故障预测范文10篇

时间:2023-04-08 22:17:53

故障预测

故障预测范文篇1

关键词:故障预测与状态管理(PHM);体系结构;自主式

后勤保障系统进入新的发展时期,现代武器装备整体上朝着智能化的趋势前行,作战方式也转变成联合作战模式以及网络战斗模式,这就要求武器装备的性能更加优良,可以针对特殊情况做出快速响应并能够持续稳定的运行。所以,全球范围内各个国家都将研究重心转移到综合程度更高的故障检测以及PHM技术等方面。PHM技术突破传统监测时单一的状态监控模式,逐渐形成了智能化的健康管理体系,同时,也融入了故障监测服务,利用故障监测能够及时准确地设计维护方案并确保系统稳定运行,有助于优化武器系统的维护成本,保证系统安全性能、可靠性能达到标准。

1PHM的内涵和原理

故障监测以及PHM技术在实际应用中扮演的角色越来越重要,逐步成为当前飞机系统以及车船系统中不可获取的组成环节。故障检测服务,可以自主监测系统中各个模块的工况,同时,给出预测报告;PHM技术,也就是健康管理,能够基于故障监测服务给出的系统报告,针对其中的资源配比以及功能指标进行分析,为后期系统维护提供参考意见。PHM技术是一种以智能化系统为核心的预测服务。通过性能优良、灵敏程度较高的传感设备采集系统中各个模块的实际工况指标,借助高效的数学分析算法,诸如傅里叶级数和Gabor变换等,配合搭建完成的人工数学模型,对系统做出相应的预估评判,完成对飞机系统运行情况的实时监测和管控。PHM技术融入实际系统中,将原本出现故障后的维修模式以及定期维护的模式转变成按照系统状态的维护模式,英文简称为CBM。PHM技术从本质来说是利用人工智能技术搭建起相应的系统模型,比如,神经网络系统、蚁群算法等。能够针对系统的工况参数以及故障类型进行准确的推测和判别。

2PHM系统结构和功能

PHM系统的整体架构属于区域管理器的类型,该类型的系统架构是把区域管理器作为基础,将系统划分成三层:首层为传感器层,通过飞机搭载的传感设备和基于算法搭建的模拟传感装置共同构成,主要作用是采集系统中初始的数据资料,也就是同系统运行异常相关的参数指标;中间层是由若干个区域管理器构建完成,主要任务是分析上一层传递过来的数据信息,从而判别飞机系统中各个子系统的健康状况。区域管理器主要是由两部分软件结构组成,分别为功能软件和推理机。内部技术综合有大数据分析、模糊控制以及神经网络等多项高新技术。通过匹配系统异常指标和对应信息,基于相关算法和数学模型完成推演、预估以及监测管控等功能,对系统中的数据资料进行综合化分析,最终完成针对飞机系统健康等级的评定。PHM技术能够实现的功能有以下几种:(1)测定并隔离异常的功能;(2)预估指定模块异常情况的功能;(3)追踪并评定模块剩余生命周期的功能;(4)将资源管理同推理机有效交互,从而实现辅助决策的功能;(5)异常情况的选择性汇报。也就是在合适阶段通过正确方式提供给不同操作人员相应的异常信息。

3PHM关键技术分析

3.1故障预测技术。故障监测的方式较多,一般可以从实际应用分类,根据具体选择的监测模式、技术组成等能够划分为以下几个方面:(1)基于模型的故障预测技术。此技术可以直接对系统内部情况进行仿真,针对其中的异常问题完成实时评测。此外,该技术还能够基于原有的经验数据进行分析,不断调整系统中的异常仿真,进而提升未来故障评测的准确程度。(2)基于知识的故障预测技术。该技术核心是借助对目标系统进行研究的技术人员给出的经验和理论,配合模糊推演以及专业系统完成对系统的定性预测。(3)基于数据的故障预测技术。此系统将历史的工作资料作为基础,架构出相应的系统预估方式,核心原理是利用先进的智能算法不断训练期望目标对象,包括期望获取参数信息的系统和出现异常的指标等,从而建立起智能化的预估模型,有效地将系统中各种工况对应的信息进行判定。最为典型的算法就是神经网络。(4)复合预测模型。搭建出以物理参数为核心的随机模型,可以准确地预估机械系统中各个模块的剩余生命周期;针对系统中异常指标进行整合通过智能判定,架构出以数据为基础的异常预估模型,有效评定出机械系统中各个模块的实际工况;借助信息整合的算法,将上述模型综合化,对目标系统的健康情况和未来发展进行深度剖析,综合化预估模型的输入端是由外部传感设备以及积累的经验共同构成。3.2多传感器融合技术。多传感设备的综合化技术,本质上是将诸多差异化的传感装置搭建起能够协同配合并相互竞争的传感器组,按照特定标准完成智能化分析以及对数据的处理,这样获取的参数指标相比单一信息更加准确,同时,评定过程也更加完善。由于决策分析和评定环节均采用综合化的数据处理,所以系统的状态更加精准。3.3PHM系统验证技术。因为产品在结构指标、组成材料的性能以及外部条件等方面具有差异性,造成数据难以确定,致使系统的故障监测出现不确定情况,由此便出现了PHM技术的适用性问题。当前,较为常见的验证方式有以下几种:(1)通过实际使用完成验证;(2)快速实验完成验证;(3)理论分析完成验证;(4)仿真实验完成验证。以上四类方式各有优缺点,能够相互弥补不足。

4民用飞机健康管理系统(AHM)发展现状

一般来说,民用飞机中安全系数的要求较为严格,同时,也需要优化成本投入和后期的维护消耗。民用飞机系统属于复杂系统中的一员,主要的子系统包括有动力动能系统、控制系统、电力系统等。这些子系统中还可以继续划分出多个子系统,各个基础的子系统均是通过基本的元件组成。民用飞机的端口较为烦琐,包括不同的模拟量、数字量以及开关量,同时,还有多样化的信号种类。因此,各个系统的接口均选择标准化接口模式,确保各个系统间能够完成信号的交互。当前,世界范围内的飞机市场由两大企业所占据,为了进一步稳定市场份额,均投入较高的成本进行健康管理系统的研制,并将其逐步应用于新式飞机中。这些先进的健康系统能够优化相关技术人员的工作,进一步提高运行效率,为企业创造更多的经济收益。虽然各个企业研发的健康管理系统存在不同的名称,但本质上的原理和内容较为相似。民用飞机上的健康管理系统能够有效地采集工况参数,并将关键的数据进行实时显示,地面系统的操作人员可以深入分析实时参数,评定出飞机的健康等级,对可能影响飞机运行的异常情况及时监测,并分析出现原因,给出相应的解决措施,由此可以进一步优化维护服务,提升工作效率,确保飞机的稳定运行,降低飞机延误问题的发生概率。AHM技术通过半个世纪的发展,在民用航空领域中发挥着越来越重要的作用,搭建起能够实时监测的管理体系,实时采集飞机工况,及时评测健康等级,合理规划飞机系统的生命周期,保证航空公司提供更加优质的飞行服务,为航空领域的进一步发展奠定基础。

5结语

总之,PHM已经成为国外新一代武器装备研制的一项核心技术,是未来降低复杂系统的生命周期费用,以及提高系统“五性”(安全性、可靠性、测试性、维护性、保障性)的一项非常有应用前景的关键技术。当前,PHM技术的发展体现在以系统集成应用为牵引,提高故障诊断与预测精度和扩展健康监控的应用对象范围,支持基于状态的维修(CMB)与自主式保障(AL)等方面。

参考文献:

[1]孙熙,郑朔昉,吴新立.航空工业设备自主维护和管理通用方法研究[J].航空标准化与质量,2017(3):23-24.

[2]申万江.航空发动机故障归零管理研究[J].机械工业标准化与质量,2019(6):52-56.

故障预测范文篇2

[关键词]锅炉故障故障预测

一、锅炉故障的可预测性

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

(三)灰色模型预测法

灰色模型预测法是按灰色系统理论建立预测模型,它是根据系统的普遍发展。规律,建立一般性的灰色微分方程,然后通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型方程。应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

故障预测范文篇3

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

(三)灰色模型预测法

灰色模型预测法是按灰色系统理论建立预测模型,它是根据系统的普遍发展。规律,建立一般性的灰色微分方程,然后通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型方程。

应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

[2]蒋东翔等,《大型汽轮发电机组混合智能诊断方法的研究》,清华大学学报,1999,第三期。

[3]黄文虎等,《故障诊断技术的现状与展望及其在大型汽轮发电机组中的应用》,汽轮机技术,1999年第一期。

故障预测范文篇4

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

[摘要]锅炉故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导锅炉运行和维修。因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。从锅炉故障的可预测性、预测相关知识出发,进而分析常用的锅炉故障预测方法。

[关键词]锅炉故障故障预测

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

故障预测范文篇5

关键词:汽车故障故障诊断

汽车在使用过程中,由于各种各样的原因不可避免的要发生故障,使汽车的动力性、经济性、操纵稳定性、乘坐舒适性、使用安全性等发生变化。汽车故障有的是突发性的,有的是渐进性的。当汽车发生故障时,如能够用经验和科学知识准确快速地诊断出故障原因和部位,找出损坏的零部件,及时修复或更换,排除故障,恢复汽车原有的性能,就能发挥汽车高效、便捷的交通作用。

一、故障成因

汽车在使用过程中不发生故障是相对的,而发生各种各样的故障是必然的。汽车故障的形成原因主要有:

1.存在易损零件。汽车在设计中不可能做到所有零件都具有同等寿命,有些零件为易损零件。例如:空气滤清器滤芯,火花塞,离合器摩擦片等使用寿命较短,均需定期更换,如没有及时更换就会发生故障。

2.零件质量差异。汽车零件批量大,并由不同厂家生产,因此不可避免地存在质量差异。

3.运行材料质量。汽车上的消耗品主要有燃油和润滑油等,这些用品质量差会严重影响汽车的使用性能和寿命,使汽车易发生故障。加入劣质燃油和机油对发动机危害极大。

4.使用环境影响。汽车使用环境变化很大,涉及气温高低,风霜雪雨,道路不平使汽车振动颠簸严重,容易发生故障或引起突发性损坏。

5.驾驶技术影响。驾驶技术对汽车故障的产生影响很大,使用方法不当影响更大。如汽车新车磨合期超速超载,不定期维护,就会使汽车损坏和出现故障。

6.维修技术影响。汽车在使用中要定期维护,出了故障要作出准确的诊断,及时排除。要求汽车使用、维修工作人员要了解和掌握汽车技术性能和高新技术在汽车上的应用。

二、故障症状

汽车常见故障的表现和症状有:

1.性能异常

动力性和经济性变差,如最高行驶速度明显降低;汽车燃油消耗量大和机油消耗大。乘坐舒适性差,如汽车振动和噪声明显加大。汽车操纵稳定性差,如汽车易跑偏,车头摆振;制动侧滑和距离长,排放超标等。

2.工况异常

使用中突然出现某些不正常现象,如行驶中发动机突然熄火;制动无效;冬季起动困难;发动机熄火后再也起动不了等。

3.声响异常

使用中发生的故障往往以异常响声的形式表现出来,如果响声比较沉闷并且伴有强烈的振抖时,故障比较严重。例如,汽车怠速运转时,发出有规律的哒哒声,加速时响声杂乱无规律,这是气门间隙过大发出的敲击声。如果发动机在正常运转时,出现像敲砧板的嘎嘎声,且响声越来越严重,这是发动机缺机油造成烧轴瓦的响声。

4.排烟异常

汽车排气管冒黑烟一般为混合气过浓,燃烧不完全;排气管冒蓝烟,一般为烧机油;排气管冒白烟,一般为燃油中有水,或气缸有水,或室外温度过低。

5.操作异常

汽车不能按驾驶员意愿进行加速、转向、制动。如油门踏板、离合器踏板、制动踏板、转向盘、变速杆操作不灵活等。

6.气味异常

刹车片和离合器片的非金属材料发出的烧焦味;蓄电池电解液的特殊臭味;电气系统导线烧毁的焦糊味;漏机油滴到排气管的烧焦味和汽油味。

7.外观异常

汽车停放在平坦场地上时,检查外观时会发现汽车纵向倾斜或横向歪斜;灯光、信号、仪表失常;表面碰伤、擦痕损伤等。

8.过热

各部温度超出正常使用温度范围。如水箱“开锅”、变速器、制动器、后桥壳发热烫手。

9.渗漏

燃油、机油、冷却液、制动液、电解液、制冷剂等漏液;电气系统漏电;气缸垫,进、排气管垫,真空管等漏气。

三、故障诊断方法

汽车发生故障,如果查不出故障原因和故障部位,就无法动手修理。就好像医生给病人看病一样,如果诊断不出病因,乱开药,就很难将病人的病治好。如果诊断病因准确,对症下药,就可以药到病除。汽车故障种类繁多,千变万化,但万变不离其中,只要掌握汽车的构造、原理、性能,且具有丰富的维修实践经验,就很容易作出准确的判断。内行的人只要汽车一开过他身旁,他一听一看就可以判断出该车的技术状况,这就相当于一个中医医生,单凭一个人的脸色,行动,眼神,精神状态就可以判断出有没有病一样。汽车一般故障诊断方法大概归纳为深问历程、慎察症状、细听异响、触感变化、辨嗅气味、试验求证、部件替换、分离检查和局部拆装等过程,对于疑难故障,在利用仪器和设备进行检测的过程中也要结合维修经验,灵活运用检测结果,对故障进行综合诊断。

1.深问历程

中医诊病要望、闻、问、切,汽车故障诊断也是一样。其中深问也是快速诊断汽车故障的方法之一。例如,汽车发生故障时,应了解汽车使用年限和行驶里程。因为可以根据这些使用情况估计可能发生的故障原因。因此,维修人员一定要向车主询问使用年限、修理历史、发生故障时的症状以及发生故障后的状态,进一步深入地了解故障产生的原因,判断故障的部位。

2.慎察症状

所谓慎察症状是对初步判断的故障发生部位进行仔细观察或模拟检测。如发动机冒蓝烟,如果是使用过程中长期冒蓝烟,且汽车使用里程又很长,一般可判断为气缸、活塞、活塞环磨损造成机油上窜至燃烧室燃烧引起的;如果只是在发动机刚启动时冒一股蓝烟,以后又逐渐变得比较轻微,一般可判断为气门油封老化或气门杆与导管磨损造成机油漏入燃烧室燃烧引起的;如果是发动机大修后出现冒蓝烟,只能是活塞环装反所致。特别是梯形活塞环,由于梯度很小,肉眼很难看得清楚,如果标记不清或标错,就易造成活塞环泵油现象。

3.细听异响

用听觉判断汽车故障是常用的简便方法。当汽车某个部位发生故障时,就会出现异常响声,有经验者可以根据响声判断故障部位。如汽车直行时响声正常,而拐弯时有异响,可判断差速器中的行星齿轮有问题;如发动机抖动,加速时排气管有突突声,可判断为发动机缺缸工作;如踩下离合器踏板时有沙沙声,松开离合器踏板时响声消失,说明离合器分离轴承缺油;如发出叽叽声,说明分离轴承卡死不转,磨到分离杠杆发出的响声,必须及时更换分离轴承。

4.触感变化

凭触感来诊断汽车故障就像中医切脉一样,以传到人体上感觉到的汽车状况来判断故障。如柴油机动力不足、怠速不稳、加速不顺有突突声,用手指触碰各缸高压油管,如果哪一条高压油管没有脉动感,说明该缸不工作(缺缸工作);如用手摸水泵出水口胶管可以感觉到水流压力波动,说明水泵工作正常;如感觉不到水流压力波动,说明水泵坏或者水箱无水;如用手指的压力检查风扇皮带的松紧度:用拇指从皮带中间用40N的力按下皮带,其挠度为10-15mm为合适,否则说明皮带过松或过紧。

5.辨嗅气味

汽车上不同的气味代表着不同的状态。如闻到焦糊味是电线短路烧焦味,必须立即关掉电源,查找故障部位。当手摸到发烫的地方就是电线短路的部位。当停车时或行驶中闻到汽油味,可能是某处油管或油箱漏油,要查明原因;如汽车载重上坡,发动机转速很高,但车速很慢,且在车后闻到一股古怪难闻的焦臭味,这是离合器打滑的故障。

6.试验求证

所谓的试验求证就是以试验来证明汽车技术状态的变异程度,以确定故障原因和部位。如汽车液压制动不灵的故障诊断:

(1)当踩下制动踏板时,有松软或有弹性的感觉,说明液压制动系统中制动液(刹车油)不足或有空气造成制动不灵;

(2)当第一次踩下制动踏板时,感觉踩下去很深,而第二次、第三次踩下去时,制动踏板逐次增高,说明制动蹄片和制动鼓磨损间隙过大造成制动不灵;

(3)如真空助力制动系统制动不灵。可以在不发动时把制动踏板踩到底并保持不动,再启动发动机,如果发动机启动后制动踏板还下移一些,说明真空助力器性能良好,否则,说明真空助力器损坏造成制动不灵。

7.部件替换

所谓的部件替换就是对可能发生故障的部件用合格的部件替换。如果故障排除说明该该部件损坏,如果故障依旧,说明该部件是好的,故障不在此处。例如,发电机不充电,用一个新的发电机换上去,充电正常,说明原发电机损坏;如果换上新的发电机仍然不充电,说明故障不在发电机,可能是在调节器或充电线路。

8.分离检查

分离检查就是对具有系统性的结构进行分段或隔离检查,以确定故障部位。如转向沉重故障现象,很难判断故障在转向器还是转向传动机构。如果把转向摇臂拆下,转动方向盘,如觉很轻松灵活,故障就在转向传动机构;如果方向盘仍然沉重,故障就在转向器或转向轴。公务员之家

9.局部拆装

所谓局部拆装就是已经判明故障发生在某个总成以后,还不能准确判断具体某个零件发生故障时,可按总成工作原理,局部拆卸某个零件进行检查。例如发动机缺缸工作,可用逐缸断火(油)法来检查。当拆到某缸高压线或高压油管时,发动机转速发生变化,说明该缸工作正常,如果没有任何变化,说明该缸不工作。

四、结语

通过汽车一般常见故障形成的原因及故障表现的症状和故障诊断方法的论述。便于汽车使用和维修工作人员在汽车发生故障时能够快速诊断出故障的原因和部位,及时修复,提高汽车的维修工作效率和汽车的使用效率,使汽车造福于人类。

参考文献:

故障预测范文篇6

[关键词]锅炉故障故障预测

一、锅炉故障的可预测性

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

(三)灰色模型预测法

灰色模型预测法是按灰色系统理论建立预测模型,它是根据系统的普遍发展。规律,建立一般性的灰色微分方程,然后通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型方程。

应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

故障预测范文篇7

关键字:航空;电子装置;故障预测;健康管理

结合当前航空电气装置中各种故障的预测方法进行建模,并且会依据电气装置故障的特征对其进行健康管理,进而提高航空电气装置的安全性和可靠性,以此带动航空产业的整体发展与建设,拓展当前航空电气故障预测与管理方法的应用模式与应用策略。

1航空电气装置故障预测与管理建模

1.1有特性的信号抽样。在航空电气装置的问题预测和管理中,若想对其进行有效地治理,就需要从多个信号中选取特点明显的信号。其中,通过小波可以分析多分辨率检测信号,且可以对其进行正交变换和多滤波器组的计算,以此能够实现对频域的采取和深入研究。通过该方法的应用,可以有效地提高对不同信号的特征选取与抽样分析,并且可以对其进行清晰的判断与完整的掌握,而且还能科学准确的掌握其中的问题,并且设计问题的解决方法。与此同时,利用这一分析方法,不仅能够在不同的频率分量中对不同信号进行完整的采集,而且还能对其进行相应的调遣与处理。从本质上来分析,这是一种提高信噪比的方法,也是一种促进信号分辨率的措施,其能够大大提升航空电气装置的故障预测和管理效力。1.2预测与诊断系统。对预测与诊断系统的开发,能够有效地实现对不同模块的应用,以及各模块相互之间的共享服务功能。比如,在飞机发电机的故障预测以及管理过程中,可以结合全数字发动机控制航空器发动机的诊断方式对其进行研究,以此来完成集成式的预测与诊断。通过该方法,可以有效地提升故障预测和诊断的效果,而且还能结合不同的问题选取不同的处理方法,以实现对航空器发动机故障维护的需求。在故障预测和故障诊断中,两者的关系非常精密,且两者都需要从电流和电压方面以及频率方面对其进行故障的分析和判断。1.3剩余寿命预测模型。通过剩余寿命预测模型可以对航空前期装置的整体工作状态进行准确的分析与研究,而且可以在特定的方式下对其做出预测。在此,可以结合以下分类方法对其进行不同标准的应用:首先是,在预测的效果降低到一定程度之后,系统需要做出怎样的反应?其次是,在系统还可以对具有显著特征的信号抽样进行检测与分析航空电气装置的整体工作状态所应用的分析和识别对象是什么?基于此,技术人员可以结合识别的不同方法,以及分析问题的不同模式对其进行不同的研究。如,在航空器发电机中,可以结合模型的建立来对其进行问题的预测,并且可以结合相应的问题预测方法得出既定的数据信息,进而为后续解决问题做好准备工作。

2航空电气装置故障预测与管理

2.1科学应用预警电路。在技术人员对航空电气装置进行故障预测的过程中,需要结合预警电路的预测方法对其进行相应的设计,以此来提高预测工作的整体效率与质量。在预测的过程中,利用预警电路能够有效地提高预测的准确性,而且还能实现提前预测。当预警电路发出报警之后,则说明航空电气装置当中存在故障需要维修,在此基础上,技术人员便可以集合预警电路的报警信息对其进行故障的判断与分析,进而采取合理的措施对其进行维护。利用预警电路对航空电气装置进行故障的预测,不仅能够提高故障检测的准确性,还能有效地降低预测作业对航空电气装置的损害程度。在预警电路发出报警之后,技术人员需要在第一时间调节警告并联的电路,并且要对预警电路的电流密度进行相应的控制。2.2积累损伤模型应用。在进行故障预测和管理的过程中,合理的应用累积损伤模型能够大大提高航空电子电气装置的综合监测效能。在应用累积损伤模型对航空电气装置进行故障预测的时候,需要将之与载荷的损伤程度结合在一起展开分析与研究。以此为法对其进行设计,可以有效地体现出累积损伤模型对航空电气装置寿命的检测与判断效能,而且还能有效地判断出航空电气装置的使用损耗程度。技术人员在故障预测的过程中可以对航空电气装置的电力系统做出相应的分析与研究,以此来估算设备的剩余使用寿命。根据累积伤害,电气装置能够有效地确定航空电气装置的故障时间,且可以预测装置的缺陷,这样便能够为后续的航空电气装置管理提供一定的思路,并且可以分析出导致故障的原因所在,以此来有效地对其进行处理。2.3检测特征参数分析。利用检测特征参数分析法对航空电气装置进行故障的预测与管理,能够在一定程度上提高系统的数据采集和信息分析与处理的能力。这对于后续的航空电气装置故障数据的信息收集和分析有着较大的影响,而且利用该方法还能够有效地对电力系统的故障情况进行预测与分析。但是,因为目前航空电气装置中所引用的检测特征参数方法在电力系统的预测方面有较大的缺陷,所以,其对于电力系统复杂结构的分析与预测能力较弱,且在应用功能方面的局限性较大,同时还有着较高的失效机理。这就导致了数据的收集以及参数的分析和处理会出现不同的标准。在应用检测特征参数分析方法对航空电气装置进行故障的预测与管理时,务必要确保检测特征的准确性,以及对参数的有效采集和分析,只有这样才能确保预测电力系统故障的科学性和时效性。2.4方法的应用与组合。结合当前的情况来分析,目前我国的航空电气装置故障预测与管理技术人员针对当前我国航空产业的不断发展,以及航空电气装置应用技术的不断进步,其对于航空电子电气装置的故障预测和管理模式与方法也做出了相应的完善与优化。同时,从现实的角度,结合理论的分析与实践运用的方法对航空电气装置的故障做出了深入的研究与分析,并且对其进行了故障预测和管理的相应判断。现如今,若想有效地提高对航空电气装置故障预测与管理的综合效力,就需要技术人员从多个技术角度对其展开研究和分析,并且要设计相关的手段进行实验和应用,以此来促进这一领域的技术发展,确保航空器的安全与稳定运行,完善航空运输产业的稳定发展与建设。

综上所述,在日常工作过程中,航空航天电气装置技术人员需要了解如何对其进行有效地故障预测与分析。而且,技术人员还需要了解如何对航空电气装置进行有效地利用,进而提高航空电气装置在航空航天领域中的应用价值,并且降低其维护成本。另外,技术人员还需要对航空电气装置的健康管理方法进行学习与研究,并且要深入分析航空电气设备的参数,以此对其进行后续的健康管理与故障排除从而有效地提升效率,控制问题发生的频率,提升航空电气装置的利用率。

参考文献

[1]赵成,问沛园.试析夏季航空电气设备故障多发的原因与预防措施[J].电子测试,2019(08):89-90.

[2]李航,许旺.航空电气设备的故障预测以及健康管理[J].云南化工,2018,45(11):149-150.

故障预测范文篇8

[关键词]锅炉故障故障预测

一、锅炉故障的可预测性

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

(三)灰色模型预测法

灰色模型预测法是按灰色系统理论建立预测模型,它是根据系统的普遍发展。规律,建立一般性的灰色微分方程,然后通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型方程。

应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

故障预测范文篇9

关键词:模拟电路故障诊断

一、模拟电路故障

电路(系统)诞失规定功能称为故障,在模拟电路中的故障类型及原因如下:从故障性质来分有早期故障、偶然故障和损耗故障。早期故障是由设计、制造的缺陷等原因造成的、在使用初期发生的故障,早期故障率较高并随时间而迅速下降。统计表明,数字电路的早期故障率为3~10%,模拟电路的早期故障率为1~5%,晶体管的早期故障率为0.75~2%,二极管的早期故障率为0.2~1%,电容器的早期故障率为0.1~1%。

偶然故障是由偶然因素造成的、在有效使用期内发生的故障,偶然故障率较低且为常数。损耗故障是由老化、磨损、损耗、疲劳等原因造成的、在使用后期发生的故障,损耗故障率较大且随时间迅速上升。从故障发生的过程来分有软故障、硬故障和间歇故障。软故障又称渐变故障,它是由元件参量随时间和环境条件的影响缓慢变化而超出容差造成的、通过事前测试或监控可以预测的故障。硬故障又称突变故障。它是由于元件的参量突然出现很大偏差(如开路、短路)造成的、通过事前测试或监控不能预测到的故障。根据实验经验统计,硬故障约占故障率的80%,继续研究仍有实用价值。间歇故障是由老化、容差不足、接触不良等原因造成的、仅在某些特定情况下才表现出来的故障。从同时故障数及故障间的相互关系来分有单故障、多故障、独立故障和从属故障。单故障指在某一时刻故障仅涉及一个参量或一个元件,常见于运行中的设备。多故障指与几个参量或元件有关的故障,常见于刚出厂的设备。独立故障是指不是由另一个元件故障而引起的故障。从属故障是指由另一个元件故障引起的故障。

二、测前横拟法SBT

测前模拟法又称故障字典法FD(FaultDictionary)或故障模拟法,其理论基础是模式识别原理,基本步骤是在电路测试之前,用计算机模拟电路在各种故障条件下的状态,建立故障字典;电路测试以后,根据测量信号和某种判决准则查字典。从而确定故障。选择测试测量点是故障字典法中最重要的部分。为了在满足隔离要求的条件下使测试点尽可能少,必须选择具有高分辨率的测试点。在大多数情况F,字典法采用查表的形式,表中元素为d…i=l,2,…,n,j=1,2,…,m,n是假设故障的数目,m是测量特性数。

故障字典法的优点是一次性计算,所需测试点少,几乎无需测后计算,因此使用灵活,特别适用于在线诊断,如在机舱、船舱使用。此法缺点是故障经验有限,存储容量大,大规模测试困难,目前主要用于单故障与硬故障的诊断。

故障字典法按建立字典所依据的特性又可分为直流法、频域法和时域法。

(一)直流故障字典法。直流故障字典法是利用电路的直流响应作为故障特征、建立故障字典的方法,其优点是对硬故障的诊断简单有效,相对比较成熟。

(二)频域法。频域法是以电路的频域响应作为故障特征、建立故障字典的方法,其优点是理论分析比较成熟,同时硬件要求比较简单,主要是正弦信号发生器、电压表和频谱分析仪。

(三)时域法。时域法是利用电路的时域响应作为故障特征而建立故障字典的方法。主要有伪噪声信号法和测试信号设计法(辅助信号法)。当故障字典建立后,就可根据电路实测结果与故障字典中存储的数据比较识别故障。

三、测后模拟法SAT

测后模拟法又称为故障分析法或元件模拟法,是近年来虽活跃的研究领域,其特点是在电路测试后,根据测量信息对电路模拟,从而进行故障诊断。根据同时可诊断的故障是否受限,SAT又分为任意故障诊断(或参数识别技术)及多故障诊断(或故障证实技术)。

(一)任意故障诊断。此法的原理是利用网络响应与元件参数的关系,根据响应的测量值去识别(或求解)网络元件的数值,再根据该值是否在容差范围之内来判定元件是否故障。所以此法称为参数识别技术或元件值的可解性问题,理论上这种方法能查出所有元件的故障,故又称为任意故障诊断。诊断中为了获取充分的测试信息,需要大量地测试数据。

(二)多故障诊断。经验证明,在实际应用中(高可靠电路),任意故障的可能性很小,单故障概率最高,如果考虑一个故障出现可能导致另一相关故障,假定两个或几个元件同时发生的多故障也是合理的。另外对于模拟LSI(LargeScaleIntegration,大规模集成电路)电路加工中的微调,也是以有限参数调整为对象的。因此在1979年以后,SAT法的研究主要朝着更实用化的多故障诊断方向发展。即假定发生故障的元件是少数几个,通过有限的测量和计算确定故障。因该法是先假定故障范围再进行验证,所以又称为故障证实技术。

四、其他方法

(一)近似技术。近似技术着重研究在测量数有限的情况下,根据一定的判别准则,识别出最可能的故障元件,其中包括概率统计法和优化法。此法原理与故障字典法十分类似,属于测前模拟的一类。采用最小平方准则的联合判别法和迭代法,采用加权平方准则的L2近似法,采用范数最小准则的准逆法等。这些方法都属于测后模拟,由于在线计算量大,运用不多。

故障预测范文篇10

关键词:软件故障预测;贝叶斯信念网;软件度量

1引言

当前关于软件故障预测的研究大都集中于软件工程领域的某个方面,毕业论文如面向对象系统中利用各种度量属性建立模型预测故障数和故障倾向,利用测试过程中用例的覆盖率预测模块故障,利用专家经验建立专家知识库预测故障等等.软件故障的原因贯穿于软件开发全过程,仅从一个方面来考察软件故障是不充分的.近十几年备受关注的贝叶斯网络(BBNs)对于解决复杂系统不确定因素引起的故障具有很大的优势,被认为是目前不确定知识表达和推理领域最有效的理论模型.本文提出基于BBNs的故障预测方法,综合利用软件开发过程信息预测软件故障.

2软件故障预测的研究现状

预测故障的方法可以分为两大类:(1)基于数量的技术,关注预测软件系统中的故障数;硕士论文(2)基于分类的技术,关注于预测哪些子系统具有故障倾向.第一类已经有一些研究,但是开发一个有效的模型比较困难.第二类方法更成功一些.利用软件度量来预测故障倾向是一个重要的趋势和研究内容,当前的预测模型涉及软件设计度量,代码度量和测试度量.软件维护的历史数据,例如软件改变历史[1]和过程质量数据[2]也被用于软件故障预测.很多专家认为开发过程的质量是产品质量(这里默认是残留故障密度)最好的预测器.AhmedE.Hassan等人提出利用启发式规则预测软件子系统故障倾向[3].还有文献提出利用测试过程中的各种数据(如测试覆盖率)来预测故障[2].

分析已有的故障预测模型,它们大多基于软件开发过程中的某一个或几个阶段的数据,或者基于一种或者几种度量,如软件复杂性度量和测试度量.但显而易见,影响软件质量的关键因素不仅仅是其几个度量.软件故障与软件开发全过程往往具有不确定的因果关联关系,导致软件故障的因素很多,单纯从软件开发过程的某个阶段或基于几种度量来预测软件故障是不充分的.BBNs本身是一种不确定性因果关联模型,具有强大的不确定性问题处理能力,能有效进行多源信息表达与融合.因此本文提出基于BBNs构建软件故障预测模型,综合利用软件开发过程信息预测软件故障.

3贝叶斯网络

一个BBNs是一个有向无环图,由代表变量的节点及连接这些节点的有向边构成.节点代表随机变量,可以是任何问题的抽象,医学论文如问题复杂度,观测现象,意见征询等.节点间的有向边代表了节点间的相互关联关系.有向图蕴涵了条件独立性假设,用A(vi)表示非vi后代节点构成的任何节点集合,用∏(vi)表示vi的直接双亲节点集合,则P(vi|(A(vi)∪∏(vi)))=P(vi|∏(vi)).用条件概率表(conditionalprobabilitiestable,CPT)来描述点与点之间关联,条件概率表可以用P(vi|∏(vi))来描述,它表达了节点同其父节点的相关关系———条件概率.没有任何父节点的节点概率为其先验概率.图1用BBNs描述了一个简单的关于软件产品质量的例子[4],产品质量由管理能力和开发能力确定,表1为其CPT.BBNs对构造者的信念(专家知识和经验)建模,基于这个模型它能够提供精确的数学计算和预测.

4基于BBNs的软件故障预测方法

将BBNs应用于软件故障预测的步骤是:(1)确定变量及其顺序;(2)建立BBNs结构;(3)确定BBNs的参数(CPT).本文从软件开发过程来建立一个BBNs基本模型,并以此模型为基础扩展节点.

4·1一个BBNs故障预测的基本模型

影响软件项目风险的基本因素可分为两组,一是与组织相关的因素,包括组织文化,管理经验和能力以及过程成熟度.二是与项目相关的因素[4].影响软件故障的基本因素可以描述为图2的基本模型.方框是可以扩展的基点.“项目特征”和“验证和确认”影响到软件开发的需求分析,设计,实现和测试过程,软件故障受开发过程的影响,这个模型涵盖了软件开发过程

4·2扩展的BBNs故障预测模型

我们用已探测的故障数,残留故障数,职称论文残留故障密度和测试中故障密度四个节点来描述软件故障,分别用“问题复杂度”,“设计功效”和“测试功效”节点描述需求分析,设计和测试过程.V&V[4]与问题复杂度,设计功效和测试功效三个变量关系紧密,因此本文去掉V&V节点,将这些描述V&V节点的变量(如测试覆盖率,员工能力等)用来确定问题复杂度,设计功效和测试功效的参数.

本文采用如图3所示的BBNs故障预测模型,这个模型可以解释为两个阶段:第一个阶段覆盖了软件生命周期的规约,设计和编码;第二个阶段覆盖了测试.设计规模和缺陷数节点为整数或者一个限定的范围,故障密度为实数,其他节点有下面的状态:很高,高,中等,低,很低.问题复杂度表示待开发问题集中内在的复杂度,这些问题是规约中离散的功能需求,问题复杂度和设计功效之间的不匹配将导致引入故障数和设计规模增大.测试阶段在设计阶段之后,实践中实际分配的测试功效比所要求的少得多.测试功效和设计规模之间的不匹配将会影响已探测故障的数目,引入故障是其边界条件.已探测故障和引入故障之差是残留故障数.测试中故障密度是已探测故障和设计规模的函数(已探测故障/设计规模),同样,残留故障密度是残留故障数/设计规模.这里的问题复杂度,设计功效和测试功效的粒度仍然较大,不利于确定其状态,将其继续扩展,建立相应子网来描述这些节点:(1)问题复杂度子网(图4);(2)设计功效子网(图5);(3)测试功效子网(图6).

4·3确定BBNs参数

接下来的问题是确定变量状态的概率和变量之间关系的强度.从对软件开发过程的各种文档记录中我们可以得到一些确定性知识.对于不确定性知识,传统的方法是根据专家经验主观确定.研究人员定义了大量软件度量描述软件质量[2,5,6],将这些研究与专家知识和经验结合起来确定BBNs参数.

4·4推理规则

采用应用最广的随机模拟采样法(PearlsandGibbs算法).首先,为网络上的节点做初始实例化,证据节点实例化为观察值,非证据节点实例化为随机值;然后,开始遍历图,对每一非证据节点Y,计算在其他节点给定值的情况下Y的后验概率分布:

P(Y|WY)=αP(Y|Pa(Y))∏iP(si|Pa(si))

式中,WY表示除Y的节点集合,Si表示Y的第i个子女,工作总结为正规化因子,其余乘积项为条件概率.公式表明了本节点的概率仅与其父母节点,子节点及其子节点的父母节点有关;Pearl使用上式结果对节点进行采样,结果作为Y的新实例化,反复进行,直到近似过程收敛(设进行了m次遍历),这时查询结果为:P(Y|e)=1m∑mi=1fi,fi为第i次遍历Y的条件概率,e为证据向量的观察值.

5仿真实验

本文在AgenaRisk[7]系统中对该模型进行仿真实验.实验部分采用了AgenaRisk中关于软件故障预测和软件项目风险管理的数据.由于具体的项目数据难以收集,我们根据图3所描述的简化模型来做仿真实验.在实验中我们用软件需求复杂性度量和软件需求变更度量来描述问题复杂度[6].利用各种度量来描述设计功效,包括对象(模块)之间的耦合数(耦合度量),不使用公共属性的方法的个数(内聚度量),继承树的深度和继承的平均深度(继承度量)[5].用代码覆盖度量来描述测试功效,定义一个相应策略的测试有效率(testeffective-nessratio,TER),TER1是语句覆盖的测试有效率,TER2是分支覆盖的测试有效率,TER3是线性代码顺序和跳转覆盖测试有效率.我们设定的是一个中等规模的系统,严格按照软件工程开发过程开发,花费了大量资源在设计和测试上,尽量减少耦合,增加内聚,TER1,TER2达到100%,TER3达到90%,因此可以判定设计功效为很高(概率为100%),测试功效很高(概率为100%),如图7所示.从仿真结果可以看到设计规模较小,引入故障数较少(期望值为17.8),已探测故障密度相对较高,剩余故障数较小(期望值为6.6),这与实际情况是相符合的.当我们将设计功效设置为较低时(概率为100%),如图8所示,明显设计规模变大,引入故障数增加(期望值为43.1),相应的剩余故障数增加(期望值13.0),已探测故障密度减少.表2是两者的对比结果.在实验中我们分别对问题复杂度,测试功效和设计功效赋值,以检查模型对各种环境下的变化,其结果与实际较为符合,说明了模型的合理性.

6结语

本文从软件开发全生命周期来考察故障,给出了一个BBNs故障预测原型系统,并在AgenaRisk系统中对该模型进行仿真实验.从实验结果可以看到,BBNs能够使用来自主观和客观的概率分布和不充分的数据预测软件故障数.仿真实验还只是基于一个简化的模型,将实际项目数据应用于模型,探讨建立完备网络结构和确定节点状态的方法,建立适应具体项目便于数据收集和确定节点状态的网络是需要进一步探讨的问题.

参考文献:

[1]ToddLGraves,AlanFKarr,JSMarron,HarveySiy.Predict-ingfaultincidenceusingsoftwarechangehistory[J].IEEETransactionsonSoftwareEngineering,2000,26(7):653-661.

[2]Fenton,NE,NeilM.Acritiqueofsoftwaredefectpredictionmodels[J].IEEETransactionsonSoftwareEngineering,1999,25(5):675-689.

[3]AhmedEHassan,RichardCHolt.Thetoptenlist:dynamicfaultprediction[A].Proceedingsofthe21stIEEEInternationalConferenceonSoftwareMaintenance(ICSM’2005)[C].Bu-dapest,Hungary:IEEE,2005.263-272.

[4]Chin-FengFan,Yuan-ChangYu.BBN-basedsoftwareprojectriskmanagement[J].JournalofSystemsandSoftware,2004,73(2):193-203.

[5]MunsonJC,NikoraAP.Towardaquantifiabledefinitionofsoftwarefaults[A].Proceedingsof13thInternationalSympo-siumonSoftwareReliabilityEngineering(ISSRE2002)[C].Annapolis,MD,USA:IEEE,2002.388-395.