统;反之,应仔细查看空调管的各接头是否有油渍,如有说明空调系统存在泄漏点。用手触摸高压管和低压管,仔细感觉它们的温度。

2.专业维修故障分析、检测的一般方法

对于专业汽车空调维修站点,可以利用专业的仪器设备进行检测、诊断。在检测与排除空调故障时一般要做到看、摸、听、测4方面的工作。

(1)听:从声响来判断压缩机的运行状况。

正常的运转声应是:只能听到压缩机有轻脆而均匀的阀片跳动声,如果有敲击声,一般是制冷剂的“液击”声或是敲缸现象,如果有磨擦声,可能是压缩机负荷太重,润滑油不足或者断油以及离合器打滑等。

(2)看:观察冷凝器表面是否清净,防止杂物和泥土附在冷凝器上。

观察空调制冷系统所有连接部分是否有油渍,重点是压缩机轴封、前后盖板的密封垫、检修阀、安全阀等,观察各条软管有无磨损、老化、鼓泡、裂纹和渗漏,看玻璃观察窗内制冷剂的状态。

(3)摸:根据空调系统各部分温度情况进行诊断、分析。打开空调开关、使制冷压缩机运转15~20min。用手摸空调系统管路各部件的温度,正常情况下,高压端的管路为55~65℃,而低压端管路呈低温状态,低压端的部件和管路,连接部分都会出现结露。用双手小心触摸高压区,特别是高压端金属部件手感较热而不烫手为正常;如果手感烫手,首先检查冷凝器的冷却是否良好,冷凝器表面是否清洁而无杂物,风扇的风量是否过小;如果高压端手感热度不够,则为制冷剂过少;如果没有温度,则为制冷剂漏光。

在储液器上出现霜冷或水露,说明干燥剂破碎并堵住制冷剂流动管道。膨胀阀的手感温度是比较特殊的,它的制冷剂进口连接处较热,而出口连接处较凉,有水露,这些都是正常现象。如发现膨胀阀出口处有霜冷现象则说明膨胀阀的阀口已经堵塞,必须马上处理。低压管的手感冰凉,有水露,但不应该有霜冷,若有霜冷则说明系统有问题,可能是膨胀阀感温包内的传感液体已经漏光,应更换一个新的,也可能是制冷剂太多需要放掉一些,或者是蒸发器的温度传感器、恒温器或压力控制器出现故障。用双手触摸压缩机的进气口和排气口,手感温度应该有明显的差别,如果没有温度差别,则说明制冷剂全部漏光;如果差别不大,则说明制冷剂量不足。用手摸触各个管接头是否震松,特别是一些电器的插头插座的连接是否松动。

(4)测:通过看、听、摸这些过程,只能发现不正常现象,但准确的故障部位、故障原因分析还要借助歧管压力表等仪器、万用表对制冷系统进行测试,在掌握数据资料的基础上对各种现象做认真分析,判断出故障的部位,然后予以排除。

①检查调整皮带的张力。新安装的皮带必须进行两次调整。第一次为新皮带安装,调整到规定值,运行30min后,第二次进行调整。皮带张力根据结构不同、中心距不同、其皮带张力也不同,应按各车型的说明书进行检查。

②检查电磁离合器。接通离合器电源开关,此时压缩机应马上工作;断开电源后,压缩机应立刻停止工作。冬天,当接通电源开关,如果压缩机不转,可能是由于低温保护开关起作用。此时可以直接从蓄电池引一条导线接通电磁离合器、以证明离合器的好坏,若能正常运转,说明离合器无故障。冬天室外温度很低,起动压缩机仍能运转,则说明低温保护开关已经损坏。

③检查风扇电机的调速器和继电器,接通风扇电机开关后,从低档到高档分别拨动调速器,在各档让风扇运转5min,检查吹出的风量是否有变化,如果没有变化,则可能是调速器的电阻箱和风扇继电器故障。

④检查高、低压保护开关和过热保护器。高、低压保护器开关和过热保护的目的是在制冷系统发生故障的时候,保护压缩机和制冷系统不受损坏。它们都和空调开关、风扇开关串联在一起,当系统工作压力太高,或者当环境温度太低,制冷剂泄漏完了,高低压力开关就会切断压缩机离合器的电路。检查时,可把被检查的开关短路,再接通制冷系统的开关,此时,若制冷系统开始工作,则说明此开关故障。用同样方法可以检查怠速控制器,温度控制器和超速继电器等,也可用万用表测量拆去电流线接头的各种控制器。

⑤检查采暖系统。在保证有足够的冷却液情况下,拧开散热器盖,在上液槽内应能看到冷却液,起动发动机并暖车后,无冷却液溢出加液口。冷却液不干净或有铁锈、液色变黄,都应该将冷却液放掉,用化学清洗剂清洗系统,然后用清水清洗干净,再加上防冻冷却液,充满冷却系统。拨调温度控制钮,出风口的温度应有变化,操纵机构应移动自如,如果温度不变,操纵吃力,则应该修理。

⑥检查膨胀阀。膨胀阀的毛细管不应有折弯,并用绝缘布牢固地包捆在蒸发器出口处,有的毛细管应正确插入制冷管路的插孔中,并用感温油纸包裹。

⑦检查观察孔。汽车空调大多数装配有观察孔来观察制冷系统内部工质的流动状况,通过观察孔检查制冷工质的方法:起动发动机,稳定在1500~1750r/min,制冷压缩机运行5min。擦干净观察孔的玻璃,把空调功能键置于MAX(最大制冷)位置,吹风机(包括空调器和冷凝器风机)置于最高转速,这时可从观察孔中看到如下几种情况:

A.清晰(孔内无气泡,也看不见液体流动)。这种状态可能是系统内制冷剂全部泄漏光,应立即关掉发动机,检查制冷系统制冷剂泄漏的原因;如果检查压缩机进气管和排气管,温差明显,则可能是制冷剂量过多,必须把多余的制冷剂排除;若暂停压缩机工作,空调系统其余部分仍然工作时,45s后在观察孔上可以看到少许的气泡通过,则制冷剂适量。

B.气泡(偶尔或者缓慢地看到少量气泡流过)。说明制冷剂量稍有不足或制冷系统的干燥剂已经饱和,制冷剂内有水分混进。当膨胀阀有结霜现象,并且从观察孔有时看可到干燥剂变颜色,则系统制冷剂含有水分,应马上更换干燥剂。公务员之家

C.泡沫。说明系统内制冷剂量严重不足,并且有大量水分和空气进入系统。

D.油斑(观察孔的玻璃上有条纹状的油渍或黑油状泡沫)。若进、排气口有明显温度差、停止压缩机,空调其余部分仍在工作,孔内玻璃的油渍干净,说明系统制冷剂量略少,冷冻油量过多,此时应想办法从系统内释放一些冷冻油,再加入适量的制冷剂;若压缩机进、排气管有明显温差,当压缩机停止工作,空调其余部分仍在工作时,玻璃上留下的油渍是黑色或有其它杂物,则说明系统内的冷冻油变质,必须清洗制冷系统;若压缩机进、排气阀门没有明显的温差,空调器出口也没有冷气出来,说明制冷剂全部漏光,观察孔玻璃镜上油斑是润滑油。

参考文献:

欧华春,李大成.汽车空调实训教程.重庆大学出版社,2008.

马明金.汽车空调构造使用与维修.北京大学出版社,2005.

汽车空调范文篇4

关键词:新能源汽车;空调系统;热泵

新能源汽车项目起步晚,且发展处于摸索实践阶段,整车结构及系统仍有较大的完善空间。尤其是空调技术发展仍面临着电池造价高、设计工艺水平低、电池过热,以及内部零件碰撞等问题,尤其是在高速行驶中,以此对空调装置结构与系统性能提出了更高的要求。空调系统技术的发展势必会带动项目产业化发展,但目前首要的是攻克电池瓶颈,加大燃料电池,以及电动压缩机研发力度,利用新型环保制冷,能够进一步推动汽车工业改革。

1新能源车空调系统分析

1.1燃料电池余热利用空调系统。燃料电池发电装置能够将化学能有效转换为电能,借助燃料与氧化剂实现,转化效率高,其余转化为废热与温水、蒸汽。燃料电池属于动力源,利用能源效率比常规内燃机高,但燃料电池出现过热后,其性能、工作效率直接降低。对此,利用余热为车辆供暖,其经济性、能量利用率明显优化。综合考虑能源供应与性价比、生态环保等因素,研究结果表明氢是首选燃料。电解质种类多样,可分为熔融碳酸盐类,以及固体氧化物类等,其中质子交换膜燃料电池,工作电流相对较大,能量效率高,且可在数秒时间内完成冷启动,排出近80℃的废热,多以吸收式制冷空调系统为主,热泵启动热源,以燃料电池冷却液为主。对此,吸收式热泵发动机输出功率消耗低,熔液泵需消耗部分电能。同时吸收式热泵,其总需求电能相比压缩式热泵高。为满足城市公交与大巴空调制冷需求,加强了对吸收式制冷系统的创新,制冷剂以乙二醇和水为主,吸收剂以溴化锂为主,吸收式制冷系统热动力驱动,主要通过热管理系统主管热器,与制冷系统发生器的热交换实现。主换热器上设置旁通支路,并连接变频水泵,当燃料电池热量过高,且由空调制冷需求时,热量能从旁通支路给予,确保燃料电池始终保持适宜温度工况。同时电池辅助器与吸收器等电池热管理系统器件的冷却系统相同,车外风冷式换热器与冷却系统相通。燃料电池供暖系统的工作过程如下,截止阀打开后,使电池发动机处于工作状态,控制电池散热器,通过中间换热器,实现冷却液从发动机出口处流至进口处,由换热器热能沿着供暖管路持续向车内提供热风。1.2热泵式空调系统。热泵式压缩机是由独立式电机驱动,动力系统驱动电机,以及电动压缩机是由电池组供电,不会影响汽车运行安全性,同时也不会受到汽车运行的干扰。热泵式空调系统应用后,从车内顶部吸入新鲜空气,空气加热后,在挡风玻璃内完成除霜处理,并吹出热气,即在内部处理后由风道左右两侧吹出。不仅节省能耗,同时解决了车内湿度大,空气循环起霜等问题,确保汽车行驶安全性及舒适性。电动汽车热泵式空调系统由蒸发器完成除霜工作,由冷凝器提高空气温度,最后向车内提供热气,规避了结霜现象,不会影响汽车安全驾驶。在其基础上,电子膨胀阀受步进电动机驱动,合理控制阀门开度、制冷剂流量,以及出口空气温度等。制冷系统适用于40℃环境温度、50%相对湿度、27℃车室温度的环境条件,系统性能方面,1kW能耗,能够获取2.9kW制冷量。制热系统适用于25℃车室温度、-10℃环境温度,系统性能方面,1kW能耗,能够获取2.3kW制冷量。当处于低温工况时,PTC热敏电阻可发挥功用,能够完成加热处理,并控制空调制热效率,同时完成除霜工作。PTC加热装置,可通过车载蓄电池获取直流电,安装离心式风机,或轴流式风机,加强风道合理设计,可确保PTC发热器周围风速均匀,切实发挥装置发热性能。PTC元件的消耗功率与进出风口的风速、温度密切相关,发热量与风速呈正相关。

2汽车空调系统比较

传统汽车空调的压缩机类型,包括往复式、摇摆式、斜盘式三种。新能源汽车空调的压缩机类型,包括往复式、旋叶式、涡旋式三种。传统汽车空调,其压缩机结构,以开启式为主;新能源汽车,其空调压缩机结构,涉及半封闭式,与全封闭式两种。两种汽车的蒸发器与冷凝器类型基本一致,相比普通汽车空调,新能源汽车空调制热系统,除蒸汽压缩式外,还包括了一种吸收式。尤其是全封闭、涡旋式压缩机,制冷系数大幅度提高,功率与质量显著下降。普通汽车空调制冷,通过蒸汽压缩制冷,以冷却液为制热热源,当发动机冷却液处于温度较高状态时,由系统热交换器,实现空气热交换,从而实现车内供暖。新能源汽车空调,以热泵式、电加热、燃料电池余热完成供暖。同时新能源汽车制冷量,能够随时调节参数,如空气温度等,不受车辆行驶影响,且噪声小,确保了乘客舒适度。而电动压缩机驱动效率高,且寿命长,噪声小,发动机、压缩机传动装置取消,汽车结构得到简化。在空调制冷剂方面,新能源汽车将二氧化碳作为制冷剂,成本低且无毒无害,基于超临界循环角度分析,制冷量大,压缩机体积小,传热性能佳,交换器体积小,系统结构紧凑等优势。

3总结

新能源汽车空调系统,相比传统汽车既有优势也存在不足,未来汽车空调系统技术发展还需加大对电池过热、电池循环寿命等方面的技术突破,确保电池冷却系统能够使电池始终在最佳工况下完成供电等工作。在汽车行驶中,系统不可避免的会出现振动与冲击现象,还需加强对系统零部件气密性与强度等方面的优化研究。

参考文献:

[1]陈帅,杜碧雪.新能源汽车空调控制系统研究[J].汽车与驾驶维修(维修版),2017(11):109.

汽车空调范文篇5

关键词:空调产品;PTC电加热器;可行性

目前,应用于汽车空调产品中的电加热器主要是PTC电加热器与电热管加热器两种。现阶段PTC电加热器的普及是非常快的,并已经逐渐取代了电热管加热器。PTC加热器最主要的特点就是能够改变发热量,进而恰到好处的调节车内的温度,达到迅速制热的效果,同时还可以让空调在一些较为寒冷的区域正常运行使用。

1PTC电加热器的概述

上述分析了金属电加热管的主要性质,其存在着一定的安全隐患,在汽车内部有限的结构空间中,因功率有限,额定功率常规状态下最高不会保持太高,但是若处于干烧状态下是极易出现发红危险。因此为了提高汽车空调产品的制热效果,可以采用陶瓷性质的PTC电加热器,PTC电加热器主要是将PTC热敏电阻元件作为发热源的方式进行加热。PTC电加热器中的热敏电阻通常是以半导体材料制作而成的,它的电阻能够随着温度迅速发生变化,同时当外界的温度逐渐降低时,PTC的电阻也会减小,发热量随之也会增加,其中陶瓷PTC电加热器的具有着较高的功率。根据以上所讲的特性变化可知,PTC电加热器具有着节能、安全、稳定及寿命长的特点,在汽车空调产品中具有着很强的适应性,现已广泛应用到家用电器及工业电热电器方面。目前PTC电加热器在汽车空调中的应用,国外已经处于推广阶段,国内则处于研发制作阶段。对于纯电动车而言,所使用现阶段纯电动车所使用的为PTC风加热,这种方式只需要将传统汽车空调暖风芯体替换为PTC风加热器,再加上相应的辅助设备就可以使用了。若当我们在汽车空调产品中将PTC电加热器换位金属电加热器,因为内部结构的变化,势必会改变原来的空气流场。

2空调产品中PTC电加热器的可行性探究

(1)发热功率测试分析。常规的汽车空调中PTC电加热器,一般是会安装在进风口换热器的下方,有些甚至会直接安装在空调底座上,或者直接裹在换热器内部。无论如何进行安装,都需要确保其散热面与进风向保持一定的角度,也就是说当通过PTC电加热器的进风量达到最大,其可以让PTC电加热器发挥出最大的功率,相对产热效果也会最好。例如:在某型号的汽车空调安装PTC电加热器,当保证汽车空调内环境温度,汽车空调处于非制热状态时,处于通过状态下的测试功率达到设计功率后,当空调内环境温度达到53℃时,功率则会下降,测试值基本为平均升高一度,功率则会降低。之后再将风速调制低速,再进行测试后,这个阶段比假设标准功率会有所减少,因此功率会随着温度的变化发生一定的损失。这对于汽车空调产品的效果而言具有着重要的意义,尤其是对温度的控制能力将会得到极大的提升。(2)发热量可自动调节。通过对PTC电加热器的概述我们可知,它的发热量会根据环境温度而发生着改变,即当环境温度之间升高后,发热功率会降低,反之亦然。这样不仅可以有效实现车内温度的自动调节,还可以使得出风温度适中保持稳定,有利于汽车空调产品恒温效果的实现,对温度能够实现精准控制。同时,PTC电加热器在汽车空调产品中的应用,还可以有效节约能源,在温度较高的状态下自动降低功率,而金属电加热器则是固定热量进行输出的,它的发热量不会随着温度的变化而发生改变,因此容易出现资源浪费或者加热器温度过高的现象,所输出的温度波动也较大,不利于车内恒温的实现,同时也难以实现对汽车室内温度的精准调控。(3)安全性分析。PTC电加热器在汽车空调产品中运行时,经测试当风速为零时,发热体的表面温度会变高,同时因为PTC具有着自限温度的作用,温度升高后电阻会下降,在干烧状态下其表面温度也不易达到周围易燃物体的燃烧点,因此难以产生明火,可以有效避免火灾问题的出现,具有较高的安全性能。而金属电加热管则因为内部采用镍铬丝作为发热体,在通风状态下,金属电加热管的表面温度较高,但是若处于风速为零的状态下,则会变得更高,同时若金属电发热管周围具有橡胶、塑料性质的物体,则是很容易引发火灾,安全是无法得到有效保证。由此可知,PTC电加热器在汽车空调产品中的使用是具有较高的安全性能。(4)稳定性方面分析。PTC电加热器在汽车空调产品中的应用,因为具有自限温度的作用,在干烧状态下表面温度为200多℃,能够有效避免因加热体烧毁及损坏现象,具有很高的使用稳定性,不易损坏,使用寿命较长。但是若使用的为金属电加热管,则较高的干烧温度非常容易造成热丝烧毁的现象发生,稳定性较低,长期使用的话容易发生损坏,同时维修成本也较高。(5)制热速度方面分析。汽车空调产品中PTC电加热器在启动时有着比额定功率更高的冲击功率,能够迅速进行制热,同时在环温状态下,因为PTC的发热功率会随着温度的降低而提高,因此在处于环境温度较低的状态下,也可以达到迅速制热的效果。而金属电加热器则只能固定输出加热量,制热的启动速度也比PTC电加热器慢许多。

3结束语

综上所述,在汽车空调产品中PTC电加热器与金属加热器相比较,无论是在功率、安全、稳定、制热速度、使用寿命等方面均具有着巨大的优势。汽车空调产品中使用PTC电加热器不仅可以让空调迅速制热,保持恒温,还具有热量输出自动调节功能,这对于汽车空调产品而言具有着重要的意义及价值。

参考文献:

[1]冯雪丽,臧竞之.汽车空调PTC加热器控制器方案设计[J/OL].机电工程技术,2018(12):99-101.

汽车空调范文篇6

关键词:发展趋势;空调技术;汽车;节能减排

汽车空调系统主要功能就是负责合理调控车内的温湿度变化及通风情况,以保证车内空气流通,达到净化空气的目的。这些年随着人民群众生活水平的日渐提高,进而对汽车在舒适度方面提出了更高层次的需求,汽车空调系统给人们带来舒适度方面的体验已悄然间成为划分汽车档次高低的关键指标之一。作为全车主要耗电部件,同时充分结合当前能源极度紧张的社会背景,需有效的使空调系统的能耗有所降低,同时还需使工作效率有所提升。不仅如此,随着我国对环保意识愈发重视,作为汽车空调系统的制造商,务必确保在成产过程中所选择的材料及所使用的工艺更具环保性。本文就汽车空调技术未来的发展趋势进行相应的展望。

1制冷剂的主要发展走势

根据目前欧盟已经通过的就含氟温室气体的相关控制规定可以看出,在2017年1月1日之后,欧盟将全面禁止全球变暖潜值(GWP值)超过150的制冷剂用于新生产的汽车空调所用,由于目前所使用的HFC134a的全球变暖潜值约为1300,已严重超标,所以根据规定将被禁止使用。结合美国EPA的相关统计可以发现,汽车空调所导致的温室气体总体排放大约占全世界温室气体排放总量的0.1%[1]。就制冷剂的选择来看,总体应遵循符合相关法规的需求,不仅需要符合环保的需求,还需遵循安全稳定、控制成本的原则。制冷剂相对理想的状态应是ODP保持为0,GWP保持为0,化学及物理相关性质属性较为稳定,无可燃性、无毒性,热力学属性较为优越,原材料成本较为低廉且来源丰富广泛。

2压缩机的主要发展走势

目前对于压缩机的设计主要是考虑将减少机器本身体积及质量、控制噪音的产生以及增强震动的稳固性为主要发展方向。现阶段外国压缩机还以旋叶方式、斜盘方式以及涡漩方式为主力发展方式,为了有效控制因为频繁闭合离合器而产出的噪音问题,以便使控制效果达到最佳,因此使变排量外部控制式压缩机逐渐成为全球范围内车用空调压缩机最为主要的发展趋势,因为其具有结构紧密、质量较轻及节省能耗的优势,能耗可至少减少30%。除此之外,随着国际上对于环保观念的愈发重视及关注,使电动压缩机向更高层次的发展又近了一步,其能够做到充分满足并应对混合动力燃料电池车对于车用空调的实际需求。因为今后的制冷剂有可能会选择应用CO2,考虑到目前的压缩机还不能完全符合系统的实际需求,所以还需加大以CO2为制冷剂的相关压缩机的研发工作。

3冷凝器的主要发展走势

综合来看,冷凝器主要经历了管片式、管代式以及平行流式这三个阶段。目前,我国冷凝器主要是以平行流式为主,其通过该结构能够对系统的整体性能进行大幅度提升。其主流设计是将冷凝器和储液干燥瓶集成于一体,目的就是为了能够将空调管路进行有效减少,进而将制冷剂的泄露情况进行降低。

4HVAC的主要发展走势

4.1结构的主要发展走势。供热通风空调系统的技术结构演变呈现出逐步一体化的趋势,由以往的三箱和两箱逐步变化为目前市场上常见的一箱结构。一箱结构优、劣明显,其主要优势是由于整体的统一性而降低了制造成本和安装时间,同时一箱的不分割特点也让其中换热器芯体的位置有了更多的选择性,密闭性也相对提升。而其不足则是在于一箱的结构使得整体管道横截面的设计难度和精细度相应增加,安装完成后后期维修和更换芯体也比较困难[2]。4.2蒸发器的演变进化趋势。“高精微”的演变趋势也在蒸发器技术的进化中得到了体现,微通道结构、轻量材料和能效的进阶等设计使得蒸发器的体积减少了近五分之二的同时,效率却得到了提高[3]。4.3过滤器的发展趋势。过滤器的主要作用就是优化汽车内部环境,减少公路或其他外部环境中的粉尘等污染物进入汽车内循环的可能,保护驾驶员与乘车人的身体健康。过滤器的发展可以分为三个阶段:①微粒过滤阶段:这一阶段的过滤器内部组成成分主要是合成纤维或其与浸渍纸浆的组合物质,微粒过滤器属于初步过滤,其过滤分子直径在0.1-100微米左右。②活性炭过滤阶段:活性炭过滤是在微粒过滤基础上发展的第二阶段,这一部分的过滤器其主要作用是在微粒过滤的基础上,净化、吸附空气中的SO2和NO气体。③混合过滤阶段:混合过滤是指将微粒与活性炭组合进而演变为新式过滤的一种方式。复合过滤器相较于第一阶段的微粒和第二阶段的活性炭来说,综合并提升了两阶段的独立优势,降低了过滤风量的要求,并强化了过滤性能。目前市面上使用的复合过滤器主要分为连体结构和组合结构两种,连体结构需整机更换,而组合结构则可以根据使用情况独立拆装[4]。4.4通风系统和空气净化设备的发展趋势。以自动内循环为例,主要由环境传感器操控,空气中一些有毒气体如:一氧化碳、二氧化碳等被传感器检测到,会自动启动内循环模式,使乘员舱与外界有毒气体隔离。就目前普通的空调系统而言,在冬季使用时,为了能够不让风窗结雾,空调通常会使用外循环模式,也就是将外界的新鲜空气导入车内,同时会将热空气输出车外,会导致室内损失热量温度降低,由于这个原因,新概念两层式空调系统也被提了出来[5]。该概念通常指将空调系统分为上下两层,在冬天使用时,上层加热的新鲜空气导向风窗除雾,然后直接从上部排出车外,而下部的暖风利用内循环系统,将暖风在室内下部流动,以达到减少由于换气而损失热量的目的。4.5采暖系统的发展趋势。通常发动机冷却水产生的废热是汽车暖气的热源,目前发动机的运行效率越来越高,使得废热越来越少,导致暖气的热源供暖不足,针对这一问题,部分公司利用补充采暖进行供暖。①发动机停转时,设置电动水泵予以辅助,利用水泵把发动机里的热水输送到暖风芯子[6]。②燃料电池车或者电动车,可以采用节能且效率的热泵式空调系统。③使用摩擦产生热量进行取暖,利用粘性加热器,通过发动机转轴旋转,圆盘与发动机油摩擦产生热量,再将热机油输入热交换器,达到辅助采暖的功效[7]。④使用独立燃油加热器,利用燃油燃烧使发动机内的防冻液温度升高,以达到采暖效果。

5节流机构的发展趋势

热力膨胀阀在目前的节流机构中应用相对广泛,但热力膨胀阀又存在一定的缺陷,如调节范围小、控制稳定性差、偏离设计值,控精度差等,随着节流机构的更新发展,通过微电脑进行空调系统控制开始被普及,在以后的主流节流机构中电子膨胀阀会占有一席之地。

6控制系统的发展趋势

一般的汽车空调会采用传统的控制技术来实现空调系统的控制,如保险丝、压力开关、真空怠速器、继电器以及温控开关等,其控制精度相对较低,有些参数甚至无法控制。在控制理论、微控技术以及传感器技术的发展壮大下,较为高档的汽车已经逐渐配备微电脑控制系统,使得舒适性大大提高,操作也变得简单,令乘员舱自动控制得以真正的实现。

7其它系统得发展趋势

7.1开发工具与手段。知名企业德尔福开发的VTEC领先多数汽车空调设计公司,该公司于1996年开始对于这一技术进行研发,期间加入了仿真人体模型、CFD分析整车运行情况,来计算人体舒适度[8]。该技术使得空调开发进度缩短,并节省了设计成本。VTEC舒适模型将600多个主观评价的样本收入其中,同时进行分析空调行驶与制暖行驶人体不同部位的舒适数据以及整体的舒适数据等。7.2环保节能技术。通常实现节能环保的技术包括:变排量压缩机技术、负压管路换热技术以及针对新能源汽车使用的热泵技术等。

8总结

目前国外汽车空调的发展路线以自动化、环保、节能以及舒适化为方向,而在国内这一技术还存在着差距,由于空调发展水平较国外偏低,因此国内汽车的相关行业更需要对先进技术进行积极探索,同时进行独立设计,对设计开发以及生产销售汽车空调的企业进行科学的系统管理,使汽车空调设计的能力提升,以促进汽车空调技术的发展。国内汽车空调在发展的同时还需要注意几个方面,如零部件的节能性、空调系统零部件可选用再生循环材料进行制造、选用无铬蒸发器、选用易维修与安装的零件,选用低泄漏软管、清洗暖风与冷凝芯子选用非硫酸物质等,建立完善的管理系统,将冷凝器以及蒸发器数据收集起来,建立自己的芯体数据库,将产品标准化、系列化,使开发周期缩短,开发成本降低,精细化程度变高,以便提高其竞争力。

参考文献:

[1]姜泽东,刘鹏飞.国外汽车空调系统技术发展趋势[J].城市建设理论研究(电子版),2015,5(36):4544-4545.

[2]翁伟娟.纯电动汽车空调系统发展趋势探析[J].数字化用户,2019,25(15):189-190.

[3]吴峰,王在昌,李洪雷.汽车空调控制器的发展趋势[J].汽车实用技术,2019,(6):64-65,83.

[4]季红军,谢晶,王金锋.太阳能汽车空调专利现状及发展趋势分析[J].制冷技术,2015,35(3):44-47,55.

[5]辛聪,王明明,杨波,等.汽车空调系统的技术发展趋势探讨[J].机电工程技术,2017,46(5):60-64.

[6]常月刚.浅谈新能源汽车空调系统的现状与发展趋势[J].消费导刊,2017(35):119-120.

[7]叶俊.现代汽车空调系统的技术发展趋势[J].军民两用技术与产品,2016(12):44.

汽车空调范文篇7

通过对某一变排量压缩机汽车空调制冷系统的热力膨胀阀的试验研究,得出了该膨胀阀静态过热度设定值、增益及滞环、感温包时间常数等静态和动态特性,并对试验结果进行了分析。

关键词:热力膨胀阀汽车空调变排量压缩机试验研究

1引言

汽车空调系统的无级变排量摇板式压缩机(以下简称变排量压缩机)是根据压缩机吸气压力的差值,推动摇板改变倾斜角,从而改变活塞的行程和压缩机主轴每转一周的排量。所以该类变排量压缩机改变了传统的离合器启闭压缩机的调节方式,压缩机运行连续平稳,不会引起汽车发动机周期性的负荷变化,且空调送风温度波动小,有利于提高车内环境的热舒适性;可以保持几乎恒定且略高于结霜温度的蒸发温度,防止了蒸发器表面结霜,提高了系统除湿能力;可以降低能耗,节约燃油。从汽车空调系统由变排量压缩机替代定排量压缩机的发展总趋势来看,变排量压缩机将会在非独立式汽车空调系统尤其是各种豪华型汽车空调系统中得到广泛的应用。

热力膨胀阀是制冷系统广泛使用的节流装置,但是它与变排量压缩机组成的汽车空调制冷系统在实际使用中出现了系统稳定性问题。At-suoInoue等人在对7缸变排量压缩机和热力膨胀阀组成的汽车空调制冷系统进行试验研究时发现有系统振荡现象存在。美国GM公司在无级变排量压缩机和热力膨胀阀汽车空调制冷系统的应用过程中,也有同样发现。我们对用于某一车型的变排量压缩机和热力膨胀阀汽车空调制冷系统的稳定性问题进行了研究,为了详细分析变排量压缩机和热力膨胀阀参数之间的相互耦合对系统稳定性的影响,需要对该系统的热力膨胀阀的动态行性进行深入地了解。

图1为我们研究的变排量压缩机汽车空调系统中热力膨胀阀的结构示意图。该热力膨胀阀是外平衡式,感温包为气体充注,且有两点与常用热力膨胀阀不同:

(1)常用热力膨胀阀是偏压式,而该热力膨胀阀是平衡式的,所需的开阀力小,阀杆受力基本不受阀进出口压力大小的影响。

(2)该热力膨胀阀的静态过热度为负值,即当过热度为零时,阀也不能完全关闭,仍有一微量制冷剂流通。

图1热力膨胀阀的结构

本文介绍了该热力膨胀阀静态过热度设定值、增益及滞环、感温包时间常数的测试方法和测试结果,并对试验数据进行分析。

2试验装置和试验方法

试验参照JRA2014-1996标准"汽车空调(HFC-134a)用热力膨胀阀"和该热力膨胀阀的厂标进行,试验工质采用氨气。压力测量采用RH-ACPS-A型高性能电压输出型压力传感器,温度测量采用经过标准的铜-康铜热电偶,膨胀阀开度测量采用DA差动变压器式位移传感器,所有被测参数采用HP34970A数据采集仪巡检记录。

2.1静态过热度设定值

图2为静态过热度设定值试验装置示意图。按照热力膨胀阀静态过热度设定值的要求安装孔径为1.3mm的排气孔,将感温包放置在温度为0℃的冰水混凝合物中,调节压力控制阀使阀前压力P1恒定在1.378Mpa,读取阀后压力P2,即可确定静态过热度设定值。

图2静态过热度设定值试验装置

2.2增益及滞环

图3为增益及滞环试验装置示意图。把感温包放置在温度为0℃的冰水混凝合物中,调节压力控制阀改变外平衡管压力来改变热力膨胀阀开度。氮气不经过热力膨胀阀,而是直接从排气孔中排出。先是按一定的压力差间隔从小到大增加外平衡管压力,测定热力膨胀阀的开度,然后再按一定的压力差间隔从大到小减少外平衡管压力,测定热力膨胀阀的开度。

图3增益及滞环试验装置

2.3感温包时间常数

感温包时间常数的测定装置同静态过热度设定值试验装置,只是要把原来的一个恒温槽改为两个温度不同(最少相差10℃)的恒温槽。调节压力控制阀使阀前压力P1恒定在1.378Mpa,将感温包先放置在较低温度的恒温槽中直至稳定,然后将感温包迅速从较低温度的恒温槽移至较高温度的恒温槽中,等稳定后再将感温包迅速从较高温度的恒温槽移至较低温度的恒温槽中直至稳定。记录整个过程感温包温度的变化和阀后压力的变化。

3试验结果及分析

3.1静态过热度设定值

按照热力膨胀阀静态过热度设定值的条件,测定出来的静态过热度设定值是-0.5℃,与阀样本提供的(-0.3±0.8)℃的静态过热度设定值相符。一般热力膨胀阀的静态过热度设定值为正值,而本文研究的热力膨胀阀的静态过热度设定值为负值。也就是说,当过热度为零时,阀没有完全关闭,仍有微小流量的制冷剂流过。

在对无级变排量压缩机和热力膨胀阀汽车空调制冷系统研究时发现,热力膨胀阀开度变化和压缩机摇板倾角度调节会相互作用,从而加剧系统运行的不稳定性。当蒸发器负荷减小时,蒸发器出口过热度减小,热力膨胀阀开度和流量减小;同时蒸发压力降低,使得压缩机摇板倾斜角度变小乃至压缩机排量也减小,并且由于热力膨胀阀的调节作用使得排量减少幅度增加。当制冷剂流量很小,特别是在热力膨胀阀突然打开时,运行会变得很不稳定。所以,为了适应无级变排量压缩机和热力膨胀阀汽车空调制冷系统的特殊要求,消除或减轻该类系统的振荡问题,则采用负静态过热度设定值的方法,使得热力膨胀阀开度关到最小,仍有微小流量的制冷剂流过。

3.2增益及滞环

热力膨胀阀开度随外平衡管压力的变化情况见图4。图中的点表示试验实测数据,曲线是根据最小二乘法由试验数据得出的二次拟合曲线;上面一组数据为外平衡管压力从大到小的开度变化,下面一组为外平衡管压力从小至大的开度变化。从图中可心看出,随着外平衡管压力的不断增加,使得热力膨胀阀受到的过热度越来越小,则开度越变越小。曲线的斜率称为热力膨胀阀的增益,表示为单位外平衡管压力的开度变化。两组曲线的水平距离是膨胀阀的滞环,可以看出滞环在阀开度的中间较大,在关闭或开启处较小。

图4开度和滞环(感温包温度为0℃)

研究表明,热力膨胀阀的增益是影响制冷系统稳定性的一个重要因素,增益越大,系统越容易引起振荡;在一定的增益范围内,膨胀阀的滞环也会引起系统的振蒎;振荡的幅度与增益和滞环的大小成正比,所以减少膨胀阀的增长率益和滞环可以增加系统的稳定性。

3.3感温包时间常数

阀后压力P2随感温包温度突降突升时的变化过程见图5,时间常数为阀后压力变化至其全变化量的63.2%的时间。从试验数据中得出,感温包温度突然上升时的时间常数是12s,而感温包温度突然下降时的时间常数是5s,因此可以看出感温包温度突然上升的时间常数经感温包温度突然下降时的时间常数要大得多。

图5感温包温度突变时P2的变化过程

热力膨胀阀感温包时间常数这种动态特性是由于在感温包中放置了一种能延滞充注工质的气化但对充注工质的冷凝并无太大影响的物体,使得感温包感受温度由高向低变化时,其中的充注工质在物体表面迅速液化,而在感温包受温度由低向高变化时,蒸发气化较慢。在蒸发器出口过热度突然降低时,感温包的突降时间常数使得热力膨胀阀很快关小(或关闭),避免较大的时间滞后使得有湿蒸气进入压缩机;而当蒸发器出口过热度升高时,感温包较大的上升时间常数使得热力膨胀阀动作滞后,起到抑制阀的调节振荡的作用。

汽车空调范文篇8

关键词:性能带变排量压缩机汽车空调稳态特性

1前言

汽车空调系统的无级变排量摇板式压缩机(以下简称变排量压缩机)摒弃了传统的离合器启闭压缩机调节方式,可以根据车内负荷变化改变摇板角度和活塞行程,实现了汽车空调系统连续运行,不会引起汽车发动机周期性的负荷变化,车内环境热舒适性好,降低能耗,节约燃油[1,2]。但是在由变排量压缩机和热力膨胀阀组成的汽车空调制冷系统会出现系统振荡[3,4]和蒸发器结霜现象,为了解决这些问题,必须对系统的稳态特性进行分析。

只有很少研究者对变排量压缩机汽车空调制冷系统特性进行过分析。Inoue等人[3]在对汽车空调制冷系统中七缸变排量压缩机和热力膨胀阀的匹配问题进行了试验研究,但是没有理论分析。Lee等人[5]对变排量压缩机汽车空调制冷系统的稳态特性进行了试验研究和理论分析,但是认为在变活塞行程情况下参数是一一对应关系。

本文在变排量压缩机稳态模型基础上,建立变排量压缩机汽车空调制冷系统稳态模型并进行试验验证,然后对系统特性进行分析。

2系统稳态模型

变排量压缩机汽车空调系统由变排量压缩机、蒸发器、冷凝器和储液干燥器、热力膨胀阀以及连接管道组成,制冷剂采用R134a。为简化模型,忽略各连接管道的压力损失和热损失。与定排量压缩机汽车空调系统最大的不同是变排量压缩机,所以重点介绍变排量压缩机模型建立。

2.1变排量压缩机模型

本文研究的压缩机为五缸变排量摇板式压缩机,其排量可以在每转10cm3到156cm3范围内无级变化。根据变排量压缩机的控制机理和结构特点,图1给出了压缩机模型关系图。首先建立控制阀数学模型从而确定摇板箱压力Pw随排气压力Pd和吸气压力Ps的变化规律,然后建立压缩机运动部件动力学模型确定活塞行程Sp与排气压力、吸气压力、摇板箱压力和压缩机转速Nc的关系,再通过压缩过程模型由排气压力、吸气压力、吸气温度、活塞行程和压缩机转速来确定压缩机制冷剂流量Mr和排气温度,这样以上三个模型就组成了变排量压缩机的稳态模型。

图1压缩机模型关系图

根据我们的研究发现,变排量压缩机由于活塞行程减小时运动部件(如轴套同主轴之间)的摩擦力矩与活塞行程增大时相反,活塞行程减小时摩擦力矩与吸气压力形成的力矩同向,行程增大时摩擦力矩与吸气压力形成的力矩反向,所以行程增大时临界吸气压力(活塞行程刚要增大时的吸气压力)Ps,cu大于行程减小时临界吸气压力Ps,cd。当Ps,cd≤Ps≤Ps,cu,压缩机出现了一个“调节滞区”,活塞行程Sp不会发生变化。根据控制阀的数学模型和运动部件动力学模型,可以计算出不同排气压力、压缩机转速和摇板角下行程增加和行程减小时临界吸气压力,并拟合出行程减小时和行程增加时的临界吸气压力与排气压力、压缩机转速和活塞行程的如下关系式:

(1)

(2)

式中,Pd0为基准排气压力,Ad(α,Nc),Bd(α,Nc),Au(α,Nc),Bu(α,Nc)是与压缩机转速Nc和摇板角а有关的系数。

根据压缩机几何关系,可以导出活塞行程Sp与摇板角а的关系式,则公式(1)和(2)给出了活塞行程与排气压力、吸气压力和压缩机转速的关系。

压缩机流量和出口焓值可用下式计算:

(3)

(4)

最大活塞行程情况下的容积效率和指示效率计算公式根据我们的试验数据拟合得到。在部分活塞行程情况下,我们提出相对容积效率和相对指示效率的概念。相对容积效率是部分行程的容积效率同相同工况与转速下最大行程容积效率之比,而相对指示效率是相同工况和转速下部分行程指示效率与最大行程指示效率之比。我们的试验研究发现,压缩机工况对相对容积效率和相对指示效率的影响可以忽略不计。根据试验数据可以拟合出相对容积效率和相对指示效率计算公式如下:

(5)

(6)

公式(1)~(6)就组成了变排量压缩机稳态数学模型,可以由排气压力、吸气压力、吸气温度、活塞行程和压缩机转速来确定压缩机制冷剂流量和排气温度。

2.2其它部件模型

本文研究的蒸发器为四通道五列管片式蒸发器。蒸发器长0.2625m,高0.228m,厚0.084m,外表面传热面积5.5m2。蒸发器稳态模型采用集总参数法,将蒸发器分为两相区和过热区两个区域。

考虑到汽车空调部件组成特点和求解方便,将冷凝器和储液干燥器组合在一起,储液干燥器作为冷凝器过冷区的一部分。本文研究的冷凝器为平行流冷凝器,传热管为多孔矩形通道扁管,13/9/7/5通道分布,冷凝器长0.35m,高0.56m,厚0.02m,外表面传热面积5.58m2。冷凝器稳态模型采用集总参数法,将冷凝器分为过热区、两相区和过冷区三个区域。

热力膨胀阀为交叉充注吸附式H型球型快开阀,公称容量为2冷吨。通过热力膨胀阀阀杆受力方程得出阀开度,采用热力膨胀阀流量计算公式计算流经热力膨胀阀的制冷剂流量。

将变排量压缩机、蒸发器、冷凝器和储液干燥器和热力膨胀阀四个部件稳态模型按照部件进出口参数关系有机结合,就组成了变排量压缩机汽车空调制冷系统稳态模型。

2.3系统稳态模型验证

图2为处于行程减小和增大临界状态不同压缩机转速稳态点试验数据和模拟结果的比较,试验条件:在Teai=25℃,Tcai=33℃,蒸发器高档风速,冷凝器迎面风速2.8m/s。按照试验条件对蒸发压力Pe和制冷量Qe随Nc的变化进行了模拟计算。

(a)Pe-Nc关系图(b)Qe-Nc关系图

图2系统模型试验验证

可以看出,行程减小时临界蒸发压力和临界空调负荷的计算值和试验点吻合较好,行程增大时临界蒸发压力的试验值稍小于计算值,临界空调负荷的试验值稍大于计算值。总体来说,模拟计算和试验数据吻合较好。

3特性分析

变排量压缩机可以实现定转速定行程、变转速定行程、定转速变行程和变转速变行程四种运行方式,那么变排量压缩机汽车空调制冷系统也就会呈现出四种相应的系统特性。采用系统稳态模型对该四种压缩机运行方式下的系统特性进行分析。

3.1定转速定行程时系统稳态特性

此时压缩机相当于常用定速定行程压缩机。定转速定行程(最大行程)时系统蒸发压力Pe和制冷量Qe随蒸发器进口空气温度Teai的变化见图3。计算条件:Nc=1500r/min,Tcai=35℃,蒸发器进口空气相对湿度jeai=50%,蒸发器高档风速,冷凝器迎面风速为压缩机转速乘于0.0025。Pe-Teai和Qe-Teai关系均为一条曲线,Pe和Qe均随Teai的增加而增加。此时能够保持最大行程的最小Teai为24.5℃,低于此值,压缩机的活塞行程将变小。

3.2定转速定行程时系统稳态特性

此时压缩机相当于变频压缩机。变转速定行程(最大行程)时系统不同压缩机转速蒸发压力Pe和制冷量Qe随蒸发器进口空气温度Teai的变化见图4。计算条件:Nc=1500、1750和2000r/min,Tcai=35℃,jeai=50%,蒸发器高档风速,冷凝器迎面风速为压缩机转速乘于0.0025。Pe-Teai和Qe-Teai关系均为一族曲线,Pe和Qe均随Teai和Nc的增加而增加。Nc为1500r/min时保持最大排量时的最小Teai为24.5℃,Nc为1750r/min时保持最大排量时的最小Teai为27.3℃,Nc为2000r/min时保持最大排量时的最小Teai为30.2℃。

(a)Pe-Teai关系图(b)Qe-Teai关系图

图3定转速定行程系统稳态特性

(a)Pe-Teai关系图(b)Qe-Teai关系图

图4变转速定行程系统稳态特性

3.3定转速变行程时系统稳态特性

在定转速变行程方式下,压缩机出现了一个“调节滞区”,吸气压力Ps在此调节滞区变化时活塞行程Sp不会发生变化。变行程情况下压缩机调节滞区映射到系统中会形成定转速变行程方式独特的系统特性。

定转速变行程时系统蒸发压力Pe和制冷量Qe随蒸发器进口空气温度Teai的变化见图5。计算条件:Nc=1500r/min,Tcai=35℃,jeai=50%,蒸发器高档风速,冷凝器迎面风速为压缩机转速乘于0.0025。当Teai小于27℃后,系统开始存在变行程状态。在某一行程下,行程增大临界蒸发压力Pe,cu大于行程减小临界蒸发压力Pe,cd,而当Pe,cd≤Pe≤Pe,cu,Sp不会发生变化;这样Pe,cu和Pe,cd之间,每一个恒定Sp(如Sp=28mm)的Pe-Teai曲线就相当于一个定排量压缩机Pe-Teai曲线,多个恒定Sp的Pe-Teai曲线就形成了一条带(我们称之为“性能带”),这条性能带的上边界为Pe,cu,下边界为Pe,cd。在性能带中,原来定行程情况喜爱Pe-Teai和Qe-Teai一一对应关系,变成了一个多值对应关系。变行程情况下压缩机“调节滞区”映射到系统中,形成系统的“性能带”。

变行程情况系统稳态状态点应该全部落在性能带的闭区间中。从图5(a)可以看出,整个性能带的蒸发压力在0.285~0.3MPa范围内变化。也正是由于性能带的存在,使得蒸发温度在一个范围内变化,降低了调节敏感性和调节精度,在整个蒸发压力性能带数值偏小或者性能带较宽情况下,性能带部分稳态状态点的蒸发温度可能小于0℃,可能造成蒸发器结霜。另外,在系统振荡情况下,变排量压缩机的行程调节会加剧由于蒸发器和热力膨胀阀控制回来造成的系统振荡,而性能带的存在降低了行程调节的可能性,有利于系统稳定。

(a)Pe-Teai性能带(b)Qe-Teai性能带

图5定转速变行程系统稳态特性

3.4变转速变行程时系统稳态特性

不同转速的定转速变行程方式的系统稳态特性组合就形成了变转速变行程方式的系统稳态特性。

Nc分别为1500、1750和2000r/min时,变转速变行程系统蒸发压力Pe和制冷量Qe随蒸发器进口空气温度Teai的变化见图6。计算条件:Tcai=35℃,jeai=50%,蒸发器高档风速,冷凝器迎面风速为压缩机转速乘于0.0025。Pe-Teai和Qe-Teai关系均为一族性能带,随着压缩机转速的提高,保持最大排量时的最小Teai就越大,所以Pe-Teai性能带就向Teai增加的方向移动,而Qe-Teai就向Qe和Teai增大的方向移动。从图6还可以看出,在相同Teai情况下,压缩机转速越高,Pe-Teai性能带越向下移动,而Qe-Teai性能带越向上移动;这是因为Teai相同时,压缩机转速越高,压缩机将调节行程减小,而压缩机在高转速和小行程时的容积效率较低,所以在相同Teai时,制冷剂流量反而随着压缩机转速提高有较小的降低,这样就使得压缩机转速高时,Pe变大,而制冷量减小。由于性能带是按照行程增大和行程减小的临界状态作出的,所以该规律只适用于行程增大和行程减小的临界状态。

(a)Pe-Teai性能带(b)Qe-Teai性能带

图6变转速变行程系统稳态特性

4结论

本文建立了变排量压缩机汽车空调制冷系统稳态模型,模拟结果与试验数据吻合较好,证明该模型可以用于系统稳态特性分析。

对应于变排量压缩机定转速定行程、变转速定行程、定转速变行程和变转速变行程四种运行方式,分析了变排量压缩机汽车空调制冷系统也就会呈现出四种相应的系统特性。通过系统分析首次发现,在变活塞行程情况下,与定行程方式下性能参数一一对应关系不同,蒸发压力、制冷量等系统参数表现为多值对应关系,系统存在“性能带”,可使蒸发压力保持在一个较小的范围内变化。变排量压缩机汽车空调制冷系统性能带的发现和提出,丰富和发展了制冷系统特性分析理论,也为解决该系统振荡和蒸发器结霜问题奠定了理论基础。

参考文献

1SkinnerTJ,SwadnerRL.SAECongressPaper,1985,850040

2HiroyasuN,AtsushiK.SAECongressPaper,1999,1999-01-0875

3AtsuoI,JunyaI,BandeenR.SAECongressPaper,1988,880052

汽车空调范文篇9

温度风板的控制系统:调节温度旋钮感觉温度是否发生变化,若不变化则可能是风板控制拉线脱落,如脱落则重新安装调整。感觉出风口的风量是否足够大,如果风量小则是蒸发器堵塞,需要拆卸蒸发器进行清洁。触摸空调管,高压管很热甚至烫手,当然低压管也不会凉。这种情况下,可能会出现压缩机频繁通断的现象。尤其是在发动机高转速的情况下压缩机根本不吸合。切忌不能长时间的高速运转发动机,否则会很危险。

查看冷凝器和水箱及其之间是否被污物堵塞。如有,清除掉污物即可。如确实无污物堵塞,则查看冷媒观察窗,看冷媒是否过多.现象是能看到液体流动,但看不到任何气泡,则证明冷媒的加注量过多了,需要重新做一次标准的抽空加注。对于高压管过热的现象,还要查看空调压缩机的下方是否有油渍,如有则证明压缩机的限压阀已经被高压破坏,需要更换压缩机。

触摸空调管,高压管温度低,而低压管温度高。此种情况下,是压缩机不能有效的使冷媒进行循环,可能需要更换压缩机。若启动空调制冷系统后,两个电子扇同时运转。但就是空调泵不吸则很可能是汽车电脑损坏应予修复。

轿车空调制冷系统常见故障的分析与排除如下:

①制冷剂泄漏制冷系统完全没有冷气吹出,其原因为:制冷系统中无制冷剂或制冷剂泄漏,制冷剂泄漏后,首先要查明漏点,并将其修复好,再重新抽真空,灌注制冷剂。

②制冷系统严重堵塞当压缩机工作时,若制冷系统中某个部位严重堵塞,没有制冷剂循环流动,则就失去了制冷作用。这时,用压力表检测制冷系统的高、低压侧的压力值,可发现高压侧压力值比正常时低,而低压侧的压力值成真空状态,且堵塞部位前后有明显的温差,这一般出现在储液干燥器或膨胀阀内。因此,可用氮气对着储液干燥器或膨胀阀的进口或出口吹气,如不通畅,说明其堵塞,需更换。

③压缩机部件损坏压缩机缸垫窜气、进排气阀损坏,均能造成压缩机不能压缩制冷剂或压缩不良。此时,用压力表检测压缩机工作时的进气压力和排气压力,可发现两者压力相同或相差不大,提高发动机转速时,其压力值仍无明显变化;用手触摸压缩机上的进气管和排气管。可感觉两者温差不大。当压缩机出现缸垫窜气时,用手触摸压缩机会感觉非常烫手。这时,一般需更换损坏的部件。

④输出的制冷量不足造成输出的制冷量不足(即吹出的冷气不凉)的原因和检修:

a.制冷剂不足。当制冷系统中循环制冷剂不足时,高、低压侧的压力值均会比正常时低,且从观察窗内可看到气泡流动。此时,在检查系统无泄漏后,应添加适量的制冷剂。

b.制冷剂过多。如充注的制冷剂量超过制冷系统的正常容量,必然使冷凝器内液体制冷剂增加,从而减少了散热面积,使冷却效率降低。其主要表现是:系统的高、低压侧压力值比正常时高;用手触摸高压管,感觉烫手;断开空调开关约45s后,从观察窗中仍看不见有泡沫状态的制冷剂流过。这时,需从低压侧放掉适量的制冷剂,使其达到正常的排气压力和温度。

c.散热效果差。冷凝器散热片变形,表面过脏或散热风扇电动机转速下降,均会使散热效果变差,从而导致系统的高、低压侧压力值过高和排气温度过高,且用手触摸从冷凝器出来的高压管时有烫手的感觉,需进行修复或更换。

d.膨胀阀开得过大。膨胀阀温包与蒸发器出口包扎不好,或膨胀阀本身有问题,均会引起膨胀阀开得过大。表现为系统的高压值比正常时偏低,而低压值比正常时高;从蒸发器出来的低压管温度比蒸发器表面温度还凉,需检查膨胀阀温包与蒸发器出口是否包扎良好,必要时更换膨胀阀。sp;

e.制冷系统脏堵。由于压缩机长期运转,机械磨损产生的杂质可使储液干燥器或膨胀阀轻微堵塞,从而导致输出的制冷量不足。表现为系统的低压值过低,储液干燥器前后的管子有明显的温差,或膨胀阀处结霜,需更换储液干燥器或清洗制冷系统。

f.制冷系统内有空气。由于空气很难压缩成液化的气体,因此制冷系统内进入空气后,会使压缩机排气压力和排气温度增高,从而导致输出的制冷量下降。从观察窗内能看到大量泡沫状态的制冷剂流过。这是由于抽真空不够彻底,或制冷剂泄漏后,引起制冷系统低压端成真空状态而吸入了外界的空气。需在系统重新抽真空,再灌注制冷剂。

2.桑塔纳轿车空调制冷系统常见故障检修:当接通空调开关,冷凝器风扇运转,但压缩机电磁离合器不吸合,而制冷系统有一定压力的制冷剂量。该故障现象表明从x路电源→熔断丝FI4→空调开关→外界温度开关→空调继电器线圈的电路完好,故障可能在外界温度开关与电磁离合器线圈的电路上。这时可用直流电压表先测量恒温开关上输入端插接线与车身搭铁之间的电压,如有电源电压,再检测其两端插接线之间是否导通,若导通,说明故障不在恒温开关上;然后用相同的方法对低压开关进行检测,也可把低压开关两端的插接线短路一下,如压缩机电磁离合器恢复工作,说明低压开关损坏,需更换;如仍不工作,再进一步检查压缩机电磁离合器线圈:从蓄电池正极直接引出一根火线接压缩机电磁离合器线圈,此时压缩机电磁离合器应吸合,否则说明其已损坏,需更换。接通空调开关,压缩机电磁离合器吸合,鼓风机也能运转,但冷凝器风扇不转,而冷却液温度达到规定值后,风扇又能运转。上述故障现象说明熔断丝F23,和散热风扇电动机本身均无问题。因此,需检查空调继电器,可用直流电压表测量空调继电器输出端与车身搭铁之间的电压,如发现空调继电器能吸合而无输出电压时,则说明空调继电器输出电路断路,需焊接或更换空调继电器;也可更换上新的空调继电器进行对比试验,若风扇运转则为空调继电器有故障。

3.轿车空调故障检修实例:

高压管被油污、脏污堵塞,空调不制冷一辆94款奔驰乘用车,配装WI40底盘和全自动空调,制冷剂为R134a,使用中空调不制冷,电磁离合器不吸合,有时能吸合一下,但立即脱开,无法正常工作。更换了空调压缩机、蒸发器和膨胀阀等,加注制冷剂后仍是如此,后又诊断是压缩机工作不良。检查时,启动发动机后开空调,电磁离合器吸合一下便即跳开,连续几次后便不再吸合。接上歧管压力表,检测高压侧压力、低压侧压力均偏低,加入三罐制冷剂,此后能吸合稍长时间,但仍是间歇性吸合、脱开,车内也不制冷,此时高压侧压力为980.7kPa左右,低压侧压力为196kPa左右。在其更换压缩机后,首先读取故障代码:左边温度设定旋钮转至红色区域并显示“HI”;右边温度设定旋钮转至蓝色区域并显示“LO”;点火开关置于ON,按下AUTO键,20s内同时按下RES和“0”键2s以上;左边显示屏显示EO和El,右边显示屏显示故障代码17和06,因该车曾更换过蒸发器、膨胀阀和仪表板,可能造成假故障代码,故先进行清码:读取故障代码后,按左侧AUT0键,在左显示屏出现“d”后再按右侧AUTO键,这时左显示屏显示EO,右显示屏显示00,故障代码清除完毕。拆下贮液干燥器、膨胀阀和相关高压管道等,发现冷凝器至贮液干燥器的高压管接口处几乎被油污、脏污所堵塞,管道和冷凝器内也是金属屑及黑油,于是更换冷凝器及高压管,清洗压缩机,更换了冷凝器、高压管和贮液干燥器;再用高压氮气吹净低压管道,并更换了膨胀阀,加入了适量专用冷冻机油,然后再压入氮气检漏,抽真空,加制冷剂,经试验制冷效果很好,故障消除。

继电器电阻值过大,空调压缩机不工作一辆红旗CA7220E型乘用车新车,在使用不久,便发现外界气温高和空调使用时间长时,会出现空调压缩机不工作的故障。数分钟后重新启动空调,压缩机工作又正常,而且制冷系统良好。此故障时有时无出现频繁,但停车检查短时间内却无此故障出现。该车采用可变排量压缩机,只有在节气门全开、冷却液温度超过规定值和空调管路处于高、低压保护的情况下压缩机才不工作,在汽车正常行驶,空调制冷正常的情况下,压缩机离合器是不会断开的。但要判断故障部位,必须在空调(制冷)开启而压缩机不工作的情况下才能进行。根据上情况,停车启动发动机并开启空调,在连续正常运转1小时后,压缩机终于停止工作。随即对连接压缩机离合器的线路进行监测,发现该线路无电,拔下原继电器与新继电器相比,用数字万用表测量各端子之间的电阻,发现两继电器对应的端子75到U、U到31和U到30间的电阻值相同,分别为12.7kΩ、11.7kΩ、和14kΩ。而端子U到HLS和30到HLS间的电阻值,新继电器为129kΩ,原继电器是143kΩ。可以判定:原继电器部分端子间电阻值稍大,长时间工作发热,使线圈电阻值变化,引起控制压缩机离合器电路通断的触点断开。稍停数分钟后重新启动空调正常,是因为继电器触点断开切断电流后继电器线圈温度下降,工作又恢复正常。

当更换新的空调压缩机离合器继电器后,工作开始正常。

温控开关失效,使用空调就开锅一辆夏利轿车平时行车正常,一开空调制冷,时间不长发动机就开锅。把节温器拿掉和装上都差不多。冷却系统清除了水垢,结果还是同样不能使用空调。

车辆使用空调,开锅肯定是不正常的。当在该车停驶状态下打开空调试验,果然不久就开了锅,说明水温已达100℃,而车上的电动风扇却没有工作。夏利轿车冷却系统为闭式、液冷,带膨胀箱,风扇为电动式,发动机的冷却主要依靠汽车向前行驶产生的风。只有当水温高于92℃时,电动风扇才开始工作,而当水温低于87℃时,电动风扇又自动停止工作,这全靠温控开关控制。这种结构,有利于发动机保持最佳水温,平时风扇也不消耗发动机动力。冷却水开锅了,电动风扇却还没有工作,将点火开关转至ON位置,拆下散热器温度控制开关接头,并将其接地,电动风扇开始转动,说明风扇电动机是好的。检查有关保险丝也是好的,把温控开关拆下放入盆中用万用表Ω档,一个表笔接温控开关接线端,一个表笔接外壳,盆中倒入冷水加热,有开水可直接倒入开水。正常情况下,水温高于92℃时应导通,低于87±2℃时应断开。未用温度表,倒入滚开的水,表针也不动,说明温控开关失效。该车更换温控开关后,使用空调再也没有开锅了。

转速滤波器引线断损,空调系统不能正常工作一辆夏利乘用车,在接通鼓风机开关和空调开关时,发动机的怠速转速提高了,但是空调压缩机不工作,仪表板上的风口吹出热风。启动发动机,接通鼓风机开关和空调开关,发动机的怠速转速提高,仪表板上的风口正常吹风,这说明空调开关和鼓风机工作正常。但此时空调压缩机不工作,而且冷凝器风扇也不转动。检修时,首先将歧管压力计的高、低压软管与制冷系统中对应的检测阀连接好,此时歧管压力计的高压表和低压表都指示为0.6MPa,在正常静态压力值范围内。启动发动机,接通鼓风机开关和空调开关。从蓄电池的正极柱引电源线直接接通空调压缩机的电磁线圈后,其压盘吸合,说明空调压缩机的电磁离合器没有损坏,制冷系统正常工作了,冷凝器风扇也转动起来,同时仪表板上的风口也吹冷风了。再观察歧管压力计的低压表指示值和高压表指示值均在正常范围;高压管道上的液镜内无气泡,证实了制冷系统中制冷剂充足。

空调压缩机的电磁离合器和冷凝器风扇都受该车的空调放大器控制。二者均不能正常工作,其故障根源可能就在空调放大器上。空调放大器为电子式,其正常的工作过程如下:在发动机正常运转时,接通鼓风机开关和空调开关,在制冷系统中制冷剂充足的条件下,空调放大器首先发出提高怠速转速的电信号来驱动怠速真空电磁阀,使发动机怠速转速提高到l200r/min;此时空调放大器接收到发动机的相应转速脉冲信号和蒸发器出风侧的相应温度电信号后,再接通空调压缩机电磁离合器和冷凝器风扇控制继电器电路,使得制冷系统进入正常工作状态。

经试验,该车空调放大器工作正常;检查空调放大器的线束连接器,首先确认点火开关控制的电源线和接地线均正常,压力开关也正常,然后逐线检查连接器各端子到各传感器和执行器之间的线路通断情况。发现原来是转速滤波器的引线断损,使空调放大器无法得到发动机的转速提高信号,因而空调放大器无法接通空调压缩机电磁离合器和冷凝器风扇控制继电器的电路,使得该车空调系统不能正常工作。后将转速滤波器的引线焊好,再将空调放大器复位装好。启动发动机,接通鼓风机开关和空调开关,随着发动机的转速提高,空调压缩机的电磁离合器吸合,冷凝器风扇也转动起来,驾驶室内仪表板上的风口吹出冷风,空调系统恢复了正常工作。

进气门间隙过小,冷机开空调熄火一辆(F22B2型四缸直列电控发动机)本田雅阁乘用车,使用中发动机怠速抖动,转速过低,冷机时一开空调就熄火,但热机时开空调不熄火,故障指示灯不亮。诊断时,首先调取故障代码,无代码输出。检查点火系统正常。测试各汽缸压力也正常,估计为发动机内部无故障。于是拆下节气门体及怠速控制阀等进行检查,发现都被胶质物体严重堵塞。将节气门体、怠速控制阀和快怠速阀都进行了清洗。之后安装试车,有明显好转,但冷车时仍抖动,开空调仍熄火。而发动机温度升高后,怠速较稳定,开空调也正常。该车发动机怠速系统由三部分组成:一是怠速调整螺钉,用以调整基本怠速;二是快怠速阀,它的开闭动作与蜡式节温器相似,冷机时石蜡柱塞收缩,旁通气道开大,冷却液温度升高后,石蜡柱塞膨胀,旁通气道关小;第三个是怠速控制阀,该阀由ECU控制,当空调打开、转向助力泵负荷增大,以及大灯和后窗加热器等投入使用时,怠速控制阀会适时开大,以提高发动机转速。该车进修前曾调整过气门间隙,检查气门间隙时,发现进气门间隙过小,一般只有0.05mm左右。冷机时气门间隙标准值应该是:进气门0.23~0.28mm,排气门0.28~0.32mm。原来该车发动机的上述故障,主要有两个方面的原因:一是节气门体、怠速调整螺钉的空气通道,以及怠速控制阀和快怠速阀都被胶质物体堵塞,因此怠速过低;另一个是进气门间隙过小,使进气门提前开启,进、排气门同时打开的时间加长(气门重叠角过大),造成废气倒流入进气管,影响发动机的工作。后将气门间隙重新按标准调整后,故障排除,一切正常。

汽车空调范文篇10

关键词:空气循环模式;智能控制系统;实现路径

作为保障汽车舒适性的有效手段空调系统是汽车发展过程中的重要构成,自诞生以来汽车空调已经历了多个发展阶段,虽然空调的整体智能化水平不断提高,但针对新能源汽车的空调智能循环控制方面的研究较少,手动控制仍然是现有车内外循环的主要切换模式。很多驾驶员在驾校学习驾驶技术时缺少对正确使用车内外循环模式的学习过程,导致日常驾驶过程时极易发生错误操作,进而造成空调制冷/热效果不佳、车内空气被污染、油耗增加等问题,为此如何设计并实现能够进行自动智能控制的空调循环系统以适应各种复杂条件研究成为领域内的一项研究重点。

1汽车空调空气循环调节的影响

1.1对汽车空调效能的影响

①空调处于制热状态下,在车外温度高于车内温度的情况下较佳的选择为直接在车内引入车外高温空气,从而能够在降低空调能耗的同时提高制热的效率,此时的车外循环工况的制热效果要优于车内循环工况下的制热效果;在车内温度高于车外温度的情况下则车内循环工况下的制热效果更好。②空调处于制冷状态下,车内循环工况的制冷效果在车外温度高于车内温度的情况下要优于车外循环工况的制冷效果,在车内温度高于车外温度的情况下则车外循环工况的制冷效果更佳。

1.2对车内空气质量的影响

CO、CO2以及PM2.5的浓度是影响车内空气的主要因素,这3种物质超过一定浓度会影响到车内人员的健康甚至是生命,①CO浓度的影响,汽车尾气排放物中的污染物主要包括CO2、CO、水蒸汽、SOX、NOX、PM和HC等,本文以CO对车内空气的影响情况作为一项主要控制内容。②CO2浓度的影响,除汽车尾气外,乘车人员呼出的气体中CO2的含量最大,视为车内主要污染物之一,一定浓度的CO2会刺激到人的呼吸中枢,导致胸闷气短、犯困、头痛等生理现象,本文按照相关标准设定车内空气中的二氧化碳含量最大允许含量为0.15%。③PM2.5浓度的影响,比PM10粒径更小的PM2.5含有较多的有毒有害物质、输送距离更远并且能在空气中长时间停留,对车内空气治理及人体健康产生的不利影响更大,颗粒越小对健康的危害越大,每增加10μg·m-3的PM2.5会使呼吸系统疾病概率增加1.43%,并且会增加心血管疾病死亡率。控制CO、CO2及PM2.5三种有害物质的原理基本相同,在车外有害物质浓度超过车内的情况下应通过车内循环工况的自动开启实现对车外有害物质的有效阻止,进而有效避免车内空气被污染;在车外有害物质浓度低于车内的情况下则需通过车外循环工况的自动开启实现车内有害物质的迅速排出及车外新鲜空气的引入,进而有效改善车内空气质量。在实际使用汽车过程中可能同时出现需调节控制温度及多种有害物质的情形,会导致各控制策略间产生冲突,本文在考虑各项控制策略综合制定的基础上设计了一种汽车智能空调循环控制系统。

2新能源汽车空调智能控制系统的构建

2.1系统的构成

随着人们对新能源汽车性能及乘坐舒适度的需求的不断提高,对新能源汽车的空调控制系统提出了更高的要求,在节能减排的大背景下,为实现对车内空气质量的有效控制过程,本文在对车内温度和空气质量受到汽车空调空气循环影响情况进行综合考虑的基础上,完成了一种智能空调循环控制系统的搭建,并建立起相应的智能控制策略。该智能空调循环控制系统主要由检测装置、处理器和执行装置构成,检测装置综合运用到了系统工作开关、车外及车内温度传感器、车内及车外的CO浓度和CO2浓度传感器,智能控制系统通过使用中央处理器实现对空调的自动控制功能,执行装置综合运用到了车内外循环控制切换开关、蜂鸣报警器、HMI显示屏、报警灯及相关指示灯。

2.2空调智能控制过程的工作原理

本文所设计否汽车空调循环智能控制系统结构示意图如图1所示,控制原理为:系统在接通系统电源后开启,通过空调循环智能控制系统的开关及空调风量调节旋钮控制器完成对打开信号和风量调节旋钮信号的接收,并据此对空调智能循环控制系统的开启状态进行判定,然后系统据此执行相关工作指令,通过空调压缩机对开关状态进行控制,通过温度调节旋钮确定系统控制的目标值,在汽车中控台附近分别安装负责检测车内CO浓度、CO2浓度、PM2.5浓度以及温度的传感器,这些传感器会实时向空调循环控制系统的中央处理器实时传输检测到的车内温度信号、CO、CO2、PM2.5浓度信息;安装在汽车空调进气口处的传感器负责收集车外CO、CO2、PM2.5浓度信息及温度信号,然后传输至空调循环控制系统中央处理器,控制系统在空调处于制冷状态下通过空调压缩机控制开关打开,进入到该态下的控制模式;控制系统在空调处于制热或自然进风状态下,通过空调压缩机控制开关关闭,进入相应状态下的控制模式。

3新能源汽车空调智能控制系统的实现

3.1硬件组装

智能控制系统的功能通过使用PLC控制器实现,对车内外信号的采集与显示的模拟过程通过使用MCGS嵌入版触摸屏完成,汽车空调相关控制开关则借助其按钮和旋钮完成模拟,PLC能够简便高效连接传感器,再将PLC安装在实车上完成功能测试。包括汽车的点火、空调A/C及空调内外循环在内的开关通过模拟实验箱上的按钮对具体工作过程进行模拟,各传感器的工作状态则通过旋钮进行模拟,按钮、旋钮连接MCGS触摸显示屏,在显示屏上显示模拟的各种工况以便下一步调试,PLC以接收到的相关数据为依据按照预设程序完成分析和控制过程,实现对空调内外循环及车窗开关、报警装置的有效控制。该智能控制系统在工作时使用的是汽车电瓶的12V直流电源,针对220V交流电可通过使用DC-AC逆变电源完成到满足控制器单元供电需求的转换。

3.2软件编程

通过STEP7-MicroWINS软件的使用完成控制系统的编程操作,具体工作流程如图2所示,由主程序1负责完成系统的初始化,主要对系统开关、传感器信号进行检查,在满足要求的情况下方可启动系统进入运行状态;多种信号优先级由主程序2完成判断,并据此对空调内外循环开关动作进行自动控制,在CO浓度超过预设标准时通过警报器发出报警提示并自动打开车窗。

3.3合并调试及可扩展功能

在PLC上下载程序后在测试平台上完成测试过程,模拟夏季其余参数均处于正常范围时,车外温度及车内温度分别为29.1℃和46.6℃,此时控制系统能够自动开启空调并自动选择车外循环模式;模拟车辆在冬季的取暖状态其余环境参数处于正常范围时,车外温度为-2℃,车外CO浓度为4.1×106,随着车内温度逐渐升,车内CO浓度逐渐升至31.8×106,进入车内的CO浓度过高,此时控制系统能够完成空调内循环到外循环的自动转换以及强制开窗操作,并控制警报器发出鸣响提示车内成员。在实车上安装系统并测试,可同发动机ECU联网,控制系统在车内空气CO浓度过高时通过同ECU共享信号,通过ECU关闭发动机关闭从而停止排出尾气;在CO浓度达到800×106影响车内人作出报警求生动作时联接报警系统进行求助,并发送GPS信号。

4结束语

本文针对新能源汽车主要通过使用PLC控制器完成了一种智能的空调循环控制系统的设计,由温度及空气质量检测模块完成车内外相关数据检测后向PLC传送,再由PLC完成对这些数据的包括逻辑判断在内的处理过程,并据此改变空调的空气循环模式,具体驱动相应控制机构完成,该控制系统在车内CO浓度超过安全阈值的情况下会进行强制开窗及报警操作,能够对质量不佳的车内空气进行自动调节,并在车内外温度差距较大时对车内外循环过程进行智能控制,减轻驾驶人员的工作强度,保障车内成员的身体健康,提升驾驶安全性能,从而有效降低新能源汽车的空调能耗,为节能减排及增加车辆续航里程提供坚实支撑,具有一定的市场应用前景。

参考文献:

[1]张秀乔,邱士哲,郝晓华,刘军.纯电动汽车空调系统控制电路与工作原理分析[J].汽车与驾驶维修(维修版),2019(01):91-92.

[2]房友田.汽车空调系统的温度控制优化措施探析[J].科技创新与应用,2017(03):108-109.