空调控制系统十篇

时间:2023-04-11 06:35:46

空调控制系统

空调控制系统篇1

关键词:VAV 空调系统 节能 控制

一、引言

空调系统根据系统的风量固定与否,可以分为定风量和变风星空凋系统。在空调设计中,选择什么样的系统形式,直接影响冷、热源耗能和动力耗能。

变风量系统(Variable air volume system)是一种节能的空气调节方式,从当前形势来看,国外在办公、商业等大型公共建筑里(主要是内区),比较多的采用变风量(VAV)空调系统。与定风量空调系统相比,它在满足空调要求的同时,又有明显的节能效果,全年空气输送能耗对节约1/3,设备容量减少20%―30%,据多种资料介绍,变风量系统一般情况下,节能可达50%左右。

空调系统能量平衡方程式为

由上式可知,当负荷Q或室内设定温度变化时,保持送风量G不变,调节送风温度,或保持送风温度不变(或微调),根据室内负荷Q的变化调节送风量G,均能保持空调系统的能量平衡。前者就是目前国内较广泛使用的定风量空调系统。其主要缺点是当负荷变化时采用再热方式调节能量,冷热抵消造成较大的能量损失。后者则为极具应用前景的VAV空调系统。

二、VAV空调系统构成

VAV空调系统组成:变风量空调机组十变风量末端(VAVBOX)。在VAV空调系统中,末端系统的组成方式不同。相应地,组成具有不同结构的VAV空调系统。如单风管VAV系统、单风管再加热VAV系统、单风管送回风机联动VAV系统、单风管旁通式VAV系统等。

(一)单风管VAV系统

单风管VAV系统的结构原理如图1所示。

图1 单风管VAV系统的结构原理

在每个空调房间入口处的送风支管上装置了送风量调节装置,VAV空调机组根据空调系统所有末端用户所需实际总风量通过调节风机转速调节风机风量供给。VAV末端装置根据空调区温度的变化,调节被控区域的送风量,以维持室内温度的平衡稳定。根据送风风道静压的变化,控制变频器驱动的风机转速;根据新风量需求对新风、回风和排风扇进行的联动控制,调节新风、回风风量比。

(二)单风管再加热VAV系统

当系统达到最小风量时,通过再热盘管的调节,保证空调区温度不致过低或过热。系统工作过程中,如果送风量达到最小值时,通过加热盘管的方式对送风温度进行调节,保证空调区的空气调节满足需求。

(三)单风管送回风联动的VAV系统

单风管送回风联动的VAV系统可通过空调区分支风管上的VAVBOX和回风管上的VAVBOX联动控制。以调节送风量与回风量之差,从而实现控制空调区域静压的目的。

(四)单风管旁通式VAV系统

单风管旁通式VAV系统工作过程:随着室内负荷的变化,当进入室内的风量减少时,多余的风量通过旁道管口排出,与室内回风一起返回空调机组。该系统结构较简单,可满足恒温要求。

(五)VAV系统变风量末端装置与控制

在VAV系统运行中,通过特殊的送风装置来调节风量,这类送风装置叫末端装置,也叫VAVBOX。末端装置一般有以下几种类型:

1、普通型VAV末端装置。普通型VAV末端装置主要由温度传感器、湿度传感器、电动风门、风速传感器、控制器等部件构成,通过调节风门来控制空调房间的温度。温度传感器测出的温度信号送给DDC经过与设定值进行比较,取出偏差送给控制器,经过算法处理后输出控制调节电动风门的开启度,从而调节空调区温度。

2、再热(冷)型VAV末端装置。在普通型VAV末端装置的基础上增加了再热(冷)装置,就构成了再热(冷)型VAV末端装置,在风量统计的范围内,通过调节风门控制空调区温度。当风量调节到最大极限值,且温度仍达不到设定值时。通过DDC将加热器开启来控制风量,从而使空调房间温度达到设定值。

3、风机型VAV末端装置。在末端装置中增加了加压风机构成的系统叫风机型VAV末端装置。根据加压风机和变风量阀的排列方式不同可分为串联风机型和并联风机型。串联风机型是指风机和变风量阀串联内置,一次风既通过变风量阀,又通过风机加压;并联风机型是指风机和变风量阀并联内置,一次风只通过变风量阀,而不需要通过风机加压。该末端装置工作时。能有效改善室内温度分布和气流条件,但设备成本和运行成本提高,可靠性有所下降。

三、VAV空调系统的特点

(一)节能性好。由于变风量系统的末端装置可以随着空调房间实际需要的负荷的变化而改变送风量,它意味着整个空调系统的供冷量可以随着负荷的变化而在建筑物的各个方位之间自动转移,充分利用了在同一时刻,建筑物各个朝向的负荷参差不齐这一特点,减少整个系统的负荷总量,从而使设备规格减小,初投资和运行费都减小。

(二)能实现各局部区域的灵活控制,可以根据负荷的变化或个人的要求自行设置环境温度。与一般定风量系统相比能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象,并由此可以减少制冷和供热负荷15%―30%。

(三)由于末端装置的送风散流器诱导比高,室内空气分布均匀,因而送风温度可以降低,即使在部分负荷送风量减少的情况下,也不会引起不舒服的冷死角。这样,风管尺寸可以减小,末端装置的数量可以减少。

(四)配以合理的自动控制,空调和制冷设备只按实际需要运行,耗电降低,运行费可进一步减小。

(五)变风量系统实际上可以不要作系统风量平衡调试,就可以得到满意的平衡效果, 末端装置上的风量调节器可以手动设定在预先确定的需要的空气量上,系统风量平衡只要调节新风、回风和排风阀门就可以了。

四、VAV系统运行与节能控制

(一) 连锁控制

变风量空调系统的启动、停机顺序应通过连锁控制来进行。

空调机组的启动顺序:新风风门开启一回风风门开启一送风机启动一排风风门开启一回风机启动一空调冷冻水/热水调节阀开启一加湿阀开启。

空调机组的停机顺序:加湿器停机一空调冷冻水/热水调节阀关闭一回风机停机一排风风门关闭一送风机停机一新风门/排风门关闭、回风门停机。

(二)变风量空调机组的送风量、送风温度调节与节能策略

VAV系统控制的核心是对总风量进行控制。常用的总风量控制方法有:法、定静压变温度法、变静压温度法和VAV系统总风量控制法。定静压定温度

1、定静压定温度法(Constant Pressure Temperature,CPT)。这种控制方法是:在送风温度保持不变,但保证系统风管中某一点或几个固定点处平均静压为一定值,通过控制变频器转速。将以上诸参考点的平均静压控制在给定值,以实现总风量的调节控制。

该法多选送风干管末端的参考点平均静压做调节参量,采用控制机组风机转速来稳定末端静压。当为被调控区域的热负荷匹配增加供风量时,风管压降增加,末端静压降低,末端定压传感器测得的静压值送往DDC的AI口,与设定值比较后的偏差值,按特定调节规律运算并输出控制信号到变频器调节转速稳定静压。

末端静压和送风温度都不变的控制方法就是定压定温法。

2、定静压变温法(Constant Pressure Variable Temperature,CPTV)。当VAV系统末端负荷发生变化时,在保持参考点平均静压不变的条件下。通过调节空调机组送风温度,来实现末端负荷变化引起VAV系统总负荷的动态跟踪变化。

这种系统方法可以保持送风温度不变,通过调节空调机组通风量动态跟随末端负荷变化的要求,同时保证末端静压不变;也可以在保持空调机组通风量不变的情况下,通过调整空调机组送风温度来满足末端负荷变化的要求,同时保持末端静压维持在稳定值;还可以在保持末端定静压的条件下,同时调节空调机组的总送风量和送风温度。来实现定静压变温度的控制方法。

3、变静压变温度法(Variable Pressure Variable Temperature,VPVT)。当末端负荷变化时,同时调节末端静压和送风温度,即末端静压和送风温度均是可调节的参数。

4、VAV系统总风量控制法。控制末端静压的VAV系统工作运行存在着不稳定性因素.采用总风量与末端负荷匹配的总风量控制法可有效地进行VAV系统中的运行与节能控制。通过自动计量和统计求出各末端风量总量,通过送风机相似特性及相关的计算求出送风机转速,并控制送风机在此转速运行,使送风量与负荷匹配,这就是VAV系统中的总风量控制法。

在控制精度要求不高时,构建开环的总风量控制系统,此时控制策略与算法较简单,稳定性好,但是在各末端风量处在动态变化及设备性能变化时,VAV系统工作运行误差就很大,采用反馈方式构成闭环控制后,系统性能会大幅提升。

(三)回风机转速控制

在较大的VAV空调系统中,末端数量多、分布范围大,总风量大且风道管路较长,系统装置中包含总回风管路中的回风机。在控制上,除了对风机进行变频调速控制外,还要求对回风机进行相应的联动控制,既控制送风量,也控制回风量,以保证空调房间在其他运行参数得到满足的同时使送风量和回风量达到平衡。一般情况下,回风量要小于送风量,但在被调控区域有负压要求时,回风量应大于送风量。应根据系统的实际情况确定送风量与回风量应大于送风量。应根据系统的实际情况确定送风量与回风量的差值,同时根据风管末端静压信号调控回风机的转速及风量。

还可以将送风机前后风道压差测量值和回风机前后风道压差测量值送人DDC的AI口并与DDC内存储的设定值进行比较,对偏差进行给定控制算法运算后,输出控制信号调节风机转速,使回风量满足要求。

(四)湿度控制

被调节区域的湿度平均值可用空调机组回风相对湿度来描述,因此以空调机组回风的相对湿度作为调节量,调节送风含湿量来实现湿度控制。回风管中的空气湿度经湿度传感器检测得到并送往DDC,与设定值比较,其偏差经贝运算得到控制信号调节加湿阀开度,将空调机组回风的相对湿度控制在设定值。

(五)空气质量控制

对空调机组的回风总管中的CO2、CO含量进行检测,以此来确定空调区域的空气质量。空调质量传感器检测到的CO2,、CO浓度值信号送往DDC,DDC处理后输出控制信号控制新风风门开度,调节空间区 域的空气质量。

(六)新风量、回风量与排风量的比例控制

烩值描述湿度空气的温度和含湿量,DDC根据新风的温湿度、回风的温湿度进行回风及新风的烩值计算,并按回风和新风的合理烩值比例调节新风、回风风门的开度,使系统在接近最佳的新风、回风量比值状态运行实现节能。

参考文献:

[1]徐超远,郑文剑,余宁浙. 变风量空调系统(VAV)总风量控制实例分析[J]. 智能建筑与城市信息, 2008,(09) .

[2]李传东,田应丽,李松,冯璐. 变风量空调系统控制方法研究[J]. 安装, 2007,(07) .

空调控制系统篇2

冰蓄冷中央空调是将电网夜间谷荷多余电力以冰的冷量形式储存起来,在白天用电高峰时将冰融化提供空调服务。由于我国大部分地区夜间电价比白天低得多,所以采用冰储冷中央空调能大大减少用户的运行费用。

冰蓄冷中央空调系统配置的设备比常规空调系统要增加一些,自动化程度要求较高,但它能自动实现在满足建筑物全天空调要求的条件下将每天所蓄的能量全部用完,最大限度地节省运行费用。

2控制系统结构

控制系统由下位机(现场控制工作站)与上位机(中央管理工作站)组成,下位机采用可编程序控制器(PLC)与触摸屏,上位机采用工业级计算机与打印机,系统配置必要的附件如通信设备接口、网卡、调制解调器等,实现蓄冷系统的参数化与全自动智能化运行。

下位机和触摸屏在现场可以进行系统控制、参数设置和数据显示。上位机进行远程管理和打印,它包含下位机和触摸屏的所有功能。整个系统以下位机的工业级可编程序控制器为核心,实现自动化控制。控制设备与器件包括:传感检测元件、电动阀、变频器等。

2.1下位机系统(区域工作站)

2.1.1TP21触摸屏

采用TP27彩色触摸屏作为操作面板,完全取代常规的开关按钮、指示灯等器件,使控制柜面谈得更整洁。并且,TP27触摸屏在现场可实现状态显示、系统设置、模式选择、参数设置、故障记录、负荷记录、时间日期、实时数据显示、负荷曲线与报表统计等功能,中文操作界面直观友好。

2.1.2SIEMENS可编程序控制器

SIMATICS7-300系列PLC适用于各行各业、各种场合中的检测、监测及控制的自动化,其强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。

该产品具有光电隔离,高电磁兼容;具有很高的工业适用性,允许的环境温度达60℃;具有很强的抗干扰、抗振动与抗冲击性能,因此在严酷的工作环境中得到了广泛的应用。

自由通讯口方式也是S7-300型PLC的一个很有特色的功能,它使S7-300型PLC可以与任何通讯协议公开的其它设备、控制器进行通讯,即S7-300型PLC可以由用户自己定义通讯协议(例ASCII协议),波特率为1.5Mbit/s(可调整)。因此使可通讯的范围大大增加,使控制系统配置更加灵活、方便。任何具有串行接口的外设,例如:打印机或条形码阅读器、变频器、调制解调器(Modem)、上位PC机等都可连接使用。用户可通过编程来编制通讯协议、交换数据(例如:ASCII码字符),具有RS232接口的设备也可用PC/PPI电缆连接起来进行自由通讯方式通讯。

当上位机脱机时,在下位机控制下,整个系统能正常运行。

2.2上位机系统(中央管理工作站)

2.2.1上位机

上位机即图文控制中心,主要由PC机和激光打印机组成,采用SIMATICWINCC软件平台,采用全中文操作界面,人机对话友好。管理人员和操作者,可以通过观察PC机所显示的各种信息来了解当前和以往整个冰蓄冷自控系统的运行情况和所有参数,并且通过鼠标进行设备管理和执行打印任务。

2.2.2WINCC软件平台

WINCC软件在自动化领域中可用于所有的操作员控制和监控任务。可将过程控制中发生的事件清楚地显示出来,可显示当前状态并按顺序记录,所记录的数据可以全部显示或选择简要形式显示,可连续或按要求编辑,并可输出打印报表和趋势图。

WINCC能够在控制过程中危急情况的初发阶段进行报告,发出的信号既可以在屏幕上显示出来,也可以用声音表现出来。它支持用在线帮助和操作指南来消除故障。某一WINCC工作站可专门用于过程控制以使那些重要的过程信息不被屏蔽。软件辅助操作策略保证过程不被非法访问,并提供用于工业环境中的无错操作。

WINCC是MICRSOFTWINDOWS98或WINDOWSNT4.0操作系统下,在PC机上运行的面向对象的一流32位应用软件,通过OLE和ODBC视窗标准机制,作为理想的通讯伙伴进入WINDOWS世界,因此WINCC可容易地结合到全公司的数据处理系统中。

3冰蓄冷系统的控制

3.1控制目的、范围及主要受控设备

蓄冷控制系统控制目的:通过对制冷主机、储冰装置、板式热交换器、系统水泵、冷却塔、系统管路调节阀进行控制,调整储冰系统各应用工况的运行模式,在最经济的情况下给末端提供一稳定的供水温度。同时,提高系统的自动化水平,提高系统的管理效率和降低管理劳动强度。

控制范围包括整个冰蓄冷系统的参数状态显示、设备状态及控制,主要控制设备有:双工况主机、电动阀、冷却塔、冷却水泵、蓄冰装置、初级乙二醇泵、板式换热器、次级乙二醇泵等。

3.2控制功能

控制功能包括整个冰蓄冷系统稳定、经济运行所需的功能。

3.2.1工况转换功能

根据季节和机器运行情况,自控系统具备以下工况转换功能:

a)双工况主机制冰同时供冷模式;b)双工况主机单独制冰模式;c)主机与蓄冰装置联合供冷模式;d)融冰单独供冷模式;e)主机单独供冷模式。

3.2.2工况的启停、显示和故障报警功能

控制系统按编排的时间顺序,结合负荷预测软件,控制制冷主机及设备的启停数量及监视各设备之工作状况与运行参数,如:

-制冷主机启停、状态及故障报警;-制冷主机运行参数;-制冷主机缺水保护;-制冷主机供/回水温度、压力遥测和显示;-冷冻水泵启停、状态及故障报警;-乙二醇泵启停、状态及故障报警;-冷却水泵启停、状态及故障报警;-压差旁通管的压差测量与显示;-冷却塔风机启停、状态及故障报警;

-冷却塔供/回水温度控制与显示;-供/回水温度、压差遥测控制与显示;-板式换热器侧进出口温度控制与显示;-蓄冰装置进、出口温度遥测控制与显示;-冷冻水回水流量控制与显示;-电动阀开关、调节与阀位控制与显示;-室外温湿度遥测控制与显示;-蓄冰量测量与显示;-末端冷负荷控制。

3.2.3数据的记录和打印功能

控制系统对一些需要的监测点进行整年趋势记录,控制系统可将整年的负荷情况(包括每天的最大负荷和全日总负荷)和设备运转时间以表格和图表记录下来,供使用者使用。所有监测点和计算的数据均能自动定时打印。

3.2.4手动/自动转换功能

控制系统配置灵活的手动/自动转换功能。

3.2.5优化控制功能

根据室外温度、天气预报、天气走势、历史记录等数据自动选择主机优先或融冰优先。在满足末端负荷的前提下,每天使用完储存的冷量,尽量少地运行主机。充分发挥冰储冷系统优势,节约运行费用。

3.2.6全自动运行功能

系统可脱离上位机工作,根据时间表自动进行制冰和控制系统运行、工况转换、对系统故障进行自动诊断,并向远方报警。触摸屏显示系统运行状态、流程、各节点参数、运行记录、报警记录等。

3.2.7节假日设定功能

系统可根据时间表自动运行,同时也可预先设置节假日,控制储冰量和储冰时间,使系统在节假日时对不需要供应空调的场所停止供冷。

3.2.8下位机操作功能

下位机彩色触摸屏操作界面见图1.

下位机操作功能如下:

a)人机对话。操作人员可通过触摸面板进行人机对话,操作界面完全中文化,具有提示、帮助、参数设置、密匙设置、故障查询、历史记录等功能。

b)系统设置。包括操作口令设置、运行设置、运行时间表设置、记录溢出处理、自动/手动/测试选择、节假日设置、系统参数设置(包括各节点温度、压力,各介质的流量,储冰量,制冰速率,融冰速率,阀门开度,末端负荷等。)

c)故障记录、运行记录、历史记录等。

3.3远程监控

控制系统通过电话线或宽带网,与专家系统连接,对系统进行运行监控、参数修改、数据采集等,使系统不断完善和软件版本升级,让用户得到更好的服务。远程监控的目的是用户可以通过PSTN(公共交换传输网)对冷冻站进行异地远程监控。同时也可以实现远程调试、远程适时监控和在线维护等,从而大大减轻工程人员的工作强度,降低工程成本。

3.4系统扩展控制

控制系统设计界面友好,PLC和触摸屏均可扩展,内容可扩展、参数也可修改,通过485通讯接口或通信协议实现BAS与冰储冷自控系统一体化,节约投资、方便管理。系统集中控制,减少了动力柜占地面积,又使动力柜型号统

一、式样相同、大小一致。系统扩展控制如下:

a)污水泵自动控制;b)风、排风控制;c)活水泵稳压控制;d)防水泵定时运行、检测、报警;e)淋水泵稳压控制;f)筑物夜间轮廓照明自动控制;g)低配计量、开关状态检测、报警。

空调控制系统篇3

关键词:纺织空调,自动控制系统,定露点调节方案,变露点调节方案

 

纺织空调自动空调控制系统通常采用PLC/DDC控制单元。通过对车间空气的温度、湿度、焓值等参数测量和比较,对新回风比例、一次加热量、喷水温度、再热量、送回风机的风量进行调节,从而达到稳定车间温湿度参数、实现最大限度节能的目的。根据纺织厂特点,空调自动控制系统通常采用定露点调节和变露点调节方案,介绍如下。

一、定露点调节方案

1、定露点调节方案简介

定露点调节方案是指通过PLC/DDC控制系统,通过保持恒定的送风露点,来控制车间的温湿度。这种调节方案是一种应用较多的方法。

纺织车间由于余热量变化较大、余湿量基本不变,室内热湿比接近无穷大。,变露点调节方案。空调室送入车间的空气状态变化过程接近等湿线变化,这就为定露点送风控制提供了条件。在某一个特定的时期内,只要送风机器露点保持稳定,就可利用改变送风和二次回风比的方法,控制室内温湿度。

2、定露点调节方案中机器露点的控制

(1)利用改变喷水温度控制送风露点

由于负荷的变化引起送风露点变化时,调节器按一定的调节方案输出控制信号,控制电动调节阀,调节循环水的开度,利用改变冷(热)水和循环水的混合比,将露点温度控制在给定的范围内。

(2)利用改变新回风的混合比、喷淋循环水的露点控制方法

当采用调节新回风比,并在喷水室内喷淋循环水进行露点控制时,利用空调室露点温度计检测机器露点。根据露点温度测量值和调节器的设定值进行比较,根据露点温度的偏差,调节器按一定的规律输出控制信号,由电动风阀调节新回风比,使新回风混合点在某一时期内稳定在某一等焓线上,利用喷淋循环水等焓加湿的方法稳定机器露点。

由于纺织空调的特点,利用定露点进行送风调节是一种应用较多的方法,介绍如下。,变露点调节方案。

3. 定露点调节方案

定露点调节方案可分为定风量调节和变风量调节。定风量调节是指向车间送风量保持一定的情况下,送风露点保持恒定;变风量调节是指向车间输送风量发生改变,但送风露点仍然保持恒定。

(1)定风量调节

机器露点确定以后,若采用定风量调节方法,这时可以采用调节二次回风比的方法,调节向车间送风的状态点,达到控制车间温度和相对湿度的要求,如车间温度升高,相对湿度下降,则减少二次回风比;反之应增大二次回风比。

(2)变风量调节

机器露点一定,若采用变风量调节方法,这时空调室可以根据车间负荷引起的车间温湿度变化,输送同一露点的空气,采用不同的风量,达到温度车间温湿度的要求。

当车间温度升高,相对湿度降低时,则增加送风量。,变露点调节方案。反之,当车间温度降低,相对湿度升高时,则降低送风量。

纺织车间由于某一时期喷淋水的温度一定,而且大多数企业感到冷量不足,因此机器露点在某一时期一般稳定在一个温度范围之内,这时采用定露点变风量的控制方法可较好地稳定车间的温湿度,由于送风量的变化有较好的节能效果,因此定露点变风量的控制方法在多数纺织企业得到了应用。

二、变露点调节方案

1、变露点调节方案简介

变露点调节方案是指通过PLC/DDC控制系统,通过保持变化的送风露点,来控制车间的温湿度。,变露点调节方案。这种调节方案是一种逐步得到推广应用的控制方法。

对于室内相对湿度要求较严格、室内产湿量变化较大的场所,可以在车间直接设置温湿度传感器,利用车间温湿度直接和控制器的设定参数相比较,给出控制信号,控制相应的调节结构。这种直接根据室内温湿度偏差进行调节,采用浮动机器露点、并辅以送风量调节的方法,来平衡车间扰动因素的影响,称为变露点控制方法,或称为直接控制法。它与定露点相比,具有调节质量好、适应性强、节能环保的优点,目前已逐渐得到广泛的应用。

2、变露点调节方案调节原理

变露点控制的工作原理如图1所示。假定室内余热量恒定而余湿量变化,则热湿比将发生变化。当热湿比为时,送风露点为;如果余湿减少,热湿比增加为,则送风应增加含湿量,相应的送风露点应升至;如果余湿增加,热湿比减少为,则送风应减少含湿量,相应的露点应降至。这时可以采用改变送风量,或二次回风比的方法控制车间温湿度。可以看出,当余湿变化时,只要改变送风状态露点温度就能满足被调对象相对湿度不变的要求,这就是变露点控制方法的调节原理。,变露点调节方案。

在冬季,若车间需要加热时,车间热湿比线为εD,可以采用二次加热的方法达到室内热湿比εD需要的送风状态点。

随着自动控制技术的发展和计算机技术的应用,空调自动控制已成为纺织空调节能控制的重要手段之一,采用计算机强大的处理能力,可同时实现新回风比调节、喷水温度控制、变风量调节等内容,并可逐时根据空气调节室外气候分区和车间温湿度控制范围确定最节能运行方案,实现大幅度节能。,变露点调节方案。

三、结论

本文总结了纺织空调中两种调节方案:定露点调节方案和变露点调节方案。定露点调节方案是指通过PLC/DDC控制系统,通过保持恒定的送风露点,来控制车间的温湿度,这种调节方案目前应用较多。变露点调节方案的送风露点则可以变化,它的调节质量好、适应性强、节能环保,目前已逐渐得到广泛的应用。

空调控制系统篇4

关键词:DDC;厂房空调系统;应用研究;

中图分类号: TK323 文献标识码: A 文章编号:

0.引言

在现代建筑设计中,暖通空调系统所消耗的能量越来越呈现出上升的趋势,在整体能耗中所占的比例越来越大,就目前而言民用建筑中空调系统的能耗占总能耗的50%-70%左右。所以有必要发展一种有效的空调系统节能方法,尤其应用在改善现有空调系统自动化程度方面。在工业化设计中许多地方对环境有着极为严格的要求,对于一些放置精密设备的地方对温、湿度都有着非常高的控制要求,同时现代工厂管理也对空调系统提出了较高的要求,一种可以远程集中管理的空调控制系统也因此孕育而生。DDC直接数字化控制方法是一项构造简单操作容易的控制设备,它可借由接口转接设备随负荷变化作系统控制,如空调冷水循环系统、空调箱变频自动风量调整及冷却水塔散热风扇的变频操控等,可以让空调系统更有效率的运转。这样不仅节省了大量能耗和人力,而且还可使系统在设计要求的工况下稳定运行,从而延长设备的使用寿命以及达到工艺系统对环境的要求和节能目的。

1.DDC控制系统概述

DDC系统是直接数字控制系统(Direct Digital Control,缩写成DDC)。这是目前国内外应用较为泛的计算机控制系统。其基本框图如图1所示。控制系统中引入计算机,运用微机指令系统编出符合某种规律的程序,实现对被控参数的控制。

图1微机控制系统基本框图

在常规控制系统中,控制规律由硬件决定,若改变控制规律,则必需改变硬件;而计算机控制系统,控制规律的改变只需改变软件的编制。在计算机控制系统中输入输出信号都是数字信号,因此在输入端经A/D转换器,将模拟信号转换成数字信号;在输出端经D/A转换器, 将数字信号转换成模拟信号。通过计算机对控制规律的数值计算,并以其结果(数字形式或转变为模拟量)直接控制生产过程。信号的输入输出又按能否直接被微机或执行器接受而分为数字量输入、输出(DI/DO)和模拟量输入、输出(AI/AO)。模拟量信号所对应的是一定量的电压或电流值,这与传感器输出信号的特征有关。一般情况下,空调自控系统中常见的模拟量输入有:温度、湿度、压力、流量、压差等。模拟量输出要进行P、PI、PID 控制的电动水阀和风阀。

数字量的输入有:电动机状态、水泵和风机状态、过滤器报警状态、压差开关、水位开关、防冻保护等。数字量的输出有:电磁阀控制、二位电动水阀控制、水泵及风机等设备的起停控制。图2是DDC系统框图。该系统利用多路采样器按顺序对多路被测参数进行采样。经A/D转换输入到计算机;再按编制的控制程序对各参数进行比较、分析和计算;最后将计算结果经D/A转换器、输出扫描器按程序送至相应的执行器。实现对生产过程各被控参数的调节和控制,使其保持在预定值或最佳值上,以选到预期的控制效果。

图2 DDC系统框图

DDC系统还具有巡回检测功能,能显示、修改参数值、打印制表、越限报警、故障诊断和故障报警。当计算机或系统的某个部件发生故障时,能及时通知操作人员切换至手动位置或更换部件。

2.建筑物空调系统结构

一般建筑物常用的空调系统有CAV、VAV、VWV等,各有不同的操控方式,都可以用DDC控制。

2.1 定风量系统(CAV)

定风量系统(Constant Air Volume),顾名思义即是风量维持一定之意。定风量系统为空调机吹出的风量一定,以提供空调区域所需要的冷(暖)气。当空调区域负荷变动时,则以改变送风温度应付室内负荷,并达到维持室内温度于舒适区的要求。常用的厂房空调系统为:AHU空调机与FCU冰水管系统。这两者一般均以定风量(CAV)来供应空调区,为了应付室内部分负荷的变动,在AHU定风量系统以空调机的变温送风来处理,在一般FCU系统则以冰水阀开关控制来调节送风温度。

2.2 变风量系统(VAV)

变风量系统(Variable Air Volume,简称VAV),即是空调机(AHU或FCU)可以调变风量。然而AHU及FCU在送风系统上会浪费大量能源:因为在长期低负荷时送风机仍要执行全风量运转,这不但不易维持稳定的室内温湿条件,也浪费大量的送风运转能源。变风量系统就是针对送风系统耗电缺点的节能对策。变风量系统可分为两种:一种为AHU风管系统中的空调机变风量系统(AHU-VAV系统);一种为FCU系统中的室内风机变风量系统(FCU-VAV系统)。AHU-VAV系统是在全风管系统中将送风温度固定,而以调节送风机送风量的方式来应付室内空调负荷的变动。FCU-VAV系统则是将冰水供应量固定,而在室内FCU加装无段变功率控制器改变送风量,亦即改变FCU的热交换率来调节室内负荷变动。这两种方式通过调整风量来减少送风机的耗电量,同时也可增加热源机器的运转效率而节约热源耗电,因此可在送风及热源两方面同时获得节能效果。图3是DDC变风量系统控制组态图。

图3 DDC变风量系统控制组态

2.3 变流量系统(VWV)

变流量系统(Variable Water Volume,简称VWV),是用一定的水温供应空调机以提高热源机器的效率,用特殊的水泵来改变送水量,从而达到节约水泵用电的功效。变水量系统对水泵系统的节能效率根据水泵的控制方式和VWV使用比例而异,一般VWV的控制方式有无段变速与双向阀控制方式。以上三种空调系统是目前厂房空调最常被设计的系统。厂房空调控制也就是把管路、管件、阀体或阀门集中设定控制流体提供冷气。所以有效组合厂房空调控制即能有效控制耗能,设计合乎节能的空调系统。

3.厂房空调系统的DDC控制方法

DDC设备在市面上的产品,各厂家的型号、套件都有所不同,但系统大同小异。只要将类比讯号输入电脑,就能作控制与设定。当这些控制运用在空调设备时,整合方式有下列几种方式:

3.1 定风量系统(CAV)的DDC控制

因为是定风量系统,所以可以控制冰水系统上的二通阀。当室温升高,室内传感器送出信号给控制器,控制器接到信号与设定的温度比较,输出信号给冰水管上的二通阀,控制二通阀打开,使循环风变冷送入室内。如室内温度下降过多,盘管风机作卸载。室内温度传感器传送信号至控制器为模拟输入,控制器与设定温度比较,输出模拟信号至冰水管上,二通阀关闭。二通阀也有比例型式,这种比例式二通阀控制冰水大小进入冷排使空调更有弹性控制,维持室温在设定值上下。

3.2 变风量系统(VAV)的DDC控制

箱型空调机则以出风温度及预设定的比值为控制方式。靠传送、回风及外气温度传感器来控制马达转速。控制程序如下:

(1)出风温度感应到传感器(设定在13℃)控制二通阀打开。

(2)送冷气时,冰水传感器测得冰水离开冷排的温度,调整出风温度状况,陆续利用DDC控制变频器,改变马达转速送出理想出风温度。

(3)当冰水阀门关小至13℃,DDC控制器打开外气及回风风门,混合送风温度,直到外气风门关至最小,以维持13℃送风风温,并可兼外气空调利用。

(4)低温限制感应混合温度控制以保护冷排不结冰。一般建筑物空调系统每天的冰水主机开关机,使用DDC来操控可以设定所有开关机程序并且标准一致。主机控制系统加装模拟信号适配卡转换传递信息,再加一台列表机,就能把一天中所有运转情形显示出来。遇有跳机时又能及时通知技术人员前往查看。

4.变频器节能计算方法

4.1 计算全负载的容量

全负载容量一般是以马达的马力数(HP)×0.746/马达效率(%),单位为(kW)。

调查空调系统所需的空调能量,并完整地记录一个周期内详细的变化数据。通常周期是以一周为单位或是以一天而重复,但须随气温的变化和季节的更替作调整。统计一个完整的周斯中各种不同负载的所有操作时间,单位为小时(h)。在此基础上,查表得到不同负载在未使用高功率变频器前及使用高功率变频器后所需动力百分比,此值是相对于全负载下的实际所需动力值。计算后可得不同负载下所需的实际动力值,单位为kW。

4.2 计算全年可节省电力

将前述不同负载所需之动力值,依未使用高功率变频器所得之值减去使用高功率变频器后所需之值,差值即为单位小时可省之电力。将不同负载可省之单位小时电力乘上一年内该负载所需操作之时数,所得之值即为该负载一年内可省下之电力,单位为千瓦小时745×68。将所有不同负载可省之电力累计,即可得使用高功率变频器后一年内可省之电力总量,单位为kW·h。将全年可省之电力总量乘上单位电价即可得全年可省之电费,单位电价之单位为元3 千瓦小时。在此并未考虑基本电价或流动电价,也未分峰电价或谷电价。

5.结语

建筑物智能化是21世纪的趋势,在建筑物的运行管理中,减低其运行费用,是智能化发展的要求。而空调设备的节能改造,正是减低运行费用的捷径,在发达国家,DDC控制的变风量系统占空调系统的八成以上,公认的节能效果是降低能耗达五成。利用DDC系统来控制厂房空调系统节能,主要是通过改善不理想的控制方式来实现。目前所需要的实施措施就是整合DDC自动控制系统,利用其随负荷变化进行快速有效地调整风机马达转速,以达到节能目标。

参考文献

[1]刘铭.暖通空调DDC控制系统[J].西安航空技术高等专科学校学报,2011,03:27-29.

[2]曲广庆,祝小斐,李红燕.基于DDC的车间空调自动化改造[J].中国设备工程,2010,09:21-22.

[3]余海敏.DDC系统在空调工程中的应用[J].中外建筑,2012,04:167-168.

空调控制系统篇5

关键词:VRV空调系统;控制方式;建筑工程

Abstract: The smaller of the VRV air conditioning system using the remote control is the scene more appropriate. For larger systems, the use of centralized management is more reasonable for the construction of the building automation system, priority should be given to using a dedicated gateway networking, control and management can not only meet requirements, and can make full use of the building weak intelligent control and management integration platform with a number of weak systems to achieve functional linkage.

Keywords: VRV air-conditioning systems; control methods; construction projects

随着制冷空调技术的迅速发展,空调器正在从传统的单室内机、单室外机的结构逐渐向单室外机多室内机及多室内机和多室外机系统发展。具有代表性的变流量制冷系统(Variable Refrigerant Volume Air - conditioning System,简称VRV)也从单元变流量制冷系统(SVRV)向多元变流量制冷系统发展(MVRV)。

1.VRV空调系统的原理和特点

VRV 空调系统是在电力空调系统中,通过控制压缩机的制冷剂循环餐和进入室内换热器的制冷剂流量,适时地满足室内冷热负荷要求的高效率冷剂空调系统。其工作原理是:由控制系统采集室内舒适性参数、室外环境参数和表征制冷系统运行状况的状态参数,根据系统运行优化准则和人体舒适性准则,通过变频等手段调节压缩机输气量,并控制空调系统的风扇、电子膨胀阀等一切可控部件,保证室内环境的舒适性,并使空调系统稳定丁作在最佳工作状态。

VRV 空调系统具有明显的的节能、舒适效果,该系统依据室内负荷,在不同转速下连续运行,减少了因压缩机频繁启停造成的能量损失;采用压缩机低频启动,降低了启动电流,电气设备将大大节能,同时避免了对其它用电设备和电网的冲击;具有能调节容量的特性,改善了室内的舒适性。VRV 空调系统具有设计安装方便、布置灵活多变、使用方便、可靠性高、运行费用低、不需机房、无水系统等优点。

VRV空调系统全称为变制冷剂流量系统。结构上类似于分体式空调机组,一台室外机对应一组室内机(一般可达16台)。控制技术上采用变频控制方式,按室内机开启的数量控制室外机内的旋涡式压缩机转速,进行制冷剂流量的控制。VRV空调系统的设计包含两个部分:空调设备选型及空调管路设计;空调系统控制设计。前一部分内容由设计院的暖通工程师设计,后一部分内容通常由提供全套产品的系统工程承包商配套设计。

2.VRV空调系统的控制方式

2.1集中控制 集中控制目前广泛用于小型VRV空调系统,如一拖一、一拖二和一拖三系统。控制成本,可以不同层次的控制要求,适合固定配置的机组。

2.2 独立式控制 室外机、室内机根据功能不同自带相对独立的控制系统。通过相对简单的通讯实现机组的模式控制,适用于非固定配置的机组。应用特点是通用性好,便于产品的标准化和系列化。

2.3 集散式控制 集散式控制是在独立式控制的基础上进行功能升级。一是在模式控制的基础上实现系统运行参数的控制,提高系统的运行效率,二是将空调系统作为建筑环境的子系统,融人楼宇自动控制系统。

2.4 VRV空调系统的网关控制

楼宇自控系统是智能建筑内的重要设备,从通常的监控对象讲,对空调系统的监控无论从监控点占全系统的数量还是从投入产出的节能效果比较,在整个系统中都占有重要的份量,楼宇自控系统中的其它部分主要为开关量的时间、事件监控信号。在采用VRV空调系统的智能建筑中,若不将其纳入建筑物的楼宇自控管理系统中,整个系统的节能效率将降低,设备投资回收期增长,经济效益也会降低。

若在楼宇自控系统设计中预留若干输入、输出监控点,以期对VRV空调系统的运行状况进行监控。但由于VRV空调系统的室内机与室外机是一个闭环控制运行系统,且室外机始终处于侍服或运行状态,以致于按照传统方式设置的楼宇自控监控点显得缺少实际意义,唯一能考虑的只是在其配电回路中设置监控节点,起到按时间程序设定开启系统的功能,控制不能源浪费。VRV产品制造商都已相继开发出了基于BACnet协议专用网关的接口设备,可以满足作者将VRV空调系统纳入建筑物楼宇自控系统中的设想。

VRV末端设备的运行状态是通过BACnet网关接口上传信号至建筑物自控中心的BAS或BMS系统,自控中心经该网关接口下传信号至末端设备,并对整个VRV空调系统实行系统管理。经对这二个系统的集成,在中央控制中心可实现以下功能:室温监视;温控器状态监视;压缩机运转状态监视;室内风扇运转状态;空调机异常信息;ON/OFF控制和监视;温度设定和监视;空调机模式设定和监视(制冷/制热/风扇/自动);遥控器模式设定和监视;滤网信号监视和复位;风向设定和监视;额定风量设定和监视;强迫温控器关机设定和监视;能效设定和设定状态监视;集中/机上控制器操作拒绝和监视;系统强迫关闭。 设定和监视配置了独立控制管理系统的控制方式、基于BACnet协议网关的VRV空调系统控制线路从控制形式上均属于集中控制管理方式,由于控制方式是建立在建筑物一体化智能控制管理平台上,可以与其它弱电系统实现联动控制功能,其优越性就更明显。如利用电子考勤及电子门锁系统实施VRV空调系统的启、停联动,达到有效节能的目的,利用火灾报警信号,实施VRV空调系统的相应联动功能,满足消防要求。

3.BACnet网关接口的开放性操作

BACnet作为楼宇自控系统的一个重要标准,近年来已为人们普遍关注。其所开发的一些设备已可以与大量“第三方”设备兼容通讯,但仍有不少设备采用自定义的通讯协议,只能采用网关的形式与“第三方”互联。VRV空调系统的BACnet网关是制造厂商为实现其空调系统与楼宇自控系统的互联而设计的专用网络接口,它可通过BACnet以太局域网和BACnet客户端通信。支持部分标准对象类别,由此能提供VRV空调系统的信息。目前,这类设备基本都可以与市场上主流楼宇自控系统设备实现连接。

4.采用BACnet网关的经济性

空调控制系统篇6

(华北电力大学动力工程系,河北 保定 071003)

【摘 要】本文介绍了变风量空调系统的基本原理,采用PLC控制技术对变风量空调系统的室内温度进行了PID控制方法的研究,以某一车间为控制区域,运用该方法进行控制,测量了室内温度和送风阀门开度的实时曲线,结果表明,该方法可行有效,控制效果良好。

关键词 变风量;总风量;PLC;PID控制

0 引言

智能建筑业随着城市化进程的推进而快速发展,在智能建筑中普遍采用中央空调系统,由于空调系统耗电量大,因此节能在智能建筑中就显得格外必要。中央空调系统分为定风量和变风量空调系统。变风量空调系统是根据空调区域负荷的变化来改变送风量,实现对空调区域的温度进行调节和控制[1]。与定风量空调系统相比,具有良好的舒适性及自平衡特性;风机功率能接近建筑物空调负荷的实际需要,节省了能耗。同时在过渡季节也可以尽量利用室外新风冷量;系统的灵活性较好,易于改、扩建,维护非常方便,运行费用低,尤其适用于格局多变的建筑。在节能效果上变风量空调系统远远优于定风量空调系统。变风量空调系统一般适用于多房间且负荷有一定变化的建筑。由于变风量空调系统的控制系统相对较为复杂,如果控制系统设计不合理,不能很好地起到节能效果,很难达到理想状态[2]。

综上所述,变风量空调系统是一种节能、舒适和安全的空调系统,大力发展变风量空调系统符合我国可持续发展的战略。发展变风量空调技术,提高变风量空调系统的应用性,将会对我国智能建筑业的能源节约起到至关重要的作用。

1 变风量空调系统的组成及其原理

变风量空调系统是以节能为目的发展起来的一种空调系统形式,它是利用改变室内的送风量来实现对室内温度调节,同时变频调节送风机和回风机来维持系统的有效、稳定运行,并动态调整新风量保证室内空气品质及有效利用新风能源的一种高效的全空气系统。

变风量空调系统由空气处理机组、送风系统(新风/排风/送风/回风管道)、自控系统、变风量末端装置(VAVBOX)、房间温控系统等组成,其中变风量末端装置是变风量空调系统的重要部分。

空调系统检测装置分别对送风温度、回风温度,湿度,空气质量,管道压力等参数进行检测,末端自控装置可以接受室温调节器的指令,根据房间温度的控制要求调节送风量,维持室内温度不变,同时向系统控制器传送自己的工作状况,根据系统总的送风量的不断变化,适时地调节空气处理机组的风机变频器工作参数,改变风机转速,节约送风动力。新风量的调节方法是空调控制性能好坏的关键,为了达到良好的空调温度和湿度控制要求,提高空调系统的舒适度和节能效果,需要良好的控制策略,以满足人们的需要。典型的变风量空调系统结构图如图1 所示。

图1中房间内设置的温度传感器 T 根据房间温度与设定温度的比较,将反馈信号传送给VAV BOX 的电动风阀执行机构,调节末端送风量,当送风管道内由于末端电动阀的开启度的变化,静压值也随之变化,压力传感器P将信号反馈到系统控制器,空调机组的变频器根据系统控制器的指令,改变机组风机转速,使机组送风量适应末端的要求,从而实现节能运行。

实际应用中,VAV BOX通常也设置一个风机系统,将一次送风和房间内回风混合后经风机加压(或者一次风不经风机加压而与加压的室内回风并联)送入房间,从而确保室内的换气次数不变。

一般而言,变风量空调系统采用定静压控制、变静压控制、总风量控制三种风量控制方式[3]。定静压控制方式较为常用,然而,如果为了确保系统风道中的压力,风机的功耗便会增大,且变风量末端风阀会产生较大的噪声。变静压控制方式能够极大减小风机功耗,然而,采用变静压控制方式复杂度高、调试难度大,尤其是需要多次换季调试;总风量控制方式空调系统的设计中,确保空调系统各末端所需风量的总和空调系统当前总风量相匹配,在对风机动力型的变风量末端控制中较为常用。

2 基于PLC的变风量空调系统控制

变风量空调系统是多变量,大滞后、非线性线性和不确定性的系统,PID控制具有结构简单、参数易于调整,适用于难以建立精确数学模型的非线性被控对象,因此在工业过程控制中得到了广泛的应用[4]。变风量空调系统的控制具有被控设备分散、控制变量之间相互关联性强等特点,要求采用的控制设备能够相互通讯。

采用PLC的控制系统具有可靠性高、易于控制、系统设计灵活、变成使用简单、抗干扰能力强、有良好的适用性和可扩展能力等特点,从而得到越来越广泛的应用。PLC的通讯功能也很强,可实现PLC与计算机、PLC与PLC、PLC与其他智能控制设备之间的通讯联网。PLC与计算机联网,PLC作为下位机用于现场设备的直接控制,执行可靠有效的分散控制。计算机作为上位机可以提供良好的人机界面,进行系统的监控和管理。

本文的研究对象为某一大型制药公司的10个生产车间,虑到各个生产车间的电气室在地理位置上分布较散,为便于布线及维护,要求每个生产车间均用一套独立的PLC控制系统;负责对现象各种信号的采集与处理,同时据设定的各种工作参数对现场的执行机构(如电机、阀门、泵等)进行输出控制,以达到指定的控制效果;10个系统均可设定控制温度、湿度,每个生产车间的运行参数及实时数据要在本地及中央控制室中设定与读取;为实现可在本地设定及读取数据,每台PLC主机挂载一个触摸屏,两者之间用RS-232相联进行通讯;考虑到各车间相对距离较远,为节省成本,PLC主机可用RS-485的连接方式与之相近的PLC主机相联接组成RS-485子网,再与位于中央监控室的计算机(上位机)进行通讯,达到从远程对各个控制系统进行监控的目的。风机、泵的驱动执行机构采用变频器;变频器的开关可用PLC进行控制,而变频器的频率可通过PLC的模拟量输出信号或用PLC与变频器通讯的方式进行控制。

本系统的变风量空调系统的温度通过PLC的PID模块进行控制。

温度控制回路:风道内和室内设置的温度传感器用于测定温度,为控制器的调节提供依据。根据所测室内温度与设定值的偏差,通过PID控制调节送风阀门的开度,改变送风量的大小来实现温度控制。室内温度控制回路如图3所示。

风量控制:通过房间送风阀后的差压传感器来测量房间内的送风量,并根据送风量的大小来来调节VAVBOX的变频器的频率,改变风机的转速来调整回风量。

以某面积为100m2的车间为例,室内温度30℃。设定的目标是用该控制系统把室内温度稳定在25℃。通过PLC控制系统对测试车间内变风量空调系统的室内温度进行PID控制,得到了实测的室内温度的变化趋势如图4所示。

从实测的送风温度的变化趋势图中可以看到:当系统开始运行后,由于温度差,送风阀门全开,风量最大;室内温度相对变化缓慢,这是因为车间空间较大,室内温度变化有延迟;室内温度的曲线经过一段平缓区后开始下降,随着室内温度的下降,风量逐渐减小,最后室内温度稳定在25℃附近,送风阀门开度保持不变,保证送风量一定。实验结果表明,基于PLC的变风量空调系统的温度PID控制,能够很好地调节和控制变风量空调系统的送风量,保证室内温度维持在设定值,控制效果良好。

3 结语

随着社会的进步和科技的发展,人们对生活和办公环境的舒适性要求越来越高,节能的意识越来越强,变风量空调系统能够同时满足人们对舒适性和节能的要求。PLC是综合了计算机技术、自动控制技术和通信技术发展起来的一种通用的工业自动控制装置。PID控制由于其控制器结构简单且能满足大量工业过程的要求,而在工业过程控制中得到了广泛应用。笔者研究了基于PLC的变风量空调系统温度PID控制方法,实验结果表明,通过PID控制能够很好地调节和控制变风量空调系统的送风温度,控制方法可行有效,控制效果良好。

参考文献

[1]郭维钧,贺智修,施鉴诺.建筑智能化技术基础[M].北京:中国计量出版社,2001.

[2]曹振华.变风量空调系统的特点和发展前景[J].洁净与空调技术,2011,2:74-75.

[3]蒋虹.基于分布式控制系统(DCS)的变风量空调系统的设计[J].建筑节能,2011,39(8):7-10.

空调控制系统篇7

关键词:集中空调;变风量;智能控制;前景

中图分类号:TB494 文献标识码:A 文章编号:

随着我国城市的发展,经济的增长,集中空调的应用日益广泛,特别是在一些大型商场、办公楼等等大型公众场所中,更是发挥了重要作用。在信息化技术高速发展的今天,空调智能控制应用于集中空调系统中,实现了变风量空调系统的智能化控制,解决了变风量空调对控制的依赖性。正确地完成变风量空调系统控制设计是变风量空调系统设计的重点,也是系统成功与否的关键。

一、集中空调变风量系统智能化控制技术的应用

变风量空调系统区域温度可控,满足了个性需求;部分负荷时,采用变频装置调节风机转速,大大减降低了风机能耗;保持定风量空调系统空气过滤效率高、室内空气品质好、室内相对湿度低,热舒适性好的特点;通过改变新风比还可利用室外新风进行自然冷却,并可实现低温送风;系统无水管进入空调区域。其突出的优点、性能,深受用户欢迎。但在实现智能控制上,也经历一段艰难的实践摸索过程。最初是采取以下的方法进行“智能”控制的:

1、变风量末端控制

变风量末端按温控区设置,每个变风量末端需控制器,由对应温控区内的室内温控器控制。控制器是变风量末端装置控制系统的核心,它将被调量与定值进行比较,得出偏差值,然后参照预先设定的控制规律,调节风阀的开度,是被调量等于或接近于给定值。变风量末端装置控制器采用连续性控制规律。

2、系统风量控制

(1)控制原理:空调器AHU的风量控制是变风量空调系统最主要的控制内容之一。本工程选用变定静压法控制系统风量。变定静压法的控制逻辑:根据各独立分区的变风量末端装置控制器提供给中央监控系统的数据,按各分区最大静压需求值重新确定静压设定值。系统静压值尽可能设置得低些,直至某分区的末端装置调节风阀全开。

变定静压法原理图

(2)静压设定点:变定静压控制法仍需设置静压测定点。由于静压设定值可随时根据需求重新设定,静压设定值的大小变得不那么重要,它仅起到初始设定作用。系统静压初始设定点应设置在离空调器出口约1/3处的主送风管上。

二、智能控制技术的逐步发展,在变风量空调系统中的新应用

随着智能控制技术的不断成熟进步,目前主要分为:分级递阶控制系统,专家控制系统,人工神经网络控制系统,模糊控制系统,学习控制系统等几种。

这里主要介绍一下:模糊控制系统 、人工神经网络控制系统、专家控制系统在变风量空调系统中的应用。

1、模糊控制

模糊控制是以模糊集理论为基础,以模糊语言变量和逻辑推理为工具,利用人的知识和经验,将直觉纳入到决策之中的一种智能控制方法。它是利用模糊及理论设计的,无需知道被控对象精确的数学模型,而且模糊算法能够有效地利用专家所提供的模糊信息和知识,进而能够处理定义不完善或难以精确建模的复杂过程。三十多年来,模糊控制及其算法在工程领域取得的明显应用效果,使人们坚信在原有控制理论基础上纳入模糊控制,是解决非线性不确定系统控制问题的有效途径之一。

模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。实践证明,它具有如下几个特点:

(l)易于实现对具有不确定性的对象和具有强非线性的对象进行控制;(2)对被控对象特性参数的变化具有较强的抗干扰能力; (3)对于控制系统的干扰具有较强的抑制能力。

模糊控制理论和技术是智能控制领域中非常有前途的一个分支,在工程上也已经获得了很多成功的应用。1974年,英国学者Mamdani利用模糊语言构成的模糊控制器,首次将模糊控制理论应用到蒸汽机和锅炉的控制中。1979年,英国学者Procrk和Mamd耐研究出一种自组织的模糊控制器,标志着模糊控制器智能化程度向高级阶段发展。1980年代末期,日本科学家成功地将模糊控制理论运用于消费产品控制和工业控制,在世界范围内掀起了应用的高潮。

2、人工神经网络

人工神经网络是由大量神经元处理单元广泛互连而形成的网络,是一个高度复杂的非线性动力学系统。它是对人脑功能的抽象和模拟,能够反映人脑的基本特性,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

智能建筑VAV空调(变风量空调)系统就是比较典型的人工神经网络。VAV空调系统的特点是节能潜力大,控制灵活,然而VAV系统需要精心设计、施工、调试和管理,否则有可能产生新风不足、气流组织不好、噪声偏大、节能效果不好等问题。VAV空调系统能否正常运行在很大程度上要依靠控制系统,VAV空调系统的控制系统基本上都采用VPT法(变静压变温度法),机理是由各VAV的要求风量计算出系统的要求风量进行前馈控制,同时根据各VAV阀位开度和系统送风量静压是否满足,进行反馈控制,控制方式基本上采用多个回路的PID控制,基本结构见图1所示。由于VAV空调系统是一个高度非线性系统,PID控制在面临复杂的环境时,控制效果很差。因此,运用智能控制方法从全局对系统进行控制,不需要对系统建模,可解决以往控制回路由于耦合带来的许多控制性能问题。神经网络控制已经开始运用在VAV空调系统中,主要是与PID控制结合,对送风量进行智能控制,获得了很好的效果。

图1VAV空调机组变静压控制原理图

3、专家系统

专家系统是一种人工智能的计算机程序系统,具有相当于某个专门领域的专家的知识和经验水平,以及解决专门问题的能力,其主要由知识库和推理机两个部分组成成。

基于MAS的协作智能专家系统,将MAS与专家系统相结合,并集成模糊控制、神经网络等人工智能技术,形成一个优势互补系统,共同实现分布式中央空调系统的整体优化控制与节能。系统的模型见图2所示,主体框架基于MAS,充分利用Agent具有的自主性、自治性、社会性和智能性等特性,实现系统资源全局共享和协调控制,从而较好地解决了中央空调系统分解和协调控制的问题。每个子系统由相应的子Agent进行控制,对于易于建模的子系统,在构造子Agent的反应模块和规划模块时,采用常规的控制方式;对于难于建模,动态特性变化较大的子系统,通过集成模糊控制、神经网络控制等人工智能技术来设计模块,实现局部子系统的智能控制。将该控制器应用于恒温恒湿空气调节中央监控系统后取得了良好的控制效果。

图2MAS智能专家系统的模型结构

三、结语

在能源日益缺乏、环保问题日益严重的今天,发展绿色建筑、智能建筑是大势所趋,只有这样才能既满足人们对建筑不断增长的功能要求,又能最大限度地节约资源,降低能耗,减少污染。本论述分析了模糊控制、神经网络、专家系统等智能控制技术在智能建筑空调系统的应用。研究表明,智能控制技术是智能建筑发展的一个重要方向,能够提供更好的控制策略,使智能建筑达到节能环保的目的。

参考文献

[1]代睿,曹龙汉.智能控制技术在智能建筑空调系统中的应用[J].甘肃科技纵横. 2010(06)

空调控制系统篇8

关键词:独立控制;空调系统;原理;前景

1.前言

改革开放以来,我国经济的发展非常迅速,人民生活的水平也迅速提高,这就急切需要增加或者改造建筑来满足人们的物质需求,同时也导致了建筑能耗的增加。有资料显示[1],全国的建筑能耗约占总能耗的30%多。很多因素会影响到建筑能耗,例如,空调系统、空调环境、人员及其它设备等。空调系统能耗非常大,以集中空调系统来说,它的能耗占建筑能耗的50%多[2,3],约占全国总能耗的15%。因此,必须要降低空调系统的能耗,这也是实现国家“节能减排”以及构建资源型、节约型社会的重要途径。温湿度独立控制空调系统是在空调应用方面进行的新的尝试,是其新形式之一,很多学者对该系统已经进行了比较全面而细致的理论研究,而且这个系统在工程应用上,在节能方面也有很好好的收效。因此,寻找一种可以为人们提供舒适并且健康的空气环境,又能节约能源的空调系统,在当今社会显得更加迫切,因此,温湿度独立控制空调系统将会吸引更多的学者来关注。

2.温湿度独立控制空调系统原理及相关设备组成

2.1温湿度独立控制空调系统的原理

温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。

2.2相关设备组成

温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。

3. 温湿度独立控制空调系统与传统空调系统的比较分析

3.1 温湿度独立控制空调系统的优点

3.1.1 可以避免过多的能源消耗

从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%[4]。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源品位上的浪费,这种现象在湿热的地区表现的尤为突出;经过处理的空气,湿度可以满足要求,但会引起温度过低的情况发生,需要对空气再热处理,进而造成了能耗的进一步增加。

3.1.2 温湿度参数很容易实现

传统的空调系统不能对相对湿度进行有效的控制。夏季,传统的空调系统用同一设备对空气热湿处理,当室内热、湿负荷变化时,通常情况下,我们只能根据需要,调整设备的能力来维持室内温度不变,这时,室内的相对湿度是变化的,因此,湿度得不到有效的控制,这种情况下的相对湿度,不是过高就是过低,都会对人体产生不适[5]。温湿度独立控制空调系统通过对显热的系统处理来进行降温,温度参数很容易得到保证,精度要求也可以达到[6]。

3.1.3空气品质良好

温湿度独立控制空调系统的余热消除末端装置以干工况运行,冷凝水及湿表面不会在室内存在,该系统的新风机组也存在湿表面,而新风机组的处理风量很小,室外新风机组的微生物含量小,对于湿表面除菌的处理措施很灵活并很可靠。传统空调系统中,在夏季,由于除湿的需要,而在供冷季,风机盘管与新风机组中的表冷器、凝水盘甚至送风管道,基本都是潮湿的。这些表面就成为病菌等繁殖的最好场所。

3.1.4 不需另设加湿装置

温湿度独立控制空调系统能解决室内空气处理的显热和潜热与室内热湿负荷匹配的问题,而且在冬季不需要另外配备加湿装置[7]。传统空调系统中,冬季没有蒸汽可用,一般常采用电热式等加湿方式,这会使得运行费用过高。如果采用湿膜加湿方式,又会产生细菌污染空气等问题。

4.温湿度独立控制空调系统的发展前景

温湿度独立控制空调系统作为新的空调形式,有着非常明显的节能优势。温湿度独立控制空调系统可以有效的避免室内空气的交叉污染,可以有效的阻断由于空调系统而导致的空气流通传播的疾病。目前,在能源消耗日益增加的环境下,温湿度独立控制空调系统为营造既节能又舒适的室内空调环境提供了一个有效可靠的解决方式,具有良好的应用前景,在不久的将来会得到完善和成熟。

参考文献:

[1]龙恩深.建筑能耗基因理论研究[D].重庆:重庆大学博士学位论文,2005.

[2]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):3O-40.

[3]马娟丽.中央空调系统的最优化运行[D]. 西安:西安科技大学硕士学位论文,2006.

[4] 鄢涛.深圳市公共建筑能耗与节能分析[D].重庆:重庆大学硕士学位论文,2005.

[5]王飞. 基于双温冷源的温湿度独立控制空调系统的研究[D]. 广州:华南理工大学硕士学位论文,2011.

空调控制系统篇9

关键词:关键词:空调系统;计算机;控制;智能化

中图分类号:TP13    文献标识码:A     文章编号:

    1. 计算机控制与仪表控制的区别简介

    20世纪随着计算机技术的普及应用,在电子领域内得到了相当具有震撼力的成就,逐渐空调系统也引入了计算机系统作为控制的引擎,由于在生产中有相当大一部分的加工过程中的物品对与温度条件有着苛刻的要求,为了能够更好的完成产品保证其正常的使用或是在生产和使用过程中不发生一些安全问题,计算机控制下的空调系统成为生产中的必备之需。同时人们的日常生活也更注重电子化城市化符号的加入,对于舒适和方便都有着日益增长的要求。为了能够省去更多的人力来对温度恒定进行维护,自动控制就成为计算机控制的一大亮点。在尚未引入计算机控制之前,多数的情况下仪器一般都会用表盘检测数据,相比计算机控制来说,首先不如其控制的灵活,我们要根据外界的变化和产品的需要改变温度的控制,此时计算机控制就会容易的操作更改,并且表盘所能指引的刻度毕竟有限,计算机控制的范围相对较大;其次,每个机器需要一个仪表来控制,有时还需要多个仪表来控制,但是计算机控制的范围可以很广,可以作为一个中心控制来对室内空调系统做出整体的调整;再次,对于调控的准确度上,通过实践总结得出,计算机控制要高于表盘控制;最后,在维修方面和使用周期上,由于计算机技术的发展和普及,对于计算机的维修技术已经日渐成熟,并且其兼容性使得其维修无论从费用上还是专业度上的要求都不高,而起零件的智能化使维修的工具和程序都很简单。相比较而言计算机控制的设备技术成熟耐用度要高于仪表的寿命。能够将外界的自然风加以利用调节冷暖,使仪表逐渐被计算机所取代。

    2. 空调的计算机控制系统概况

    由于计算机技术的不断提升和发展,在空调系统中使用技术和种类也在不断的攀升,目前比较适用于一般工业生产的有集中式、集散式以及柔性总线丹布式,其中最令我国人骄傲的是集中式,因为那是有我国独立自行研发的具有高科技含量以及各项设备的设计、制造生产和使用成熟性较强的控制系统。虽然目前其零部件如计算机硬件与传感器、变进器、阀门及其执行器等还是要从国外先进国家引进,但主要合成研发还是由中国执行。在推广使用到各个工业企业中,反应良好,颇受企业的欢迎和大量使用,无论从其故障率还是差异度来说都很低,同时也根据我国的国情,特殊射击类强电后备手动操作台,以便在需要时,依然能够使其正常的工作不耽误工期,在造价方面更是能够给企业节省成本带来更多的效益,其中的进口设备虽然价格上略显劣势但其性能和使用的寿命维修等方面却要超出其高于国产设备价格部分,下面图一即为集中式空调计算机控制系统的硬件框图。

 

                                                  图一

    集散式空调计算机控制是一种比较适用于拥有数量比较多的空调的控制,所以很多的大型购物商场,展会厅,办公楼写字区都会使用集散式的空调,基于其使用多数情况下都是比较知名的建筑或高尖端的区域,所以在空调计算机控制方便受到全球性的瞩目,国际上瑞士兰吉尔公司、美国扛森公司与美国霍尼威尔公司是生产集散型空调控制系统三个最大的公司。这三个公司的发展也随着集散型的空调控制系统的大量需要逐渐扩展起来,集散型控制尚有另外的优点,即能同时够满足大型综合性建筑中对于照明,监控闭路,等其他的一些用电方面的控制,更便于集中管理。

    柔性总线分布式空调计算机控制系统是一种技术:危进,形式新颖的控制系统。它主要用于生产厂房、大型商业与娱乐中心及高层建筑等大面积空调系统的自动控制,该系统还可用于给排水,皮带传输等测控点多、分布面广的工程自动控制系统。

    3. 空调系统自动控制技术及其发展方向

    为了保证空调系统正常运行,并在满足工艺要求的前提下最有效地节约能源,提高经侪效益,其自动控制的技术水平非常重要。近年来,我旧的空调自动控制技术发展十分迅速,仅有单回路控制系统,还采用了多回路与多功能控制系统。控制设备在原有调节仪表的基础上出现了专用的调节仪表与显示仪表,并且进一步发展到计算机控制。

    空调系统自动控制设计首先要根据工艺要求来确定测控点,以及选择合理的控制方案对大型空调系统特别是要求工况自动转换的系统采用仪表控制时设计相当复杂。容易出现差错,这不仅影响施工与调试,甚至影响到空调系统的正常运行。因为,各种仪表功能与接线不刚,相互连锁关系复杂,特别是采用极限位置法来实现工况自动转换,使设计就变得更加复杂。现在计算机在工业控制中的应用越来越广泛,计算机控制也就成了空调系统自动控制技术的一个发展方向。

    计算机控制的最大优点就是其硬件的扩充性好,软件的高度智能化。工业控制计算机的硬件全部是模块化结构,按用途可分为电源、主机板(CPu)、模拟量输入/输出接口板、开关量输入/辆出接口板及信号调理端子板等 每台主机的各种模块可任意组合,模块数量多时还可以扩展机箱,这就保证了硬件系统的可扩展性。对数据处理、图丈显示、报表打印及联网,更是计算机的特有功能。

参考文献:

[1] 靳亚铭.刘振娟.李宏光,空调设备自动检测计算机专家控制系统[J],仪器仪表学报,2006,(10).

[2] 曹建林.实现过程控制的空调系统运行特性与节能控制方法[J],中国高新技术企业,2010,(22).

空调控制系统篇10

关键词:BA控制系统 空调系统 应用研究

1 引言

随着科学技术的飞速发展,成熟的计算机检测、控制、通信技术以及价格比较适中的相应产品不断涌现;使得实现空调计算机集散控制系统(DCS)不再是什么难事;作为智能建筑3A系统之一的楼宇自动化系统(BAS)对大楼的水电空调等机电设备进行集中的监控和管理已日益成为现代建筑中必不可少的配置;与旧的系统比,它不但节能,而且管理相当方便;但如何使空调系统能有效地工作,却不是件容易的事。

我国智能建筑为数不少,其中通风空调系统大都实现了计算机集散控制(DCS),体现在实现了风机、水泵、制冷设备的自动控制及建筑物内房间温湿度的自动检测和控制,真正实现优化控制和管理的系统为数甚少。可以这样说,实现通风空调系统计算机集散控制,只是建筑设备自动化的初级阶级,只有将人工智能技术和专家知识引入内部环境和设备的管理系统,使整个系统运行达到优化,这样会使建筑设备自动化达到较高的水平,并真正体现其优越性。针对广州百货大楼新翼大厦的通风空调系统,笔者在实现其智能控制和管理自动化方面进行了初步的研究,并在实际工程的运行中取得较好的使用效果。实施BAS所能带来的节能效益和管理效益是广为人知的,并且在实施中业主往往对这一统抱以很高的期望。然而,从许多已竣工的项目来看,并没有达到预期的效果,其中突出表现以下二个方面:

(1)开通率底,距业内人士的估计,不超过20%;

(2)目前已开通的BAS系统,多数只实现了建筑设备的自动启停和监测,其节能也主要表现在一些设备的定时启闭,而作为建筑耗能的重点空调系统,如何优化运行,如何根据实际系统尽可能进行节能经济运行则远未能实现。中央空调系统,管路复杂,运行工况多变,是建筑物能耗大户。为此实施BA系统一般将空调系统作为监控的重点,往往投入60%以上的监控点和超过水电监控投资总和的投入。部分中小型项目考虑到投资能力,将BA系统仅仅局限于暖通空调系统的做法也是不鲜见的。事实上,由于中央空调系统的复杂性,对空调监控系统整体功能实现的好坏已成为制约BAS成败的瓶颈因素之一。要做好BA系统,仅靠弱电工程师的力量是不够的,暖通工程师积极参与到系统方案的制订过程中是十分必要的。

2 空调BAS控制方案的优化

2.1 直接数字控制器(DDC)的选用、布置

主流BA系统供货商都能提供大中小不同处理能力的DDC,冷冻机房、热力站监控点是密集场合应优先采用大型控制器,以减少故障率和控制器间的通讯。这种控制器的典型特征是有强大的处理器(如:摩托罗拉的68302)和IMB的RAl4,尤其是能够和I/O扩展模块连接达到辐人输出功能的扩展,例如SIEMENSMBC可以挂接40个I/O模块,TrendIQ251控制器允许有8.16的接口扩展能力。对空气处理机、新风机、通风机一般采用中型或小型的控制器即可。近年,可编程逻辑控制器件(PLC)进步很快,其应用不再局限于工业场合,在空调通风的现场设备编制工程中不应将其排斥在外。

控制器一般应靠近受控设备,它与相应配电箱并列布置以利于布线。同一个机房内的空调通风设备可以合用一个控制器,但应考虑控制器的运算能力和控制点是否足够。有的系统集成商将不同楼层的若干个新风机合用一个控制器,这种做法虽然节约了一定的成本,但对日后的管理和调试是不利的,不值得推荐。控制器的电源宜集中供应,有条件可以从UPS总电源引出;从受控设备现场引用电源的做法不值得推荐。

2. 控制网络

在满足扩展性和灵活性的前提下,控制网络的拓扑结构应尽可能简化、清晰,无论基于IS485总线或基于LonTalk总线的控制网络都是如此。分支、分级多的网络管理复杂、可靠性低。TonTalk总线在理论上可以组成任意拓扑结构的网络,这种布线设计的随意性如果运用不当,在工程实践中仍然是有技术风险的,并可能增加系统的投资。大型工程可以考虑楼层网络分级,小型工程尽可能运用基于RS485总线的控制网络,采用“手拉手”的布线方式。

2.3 关于BACnet和LonWorks的支持

BACnet和LonWorks的提出是为了在不同层面解决控制系统的互联互操作问题。LonWorks采用现场总线控制技术(FCS),突破了以往的集散型控制技术(DCS)。它的提出是BA技术的一次飞跃,是今后BAS发展的技术趋势。但目前受到各种条件限制,LonWorks技术优势还不能完全发挥出来,工程实现并不完善。若自控系统规模不是很庞大,最好不用全面采用LonWorks技术。如果仔细分析目前主流的BA产品,会发现其实它们在不同程度上部分采用或部分支持现场总线技术,这种取长补短的混合模式在当前是切合工程实际的,可以实现技术的平稳过渡。BACnet协议由美国ASHRAE制定并颁布,是现行美国国家标准及欧共体预备标准。运用BACnet协议,可以使空调冷热源主机自带的控制器直接进入BAS控制网络。但实施中应注意空调主机和BA供货商对BACnet的支持程度和技术协调,目前非标准的数据通讯格式仍大量存在于主机设备中。总之,在设计BA系统的过程中切不可一味追求技术的先进性。

2.4 控制权

通常Bug是按从中央控制站集中管理的原则,有时也有其不便的一面。在某些场合(如会议室)将空调、通风系统的参数设定功能放置在现场可能更符合使用者的需要。DDC本身并不提供这样的功能,需要专门部件来实现。例如:HoneywellT7780A数字显示墙挂式Lon分站,可以完成设定房间温度,风机速度、启动/停止风机等功能,并能通过Lonwork总在液晶面板上显示房间的温度,通过4个按钮连线驱动空调箱的DDC控制器执行相应的动作。

2.5 控制策略

PID控制:空气处理机的DDC通常采用PID控制,PID参数的合理选择对空调系统的稳定运行非常关键。PID系数高,空调对室内温度波动的反应特性曲线陡,达到设定温度的过度过程短;PID系数低,达到设定温度的过度过程长。但PID系数太高,易引起DDC系统失控。PID能解决大部分场合的空调控制,但对于影剧院等大热惯性空调场合,靠高的PID系数来提高空调机组对负荷变化的响应速度是不足以解决问题的,这时可以采用双级控制。即分别在主调的送风道和室内安装温度传感器,室内的温度设定由主DDC控制器完成,水阀的驱动由副DDC根据风道温度传感器和主DDC的指令完成,由于风道温度变化速度快于房间温度的变化,这一控制方式加速了系统对温度波动的响应。必须注意的是,为防止水阀被人为关死或水系统供水不足等异常情况对控制系统的影响,副加C通常只需采用比例控制算法(P),不可加入积分分量①。在实际的工程设计中并非一定需要二个完全独立的DDC来完成双级控制,如果DDC内置二个控制回路则完全可以用一个控制器胜任,例如:SIEMENSUC—2控制器。BA系统对空调的节能控制有多种手段可以采用,例如室内外烩值比较法、二氧化碳等污染物浓度检测法确定新风量,基于日程表的定时操作等等。工程设计中可以视需要灵活运用,以达到最优的效果。例如,办公、商场等场合,夏秋季在清晨时通过程序启动空气处理机(或新风机),利用室外凉爽空气对室内全面换气预冷,既节约新风能耗又提高了室内空气品质。

2.6 空气品质传感器

一氧化碳和二氧化碳含量传感器,应谨慎采用。一氧化碳传感器应用于地下车库的排风系统,用于驱动通风机动作。由于一氧化碳传感器长期处于污染环境中,其敏感元件受汽车尾气的毒害,有效寿命通常2年左右。当灵敏度下降到一定程度后即不能正确指示污染物浓度,因此在停车库的通风系统中如采用一氧化碳传感器,仍需以日程表启停控制方式作为必要的补充手段,在确定BAS方案时应避免系统对这类传感器的过度依赖。

在室内采用二氧化碳传感器也有类似的问题。研究表明,随着人均占有建筑面积的增大,在类似办公室这样的场合人工合成材料正在取代二氧化碳成为首要污染物。在允许吸烟的场所,烟气应是首要污染物。除非证明采用后确能产生很好的节能效益(如人员密度波动很大的商场、展厅),一般不应大量采用二氧化碳传感器作为调节新风量的主要依据,否则在传感器性能劣化后,对空调系统的影响将是长期的,且很难发现问题症结所在。

2.7 BAS监控中心

BAS监控中心负责监控整个空调、通风、动力系统,一般与消防控制、安保监控等合用一室。由于该机房通常远离冷冻机房、锅炉房,在这里远程操作这些关键设备是不合适的。推荐的做法是在冷冻机房和锅炉房现场控制室另设置一台监控分站,由该分站负责冷冻机、锅炉监控功能,并且该分站功能受权局限为冷热源设备。转贴于 3 结论

本文通过对空调系统的传感器、执行器、控制器、网络等若干环节的探讨,力图使BA系统更好地服务于受控的空调系统,使二个系统在技术上紧密结合成为一个智能化的密不可分的机电系统。本文只是作者在工程实践中获得的一些浅见,总结如下:

(1)按受控设备的要求选用不同处理能力的DDC控制器;

(2)空间距离较远的设备不宜合用同一DDC控制器;

(3)LONWORKS技术具有前瞻性,应关注,但目前尚不完善,不宜刻意采用;

(4)BA系统控制器、传感器、执行器电源宜独立与受控设备集中供电。

(5)根据空调现场和灵活运用控制程序和控制策略;

(6)集散型控制技术向现场总线控制技术转型是技术趋势,集散控制仍是目前主流技术;

(7)实现BAS,应给空调通风系统的现场的用户留下必要的控制权利,不可过度集中;

(8)冷冻房和锅炉现场控制室宜另设置一台监控分站,负责冷水机组和锅炉的监控;

参考文献

[1) 程大章,龙惟定.智能化大楼的建筑设备.