高速切削范文10篇

时间:2023-03-13 19:35:03

高速切削范文篇1

关键词:高速切削刀具;数控加工;应用

一、高速切削技术和高速切削刀具

目前,切削加工仍是机械制造行业应用广泛的一种加工方法。其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。

“高速切削”的概念首先是由德国的C.S~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1O倍。第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。

高速切削刀具是实现高速加工技术的关键。刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。因此,高速切削对刀具材料提出了更高的要求,除了具备普通刀具材料的一些基本性能之外,还应突出要求高速切削刀具具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。高速切削技术的发展在很大程度上得益于超硬刀具材料的出现及发展。目前常用的高速切削刀具材料有:聚晶金刚石(PCD)、立方氮化硼(CBN)、陶瓷、Ti(C,N)基金属陶瓷、涂层刀具fCVD)~超细晶粒硬质合金等刀具材料。

二、高速切削刀具的发展情况

金刚石刀具材料。金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。金刚石刀具分为天然金刚石和人造金刚石刀具。然而,由于天然金刚石价格昂贵,加工焊接非常困难,除少数特殊用途外,很少作为切削工具应用在工业中。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气钎焊金刚石技术,使天然金刚石刀具的制造过程变得比较简单,因此在超精密镜面切削的高技术应用领域,天然金刚石起到了重要作用。

立方氮化硼刀具材料。立方氮化硼(CBN)是纯人工合成的材料,是20世纪50年代末用制造金刚石相似的方法合成的第二种超材料——CBN微粉。立方氮化硼(CBN)是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削,具有高耐磨性的优良刀具材料。CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。PCBN刀具是能够满足先进切削要求的主要刀具材料,也是国内外公认的用于硬态切削,高速切削以及干式切削加工的理想刀具材料。PCBN刀具主要用于加工淬硬钢、铸铁、高温合金以及表面喷涂材料等。国外的汽车制造业大量使用PCBN刀具切削铸铁材料。PCBN刀具已为国外主要汽车制造厂家各条生产线上使用的新一代刀具。

陶瓷刀具。与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷刀具材料的强度低、韧性差,制约了它的应用推广,而超微粉技术的发展和纳米复合材料的研究为其发展增添了新的活力。陶瓷刀具是最有发展潜力的高速切削刀具,在生产中有美好的应用前景,目前已引起世界各国的重视。在德国约70%加工铸件的工序是用陶瓷刀具完成的,而日本陶瓷刀具的年消耗量已占刀具总量的8%~l0%。

涂层刀具。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-112o3-TiN复合涂层和TiCN、TiA1N等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。(氮)化钛基硬质合金(金属陶瓷)金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金而低于陶瓷材料,横向断裂强度大于陶瓷材料而小于硬质合金,化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。

三、高速切削刀具的具体应用情况

理想的刀具材料应具有较高的硬度和耐磨性,与工件有较小的化学亲和力,高的热传导系数,良好的机械性能和热稳定性能。理想的刀具使得高速硬切削能够作为代替磨削的最后成型工艺,达到工件表面粗糙度、表面完整性和工件精度的加工要求。硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。但细晶粒和超细晶粒的硬质合金由于晶粒细化后,硬质相尺寸变小,粘结相更均匀地分布在硬质相的周围,提高了硬质合金的硬度与耐磨性,在硬切削中获得较广泛应用。公务员之家

陶瓷刀具和CBN刀具是在高速硬车削和端面铣削中最常用的刀具。它们所具有的高硬度和良好的高温稳定性,使其能够承受在硬切削过程中高的机械应力和热应力负荷。与陶瓷刀具相比,CBN刀具拥有更高的断裂韧性,因此更适合断续切削加工。为保证工件较高的尺寸精度和形状精度,高的热传导率和低的热膨胀系数也应是刀具材料所应具有的重要性质。因此,具有优良综合性能的CBN刀具是最适合用于高速硬切削的刀具。聚晶金刚石刀具的硬度虽然超过立方氮化硼刀具,但即使在低温下,其对黑色金属中铁的亲和力也很强,易引起化学反应,因此不能用于钢的硬切削。

一般而言,PCD刀具适合于对铝、镁、铜等有色金属材料及其合金和非金属材料的高速加工;而CBN、陶瓷刀具、涂层硬质合金刀具适合于钢铁等黑色金属的高速加工。故在模具加工中,特别是针对淬硬性模具钢等高硬度钢材的加工,CBN刀具性能最好,其次为陶瓷刀具和涂层硬质合金。

结论

高速切削技术的问世改变了人对传统切削加工的思维和方式,极大提高了加工效率和加工质量。而高速切削与模具加工的结合,改变了传统模具加工的工序流程。高速切削刀具作为高速切削技术的关键,随着技术的不断完善,将为模具制造带来一次全新的技术革新。

参考文献

[1]韩福庆高速切削刀具材料的开发与选择[J]化学工程与装备2008

[2]周纯江叶红朝高速切削刀具相关关键技术的研究[J]机械制造2008

[3]范炳良林朝平基于高速切削刀具锥柄系统的分析与研究[J]机械设计与制造2008

[4]马向阳李长河高速切削刀具材料[J]现代零部件2008

高速切削范文篇2

当切削速度超过被切削材料临界切削速度时,切削温度下降,切削抗力减小,刀具使用寿命延长。目前,主轴转速高达60000r/min,进给速度高达90m/min,加速度达到1.7g的高速切削机床已商品化。并在航天、模具、汽车等行业的实际应用中,产生了巨大的技术经济效益。高速切削加工不但要求切削主轴的高转速,而且要求轴向进给的高速度和高加速度、先进的切削刀具等相关的关键技术。高速切削应该是可靠的高速切削。通常将切削速度和进给速度达到常规机床5~10倍的切削加工称之为高速切削。然而,根据Salomon的高速切削理论,高速切削应为切削温度不再随切削速度的提高而上升,且以高切削速度、高切削精度、高进给速度与加速度为主要特征的切削加工。因此,对于不同的材料,高速切削的速度范围是不同的。目前,常用材料的高速切削范围:铝合金为1000~7000m/min,碳钢为500~2000m/min,钛合金为i00~1000m/min。

2机床选择

现阶段,为了实现高速切削加工,一般采用高柔性的高速数控机床、加工中心,也有采用专用的高速铣、钻床。这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统,才能实现材料切削过程的高速化。高速切削与传统切削最大的区别是,“机床—刀具—工件”系统的动态特性对切削性能有更强的影响力。在该系统中,机床主轴的刚度、刀柄形式、刀长设定、主轴拉刀力、刀具扭力设定等,都是影响高速切削性能的重要因素。在高速切削中,材料去除率即单位时间内材料被切除的体积,通常受限于“机床—刀具—工件”工艺系统是否出现“颤振”。因此,为了满足高速切削加工的需求,首先要提高机床动静刚度尤其是主轴的刚度特性。现阶段高速切削之所以能够成功,一个很关键的因素在于对系统动态特性问题的掌握和处理能力。为了更好地描述机床主轴的刚度特性,工程上提出新的无量纲参数一DN值,用以评价机床的主轴结构对高速切削加工的适应性。所谓DN值即“主轴直径与每分钟转速之积”。新近开发的加工中心主轴DN值大都已超过100万。为了减轻轴承的重量,还采用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都采用油气混合润滑方式。在高速切削加工领域,目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴。在机床进给机构方面,高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝杠,滚珠采用小直径氮化硅陶瓷球,以减少其离心力和陀螺力矩;采用空心强冷技术来减少高速滚珠丝杠运转时由于摩擦产生温升而造成的丝杠热变形。近几年来,用直线电机驱动的高速进给系统问世,这种进给方式取消了从电动机到工作台溜板之间的一切中间机械传动环节,实现了机床进给系统的零传动。由于直线电机没有任何旋转元件,不受离心力的作用,可以大大提高进给速度。直线电机的另一大优点是行程不受限制。直线电机的次极是一段一段连续铺在机床的床身上。次极铺到哪里,初极工作台就可运动到哪里,而且对整个进给系统的刚度没有任何影响。采用高速丝杠或直线电机,能够大大提高机床进给系统的快速响应。直线电机最高加速度可达2~10G,最大进给速度可达60~200m/min或更高。此外,机床的运动性能也将直接影响加工效率和加工精度。在模具及自由曲面的高速切削加工中,主要采用小切深大进给的加工方法。要求机床在大进给速度条件下,应具有高精度定位功能和高精度插补功能,特别是圆弧高精度插补。圆弧加工是采用立铣刀或螺纹刀具加工零部件或模具时,必不可少的加工方法。

3刀具选择

3.1刀具材料的发展高速切削技术发展的历史,也就是刀具材料不断进步的历史。高速切削的代表性刀具材料是立方氮化硼(CBN)。端面铣削使用CBN刀具时,其切削速度可高达5000m/min,主要用于灰口铸铁的切削加工。聚晶金刚石(PCD)刀具被称之为2l世纪的刀具,它特别适用于切削含有SiO2的铝合金材料,而这种金属材料重量轻、强度高,广泛地应用于汽车、摩托车发动机、电子装置的壳体、底座等方面。目前,用聚晶金刚石刀具端面铣削铝合金时,5000m/min的切削速度已达到实用化水平,此外陶瓷刀具也适用于灰口铸铁的高速切削加工;

3.2涂层刀具CBN和金刚石刀具尽管具有很好的高速切削性能,但成本相对较高。采用涂层技术能够使切削刀具既价格低廉,又具有优异性能,可有效降低加工成本。现在高速加工用的立铣刀,大都采用TiAIN系的复合多层涂镀技术进行处理,如目前在对铝合金或有色金属材料进行干式切削时,DLC(DiamondLikeCarbon)涂层刀具就受到极大的关注,预计其市场前景十分可观;

3.3刀具夹持系统刀具的夹持系统是支撑高速切削的重要技术,目前使用最为广泛的是两面夹紧式工具系统。已作为商品正式投放市场的两面夹紧式工具系统主要有:HSK、KM、Bigplus、NC5、AHO等系统。在高速切削的情况下,刀具与夹具回转平衡性能的优劣,不仅影响加工精度和刀具寿命,而且也会影响机床的使用寿命。因此,在选择工具系统时,应尽量选用平衡性能良好的产品。

高速加工的切削速度为常规切速的10倍左右。为了使刀具每齿进给量基本保持不变,以保证零件的加工精度、表面质量和刀具的耐用度,则进给量也必须相应提高10倍左右,达到60m/min以上,有的甚至高达120m/min。因此,高速切削加工通常是采用高转速、大进给和小切深的切削工艺参数。由于高速切削的切削余量往往很小,所形成的切屑很薄很轻,把切削时产生的热量很快带走;若采用全新耐热性更好的刀具材料和涂层,采用干切削工艺也是高速切削加工的理想工艺方案。

高速切削范文篇3

[论文摘要]本文通过对高速切削加工技术的优越性和巨大经济效益的分析,全面论述了高速切削对机床设备及刀具系统的具体要求,阐述了高效率、高精度、高柔性和绿色化的高速切削加工技术是机械加工领域的发展趋势。

1高速切削的概念

当切削速度超过被切削材料临界切削速度时,切削温度下降,切削抗力减小,刀具使用寿命延长。目前,主轴转速高达60000r/min,进给速度高达90m/min,加速度达到1.7g的高速切削机床已商品化。并在航天、模具、汽车等行业的实际应用中,产生了巨大的技术经济效益。高速切削加工不但要求切削主轴的高转速,而且要求轴向进给的高速度和高加速度、先进的切削刀具等相关的关键技术。高速切削应该是可靠的高速切削。通常将切削速度和进给速度达到常规机床5~10倍的切削加工称之为高速切削。然而,根据Salomon的高速切削理论,高速切削应为切削温度不再随切削速度的提高而上升,且以高切削速度、高切削精度、高进给速度与加速度为主要特征的切削加工。因此,对于不同的材料,高速切削的速度范围是不同的。目前,常用材料的高速切削范围:铝合金为1000~7000m/min,碳钢为500~2000m/min,钛合金为i00~1000m/min。

2机床选择

现阶段,为了实现高速切削加工,一般采用高柔性的高速数控机床、加工中心,也有采用专用的高速铣、钻床。这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统,才能实现材料切削过程的高速化。高速切削与传统切削最大的区别是,“机床—刀具—工件”系统的动态特性对切削性能有更强的影响力。在该系统中,机床主轴的刚度、刀柄形式、刀长设定、主轴拉刀力、刀具扭力设定等,都是影响高速切削性能的重要因素。在高速切削中,材料去除率即单位时间内材料被切除的体积,通常受限于“机床—刀具—工件”工艺系统是否出现“颤振”。因此,为了满足高速切削加工的需求,首先要提高机床动静刚度尤其是主轴的刚度特性。现阶段高速切削之所以能够成功,一个很关键的因素在于对系统动态特性问题的掌握和处理能力。为了更好地描述机床主轴的刚度特性,工程上提出新的无量纲参数一DN值,用以评价机床的主轴结构对高速切削加工的适应性。所谓DN值即“主轴直径与每分钟转速之积”。新近开发的加工中心主轴DN值大都已超过100万。为了减轻轴承的重量,还采用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都采用油气混合润滑方式。在高速切削加工领域,目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴。在机床进给机构方面,高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝杠,滚珠采用小直径氮化硅陶瓷球,以减少其离心力和陀螺力矩;采用空心强冷技术来减少高速滚珠丝杠运转时由于摩擦产生温升而造成的丝杠热变形。近几年来,用直线电机驱动的高速进给系统问世,这种进给方式取消了从电动机到工作台溜板之间的一切中间机械传动环节,实现了机床进给系统的零传动。由于直线电机没有任何旋转元件,不受离心力的作用,可以大大提高进给速度。直线电机的另一大优点是行程不受限制。直线电机的次极是一段一段连续铺在机床的床身上。次极铺到哪里,初极工作台就可运动到哪里,而且对整个进给系统的刚度没有任何影响。采用高速丝杠或直线电机,能够大大提高机床进给系统的快速响应。直线电机最高加速度可达2~10G,最大进给速度可达60~200m/min或更高。此外,机床的运动性能也将直接影响加工效率和加工精度。在模具及自由曲面的高速切削加工中,主要采用小切深大进给的加工方法。要求机床在大进给速度条件下,应具有高精度定位功能和高精度插补功能,特别是圆弧高精度插补。圆弧加工是采用立铣刀或螺纹刀具加工零部件或模具时,必不可少的加工方法。

3刀具选择

3.1刀具材料的发展高速切削技术发展的历史,也就是刀具材料不断进步的历史。高速切削的代表性刀具材料是立方氮化硼(CBN)。端面铣削使用CBN刀具时,其切削速度可高达5000m/min,主要用于灰口铸铁的切削加工。聚晶金刚石(PCD)刀具被称之为2l世纪的刀具,它特别适用于切削含有SiO2的铝合金材料,而这种金属材料重量轻、强度高,广泛地应用于汽车、摩托车发动机、电子装置的壳体、底座等方面。目前,用聚晶金刚石刀具端面铣削铝合金时,5000m/min的切削速度已达到实用化水平,此外陶瓷刀具也适用于灰口铸铁的高速切削加工;

3.2涂层刀具CBN和金刚石刀具尽管具有很好的高速切削性能,但成本相对较高。采用涂层技术能够使切削刀具既价格低廉,又具有优异性能,可有效降低加工成本。现在高速加工用的立铣刀,大都采用TiAIN系的复合多层涂镀技术进行处理,如目前在对铝合金或有色金属材料进行干式切削时,DLC(DiamondLikeCarbon)涂层刀具就受到极大的关注,预计其市场前景十分可观;

高速切削范文篇4

关键词:高速切削刀具;数控加工;应用

一、高速切削技术和高速切削刀具

目前,切削加工仍是机械制造行业应用广泛的一种加工方法。其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。

“高速切削”的概念首先是由德国的C.S~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1O倍。第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。

高速切削刀具是实现高速加工技术的关键。刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。因此,高速切削对刀具材料提出了更高的要求,除了具备普通刀具材料的一些基本性能之外,还应突出要求高速切削刀具具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。高速切削技术的发展在很大程度上得益于超硬刀具材料的出现及发展。目前常用的高速切削刀具材料有:聚晶金刚石(PCD)、立方氮化硼(CBN)、陶瓷、Ti(C,N)基金属陶瓷、涂层刀具fCVD)~超细晶粒硬质合金等刀具材料。

二、高速切削刀具的发展情况

金刚石刀具材料。金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。金刚石刀具分为天然金刚石和人造金刚石刀具。然而,由于天然金刚石价格昂贵,加工焊接非常困难,除少数特殊用途外,很少作为切削工具应用在工业中。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气钎焊金刚石技术,使天然金刚石刀具的制造过程变得比较简单,因此在超精密镜面切削的高技术应用领域,天然金刚石起到了重要作用。

立方氮化硼刀具材料。立方氮化硼(CBN)是纯人工合成的材料,是20世纪50年代末用制造金刚石相似的方法合成的第二种超材料——CBN微粉。立方氮化硼(CBN)是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削,具有高耐磨性的优良刀具材料。CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。PCBN刀具是能够满足先进切削要求的主要刀具材料,也是国内外公认的用于硬态切削,高速切削以及干式切削加工的理想刀具材料。PCBN刀具主要用于加工淬硬钢、铸铁、高温合金以及表面喷涂材料等。国外的汽车制造业大量使用PCBN刀具切削铸铁材料。PCBN刀具已为国外主要汽车制造厂家各条生产线上使用的新一代刀具。

陶瓷刀具。与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷刀具材料的强度低、韧性差,制约了它的应用推广,而超微粉技术的发展和纳米复合材料的研究为其发展增添了新的活力。陶瓷刀具是最有发展潜力的高速切削刀具,在生产中有美好的应用前景,目前已引起世界各国的重视。在德国约70%加工铸件的工序是用陶瓷刀具完成的,而日本陶瓷刀具的年消耗量已占刀具总量的8%~l0%。

涂层刀具。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-112o3-TiN复合涂层和TiCN、TiA1N等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。(氮)化钛基硬质合金(金属陶瓷)金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金而低于陶瓷材料,横向断裂强度大于陶瓷材料而小于硬质合金,化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。

三、高速切削刀具的具体应用情况

理想的刀具材料应具有较高的硬度和耐磨性,与工件有较小的化学亲和力,高的热传导系数,良好的机械性能和热稳定性能。理想的刀具使得高速硬切削能够作为代替磨削的最后成型工艺,达到工件表面粗糙度、表面完整性和工件精度的加工要求。硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。但细晶粒和超细晶粒的硬质合金由于晶粒细化后,硬质相尺寸变小,粘结相更均匀地分布在硬质相的周围,提高了硬质合金的硬度与耐磨性,在硬切削中获得较广泛应用。

陶瓷刀具和CBN刀具是在高速硬车削和端面铣削中最常用的刀具。它们所具有的高硬度和良好的高温稳定性,使其能够承受在硬切削过程中高的机械应力和热应力负荷。与陶瓷刀具相比,CBN刀具拥有更高的断裂韧性,因此更适合断续切削加工。为保证工件较高的尺寸精度和形状精度,高的热传导率和低的热膨胀系数也应是刀具材料所应具有的重要性质。因此,具有优良综合性能的CBN刀具是最适合用于高速硬切削的刀具。聚晶金刚石刀具的硬度虽然超过立方氮化硼刀具,但即使在低温下,其对黑色金属中铁的亲和力也很强,易引起化学反应,因此不能用于钢的硬切削。

一般而言,PCD刀具适合于对铝、镁、铜等有色金属材料及其合金和非金属材料的高速加工;而CBN、陶瓷刀具、涂层硬质合金刀具适合于钢铁等黑色金属的高速加工。故在模具加工中,特别是针对淬硬性模具钢等高硬度钢材的加工,CBN刀具性能最好,其次为陶瓷刀具和涂层硬质合金。公务员之家

结论

高速切削技术的问世改变了人对传统切削加工的思维和方式,极大提高了加工效率和加工质量。而高速切削与模具加工的结合,改变了传统模具加工的工序流程。高速切削刀具作为高速切削技术的关键,随着技术的不断完善,将为模具制造带来一次全新的技术革新。

参考文献:

[1]韩福庆高速切削刀具材料的开发与选择[J]化学工程与装备2008

[2]周纯江叶红朝高速切削刀具相关关键技术的研究[J]机械制造2008

[3]范炳良林朝平基于高速切削刀具锥柄系统的分析与研究[J]机械设计与制造2008

[4]马向阳李长河高速切削刀具材料[J]现代零部件2008

高速切削范文篇5

关键词:模具制造;高速加工;制造效率

在现代工业制造中,模具制造已经成为汽车生产的一个重要方式,但由于模具内表面精度要求高,且制造周期较长,从而影响产品的开发,导致企业利润下降。高速加工技术的出现,使汽车模具制造的工艺简化,生产周期缩短使企业能够快速适应多变的竞争环境,从而提升企业活力。相对于传统机械加工方式高速加工技术是切削加工得到巨大提升,相同时间内金属的切削量比传统加工提升40%~50%,并且由于高速加工时主轴转速快使切屑带着大量热,能够使工件的热变形变小,提高产品质量[1]。因此,高速加工技术是汽车模具制造中十分重要的生产方式。

1高速加工技术的现状

1.1国外现状。在二十世纪三十年代由德国科学家首先提出高速加工概念并进行实验研究,1970年,美国LockheeedMissilesandSpace公司将高速加工技术用于实际生产。随后,各工业大国都加强对高速加工技术的研发,使得高速主轴、快速进给系统、超硬超耐磨材料和数控系统方面取得较大进展。国外各大汽车公司现在普遍使用高速加工技术来制造汽车,以德国大众汽车为例,大众汽车的缸体,内饰模具以及中控台模具等大平面加工都使用到了高速加工技术,极大的提升了大众汽车的生产率和合格率,降低了成本,节约了能耗。瑞士Miccoli公司研发的五轴联动高速加工中心,采用了重量高的大理石材料作为高速加工中心的机身,可以很大程度上降低生产时产生的振动,提高所加工零件的质量。德国Siemens公司也研发出整体结构呈O型的5轴高速加工中心,使高速加工出的零件的质量进一步得到提升。高速加工技术的应用,极大地促进了高速加工技术的发展,其中以美国CincinnatiMilacron所制造的HyperMach五轴加工中心为突出,其高速加工的主轴转速已经可以达到60000r/min,最大进给速度能达到100m/min,主轴的功率高达80kW。1.2国内现状。国内高速加工技术起步较晚,大部分企业都是依靠国外进口,并且后期投入资金较少,高速加工技术发展增长缓慢,和国外有着较大的差距[2]。我国高速加工技术有着基础研究不足,加工工艺差等缺点,随着二十世纪末引进国外先进高速加工中心,高速加工技术得到了快速的发展,使机械加工周期大大减少。但国内刀具企业一直使用标准化的刀具,没有对刀具进行创新研究,虽然一直在引进一些国外先进的设备,但设备总量不够,大部分用于生产通用的刀具生产线,因此成都工具研究所以及上海工具研究等所加强对高速加工技术的投入,对高速加工技术所需的刀具材料以及加工工艺有了较大的进展,并且已经为航空航天提供产品。高速加工技术现已经成为各大高校研究所的重要课题之一。

2高速加工技术分析

2.1高速加工技术的特点。高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。其切削速度、进给速度相对于传统的切削加工有较大的提升,主要有以下特点:(1)加工效率高。相比传统机加工而言,高速加工技术对材料的切除率提高30%~50%,使模具生产效率提升510倍,提高了产品生产率[3]。(2)切削力较低,切削热量少。在进行高速加工时,随着速度增大,切削力在降低;由于高速切削时切屑会带着90%以上的热量,因此温度会在达到峰值后会降低,当温度降低到一定程度时温度保持当前不变,能够使工件加工的热变形减少,适用于精密部件的加工。以软铝为例,当切削速度达到240m/min时,铝的切削温度达到峰值,继续加大切削速度,铝的切削温度反而会降低,到切削速度增大到一定程度时,铝的切削温度降低到最低,如图1所示。(3)已加工表面质量高。由于高速加工切削力小,在对工件表面进行高速加工时已经对工件表面进行打磨,因此已加工表面质量高,不需要二次加工。(4)减少能耗,节约能源。高速加工技术加工比常规加工减少近一半时间,并且保持质量,减少了能源消耗。2.2高速加工技术刀具材料的选择。进行高速加工时,需要有很高的主轴转速、较大的进给量,因此,对高速加工技术所采用的刀具提出更高的要求。在加工常用模具材料时选用的刀具材料为涂层硬质合金,具有较高的性价比,因此适用的范围最广;加工洛氏硬度(HRC)小于50的模具钢时,所采用的刀具材料为陶瓷,具有的化学性质稳定、耐磨性好、切削速度高和价格低等优点,但它的硬度和韧性较低,易损耗[4];加工淬硬模具钢、冷硬铸铁和钛合金等材料时选用立方氮化硼(CBN)和金刚石作为刀具的材料,具有硬度高,超高的耐磨性,高温时化学性能稳定和有良好的导热性,但价格较高。

3高速加工技术在汽车模具制造中的应用

3.1高速加工技术在汽车模具制造中的方法。高速加工技术和传统加工技术相比,加工工艺有很大的不同,常规加工使用主轴转速低,进给慢,单行程;高速加工技术使用高转速主轴,进给快,多行程。由于高速加工技术要实现高效率的加工,因此需要对加工所需的参数进行调整,其中包括高速加工时所需的刀具、切削量、进给速度等[5]。在加工之前需指定好工艺路径,尤其是对加工顺序的制定,要保证加工零件的精度达到要求,选择合理的走刀路线和换刀次数。需要数控设备具有高转速,并且机床自身需要具有良好的刚性和稳定性,以满足粗加工和精加工的需求;需要精度较高的进给系统,防止刀具进给时在工件表面留下划痕,破坏零件的质量;需要对加工路径进行规划,制定合理的走刀路线,减少下刀次数,提高加工精度。因此,汽车模具生产制造中使用高速加工技术的各阶段加工方法如下:(1)粗加工阶段,主要目的是在短时间内去除90%~95%的材料,宜采用大进给速度和大切削用量,先加工出模具外轮廓。该阶段刀具的切入与切出需要使用圆弧轨迹,旨在防止在大切削量时碰断刀具、损坏模具。(2)半精加工阶段,主要目的是对模具轮廓进行调整,宜采用小进给速度和小切削用量,去除粗加工时所产生的毛刺和飞边等,同时对汽车模具的尺寸进一步调整。该阶段加工需为精加工留有余量,应在半精加工时计算好切削量,保证后续加工。(3)精加工阶段,主要目的是对于模具最后的尺寸以及表面进行打磨,宜采用微进给速度和微切削用量,使模具的精度和表面粗糙度到达所需的要求。该阶段加工时,要严格计算每次切削的深度,尽可能减少抬刀和落刀的次数,并且在刀具切入工件表面时使用圆弧方式切入,保证在进行切削过程中不会中断影响工件表面质量;同理在切出工件表面时也需要采用圆弧方式,避免在工件表面落下划痕,使工件的精度和光滑度受到影响,从而使工件的质量达到要求。以汽车内饰注塑模具高速切削加工为例,粗加工时采用的主轴转速为800r/min,进给速度为400mm/min,加工余量1mm,能在短时间去除大量的余量;半精加工时采用的主轴转速为1500r/min,进给速度为1000mm/min,加工余量0.2mm,可以对模具外观进行调整;精加工时采用的主轴转速为10000r/min以上,进给速度为6000mm/min,加工余量为0mm,使工件的表面粗糙度达到要求。3.2汽车零件模具的高速加工。汽车零件的模具主要有仪表盘、覆盖件、轮毂以及缸体等模具,采用高速加工技术时,其加工效果、方法以及优点具体表现如下:(1)不规则零件模具加工。高速加工在对硬材料切削时有较好的效果。在进行汽车零件模具的制造时,往往需要成百乃至上千的模具,为了使汽车零件模具的制造周期缩短,并且降低汽车模具制造成本,因此,高速加工技术将是汽车零件模具制造技术的首选。对于汽车仪表盘、中控台和内饰板等不规则的零件,通常采用模具进行生产,而这些模具的内腔的形状较为复杂,传统加工方式难以进行加工,采用高速加工方法即可解决上述问题。高速加工技术在形状不规则的零件模具加工中,充分呈现出以下优点:①所加工出的汽车零件模具精度高;②在高速加工时单次的切削量小;③能够进行快速多次切削;④减少了二次修整,加工成品质量高;⑤提高了加工效率。(2)覆盖件模具加工。覆盖件大多数是由各种各样的曲面所构成,使用高速加工中心能够使生产出的覆盖件模具精度等级高、使用寿命长,并且在大进给速度时,高速加工中心可以提供高精度的定位和高精度的插补。铣削量大时,能够保证在铣削过程中不更换刀具,可以对整个曲面进行一次性加工,保证模具的精度。对汽车发动机覆盖件模具进行加工时,由于覆盖件模具需要具有高的抗拉、抗压强度和高的精度,因此,在进行覆盖件模具加工时,通常将完整的毛坯进行大量材料去除,保证模具质量。使用高速加工技术对其进行加工,采用高速加工技术对覆盖件模具的加工时具有以下优点:①高主轴转速以及快速多次的切削可以使模具的粗糙度达到要求质量得到保证;②高速的切削速度、微进给以及多次切削的精度,可以满足覆盖件模具生产的工艺要求,使模具整体加工效率得到提升。(3)缸体模具加工。应用高速加工技术可以使缸体模具生产周期减少,同时提高缸体模具的质量。现在,汽车制造企业都是使用高速加工中心来制造缸体模具,其中上海大众汽车使用高速数控钻削的技术对发动机的缸体模具和缸盖模具等进行高速加工,所加工的缸体模具以及缸盖模具能够一次成型,并且具体较高的精度,能够使缸体模具制造的工序减少,生产周期缩短[6]。(4)轮毂模具加工。使用高速加工技术能够快速制造出汽车轮毂模具,可以保证模具所生产的汽车轮毂的精度与质量。由于汽车轮毂形状复杂,使用传统加工方式费时费力,生产效率低,并且所加工的汽车轮毂难以保证精度要求,因此,使用模具制造汽车轮毂是很多企业普遍采用的方式。

4结语

高速加工在汽车制造中有着不可替代的地位,高速加工技术具高效、优质的加工优势,将继续在机械加工领域起主导作用。本文针对高速加工技术在汽车模具制造中的应用,所提出的方法与所得到的结论,特别是对复杂形状汽车零件、覆盖件、轮毂及缸体等模具高速加工中的应用,具有很高的价值。

参考文献:

[1]徐磊,李强,王冲.高速切削加工技术[J].现代制造技术与装备,2018(06):143-145.

[2]许红伍.高速加工技术在模具制造中的应用[J].江苏科技信息,2017(26):45-46.

[3]HIGHCUTTING[J].F&M:Fabricating&Metalworking,2017,16(06):36-39.

[4]Gong,Feng,Zhao,Jun,Pan,Helin,etal.Performanceofceramictoolsinhigh-speedcuttingiron-basedsuperalloys[J].MachiningScienceandTechnology,2017,21(1/2):279-290.

[5]罗勇明.模具高速加工的工艺及策略[J].中国战略新兴产业,2018(36):220.

高速切削范文篇6

[论文摘要]本文通过对高速切削加工技术的优越性和巨大经济效益的分析,全面论述了高速切削对机床设备及刀具系统的具体要求,阐述了高效率、高精度、高柔性和绿色化的高速切削加工技术是机械加工领域的发展趋势。

1高速切削的概念

当切削速度超过被切削材料临界切削速度时,切削温度下降,切削抗力减小,刀具使用寿命延长。目前,主轴转速高达60000r/min,进给速度高达90m/min,加速度达到1.7g的高速切削机床已商品化。并在航天、模具、汽车等行业的实际应用中,产生了巨大的技术经济效益。高速切削加工不但要求切削主轴的高转速,而且要求轴向进给的高速度和高加速度、先进的切削刀具等相关的关键技术。高速切削应该是可靠的高速切削。通常将切削速度和进给速度达到常规机床5~10倍的切削加工称之为高速切削。然而,根据Salomon的高速切削理论,高速切削应为切削温度不再随切削速度的提高而上升,且以高切削速度、高切削精度、高进给速度与加速度为主要特征的切削加工。因此,对于不同的材料,高速切削的速度范围是不同的。目前,常用材料的高速切削范围:铝合金为1000~7000m/min,碳钢为500~2000m/min,钛合金为i00~1000m/min。

2机床选择

现阶段,为了实现高速切削加工,一般采用高柔性的高速数控机床、加工中心,也有采用专用的高速铣、钻床。这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统,才能实现材料切削过程的高速化。高速切削与传统切削最大的区别是,“机床—刀具—工件”系统的动态特性对切削性能有更强的影响力。在该系统中,机床主轴的刚度、刀柄形式、刀长设定、主轴拉刀力、刀具扭力设定等,都是影响高速切削性能的重要因素。在高速切削中,材料去除率即单位时间内材料被切除的体积,通常受限于“机床—刀具—工件”工艺系统是否出现“颤振”。因此,为了满足高速切削加工的需求,首先要提高机床动静刚度尤其是主轴的刚度特性。现阶段高速切削之所以能够成功,一个很关键的因素在于对系统动态特性问题的掌握和处理能力。为了更好地描述机床主轴的刚度特性,工程上提出新的无量纲参数一DN值,用以评价机床的主轴结构对高速切削加工的适应性。所谓DN值即“主轴直径与每分钟转速之积”。新近开发的加工中心主轴DN值大都已超过100万。为了减轻轴承的重量,还采用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都采用油气混合润滑方式。在高速切削加工领域,目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴。在机床进给机构方面,高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝杠,滚珠采用小直径氮化硅陶瓷球,以减少其离心力和陀螺力矩;采用空心强冷技术来减少高速滚珠丝杠运转时由于摩擦产生温升而造成的丝杠热变形。近几年来,用直线电机驱动的高速进给系统问世,这种进给方式取消了从电动机到工作台溜板之间的一切中间机械传动环节,实现了机床进给系统的零传动。由于直线电机没有任何旋转元件,不受离心力的作用,可以大大提高进给速度。直线电机的另一大优点是行程不受限制。直线电机的次极是一段一段连续铺在机床的床身上。次极铺到哪里,初极工作台就可运动到哪里,而且对整个进给系统的刚度没有任何影响。采用高速丝杠或直线电机,能够大大提高机床进给系统的快速响应。直线电机最高加速度可达2~10G,最大进给速度可达60~200m/min或更高。此外,机床的运动性能也将直接影响加工效率和加工精度。在模具及自由曲面的高速切削加工中,主要采用小切深大进给的加工方法。要求机床在大进给速度条件下,应具有高精度定位功能和高精度插补功能,特别是圆弧高精度插补。圆弧加工是采用立铣刀或螺纹刀具加工零部件或模具时,必不可少的加工方法。

3刀具选择

3.1刀具材料的发展高速切削技术发展的历史,也就是刀具材料不断进步的历史。高速切削的代表性刀具材料是立方氮化硼(CBN)。端面铣削使用CBN刀具时,其切削速度可高达5000m/min,主要用于灰口铸铁的切削加工。聚晶金刚石(PCD)刀具被称之为2l世纪的刀具,它特别适用于切削含有SiO2的铝合金材料,而这种金属材料重量轻、强度高,广泛地应用于汽车、摩托车发动机、电子装置的壳体、底座等方面。目前,用聚晶金刚石刀具端面铣削铝合金时,5000m/min的切削速度已达到实用化水平,此外陶瓷刀具也适用于灰口铸铁的高速切削加工;

3.2涂层刀具CBN和金刚石刀具尽管具有很好的高速切削性能,但成本相对较高。采用涂层技术能够使切削刀具既价格低廉,又具有优异性能,可有效降低加工成本。现在高速加工用的立铣刀,大都采用TiAIN系的复合多层涂镀技术进行处理,如目前在对铝合金或有色金属材料进行干式切削时,DLC(DiamondLikeCarbon)涂层刀具就受到极大的关注,预计其市场前景十分可观;

高速切削范文篇7

在数控技术和刀具技术的共同推动下切削加工已进入了高速切削时代。近二十年切削速度提高了5至10倍,切削加工效率提高了50%到一倍。切削速度提高到一定数值后随着切削速度的增加切削力反而下降,在更高的切削速度下工件的温升也随之降低。现在新型硬质合金涂层刀具、各种超硬刀具已广泛用于汽车、航空、航天和模具等行业各种材料的高速切削加工,包括干切削、重切削和硬切削加工,有效地提高了加工效率和产品质量。

现代加工中刀具费用只占制造成本的3%~4%,但它对总制造成本的影响却要大得多。加工效率提高20%加工成本可降低15%,而刀具价格下降20%加工成本只能降低0.6%,刀具寿命延长一倍加工成本也只降低1.5%。计划经济时代有的加工企业制订刀具消耗定额进行成本控制,甚至在高效率的进口设备上使用低性能的焊接刀具,难以发挥设备性能反而造成更大浪费。现在越来越多的人认识到:加大刀具投入进行高速切削加工,是提高加工效率和降低生产成本的有效手段。这是近年切削理念的一次进步。

几年前国外有人预言“超硬刀具、高韧性陶瓷材料和超硬涂层是切削加工的未来”。现代汽车制造业和航空航天工业用PCD刀具铣削铝合金的速度达到4000~7000m/min;CBN刀具精镗铸铁缸孔的速度达到2000m/min,还成功地用于淬硬轧辊的粗加工;新型超硬涂层牌号的硬度达HV400O,可承受800~1100℃的高温。随着超硬刀具材料和涂层技术的迅速发展,高速切削将会得到更广泛的应用。

二、切削理念的更新推动了加工效率的不断提高(理念篇)

先进刀具有三大技术基础:材料、涂层和结构创新。目前我国的刀具材料和涂层技术与国外还有较大差距,在使用常规加工设备的场合下,注重刀具的结构创新同样是提高切削效率的有效和更为可行的手段。

例如Iscar公司的大走刀量铣刀每齿走刀量达到3.5mm,Seco公司的复合孔加工刀具一次走刀就能完成钻、镗孔和端面倒角等。曲轴加工的工艺进步更具有说服力,从早期的曲轴车加工发展到内铣加工,而九十年代曲轴车拉刀的发明成十倍地提高了曲轴加工效率。现在又出现了效率更高的曲轴高速铣刀,一次走刀就可完成七个主轴颈的加工。东风汽车公司量刃具厂已经成功地为国内汽车厂开发了曲轴车拉刀和高速铣刀并成功用于生产。上世纪九十年代成都工具研究所在涂层、材料的单项技术都不占优势的情况下,凭借自主知识产权的刀具设计和工艺技术,加上涂层、材料和刀具结构创新技术的综合运用,在高强度石油管螺纹刀具上实现了对国外知名企业的一次成功超越。还有许多例子都说明刀具结构创新也有效地提高切削效率。

高速切削只是提高切削效率的手段之一,我们应采用高速切削和刀具结构创新等多种手段实现高效切削,从高速切削到高效切削,是切削理念的又一次进步。

我们注意到近二十年切削速度提高了5~10倍,但加工效率只提高了50%到一倍。原因之一在于切削效率提高的效果被大量的非切削时间抵消了。日本MAZAK公司说他们的加工中心只有百分之三十的时间在为公司创造效益。东方汽轮机厂进口瑞士加工中心上自动纪录的切削时间也只有30%左右。切削技术在不断发展,人们的认识也在不断深化:在提高加工效率的努力中不光是高速切削和高效切削,通过切削应用技术提高切削生产效率的潜力还很大。

东方汽轮机厂近年推广可转位刀具就提高生产效率30%。进而他们又在刀具结构创新上下功夫,与株洲钻石切削刀具股份有限公司合作开发先进刀具,还对老式设备进行改造以使用先进刀具来提高生产效率。他们还对全厂工艺配置进行了优化、加强管理、采用网络编程和切削过程的计算机模拟等手段减少非切削时间,“向70%的时间要效益”。降低非切削时间比例的方法很多,如机外调刀、自动装载机、随机测量、设置装卸工位、采购可靠性高的设备减少维修停机时间等等,在管理手段上优化工艺配置、做好工序平衡以缩短工件周转和等待时间都是有效的方法。

在采用先进刀具实现高效切削的同时,还要应用相关技术和管理手段优化整个加工过程实现高效加工。

从高速切削到高效切削,再到高效加工,我们把这个过程称作切削理念的三次进步。提出这三个切削理念为实现“发展切削技术,建设制造强国”目标指出了多种的途径,各企业应根据各自条件采取适合于自己的方法有效地提高加工的效率。

三、人才、创新、基础、实践(返璞归真篇)

切削理念三次进步,为我们更好地运用切削技术、相关技术和管理手段全面提高加工效率提供了新的思路。为了更好地提升这三个理念并取得效果,应重视人才培养、技术创新、基础学习、注重实践。

当前数控技术和切削技术的发展日新月异。并联机床、直线电机、五轴联动加数控可回转主轴、超硬刀具、新型涂层、40000r/min的高速主轴、7000m/min的切削速度、20m/min的进给速度,更有如切木头一样地切削钢铁的场景让人眼花缭乱……

先进刀具产品层出不穷,广告宣传铺天盖地,在供应商为用户创造效益的服务面前,一些加工企业实行“买来主义”提高生产效率立竿见影。不过在我们花钱而不费大力就提高了生产效率或解决了加工难题后,会不会感到有些茫然?

国内刀具行业正在努力赶超世界先进水平,客观地说目前主要是在跟踪先进技术和产品。在轿车、模具、航空航天等行业的数控加工中使用的刀具大部分仍是外国公司的产品,缺少自主创新使我们与世界先进水平的差距有拉大的趋势,面对高端刀具产品的市场竞争是否又有些无奈?

回想上世纪五六十年代,一批劳动模范、能工巧匠和专家学者们创造了大量先进工具,对推动建国初期的机械制造业起到很大的作用。如北京永定机械厂倪志福创造的群钻、鞍钢机械总厂王崇伦创造的万能工具胎和武汉重型机床厂马学礼创造的深孔套料刀等等。倪志福同志在东欧国家表演群钻时引起了轰动。四十多年过去,切削技术无疑取得了极大的进步,但我们在赶超世界先进水平和享用最先进的刀具进行高效率加工时,对比当时的情形却感到有所缺失―创新动力和创新人才的缺失。

问题在于我们较多地看重国外刀具的先进水平,却较少留意其先进性的支承——人才、创新、基础、实践。我们要提高切削水平用好先进刀具,要开发先进刀具赶超世界先进水平,都得从基本的做起。

首先要培养有创新动力的人才,而学习与实践是人才成长的必经之路。金属切削作为一门传统技术有比较系统的理论基础,用以有效地指导我们进行切削加工。不过切削过程很复杂且受许多随机因素的影响很难用一些公式和定理准确地描述又有其不确定性。关键在于理论与实践的结合,要在实践中逐步增强运用切削理论基础知识解决实际问题的能力。

国外的刀具企业都很重视切削理论基础知识,可我们的高校机械专业却把原先160学时的切削原理和刀具设计归并缩减到不足20学时。有些大学毕业生连基本的切削理论基础都不具备,如何发展我们的切削技术?

为了加强综合切削知识的培训,配合中国刀协20工程我们编写了“刀具应用技术基础”教材,用于中国刀协举办的现代刀具培训与研讨班,尝试将与刀具应用有关的基础技术纳入培训与研讨的内容,以引起大家共同关心和重视刀具的基础知识。教材从切削加工技术系统的构成和刀具应用技术三要素的介绍开始,对工件材料的可切削性、刀具材料与涂层及选择依据、刀具切削几何参数与结构及选择、切削参数的选择、改进切削加工的途径等进行了较系统的阐述。教材还结合现代切削技术的发展增添了与高速切削相关的技术,分别是高速旋转刀具的动平衡技术、安全技术和装夹技术。

我们的目标是为企业培训了解现代切削技术的基础知识和最新发展,掌握切削应用技术的基础理论并能够解决实际问题的人才——我们称之为切削工程师和新一代的刀具大王。通过人才去创新、去实践、去赶超世界先进水平。从高速切削到高效切削再到高效加工,随着切削理念的每一次进步加工效率也不断提高。现在我们应该静下心来从根本问题入手,重视人才、创新、基础、实践―呼唤切削理念新的提升,以带动切削技术的更大进步和加工效率的进一步提高,也才能赶超世界先进水平。

四、结语

高速切削范文篇8

关键词:机械制造;数控高速切削;加工工艺实践

数控高速切削目前在机械制造业得到了普遍运用,日常加工中主要借助了高速加工的基本原理,以精加工数控操作来提高机械制造效率,合理地选用道具。高速切削工艺主要通过数控编程来进行操控的,注意切削用量,以合理的速度、较高的操作工艺来进行机械切削加工制造,在应用高速切削技术的基础上,不仅提高了机械制造速度,还将现代操作工艺的优势得到了很好地体现。因此目前高速切削工艺在国内机械制造业得到了广泛运用,将这种工艺用在难加工材料、复杂曲面、薄壁件等的切削加工环节,更好地发挥了高速切削工艺的优势。

1机械制造中数控高速切削加工的现状分析

在新时期下,难加工材料的切削环节积极运用了高速切削工艺,促进了电火花加工成型,为后期的手工研磨以及抛光等工作打下了稳定基础。但是在实际工作中相应的操控人员没有及时了解市场需求,没有考虑到市场需求的多样化,产品更新的周期缩短,现阶段面临着严峻的市场竞争压力。产品的生产周期由过去的90天变为现在的20天试模,由于模具生产精度不高,无法保证产品及时上市,导致了行业的市场压力大,不利于机械制造业的更好发展。

2关于高速切削加工工艺的解析

2.1高速切削加工工艺介绍。高速切削加工工艺是由英国物理学家首次提出的,其主要目的是:提高切削速度、避免切削变形、提高了切削质量,有效促进机械制造业的稳定发展。高速切削工艺可以被用在高难度的加工环节,对一些难加工的材料,如:淬硬钢、不锈钢、高锰钢、复合材料等,将高速切削工艺应用在这些材料的切削加工过程中,使得相应材料的切削率提高了三到五倍。机械制造中,高速切削工艺是效果最佳的制造技术,因此在整个行业具有很高的应用价值。比如在模具制造中积极应用了高速切削工艺,使其具有了精度高的特征,高效的完成了精加工,不需要进行手工研磨和抛光就可以达到最佳的切削效果。2.2高速切削的主要优势。(1)加工工艺的优势。将高速切削工艺应用在机械制造中,不仅提高了加工效率,还有效缩短了工件加工时间,保证在最短时间内完成加工任务。给企业带来更大的利润,同时采用高速切削工艺生产的产品不论是表面形状精度、尺寸精度,还是粗糙程度都具有一定优势,可以满足机械制造的基本要求。(2)机械加工精度的优势。在机械制造相关工作中应用高速切削工艺不仅降低加工精度,还大大提升了加工质量,以此方式将高速切削工艺在加工精度方面的优势更好的体现出来。比如在高速切削环节,切削力较小,同时工件发生形状变化的可能性很小,积极采用高速切削工艺进行加工,有效降低了工件受热量,避免工件高温受热后发生变形。通过了解高速切削工艺的优势,相关作业人员提高了对这种工艺的认识,目前该工艺在机械制造中的加工环节得到了广泛应用。

3机械制造中数控高速切削加工工艺的实践

3.1高速切削加工工艺应用的条件。高速切削工艺可以完成高难度的材料加工,在应用高速切削工艺的过程中首先要明确高速切削加工工艺应用的条件,在此基础上,掌握高度切削工艺的技术要求,设计出合理的数控机床,从而确保了切削加工工艺的高效运行,提高了机械制造加工效率。(1)主轴部件设计:在数控机床中,主轴部件作为主要构成部分,也是机床运行的执行件。比如借助主轴部件来支撑工件,促进了切削加工工艺的顺利完成,提高了切削载荷力,因此说,主轴部件对加工质量以及数控机床的性能都产生了直接影响。主轴部件设计作为数控机床顺利运行的前提,必须要积极设计主轴部件,以此来提升加工效率,确保旋转刚度、精度和抗振性,合理的控制热变形,更好地保持精度。(2)配套道具:提前准备好配套的道具是数控机床高速切削加工工艺应用的主要条件,积极设计数控机床配套道具。要求道具有很好的耐磨性,刚度要达到要求,轻度和任性足够。在数控高速切削加工中必须要有良好的耐热性和热物理性能,能够有效冲击热能,在市场上常用的数控加工配套道具有:涂层刀具、陶瓷刀具、金刚石刀具等。3.2数控加工编程技术的应用。积极摒弃传统的工艺方式,如在现阶段的数控高速切削加工中应用编程软件,工艺过程繁杂,具有很高的计算精度,计算速度更高、更准,插补功能不可替代。在应用编程技术的过程中,有效提高了加工速度,确保了切削深度,及时改变了以往的加工策略,从而构建了有效、安全、准确的道具加工路径,确保了工件表面精度。提升高速切削工艺,比如在数控高速切削加工中,积极采用等体积切削法来保持了切削厚度,确保了切削体积恒定,通过借助螺旋线方向来找到切入点,使得刀具轨迹平滑。提高了加工质量,工件精度较高,尽量减少了刀具切入次数,提高了加工效率,避免了热变形。3.3明确高速切削加工方案。(1)构建加工控制系统。积极根据零件的精度要求来构建工艺系统,积极了解刀具状况,对零件加工顺序以及加工流程进行合理掌控,及时做好精加工规划。比如在粗加工环节,以最快速度和最短时间来切除工件表面的多余材料,更好地满足了表面质量和轮廓精度的基本要求。促进了数控机床的稳定作业,在应用高速切削工艺的环节有效避免了切削方向和荷载变化,采用大切削间距来进行切削加工,促进了高速切削工艺的有效应用。(2)制定了切削加工方案。比如及时明确了高速切削加工方案,首先设计了初始优化模块,使其具有了数据传输功能,及时完成相关试验,采用经典非线性模型来构建高速切削加工体系,达到了最佳的最优结合,在数据传输中,及时准备了高速切削相关数据。确定切削参数,及时完成试验设计,及时优化切削加工工艺,及时采集相关的工艺参数,掌握加工过程的实际状态,及时绘制加工示意图,根据实际情况来调整加工工艺,确保了加工工艺更好的满足了高速切削的工艺需求。(3)控制过程数据。积极进行加工过程的数据控制,提高数据处理功能,在此环节采用过程控制分析法来掌握高速切削加工工艺的运行状态。分析过程控制图,积极进行过程解析,研究过程能力,提高过程控制质量,采取科学、合理的措施来消除故障问题,保持了过程控制的安全性。将相关的过程控制数据及时发送给统计过程控制模块。3.4高速切削工艺的注意事项。在高速切削加工的过程中,由于加工速度较快,因此一旦出现急停、急动等操作都会影响加工精度,因此需要将粗加工、精加工、镜面加工等作为一个整体,做好统筹规划,只有这样才能实现对切削工艺的有效调整和优化。以刀具切入和切出等方式来确保高速切削加工质量,尽量避免刀具转向,自觉遵循高速切削加工工艺的基本原则,保证切削过程和刀具路径不中断,明确刀具路径,从而有效减少了刀具的切入次数,确保整个切削过程的有效性。合理选择刀具,在平面加工环节,经常采用的是立铣刀,在对立体型面进行精加工的环节及时选用了玉米铣刀、环形铣刀、球头铣刀等变斜角轮廓的刀具,在自由曲面的加工环节,为了确保曲面加工精度,需要考虑球头刀具切削速度的问题,采用顶端密距来进行工件加工。3.5高速切削过程实例分析。在数控高速切削加工中,刀具要从刀点位置开始,逐渐向结束加工部位行进,在设定的路径上运行,在同一零件加工中,走刀方式不同,因此相应的零件切削尺寸也不同,这对加工效率产生了直接影响。注意走刀方向,避免设备损坏,减少刀具的移动时间,积极使用表面平滑的道具来进行数控高速切削,如作业人员采用分层切削法进行,在加工区域一次进刀,从而生成了连续光滑的道具路径,减少了刀路的移动次数,还能对陡峭和关键部位进行分别处理,不抬刀情况下实现了对刀具路径的合理优化。如模型钢尺寸为HRC54,最小半径4mm,尺寸为320mm×260mm,在高速切削环节,其最大加工深度达到24.8mm,在整个结构中都采用的是数控高速切削法来进行,更好的确保了加工精度。在粗加工环节,采用顺铣方式进行,做到了一次性开粗,沿着平行轮廓方向进行切削加工,借助封闭式螺旋刀具来进刀,及时完成了高线加工,同时以最快速度将多余量切除,大大提升了加工速度。为此次加工创造了有利的加工条件,认真规划了进刀路径,在半精加工中,积极对开放区域进行补刀,将整个切削工艺都控制在标准范围内。

4结语

将高速切削工艺应用在切削加工过程中,使得相应材料的切削率提高了3~5倍,提升高速切削加工的有效性和安全性。构建加工控制系统,制定了切削加工方案,减少刀具的移动时间,积极使用表面平滑的道具来进行数控高速切削,更好的确保了加工精度,尽量避免刀具转向,自觉遵循高速切削加工工艺的基本原则,保证切削过程和刀具路径不中断,将高速切削工艺得到很好运用。

参考文献

[1]崔福霞.基于数控机床高速切削加工工艺的应用方式研究[J].科技创新导报,2017,14(17):1.

[2]严江.机械制造中数控高速切削加工技术的应用方式[J].南方农机,2017,48(18):117.

[3]凌魁.数控高速切削加工技术在机械制造中的应用[J].科技创新与应用,2017,(17):105.

[4]马伟明.高速切削加工技术在数控机床中的应用[J].科学技术创新,2016,(10):34.

[5]杨刚.数控高速切削加工模具的工艺改进策略探究[J].农家科技旬刊,2014,(3):25.

[6]任群生.探析高速切削加工技术在数控机床中的应用[J].数字化用户,2013,(10):29.

高速切削范文篇9

实施高速加工技术,首先应有高速加工机床。高速加工机床具有不同于传统数控机床的特点

(1)高速加工机床的主轴部件,要求采用耐高温、高速、能承受大的负荷的轴承,同时主轴动平衡性能好,有良好的热稳定性,能够传递足够的力距和功率且能承受高的离心力。主轴的刚性好、有恒定的力矩。带有检测过热装置和冷却装置。

(2)高速加工机床的进给系统一般采用直线电机驱动,能够实现高的进给速度,达到大的加速度。

3)高速加工机床采用高性能的数控系统,克服传统数控机床的运算速度低和伺服滞后等缺陷,从而能实现高精密伺服控制、高速数控运算和全公差控制功能。

(4)高速加工的机床结构一般通过优化设计采用较轻的移动部件,从而能获得高的加速度特征。

(5)为了能获得高的静态和动态刚度,适应高速旋转的需要,高速加工机床对刀具有严格的要求,尤其是对主轴于刀柄的联结有特殊的要求,广泛使用的HSK刀具一般使用110的小锥度,而不使用

传统的大锥度刀柄。

(6)高速加工具有数控代码预览功能,即高速加工机床的数控系统在进行切削加工的过程中,其读取的加工代码可以有一定量的超前,以便于机床调整进给速度以适应刀具轨迹变化的需要。

2面向高速加工的数控编程基本原则

高速加工对加工工艺走刀方式有着特殊的要求,高速加工的数控编程是一项非常复杂的技术,NC代码的编程员必须了解高速加工的工艺过程,再编制数控加工程序时,将这些加工工艺考虑进去,一般来说,在利用高速加工技术进行模具加工时,应注意如下一些原则:

(1)高速加工时,由于进给速度和切削速度很高,应当避免刀具突然切入和切出工件,避免切削力的突然变化减少冲击。因而,编程者应当能够充分预见刀具是如何切入工件,如何切出工件,尽量采用平稳的切入切出方式,下刀或行间、层间的过渡部分最好采用斜式下刀或圆弧下刀,避免垂直下刀直接接近

工件材料。

(2)在进行高速加工时遇到加工方向改变时,机床为了保证加工的精度,避免过切,通过其预览功能,在加工方向进行改变时一般会自动进行进给速度的调整。但是,当加工方向突然改变时,由于机床的加速度是有限制的,因而,有可能做不到及时的速度调整,造成过切或(欠切),严重的将造成刀具断裂。同时,不断地调整进给速度会严重降低生产效率。因而,编写高速加工数控加工程序时,应尽量避免加工方向的突然改变。行切的端点采用圆弧连接,避免直线连接、层间应采用螺旋式连接,避免直线连接。

(3)要尽可能维持恒定切削负载,切削深度、进给量和切削线速度一定要协调好。当遇到某处切削深度有可能增加时,应降低进给速度,以保持恒定的负载。编写高速加工的数控程序时,应能充分考虑残留余量的效应,最好编程软件有残留余量的分析功能,做基于残留余量的刀具轨迹计算。同时,要注意刀具的实际切削位置,避免切削线速度减低的现象发生,确实处于正常的高速加工切削速度范围,应尽量使用多坐标编程,通过刀轴旋转来维持恒定的切触点位置,维持恒定的切削速度。

(4)刀具路径越简单越好,应尽量采用圆弧、曲线等插补功能,传统的加工模具时采用的密集点数据刀具路径,不太适合于高速加工,一方面数据量太大,加重数控系统的数据处理负担,造成进给速度要适应数控系统的处理速度而减低。另一方面,密集的直线段之间,是C0连续的,因而数控系统要不断地调整进给速度,造成进给速度升不上去,严重影响加工效率。

(5)在进行高速加工编程时,无论从加工精度还是加工安全性考虑,都应该进行充分的干涉检查和加工过程仿真。

(6)注意进行多种加工方案的对比分析,选取最佳的切削方案。

3高速加工对NCP系统的要求

为了能适应高速加工数控编程的要求,针对高速加工的数控编程系统应该满足相应的特殊要求。

(1)NCP系统应该具有高的计算编程速度,在高速加工中,一般可采用非常小的进给量和切削深度,因而计算量较传统的数控编程大得多。同时,由于高速加工对工艺的严格要求一般需要不同方案的对比分析,这更加大了编程工作量,所以要求编程系统应该具有高的编程计算速度。

(2)NCP系统应该具有全程自动防过切能力和自动的干涉检查能力。高速加工以高出传统数控加工近10倍的切削速度和进给速度,一旦发生过切或干涉,其后果将十分严重。传统的模具数控加工编程系统一般采用面向曲面的局部加工,比较容易发生过切现象,一般都是靠人工选择干预的方式来防止,很难保证过切防护的安全性。另外,高速加工在模具的加工制造中经常用于模具细节部分的加工,以取代传统的电极加工,这是,比较容易发生刀柄的干涉,这就要求NCP编程系统能自动检查报告。

(3)适合高速加工的NCP系统,应该能自动进行进给速率和切削速度的优化处理,从而保证在高速加工时的最大的切削效率、最佳的切削条件和切削加工的安全性。

(4)高速加工编程系统应有刀具轨迹的编辑优化功能,避免多余的空刀和通过对刀具轨迹的镜向、复制、移动、旋转等操作避免重复计算,提高编程效率。

(5)高速加工编程系统应该有NURBS曲线插补的编程功能,通过使用NURBS插补编程,减少程序长度。

(6)适合高速加工编程的系统应该有符合高速加工工艺要求的加工策略。如丰富的行间、层间连接方法,丰富的进刀和退刀方法,基于残留余量的刀具轨迹计算方法。

(7)适合高速加工变编程系统,最好能引入工艺系统的参数、材料的最佳切削条件、机床的允许加速度等参数,能够自动确定允许的加工方向变化的程度(即确定不同曲率半径的圆弧段允许的进给速度的变化程度),轨迹上最小的曲率半径与进给速度的关系,能够满足高速加工对切削线速度的自动的调整。

4

目前有关适合高速加工编程的NCP(CAM)系统的研究引起了较为广泛的重视,在许多商用CAD/CAM系统,如英国Delcom公司的PowerMill、以色列的Cimatron、美国的UnigraphicsPTC公司的Pro/Engineering,CNC公司的MasterCAM等在传统的NCP模块中添加了适合于高速加工编程的工艺策略。概括起来主要有如下一些方法:

(1)采用光滑的进刀、退刀方式。

在传统切削轮廓的加工过程中,有法向进、退刀,切向进退刀和相邻轮廓的角分线进退刀等。而在高速切削加工轮廓的过程中,应尽量采取轮廓的切向进退刀方式以保证刀具轨迹的平滑。在对曲面进行加工时,传统的数控加工方法一般采用Z向垂直进、退刀,曲面正向与反向的进、退刀等方式,而在采用高速

切削的方法进行曲面加工时,可采用斜向或螺旋式的进刀方式。同时,CAM系统应该采用基于知识的加工方法,这样当螺旋式进刀切入材料时,系统会自动检查刀具信息,如果发现刀具具有盲区时,螺旋加工半径就不会无限制减小,从而避免撞刀。这就对加工过程的安全性提供了周全的保障。

(2)采用光滑的移刀方式。

这里所说的移刀方式指的是行切中的行间移刀,环切中的环间移刀,等高加工的层间移刀等。应用于传统切削加工方式的CAM软件中的移刀方式大多不适合高速加工的要求。如在行间移刀时,刀具大多是直接垂直于原来行切方向的法向移刀,导致刀具路径中存在尖角;在环切的情况下,环间移刀也是从原来切削轨迹的法向直接移刀,也会导致刀具轨迹出现不平滑的情况;在等高线加工的层间移刀时,也存在移刀尖角。这些导致加工中心频繁的预览减速影响了加工的效率,从而使高速加工不能真正达到高速加工的

目的。

在行间切削用量(行间距)较大的情况下,可以采用切圆弧连接的方法进行移刀。但是当行间距较小时,会由于半径过小而使圆弧近似地成为一点,进而导致行间的移刀变为直线移刀,从而也导致机床预览减速,影响加工的效率。在这种情况下,应该采用高尔夫球竿头式移刀方式。环切的移刀通常有两种方式,一种是圆弧切出与切入连接。这种方法的缺点是在加工3D复杂零件时,由于移刀轨迹直接在两个刀具路径之间生成圆弧,在间距较大的情况下,会产生过切,因此该方法一般多用于在加工中所有的刀具路径都在一个平面内的2.5轴加工;另一种是空间螺线式移刀。这种方法由于移刀在空间完成,所以避免了上面方法的缺点。在进行等高加工时,切削层之间应采用多种螺旋式的移刀方式。

(3)加工残余分析功能。

高速加工过程中,为了延长刀具的使用寿命和保证加工零件的表面质量,应尽可能保持稳定的切削参数,包括保持切削厚度、进给量和切削线速度的稳定性。当遇到某处切削深度有可能增加时,应该降低进给速度,因为负载的变化会引起刀具的偏斜,从而降低加工精度、表面质量和缩短刀具寿命。所以,在很多情况下有必要对工件轮廓的某些复杂部分进行预处理,以使高速运行的精加工小直径刀具不会因为前道工序使用的大直径刀具留下的“加工残余”而导致切削负载的突然加大。

因此,许多软件提供了适用于高

速加工的“加工残余分析”的功能,这一功能使得CAM系统能够准确地知道每次切削后加工残余所在的位置。这既是保持刀具负载不变的关键,更是关系到高速加工成败的关键。

(4)具有全程自动过切处理及自动刀柄干涉检查功能。

高速加工的切削速度比传统的加工方法高出大约10倍多,一旦发生过切或干涉,其后果不堪设想。在高速加工中,一个提高加工效率的重要手段是采用残余量加工或清根加工,也就是采用多次加工或采用系列刀具从大到小分次加工,直至达到所需尺寸,而避免用小刀一次加工完成。这就要求系统能够自动提示最小刀具直径以及最短夹刀长度,并能自动进行刀具干涉检查。此外,在进行数控加工之前,为了能够让用户直观地判断加工过程是否发生过切或刀柄的干涉,CAM系统应该提供加工过程的动态仿真验证,

即把加工过程中的零件模型、刀具实体、切削加工过程及加工结果,采用不同的颜色一起动态显示出来,模拟零件的实际加工过程,不仅可以观察加工过程,而且可以检验刀具与约束面是否存在干涉或加工过切的情形;更为先进的方法是将机床模型与加工过程仿真结合在一起,还可以观察刀具是否与加工零件以外的其它部件(如夹具)发生干涉碰撞。

(5)采用新的加工方法。

a.基于毛坯残留知识的加工。

近年来,许多软件为了适应高速加工的需要,引入了“二次粗加工”的思想,该思想正是“毛坯残留知识”算法的核心。基于毛坯残留知识的加工,简单地讲就是基于残留毛坯的加工。在目前使用的许多粗加工方法中,这种方法已经得到大家的一致认可。它的工作过程是:先执行首次粗加工,然后将加工得到的形状作为生成下次粗加工刀位轨迹的新毛坯。然后根据新毛坯,使用各种走刀方式(如行切,环切等)进行粗加工。其实整个过程的思想就是始终保持刀具切到材料,减少空走刀,以达到提高加工效率的目的。在具有这一加工方式的CAM软件中,一旦你指定初始毛坯,并设定之后的加工为基于残余毛坯的方式,系统在计算下一步刀位时总是基于上一步加工后的残余毛坯。因为有了当前毛坯信息,所以随后产生的刀具轨迹就可以做到比较优化、合理。

b.摆线加工。

为了提高切削速度,人们提出一种被称为“摆线”加工的刀位轨迹计算新方法。这种加工方式是使用切削刀具的侧刃来切削被加工材料。“摆线”是圆上一固定点随着圆沿直线滚动时生成的轨迹。一般来说,摆线是这样一种曲线:假如曲线A上有一固定点,当A沿另一曲线B进行无滑动的滚动时,固定点的轨迹就是摆线。“摆线”加工非常适合高速铣削,因为切削的刀具总是沿着一条具有固定半径的曲线运动。在整个加工过程中,它使刀具运动总能保持一致的进给率。

(6)提供NURBS插补指令生成技术。

传统的模具型面数控加工时经常采用直线插补和圆弧插补技术,在高速加工中已不太适用,一则是因为数据量大,增加机床数控处理时间,一则是不便机床进行进给速度控制,影响加速加工的效率。许多软件和机床提供NURBS曲线插补技术一方面大大降低了数控程序的数据量,一方面光滑了数控加工刀具轨迹。

5结束语

高速切削范文篇10

高速切削加工技术

高速切削加工技术的定义

高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。由于不同的加工工序、不同的工件材料有不同的切削速度范围,因而很难就高速切削的速度范围给定一个确定的数值。对于不同的材料,一般认为灰铸铁的高速切削速度是800-3000m/min、钢件为500-2000m/min、钛合金为100-1000m/min、铝合金为1000-7000m/min。

高速切削,首先是高的速度,即高的主轴转速,另一方面,又应有高的进给速度,为了提高效率,机床还要具有快速移动、快速换刀、高的主轴加速度和进给加速度,只有达到了上述标准才能称之为高速。通常情况下,行业内将主轴转速S>7000rpm,切削进给速度10000mm/min以上的铣削加工,称为高速切削加工。

航空薄壁结构的定义

在飞机结构零件中,按照其在飞机上承载的状况和结构特征将飞机骨架零件分为框类、梁类、接头类、壁板类、肋类等类型,其典型定义如下表:

高速切削加工薄壁结构的优越性

高速切削加工薄壁件相对传统加工具有显著的优越性:切削力小,加工薄壁类零件时工件产生的让刀变形相应减小,易于保证零件的尺寸精度和形位精度。切削热对零件的影响减少,零件加工热变形小,这对于控制薄壁件的热变形非常有利。加工精度高,刀具切削的激励频率远离薄壁结构工艺系统的固有频率,保证了较好的加工状态,实现了平稳切削,证了零件的精度和表面粗糙度。加工效率高,比常规加工高5~10倍,单位时间材料切除率可提高3~6倍。

高速切削加工薄壁结构的策略

高速切削加工薄壁结构对切削刀具、切削用量、工艺方案、数控编程等方面提出了新的要求。

刀具及其夹持系统

刀具结构的选择原则

对于机夹式刀片刀具,由于刀片螺旋角很小,无法形成大的螺旋角,所以真正要加工高质量的薄壁结构件,不采用机夹式刀具用于高速切削。

对于整体式硬质合金铣刀和焊接式硬质合金铣刀,除了焊接式硬质合金应保证焊接的牢固性外,刀具制造应该符合下列要求:

◆具有匹配的刀具几何角度:较大的前角和后角以及适中的螺旋角;

◆合理的短刃长杆结构;

◆侧齿、底齿完全对称;

◆采用圆柱柄,无削平结构;

◆刀体台阶部位采用圆角过度;

◆较高的表面粗糙度;

◆设计的切削刃几何形状必须考虑高速切削条件下切屑生成特性;

◆为提高刚度,尽可能增加刀具中心的尺寸;

◆排屑性好。

刀具材料选择及切削速度要求

高速切削刀具材料必须耐磨、抗冲击能力好(包括热冲击与力冲击)、硬度高、与工件材料亲和力小;高速切削的刀具材料必须根据工件材料和加工性质来选择;一般情况下,高速切削不使用高速钢刀具,多采用硬质合金刀具;由于短时间切削后刀尖圆弧半径与前刀面接触区的涂层出现脱落,涂层硬质合金实际效果与无涂层硬质合金相似,故不推荐采用涂层刀具。

由于刀具在高速切削时产生极大的离心力,飞溅的切屑和崩刃以及变松的刀具夹紧系统都具有很高的动能,另外加工过程中还存在轴向动态力,故刀具应严格在其安全转速范围内使用。

刀具夹持系统选择

刀具夹持系统——刀柄是高速切削时的一个关键部件,起着传递机床精度和转矩的作用。刀柄的一端是机床主轴、另一端是刀具。高速切削薄壁结构时刀柄必须具备高速加工刀柄的一切要求,譬如:好的动平衡特性、很高的几何精度和装夹重复精度、很高的装夹刚度等要求。

目前刀柄与主轴的联接在大多数高速切削机床上以圆锥空心柄(HSK)为主。此外,通过热胀冷缩原理而工作的热缩套刀夹系统以其优越的特性在成飞也得到了越来越广泛的应用。

切削用量

合理切削参数的选择,不仅确保薄壁结构加工的高精度,而且是高速机床发挥效能、处于最佳工作状态的保证。因此切削量要根据机床刚性、刀具直径、刀具长度、工件材料、粗加工或精加工模式而定。

根据成飞关于飞机铝合金薄壁结构件高速、超高速低切削力铣削等一系列切削试验数据并参考国外资料,总结各切削用量的选取原则如下:

(1)切削速度v加工铝合金的切削速度是没有限制的。从理论上讲,采用较高的切削速度,可以提高生产率,可以减少或避免在刀具前面上形成积屑瘤,有利于切屑的排出。铣削速度的提高无疑会加剧刀具的磨损,但是,铣削速度的提高可以有效地提高单位时间单位功率的金属切除率,同时在一定的高速切削速度范围内可以提高工件表面加工质量。对于大量的航空铝合金薄壁结构(壁厚1.0~1.5左右)的零件,切削速度以切削力为基准选择。高速切削薄壁时,在径向切深ae不变的情况下,径向切削力随速度基本不变,意味着可选择的切削速度范围很大,根据现有设备,可以在转速12000~22000rpm选择。

(2)进给量fz加大进给量fz无疑会增加切削力,这显然对薄壁加工不利。故精加工时,不选择大的fz,但fz过小也是有害的,因为fz过小时,挤压代替了切削,会产生大量切削热,加剧刀具磨损,影响加工精度。所以,精加工时,应选取较适中的进给量,一般可以选择在0.1mm/z~0.2mm/z之间。

(3)轴向切深ap与径向切深ae无论从力的角度,还是考虑到残余应力、切削温度等因素,采用小轴向切深ap大径向切深ae显然是有利的,这是高速切削条件下切削参数选择原则。对于薄壁结构的侧壁加工,小ap条件下显然产生的径向力小,而且在ap小的情况下,一定范围内ae的增加并不会增大薄壁变形,这样就可以取较大的ae进行加工;对于薄壁结构的腹板加工,最后一刀采用大的ap可以提高加工系统刚度,减小腹板变形,所以,加工腹板时应选取较大ap进行加工。一般情况下,轴向切深ap可在2~10mm之间选择,径向切深ae可在0.5~0.9D之间进行选择。

切削用量,要针对不同的加工对象,需要编程人员选择合理的刀具运动轨迹,优化切削用量,根据需要选择适合的切削速度,只有这样才能真正发挥高速切削技术的长处。成飞经过近几年的探索研究,通过大量的切削试验,建立了符合设备、刀具、产品特点的切削参数数据库,在军机、民机转包项目等数控加工中得到了良好的应用。

高速切削薄壁结构典型工艺方案

航空薄壁结构零件按其工艺、结构特点,可分为框类、梁类、壁板类等类型。在大量应用高速切削技术进行的薄壁结构零件加工中,总结形成了典型工艺方案。

梁类零件工艺方案

结构特点:梁类零件分为单面及双面,该类零件外形上多处涉及机身理论外型,零件腹板与缘条厚度均较小,一般为1.5~2mm左右,最小处仅1.5mm,尺寸公差为±0.15mm,材料切除率达到96%左右。

工艺方案:装夹,零件都为卧式放置,采用两孔一面定位,两个工艺孔设置在工艺凸台上,定位状态较好。在零件周围设置压紧槽,操作工人只需在加工前压紧零件压紧槽,无须再在加工过程改变零件的装夹状态。

工艺路线:采用高速加工机床,由于高速切削加工技术具有高转速、快进给、轻切削的特点,从而使加工后出现的零件变形得到了较好地控制,因此将粗加工、半粗加工和精加工合并为一道工序,基本实现从毛坯到零件的一次性加工。

框类零件工艺方案

结构特点:该类零件外形上多处涉及理论外型,内形有槽、下陷、开闭斜角、凸台等制造特征。零件腹板与缘条厚度均较小,一般为1.2~2mm左右,尺寸公差为±0.15mm。材料切除率达到97%左右。

工艺方案:装夹,零件都为卧式放置。零件采用两孔一面定位,两个工艺孔设置在工艺凸台上,由于零件的大部分筋条在同一高度,拟以筋条面定位。由于在零件较大,装夹拆卸不方便,采用垫板工装,零件周边设工艺凸台,并在工艺凸台上制沉头压紧孔,垫板上制螺纹孔,用沉头螺栓压紧固定在垫板工装上。

工艺路线:采用高速切削加工技术,将粗加工、半粗加工和精加工合并为一道工序,以实现从毛坯到零件的一次性加工。

壁板类零件工艺方案

结构特点:零件为双面槽腔结构,无飞机外形,数控加工后还需喷丸成形。内形包括有槽、下陷、凸台等几何特征。零件厚度较薄,槽腔较浅,大部分槽深小于3mm,零件腹板厚度不均匀,一般为1.5~3mm左右。尺寸公差为±0.2mm。材料切除率约90%。

工艺方案:装夹,由于该类零件在立式机床上完成加工,因此零件都为卧式放置。由于零件薄,加工过程中极易因余量去除不均而产生加工变形;且总体结构上缺少定位夹紧部位,同时为了减少加工时的零件变形而引起的腹板厚度超小,采用真空吸附加工。

工艺路线:采用高速切削加工技术,将粗加工、精加工合并为一道工序,加工顺序的选择是先加工槽少的一面,加工完此面后在槽腔内填充石膏,作翻面加工的定位基准,均采用真空吸附加工。

高速切削薄壁结构的程编策略

高速切削对CAM的要求

高速加工的编程方式及方法必须与高速加工的工艺方法有机结合,这就对高速加工的CAM提出了更高的要求。高速加工的CAM必须满足以下条件:

◆恒定的切削条件;

◆保证最大和稳定的切削速度;

◆避免任何刀轴移动加速度的不连续和突变;

◆刀具运动时保持恒定的主轴进给,产生相同体积的切削;

◆刀具长度与直径比最好小于10;

◆减少无切削移动;

◆无垂直方向的跳动;

◆无切削方向的剧变;

◆在保证插值公差的前提下,尽可能减少段数;

◆提供高度连续的光顺刀位数据。

◆自动过切(残余)保护功能。

◆系统能提供仿真验证的功能。

高速切削对切削轨迹的要求