机械密封工作原理十篇

时间:2023-09-18 17:58:34

机械密封工作原理

机械密封工作原理篇1

【关键词】 机械、密封、选择

一、机械密封的工作原理

机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。

二、机械密封常用材料的选用

净水(常温):(动)9CR18,1CR13堆焊钴铬钨,铸铁;(静)浸树脂石墨,青铜,酚醛塑料。

河水(含泥沙)(常温):(动)碳化钨,(静)碳化钨

海水(常温):(动)碳化钨,1CR13堆焊钴铬钨,铸铁;(静)浸树脂石墨,碳化钨,金属陶瓷;

过热水(100度);(动)碳化钨,1CR13堆焊钴铬钨,铸铁;(静)浸树脂石墨,碳化钨,金属陶瓷;

汽油,油,液态烃(常温):(动)碳化钨,1CR13堆焊钴铬钨,铸铁;(静)浸树脂或锡锑合金石墨,酚醛塑料。

三、密封材料的种类及用途

密封材料应满足密封功能的要求。因为被密封的介质不同,以及设备的工作前提不同,要求密封材料的具有不同的适应性。对密封材料的要求一般是:

1、材料致密性好,不易泄露介质;

2、有适当的机械强度和硬度;

3、压缩性和回弹性好,永久变形小;

4、高温下不软化,不分解,低温下不硬化,不脆裂;

5、抗侵蚀机能好,在酸,碱,油等介质中能长期工作,其体积和硬度变化小,且不粘附在金属表面上;

6、摩擦系数小,耐磨性好;

7、具有与密封面结合的柔软性;

8、耐老化性好,经久耐用;

9、加工制造利便,价格便宜,取材轻易。

四、机械密封安装、使用技术要领

1、必须按工况条件与主机情况选择适宜型号的机械密封与材料匹配,才能确保机器密封正常运转及使用寿命。

2、设备转轴的径向跳动应≤0.04毫米,轴向窜动量不答应大于0.1毫米。

3、安装机械密封静止环的密封端盖(或壳体),定位端面对轴的垂直度≤0.04mm。

4、安装静环压盖时,拧紧螺丝需受力平均,保证静环端面与轴心线的垂直要求。

5、安装后用手推动动环,能使动环在轴上灵活移动,并有一定弹性;用手盘动转轴、转轴应无轻重感觉。

6、在安装过程中严禁碰击、敲打,以免使机械密封摩擦付破损而密封失效。

7、设备的密封部位在安装时应保持清洁,密封零件应进行清洗,密封端面完好无损,防止杂质和灰尘带入密封部位。

8、设备在运转前必需布满介质,以防止干摩擦而使密封失效。

9、机械密封在安装时,必须将轴(轴套)、密封腔体、密封端盖及机械密封本身清洗干净,防止任何杂质进入密封部位。

10、当输送介质温度偏高、过低、或含有杂质颗粒、易燃、易爆、有毒时,必须参照机械密封有关标准,采取相应的阻封、冲洗、冷却、过滤等措施。

11、机械密封安装时,应有适当的。按产品安装说明书,保证机械密封的安装尺寸。

12、设备在运转前必须充满介质,以防止干摩擦而使密封失效。

13、单弹簧传动的机械密封,应合理选择弹簧旋向,一般从静止环端看,轴转向为顺时针时,应选右旋弹簧。反之则选左弹簧。

14、对易结晶、颗粒介质,对介质温度>80oC时,应采取相应的冲洗、过滤、冷却措施,各种辅助装置请参照机械密封有关标准。

15、安装时在与密封相接触的表面应涂一层清洁的机械油,以便能顺利安装。要特别留意机械油的选择对于不同的辅助密封材质,避免造成O型圈浸油膨胀或加速老化,造成密封提前失效。

五、机械密封技术的种类

当前采用新材料和工艺的各种机械密封的新技术,进展较快,有下列的机械密封新技术。密封面开槽密封技术近年来,在机械密封的密封端面上开了各种各样的流槽,以产生流体静、动压效应,现在还在不断更新。零泄漏密封技术过去总以为接触式和非接触式机械密封不可能达到零泄漏(或无泄漏)。以色列利用开槽密封技术,提出零泄漏非接触式机械端面密封的新概念,并已用于核电站油泵中。干运转气体密封技术这类密封是将开槽密封技术用于气体密封。上游泵送密封技术即利用密封面上开流槽将下游少量泄漏流体泵送回上游。上述几类密封的结构特点是:采用浅槽,且膜厚和流槽的深均属微米级,并采用槽,径向密封坝和周向密封堰组成密封和承载部门。也可以说开槽密封是平面密封和开槽轴承的结合。其长处是泄漏量小(甚至无泄漏)、膜厚大,消除接触摩擦、功耗和发烧量小。热流体动压密封技术它是利用各种外形较深的密封面流槽,造成局部热变形,以产生流体动力楔效应。这种具有流体动压承载能力的密封,称之为热流体动力楔密封。

波纹管密封技术可分为成型金属波纹管和焊接金属波纹管机械密封技术。

多端面密封技术分为双密封、中间环密封、多密封技术。另外还有平行面密封技术、监控密封技术、组合密封技术等。

六、机械密封冲刷方案及特点

冲刷的目的在于防止杂质集积,防止气囊形成,保持和改善等,当冲刷液温度较低时,兼有冷却作用。冲刷的方式主要有如下:

1、内冲刷

(1)、正冲刷:利用工作主机的被密封介质,由泵的出口端通过管路引入密封腔。主要用于清洁流体。当温度高或有杂质时,可在管路上设置冷却器、过滤器等。

机械密封工作原理篇2

关键词:水泵;机械密封

目前机械密封在泵类产品中的应用非常广泛,而随着产品技术水平的提高和节约能源的要求,机械密封的应用前景将更加广泛。机械密封亦称端面密封,其有一对垂直于旋转轴线的端面,该端面在流体压力及补偿机械外弹力的作用下,依赖辅助密封的配合与另一端保持贴合,并相对滑动,从而防止流体泄漏。大庆石油化工总厂万隆物业公司光明锅炉使用的循环泵,型号为200LGY75A,流量275m3/h,工作压力0.4MP,工作温度为95,介质为清水,密封为机械密封的水泵,本文笔者结合工作实际,浅谈一下水泵的密封问题。

1水泵机械密封的渗漏现象及原因

1.1由于压力产生的渗漏

1.1.1真空状态运行造成的机械密封渗漏

泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械密封会产生漏气(水)现象,真空密封与正压密封的不同点在于密封对象的方向性差异,而且机械密封也有其某一方向的适应性。

对策:采用双端面机械密封,这样有助于改善条件, 提高密封性能。

1.1.2高压和压力波造成的机械密封渗漏

由于弹簧比压力及总比压设计过大和密封腔内压力超过3MPa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。

对策:在装配机封时,弹簧压缩量一定要按规定进行, 不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的措施,选用可靠的传动方式,如键、销等。

1.2周期性渗漏

1.2.1转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡, 汽蚀或轴承损坏(磨损) ,这种情况会缩短密封寿命和产生渗漏。

对策:可根据维修标准来纠正上述问题。

1.2.2泵转子轴向窜动量大,辅助密封与轴的过盈量大, 动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。

对策:在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。

1.2.3密封面油量不足引起干摩擦或拉毛密封端面。

对策:油室腔内油面高度应加到高于动、静环密封面。

1.3.因其他问题引起的机械密封渗漏

1.3.1安装动环密封圈的轴(或轴套) 端面及安装静环密封圈的密封压盖(或壳体) 的端面应倒角并修光,以免装配时碰伤动静环密封圈。

1.3.2弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,误差±2mm,压缩量过大增加端面比压, 摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动静环端面比压不足,则不能密封。

2影响机械密封效果的因素

2.1影响密封效果的外部因素分析

2.1.1机械加工精度不够

机械加工精度不够,原因有很多,有的是机械密封本身的加工精度不够,这方面的原因容易引起人们的注意,也容易找到。但有时是泵其它部件的加工精度不够,这方面的原因,不容易引起人们的注意。例如:泵轴、轴套、泵体、密封腔体的加大精度不够等原因。这些原因的存在对机械密封的密封效果是非常不利的。

2.1.2振动偏大

机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,泵的其它零部件是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

2.1.3泵轴的轴向窜量大

机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.5mm以内。

2.1.4轴向力偏大

机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。有时由于泵的轴向力平衡机构设计的不合理及制造、安装、使用等方面的原因,造成轴向力没有被平衡掉。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔融,因此泵启动后很快就失去密封(下转第91页)(上接第88页)效果,泵静止时则密封端面出现间断的喷漏现象。

2.1.5没有辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计员没有合理地配置辅助冲洗系统,达不到密封效果; 有时虽然设计人员设计了辅助系统,但由于冲洗液中有杂质,冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

2.2应采取的措施

2.2.1消除泵振动的措施

a.泵产品在设计过程中,要充分分析振动的来源,以消除振动源;b.泵产品的制造装配过程中,严格按标准和操作规程去执行,消除振动源;c.泵、电机、底座、现场管路等辅助设备在现场安装时,要严格把关,消除振动源;d.现场生产、操作、维修、调节时,严格把关,消除振动源。

2.2消除泵轴窜量大的措施

比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。

2.3消除泵轴挠度偏大的措施:减少两端轴承之间的距离;增加泵轴的直径;提高泵轴材料的等级;泵轴设计完成后,对泵轴的挠度要进行校核检验计算。

3结束语

在设计泵用机械密封时,不仅要考虑机械密封本身的影响因素,而且要考虑机械密封外部的各种影响因素。在实际工作中要注意以下几个问题:

3.1、分析机械密封的质量事故的原因时,要充分考虑到泵的其它零部件对机械密封运行的影响,采取措施不断提高机械密封的效果。

3.2、对重要泵产品的机械密封,要增加保护措施,提高密封质量,减少密封质量事故。

3.3、在泵产品的设计过程中要充分考虑到泵其它零部件以及现场其它设备对机械密封的使用效果的影响,为机械密封创造一个良好的外部条件。

3.4、增加对机械密封辅助系统的重要作用的认识,尽可能配备完善的机械密封辅助系统,以提高密封效果。

参考文献:

[1]牟介刚《水泵的设计与研究》1999(1):9~131.

机械密封工作原理篇3

关键词:机械密封 失效 措施

0引言

泵是各领域使用最广泛的通用机械之一,其品种、规格繁多,绝大多数类型的泵存在一个基本的共性问题——“泄漏”,长期以来,人们主要致力于研究解决泵的密封泄漏问题。

在泵、风机、搅拌釜等旋转设备中,机械密封件是防止泄漏的关键,它最早出现于19世纪末期,当时的结构相当简单,仅由一个橡胶弹性体和金属(壳体)相摩擦,到二战期间,美国开始在化工流程泵上使用机械密封,二战后,随着石油化工行业的迅猛发展,机械密封在西方国家也发展迅速,至70年代,西方国家的炼油行业的流程泵80%采用机械密封,机械密封的应用范围也迅速扩大。其结构类型、端面材料的使用也迅速增加。我国在50年代末期,开始进行机械密封的研究,至70年代,形成了我国标准的JB1472标准的泵用和HG5-748-78;HG5-751~756-78釜用两大系列机械密封,奠定了我国机械密封行业的基础。

机械密封具有密封性好、性能稳定、侧漏量少、对轴的磨损量少等优点,其本身是一种要求较高的精密部件,在使用机械密封时,应尽可能地分析使用机械密封的各种因素,使机械密封适用于各种泵的技术要求和使用介质要求且有充分的条件,这样才能保证密封长期可靠地运行。作者通过在学习和实践中的不断积累,对泵用机械密封失效的原因进行了总结和分析。

1 机械密封的结构和工作原理

机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置,该端面在流体压力及机械弹簧的作用下,依靠辅助密封的配合与另一端面相互贴合形成的微小轴向间隙起密封作用,从而防止流体泄漏。

机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在运转状态下,也保持端面贴合,保证密封介质不外漏,并防止介质进入密封端面。密封元件的作用是密封动环与轴的间隙、静环与压盖的间隙,同时缓冲对泵的振动、冲击。机械密封在实际运行中不是一个孤立的部件,它是与泵的其它零部件一起组合起来运行的,同时通过其基本原理可以看出,机械密封的正常运行是有条件的,例如:泵轴的窜动量不能太大,否则摩擦副端面不能形成正常要求的比压;机械密封处的泵轴不能有太大的挠度,否则端面比压会不均匀等等。只有满足类似这样的外部条件,再加上良好的机械密封自身性能,才能达到理想的密封效果。

2 机械密封失效时的常见现象及分析

(1)工作时发生尖叫或嗡鸣

机械密封环所用材料,如不锈钢、铝、铬合金等,其表面金属环接触腐蚀性介质,而金属自身又不耐腐蚀,就会表面腐蚀。在生产运行过程中,缺氧条件下新氧化膜很难形成,使电偶腐蚀加剧,造成表面均匀腐蚀,并破坏了静动密封面。就会导致逐渐泄漏,并发出摩擦声响。应安装旁路冲洗管路,加大管径和相应的节流装置的尺寸,加强密封端面的冷却,检查密封平衡设计,精确测量密封腔内的压力,温度及介质压力。

(2)波纹管发生径向裂纹或断裂

泵用机械密封选用堆焊硬质合金、铸铁、碳化钨、碳化钛等密封环材料时,容易出现机械应力破裂,因为材料在加工过程中,有本体应力的存在,如焊加工时,有残余应力,在工作环境中,若存在旋转离心力、摩擦热应力或运行过程中突然停电,系统配合不好,应力破坏就很难避免。温度越高,应力机械破裂就越快。裂纹出现的原因是机械密封的冷却水是循环水,在波纹管和轴之间有一个水夹套,波纹管与水夹套间隙直径为2mm,冷却循环水遇见高温介质后在波纹管内结成水垢,使波纹管失去弹性,产生径向裂纹。应将原来的压盖冷却水的进水和回水孔扩大,提高冷却水流速,降低滞留时间,减少机械密封波纹管结垢。

(3)石墨环表面出现深且粗的环状沟纹

在使用中,如果工作介质温度很高,再加上密封摩擦副端面的摩擦热, 一旦冲刷系统发生故障, 使得端面温度急剧升高,超过允许使用温度(一般在-105~250℃)时,其表面会析出树脂,摩擦面四周树脂会发生炭化,石墨炭化是使用碳―石墨环时密封失效的主要原因之一。高温还可使密封端面间的液膜汽化或闪蒸,产生残留物质,造成石墨环磨损,石墨环表面产生环状沟纹, 碳化钨 (动环)也易脱落。应改善状态,防汽化。

3机械密封泄漏点及泄漏形式

机械密封在泵类产品中应用广泛,而随着节约能源的要求和产品技术水平的提高,机械密封地应用前景将会变得更加广泛,机械密封的密封效果将直接影响整机的运行,密封失效后随即发生泄漏,将会严重影响生产正常运行。总体而言机械密封的泄漏点主要有五处:第一个点在动环与静环的接触面上。机械密封主要靠泵内液体压力及弹簧力将动环压贴在静环上,以达到密封防止泄漏。而两环的接触面上总会有少量液体泄漏,它可以形成液膜,一方面起到防止泄漏的作用,另一方面又起到的作用。第二个点在静环与压盖之间,属于静密封点。用有弹性的O形或V形密封圈压于静环和压盖之间,靠弹簧力使弹性密封圈变形而密封。第三个点在动环与轴套之间,此处也属静密封点。考虑到动环可以沿轴向窜动,可采用具有弹性和自紧性的V形密封圈来密封。第四个点在轴套与轴之间,属于静密封点,一般采用O形密封圈密封。第五个点在压盖和泵体之间,也是静密封点,可采用密封圈或垫片作为密封元件。

3.1 机械密封泄露的检测步骤

现场检测密封泄漏的一般步骤是:首先判断泄漏源、断面密封问题产生的原因,由于密封介质汽化或闪蒸密封端面,先确定问题是否出现在端面不平、裂纹、破碎或爆破,发生热变形或机械变形、O型圈老化等。其次判断发生变形可能的原因,其中包括密封零件结构是否合理、强度不够或因材料及加工原因产生的残余变形等。然后检查安装,包括安装尺寸是否正确,安装时零件受力是否均匀,密封和材质是否适于使用工况,密封垫是否压紧,是否因螺栓力矩太大造成密封座变形,是否有安装损伤,必要时应予以更换。最后是启动前的调整,检查填料腔装配面和其他有关元件对轴线的垂直度、管道以及设备安装误差,起动设备前应将密封端面重新研磨以保证密封面的光滑平整。

3.2 机械密封泄漏形式

3.2.1在安装静试时出现的泄漏

机械密封安装调试完成后,通常要进行静态测试来观察泄漏量,如果泄漏量较小,问题多出在动环或静环密封圈上;如果泄漏量较大,则表明动、静环的摩擦副之间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再进行手动盘车观察,若泄漏量没有明显变化则说明动、静环密封圈有问题;如盘车时泄漏量有明显变化则可以断定是动、静环摩擦副之间存在问题;如泄漏介质沿轴向喷射,则说明动环密封圈存在问题的可能性极大,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。

3.2.2 机械密封试运转时出现的泄漏

安装静试完成后,由于运转时高速旋转产生的离心力会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

(1)操作中因抽空、汽蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离。

(2)对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤。

(3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量。

(4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座。

(5)工作介质中有颗粒状物质,运转中颗粒物质进入摩擦副,损伤动、静环密封端面。

(6)设计选型有误,密封端面比压偏低或密封副材质冷缩性较大等。

上述现象在试运转中经常出现,有时条件允许,可以通过适当调整静环座的方式予以消除,但多数需要重新拆装,更换密封。

3.2.3 设备在运转时出现的泄漏

(1)泵叶轮轴向窜动量超过标准,转轴发生周期性振动及工艺操作不稳定,密封腔内压力经常变化等导致的机械泄漏。

(2)设备运转时振动太大,动、静环与轴套间形成水垢使弹簧失去弹性而不能补偿密封面的磨损。

(3)对泵实际输出量测量偏小,大量介质泵内循环,热量积聚,引起介质气化,导致密封失效。

(4)摩擦副损伤或变形而不能跑合。

(5)密封圈材料选择不当,溶胀失弹性。

(6)抽空、气蚀或较长时间憋压,导致密封破坏,密封环发生龟裂。

还有一种机械密封发生泄漏的情况是泵在停运一断时间后再启动时,这种情况主要是由于摩擦副附近介质的凝固、结晶,摩擦副上有水垢、弹簧腐蚀、阻塞而失去弹性造成的。

4 机械密封失效原因分析及措施

4.1失效原因分析

1、泵轴的轴向窜量大

机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。端面比压的计算公式:

PC:端面比压;PS:弹簧比压;FS:弹簧力;ΔP:摩擦副内、外两侧的差压;λ:液膜反压系数; d0:轴向滑移面直径;d1:密封端面内直径;d2:密封端面外直径

为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.5mm以内。泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。动、静环磨损后,得不到补偿位移。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。这种现象往往出现在多级离心泵中,尤其是在泵启动过程中,窜量比较大。

在多级离心泵中,采用平衡盘方法平衡轴向推力的工作原理:平衡盘工作时自动改变平衡盘与平衡环之间的轴向间隙,从而改变平衡盘前后两侧的压差,产生一个与轴向力方向相反的作用力来平衡轴向力。由于转子窜动的惯性作用和瞬态泵工况的波动,运转的转子不会静止在某一轴向平衡位置。平衡盘始终处在左右窜动的状态。平衡盘在正常工作中的轴向窜量只有0.105~0.11mm,满足机械密封的允许轴向窜量0.15mm的要求,但平衡盘在泵启动、停机、工况剧变时的轴向窜量可能大大超过机械密封允许的轴向窜量。

泵经过长时间运行后,平衡盘与平衡环摩擦磨损,间隙随着增大,机械密封轴向窜量不断增加。由于轴向力的作用,吸入侧的密封面的压紧力增加,密封面磨损加剧,直至密封面损坏,失去密封作用。吐出侧的机械密封,随着平衡盘的磨损,转子部件的轴向窜量大于密封要求的轴向窜量,密封面的压紧力减小,达不到密封要求,最终使泵两侧的机械密封全部失去密封作用。

2、泵轴的挠度和轴向力偏大

机械密封是一种旋转轴向的接触式动密封,它是在流体介质和弹性元件的作用下,两个垂直于轴心线的密封端面紧密贴合、相对旋转,从而达到密封效果,因此要求两个密封之间要受力均匀。但由于泵产品设计的不合理,泵轴运转时,在机械密封安装处产生的挠度较大,使密封面之间的受力不均匀,导致密封效果不好。

机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。有时由于泵的轴向力平衡机构设计的不合理及制造、安装、使用等方面的原因,造成轴向力没有被平衡掉。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔融,因此泵启动后很快就失去密封效果,泵静止时则密封端面出现间断的喷漏现象。

3、缺少辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计人员没有合理地配置辅助冲洗系统,达不到密封效果;有时虽然设计人员设计了辅助系统,但由于冲洗液中有固体颗粒杂质,如果固体颗粒杂质进入摩擦副端面起研磨剂作用,将会划伤或加快密封端面的磨损而失效,水垢在轴套表面的堆积速度超过摩擦副的磨损速度,致使动环不能补偿磨损位移,造成机械密封失效。冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

4、振动偏大

机械密封振动偏大,最终会导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,而是泵的其它零部件产生振动连带机械密封振动,例如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因都会产生振动。

5、泵汽蚀的原因

由于装置系统操作不合理以及泵进口汽蚀性能不好、泵的转速偏高,在泵的入口处发生局部汽蚀,汽蚀发生后,水中会有气泡,它一方面会冲击机械密封面的外表面,使其表面出现破损;另一方面会使动静环的吻合面的流动膜中也含有气泡,不能形成稳定的流动膜,另外泵在启动、停止过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,造成密封端面的干摩擦,使机械密封装置损坏。

6、安装、检修工艺不良

动、静环接触表面不平,安装时碰伤、损坏;动、静环密封圈尺寸有误差、损坏或未被压紧;动、静环表面有异物;动、静环V型密封圈方向装反,或安装时反边;州套处泄漏,密封圈未装或压紧力不够(弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,误差±2mm,压缩量过大增加端面比压,摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动、静环密封端面比压不足,发生漏泄)。弹簧力不均匀,单弹簧不垂直,多弹簧长短不一;密封腔端面与轴垂直度不够;轴套上密封圈活动处有腐蚀点。

4.2 针对机械密封失效采取的措施

1、消除泵轴窜量大的措施

合理地设计轴向力的平衡装置能有效的消除轴向窜量。为了满足这一要求,对于多级离心泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。第二种方案的关键是合理地设计平衡鼓,使之能够真正平衡掉大部分轴向力。两种方案通过试验观测都能很好的削弱泵轴向窜量,见下图趋势:

对于其它单级泵、中开泵等产品,在设计时采取一些措施保证泵轴的窜量在机械密封所要求的范围之内。同时正确安装轴向止推轴承。在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适当,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。

2、消除轴向力偏大的措施

合理地设计轴向力平衡机构,使之能够真正充分地平衡掉轴向力,给机械密封创造一个良好的条件。有些重要的泵可以在转子上设计一个轴向测力环,对轴向力的大小进行监测,发现问题及时解决。

3、消除泵轴挠度偏大的措施

这种现象大多存在卧式多级离心泵中,在设计时采取的措施有:减少两端轴承之间的距离;泵叶轮的级数不要太多,在总扬程要求较高的情况下,尽量提高每级叶轮的扬程,减少级数;增加泵轴的直径;在设计泵轴直径的时候,不要简单地考虑传递功率的大小,而要考虑机械密封、轴挠度、启动方法和有关惯性负荷、径向力等因素;提高泵轴材料的等级。

4、增加辅助冲洗系统

在条件允许的情况下,尽量设计辅助冲洗系统。冲洗压力一般要求高于密封腔压力0.107~0.11MPa,如果输送介质属于易汽化的,则应高于汽化压力0.117~0.12MPa。密封腔压力要根据每种泵的结构形式、系统压力等因素来计算。轴封腔压力很高时或者压力几乎接近该密封使用最高极限时,也可由密封腔引液体至低压区,使轴封液体流动以带走摩擦热。密封的可靠性和寿命,在很大程度上取决于密封辅助系统的配置。对泵输送含有固体颗粒的介质时,应选用碳化钨对碳化钨摩擦副的机械密封。另外,机械密封的平衡程度?也影响着密封的磨损。在选择机械密封时,平衡程度β=75%左右最适宜。β〈75%,磨损量虽然降低,但泄漏增加,密封面打开的可能性增大。对于高负荷(高PV值)的机械密封,由于端面摩擦热较大,β一般取65%~75%为宜,对低沸点的烃类介质等,由于温度对介质汽化较敏感,为减少摩擦热的影响,β取80%~85%为好。

根据长期的实践和经验,冲洗量在3~30L/min,可根据密封规格(直径)和介质的种类选取(见下表)

泵用机械密封的冲洗量(转速3000r/min)

5、 消除泵汽蚀措施

①提高泵抗汽蚀性能;②确保泵入口不进气;③启动泵前将泵及管路中空气排净;④工况调节要适当。

6、 消除泵振动措施

①泵检修时严格检修工艺标准;②加强维护检查,发现缺陷及时处理,避免缺陷扩大;③现场生产、操作、维修、调节时,严格把关,消除振动源。

5 结束语

设计泵用机械密封时,不仅要考虑机械密封本身影响因素,而且要考虑机械密封外部各种影响因素。在实际工作中要注意以下几个问题:

第一、在泵产品设计过程中要充分考虑到泵其它零部件以及现场其它设备对机械密封使用效果的影响,为机械密封创造一个良好的外部条件。第二、增加对机械密封辅助系统的重要作用的认识,尽可能配备完善的机械密封辅助系统,以提高密封效果。第三、分析机械密封的质量事故的原因时,要充分考虑到泵的其它零部件对机械密封运行的影响,采取措施不断提高机械密封的效果。

实践证明,机械密封的使用寿命长短是确保泵实现安全、环保、稳定运行的重要因素。只要泵本身运转正常,同时机封冲洗良好,所使用的机封符合质量要求,在检修或更换机封时能正确进行安装,就可保证机封长周期稳定运行。

参考文献:

[1]牟介刚.丙烷泵的设计与研究水泵技术:1999

[2]沈阳水泵研究所叶片泵设计手册.机械工业出版社

[3]如何提高泵用机械密封的性能及寿命.水泵技术

机械密封工作原理篇4

关键词:离心泵 机械密封 故障分析

1 概述

随着机械密封技术的不断发展,工业泵采用的密封装置正由传统的填料密封向性能可靠、泄漏量少、使用寿命长、功耗低、无需经常检修的机械密封转变。尤其是在石油化工领域内,因处理的介质具有易燃、易爆、易挥发、剧毒等特性,一旦出现泄漏,将严重影响生产正常进行,所以,石油化工生产用泵的密封多数采用机械密封装置。

经对国内、外离心泵故障的统计分析发现,机械密封故障仍占其中的50%~70%,而机械密封故障中绝大多数属于事故性故障,事故性故障是指一个或几个密封零件没达到预期的使用寿命便丧失了使用功能,造成整个装置泄漏量超过了允许值。实践证明,故障分析是技术改进和减少故障的一种行之有效的科学手段。在评定泵用机械密封优劣时,采用的主要指标为泄漏量、使用寿命和可靠性,这些指标贯穿在机械密封的设计、制造、选型、安装及使用管理等环节。由于流体机械的可靠性主要取决于密封装置,因此,提高密封装置的可靠性可大大减少离心泵的故障率。经统计分析,除了密封设计、制造的原因外,超过50%的失效都是用户使用不当或维护不及时造成的。

人们在进行故障分析时,通常习惯于把故障原因放在机械密封装置本身,很少有人在机械密封安装、使用等外部条件方面去查找原因。本文作者将通过分析影响石化行业泵用机械密封效果的几种外部因素,提出提高密封装置运行可靠性和运行周期的建议。

2 机械密封装置的工作原理

机械密封也称端面密封,整个装置至少有一对垂直于旋转轴线的端面,随轴旋转的动环端面在流体压力及补偿机构的外弹力(或磁力)作用下,并配以辅助密封与另一固定在端盖上的静环端面保持贴合并作旋转式相对滑动而达到阻止流体泄漏的轴封装置。两个紧密贴合的密封端面之间存在一微小间隙,当具有一定压力介质通过此间隙时,会形成一层极薄的液膜,该液膜的阻力阻止介质泄露,且使端面得到。典型机械密封结构见图1。

机械密封装置主要由以下四大部分组成:①由静环和动环组成的一对或几对密封端面,有时称密封端面为摩擦副;②以弹性元件(或磁性元件)为主的补偿缓冲机构;③辅助密封圈;④保证动环和轴一起旋转的传动机构。

生产实际中,泵用机械密封装置流体可能泄漏的途径有以下几处:①端面摩擦副的密封面处泄漏。这是决定机械密封装置摩擦性能和密封性能的关键部位,也是决定机械密封装置工作寿命的关键所在,因此,对接触端面的要求应给与高度重视。由于动环与静环端面作旋转式相对滑动的动密封,对密封端面的加工要求很高,其平面度为0.0009mm,硬环表面粗糙度Ra≤0.1μm,软环表面粗糙度Ra≤0.2μm。为了使密封端面间保持必要的油膜,必须严格控制端面上的单位面积压紧力。端面上单位压力过大,不易形成稳定的液膜,会加速端面的磨损;端面上单位压力过小,泄漏量会增加。所以,要获得良好的密封性能和较长的寿命,在安装机械密封时,一定要保持端面单位压力值在最适当的范围内。②静环与压盖的辅助密封件处泄漏和动环与轴(或轴套)的辅助密封件处泄漏。这两处是辅助密封面,静环与压盖间的密封属静密封,端面磨损时,动环仅能沿轴向作微量的移动,此处仍可看作是一个相对静密封。工程实际中,动环的追随性是此处辅助密封的关键,因此,动环与轴(或轴套)密封面,特别应防止锈蚀、水垢或化学反应物料堆积而造成的动环卡死现象。③压盖与密封箱体之间静密封和轴套与轴的静密封。这两处均为静密封,可根据密封介质选用相容的材料。另外,动环采用镶嵌结构也可能在配合处泄漏。

通过机械密封装置工作原理可以看出,机械密封装置正常运行应满足以下基本条件:首先,动静环端面应保持良好的和散热,防止端面热变形、热裂、泡疤、炭化等现象发生;其次,泵轴的窜量不能太大,否则摩擦副端面不能形成正常要求的比压;另外,泵轴不能有太大的挠度,泵的振动应在规定范围之内,否则密封端面比压会不均匀。只有满足以上的外部基本条件,再加上良好的机械密封装置自身性能,才能达到理想的密封效果。

3 离心泵运行时机械密封故障及分析

机械密封装置发生泄漏主要有以下四种情况:一是加水或静压试验时发生泄漏;二是安装后、运转时产生周期性泄漏;三是经常性泄漏;四是突发性泄漏。

对机械密封静压试验时发生泄漏故障,经统计分析,其原因是由于检修、安装未达到标准要求。主要有以下几种现象存在:①动、静环接触表面不平,安装时碰伤、损坏。②动、静环密封圈尺寸有误、损坏或未被压紧。③动、静环表面有异物。④动、静环V形密封圈方向装反,或安装时反边。⑤紧定螺钉未拧紧,弹簧座后退。⑥密封圈未装或压紧力不够,造成轴套处泄漏。⑦弹簧力不均匀,单弹簧不垂直,多弹簧长短不一或个数少;密封腔端面与轴垂直度不够。⑧静环压紧不均匀。

安装后、运转时产生周期性泄漏,经统计分析发现,运转中如泵叶轮轴向窜动量超过标准,转轴发生周期性振动,工艺操作不稳定及密封腔内压力经常变化均是导致机械密封周期性泄漏的原因。

机械密封发生泄漏现象的原因主要有以下几种:①动、静环接触端面比压过大,摩擦热引起动、静环的热变形。②安装时零件受力不匀等,造成密封端面发生变形。③弹簧比压过小。④动、静环密封面对轴线不垂直,误差过大。⑤转轴振动。⑥动、静环与轴套间形成水垢不能补偿磨损位移。⑦安装密封圈处轴套部位有沟槽或凹坑腐蚀。⑧动环浮动性差。⑨辅助装置有问题。

对机械密封突发性泄漏现象,经统计分析,其原因主要有以下几种:①泵强烈振动、抽空破坏了摩擦副。②弹簧断裂。③防转销脱落或传动销折断而失去作用。④辅助装置出现故障,使动、静环冷热骤变导致密封面变形或产生裂纹。⑤由于温度变化,摩擦副周围介质发生冷凝、结晶影响密封。⑥停泵一段时间再开动时发生泄漏。这是由于摩擦副附近介质的凝固、结晶,摩擦副上有水垢;弹簧锈蚀、堵塞而丧失弹性,均可引起泵重新开动时发生泄漏。

4 机械密封故障防治措施

从前面对离心泵运转时机械密封故障及统计分析,可以看出,除了密封设计、制造工艺本身的原因外,大部分失效原因都是由于用户使用不当或维护不到位造成的。以下就离心泵运行中常见的故障给出防治措施和解决方案。

机械密封装置是泵的一个重要部件,泵的安装及运转情况无疑要对密封产生一定的影响。一台振动很大的泵,密封寿命和泄漏量不可能正常,密封的可靠性明显下降。此外,轴串量、密封箱端面和轴的垂直度、压盖和密封箱止口间隙、泵盖和泵体的止口间隙、轴套和径向跳动等,这些部位的尺寸超标,对密封性都会产生影响。仅仅提高密封本身的安装精度是很不够的,必须全面提高泵的安装质量(包括密封)才能达到预期的密封目的。

4.1 满足泵安装的基本要求

4.1.1 转子部分。为使转子平衡和运转中不至于产生较大的振动,安装时应注意做到以下几点。

①轴的径向跳动最大不超过0.03~0.05mm。转子的径向跳动分别为,叶轮口环不超过0.06~0.10mm,轴套等部位不超过0.04~0.065mm(小直径对应较小值,大直径对应较大值)。见图2 轴弯曲的测量及曲线图。

②叶轮应找静平衡。在3000r/min工作的叶轮不平衡量不得大于以下规定。

③属于下列情况之一者还要检查转子的动平衡。

单级泵的叶轮直径超过300mm时;两级泵的叶轮直径超过250mm时。

④对于弹性柱销式及其他用铸铁制造的联轴器,当直径超过¢125mm,总长度超过300mm时也需进行动平衡校验。

4.1.2 各部件的相对位置公差。密封箱与轴的同轴度0.10mm;密封箱与轴的垂直度0.05mm;转子的轴向串量0.30mm;压盖与密封箱配合止口同轴度0.10mm。

4.1.3 与电机的同心度。电机单独运转时其振幅不超过0.03mm;工作温度下泵与电机的同心度,轴向0.08mm;径向0.10mm;立式泵采用的刚性联轴器同心度,轴向0.04mm;径向0.05mm。

4.1.4 泵运转时双振恒值最大不超过0.06mm。

4.2 减小泵轴窜量

合理地设计轴向力的平衡装置,减小泵轴窜量消除轴向窜量。为了满足这一要求,对于多级离心泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。第二种方案的关键是合理地设计平衡鼓, 使之能够真正平衡掉大部分轴向力。对于其它单级泵、中开泵等产品,在设计时采取一些措施保证泵轴的窜量在机械密封所要求的范围之内。

4.3 增加辅助冲洗系统

在条件允许的情况下,尽量设计辅助冲洗系统。冲洗压力一般要求高于密封腔压力0.107~0.11MPa,如果输送介质属于易汽化的, 则应高于汽化压力0.1175~0.12MPa。密封腔压力要根据每种泵的结构型式、系统压力等因素来计算。轴封腔压力很高时或者压力几乎接近该密封使用最高极限时,也可由密封腔引液体至低压区,使轴封液体流动以带走摩擦热。

5 结论

通过对泵用机械密封的工作原理及结构分析,结合对生产实际中泵用机械密封装置故障的分析统计,我们发现,影响时机械密封可靠性的因素不仅与机械密封装置的设计和制造有关,更重要的是要考虑机械密封装置的安装、维护和保养等外部的各种影响因素。统计并分析离心泵运行时的机械密封故障,其中绝大多数出现在安装与维护过程中,由于安装未达到技术要求,使得机械密封装置的运行周期大大降低。对天津石化运行泵的故障统计分析,其泵用机械密封装置的正常运行周期高于国内同类用泵的平均值,其原因与天津石化长期以来重视职工专业技能培训工作分不开,职工理论水平的提高和熟练掌握国内、外设备的设计和结构对泵用机械密封装置的维护,保障其长期安全、正常运行具有重要意义。

参考文献:

[1]化工密封技术,胡国桢,石流,阎家宾.化学工业出版社,1990.

[2]流体动密封,上册,顾永泉,中国石化出版社,1990.

机械密封工作原理篇5

关键词:机械密封;故障处理;原因分析 }

        机械密封在旋转设备上的应用非常广泛,机械密封的密封效果将直接影响整机的运行,严重的还将出现重大安全事故。

        从机械密封的内外部条件的角度分析了影响密封效果的几种因素和应采取的合理措施。

        1  机械密封的原理及要求

        机械密封又叫端面密封,它是一种旋转机械的轴封装置,指由至少一对垂直于旋转轴线的的端面在液体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。它的主要功用将易泄漏的轴向密封改变为较难泄漏的端面密封。它广泛应用于泵、釜、压缩机及其他类似设备的旋转轴的密封。

        机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环随泵轴一起旋转,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时弹性元件对泵的振动、冲击起缓冲作用。机械密封在实际运行中是与泵的其它零部件一起组合起来运行的,机械密封的正常运行与它的自身性能、外部条件都有很大的关系。但是我们要首先保证自身的零件性能、辅助密封装置和安装的技术要求,使机械密封发挥它应有的作用。

        2  机械密封的故障表现及原因

        2.1 机械密封的零件的故障旋转设备在运行当中,密封端面经常会出现磨损、热裂、变形、破损等情况,弹簧用久了也会松弛、断裂和腐蚀。辅助密封圈也会出现裂口、扭曲和变形、破裂等情况。

        2.2 机械密封振动、发热故障原因

        设备旋转过程中,会使动静环贴合端面粗糙,动静环与密封腔的间隙太小,由于振摆引起碰撞从而引起振动。有时由于密封端面耐腐蚀和耐温性能不良,或是冷却不足或端面在安装时夹有颗粒杂质,也会引起机械密封的振动和发热。

        2.3 机械密封介质泄漏的故障原因

        (1)静压试验时泄漏。机械密封在安装时由于不细心,往往会使密封端面被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合,都会造成介质泄漏。如果是轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。(2)周期性或阵发性泄漏。机械密封的转子组件周期性振动、轴向窜动量太大,都会造成泄漏。机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.25mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。(3)机械密封的经常性泄漏。机械密封经常性泄漏的原因有很多方面。第一方面,由于密封端面缺陷引起的经常性泄漏。第二方面,是辅助密封圈引起的经常性泄漏。第三方面,是弹簧缺陷引起的泄漏。其他方面,还包括转子振动引起的泄漏,传动、紧定和止推零件质量不好或松动引起泄漏,机械密封辅助机构引起的泄漏,由于介质的问题引起的经常性泄漏等。(4)机械密封振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不仅仅是机械密封本身的原因,泵的其它零部件也是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

        3  处理故障采取的措施

        如果机械密封的零件出现故障,就需要更换零件或是提高零件的机械加工精度,提高机械密封本身的加工精度和泵体其他部件的加工精度对机械密封的效果非常有利。为了提高密封效果,对动静环的摩擦面的光洁度和不平度要求较高。动静环的摩擦面的宽度不大,一般在2~7毫米之间。

        3.1 机械密封振动、发热的处理

        如果是动静环与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,至少保证0.75mm的间隙。如果是摩擦副配对不当,就要更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

        3.2机械密封泄漏的处理

        机械密封的泄漏是由于多种原因引起,我们要具体问题具体处理。为了最大限度的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,同时还要注意以下事项。

        (1)装配要干净光洁。机械密封的零部件、工器具、润滑油、揩拭材料要十分干净。动静环的密封端面要用柔软的纱布揩拭。(2)修整倒角倒圆。轴、密封端盖等倒角要修整光滑,轴和端盖的有关圆角要砂光擦亮。(3)装配辅助密封圈时,橡胶辅助密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。动静环组装完后,用手按动补偿环,检查是否到位,是否灵活;弹性开口环是否定位可靠。动环安装后,必须保证它在轴上轴向移动灵活。

        3.3 泵轴窜量大的处理

nbsp;    合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心泵,设计方案是:平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位。

        3.4 增加辅助冲洗系统

        密封腔中密封介质含有颗粒、杂质,必须进行冲洗,否则会因结晶的析出,颗粒、杂质的沉积,使机械密封的弹簧失灵,如果颗粒进入摩擦副,会导致机械密封的迅速破坏。因此机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、润滑、冲走杂物等作用。

        3.5 泵振动的处理措施

机械密封工作原理篇6

【关键词】机械密封;注意事项;故障处理;原因分析

1、机械密封的原理及要求

端面密封也就是机械密封,它是旋转机械的密封装置,机械密封在同一轴上至少是由一对垂直于轴线的端面在介质压力和补偿机构弹力的作用。防止流体泄漏是以辅助密封的配合下保持贴合并相对滑动而构成的的装置。它的主要功能是将易泄漏的轴向密封改变为较难泄漏的端面密封。动环、静环、压紧元件和密封元件等三大构件是组成机械密封重要部件。其中随泵轴一起旋转的是动环,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。在中七浅冷站的主要介质有水,天然气和轻烃。所以对机械密封的要求也是非常关键的。机械密封的正常直接影响设备的好坏,如果机械密封发生泄漏可能导致压力降低,介质泄漏严重时将造成重大的生产和安全事故。所以机械密封的正常稳定的运行是必须的。通过学习我将简单的论述机械密封应注意的事项,发生故障的原因和处理方法。对新型机械密封的关注等。

2、注意事项

机械密封的样式,机器的种类不同它的安装方法也是迥然不同的,但它的安装要领几乎都相同,安装步骤和注意事项:

2.1当安装机械密封时首先确定机械密封的尺寸。

2.2当机械密封进行安装前要做好准备工作,轴,轴套和压盖应检查是否有毛刺检查表面是否光滑,轴承状况是否良好;动环(静环)、轴、压盖都应该进行清洗。当安装机械密时摩擦阻力是存在的。每次安装时都要在机械密封部位涂上一层油,主要是做到减少摩擦阻力起到的作用。对于浮装式静环不带固定销结构的,不用涂油,机械装入压盖就可以达到应用的要求。

2.3先将静环与压盖一起装在轴上,由于静环是与压盖在一起不固定在轴上,在安装机械密封时要保证不要与轴相碰,在将动环组件装入。紧定螺钉在轴上是均匀分布在保证间隙的前提下应分几次均匀拧紧。

3、启动前的准备工作及注意事项

3.1首先要检查机械密封是否有泄漏现象,静压试验是起机前必须进行的基本操作。

3.2看机械密封是否有漏必须保证腔内充满介质。在启动前按泵旋转的方向盘车,检查是否轻快均匀没有卡堵。如盘不动或者吃力的时候,应检查机械密封配合尺寸是否错误,安装是否正确。

4、运行中应注意事项

4.1对于中七的循环泵中主要是低温介质。如果输送介质温度偏高、过低、或含有杂质颗粒、易燃、易爆、有毒时,必须采取相应的加热、阻封、冲洗、冷却、过滤等措施。

4.2运转前先盘车,注意不要有过大的转矩,看是否有擦碰和不正常的响声。

4.3注意旋向,联轴器和轴是否对中,轴承部位的油量是否足够和加油的方法法是否适当。

4.4运转前首先要用真空泵抽出泵体内的空气,打开介质进口阀门灌泵,然后开机运行。

4.5开车后是否正常稳定,先看有没有异常响声和运行一段时间发生泵体过热现象。

5、机械密封的故障表现及原因

5.1旋转设备运行当中机械密封的零件的故障也是有很多种类的,例如密封端面经出现磨损、密封端面热裂、密封端面破损等情况,弹簧达到使用极限时也会松弛、断裂和腐蚀等现象。O型密封圈也会出现裂口、变形、破裂等情况。

5.2机械密封发热、振动故障原因:当设备长时间旋转时,由于动静环贴合端面粗糙长时间接触,当启停机时候动静环与密封腔的间隙太小动静之间发生摩擦,轴上压力过大,动静环就会发生碰撞,当压力过大时动环和静环表面就会损坏表面粗糙从而引起振动。在长时间的运行中介质的酸碱性也会腐蚀密封端面,造成耐温性能不良,当介质的温度过高或过低时使机械密封损坏。安装时如果有颗粒杂质进入机械密封中,也会引起机械密封的振动和发热。

5.3机械密封介质泄漏的故障原因

(1)静压试验时泄漏。由于安装不细心,被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合往往会使介质泄漏。(2)间隙性泄漏。波纹管式机械密封的静环和动环是过盈配合的这样才能使弹簧受力保证密封效果,弹簧的压缩量的大小直接影响到机械密封的密封效果和工作效率。如果压缩量过大,贴合面之间发生摩擦,虽然能够运行但是机体会因为摩擦变热等不良反应。如果压缩量过小。机械密封中弹簧的受力不够当长时间运行弹簧的伸缩量改变发生无法恢复。使动静环中间的贴合面不能正常配合造成泄漏。为了保证机械密封的正常动作,机械密封要求泵轴不能有太大的窜量。由于我们单位大多都是波纹管式机械密封,所以压缩量的控制是非常重要的,不同型号的机械密封压缩量也是不同的。例如:75波纹管机械密封压缩量应该控制在4mm上下浮动值不超过1mm。这样的才能保证机械密封正常平稳的运行,但是窜量的调节是非常困难的工人师傅是无法百分之百的达到要求和实际设计当中,由于设计的不合理对机械密封的正常运行时有一定影响的。

6、处理故障采取的措施

6.1机械密封振动、发热的处理

如果机械密封与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,最好保证正确的间隙。如果是摩擦副配对不当,更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

6.2机械密封泄漏的处理

机械密封的泄漏是由于许多原因造成的,我们要对相应的问题作出相应的处理办法。机械密封的泄漏是不可能避免的,我们只能尽一切可能的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,一下注意项目是非常重要的:(1)正确安装保证安装表面的光滑无毛刺;(2)处理好倒角的角度;(3)装配O型圈时,O型圈密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。

在针对循环水泵保养和维修的工作中,我们要根据相应的注意事项在保证泵体的正常运行的前提下,尽量减少不必要的损耗,避免经济上的损失。

参考文献

机械密封工作原理篇7

一、机械密封的原理及要求

机械密封又叫端面密封,它是一种旋转机械的轴封装置,指由至少一对垂直于旋转轴线的的端面在液体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。它的主要功用将易泄漏的轴向密封改变为较难泄漏的端面密封。它广泛应用于泵、釜、压缩机及其他类似设备的旋转轴的密封。

机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环随泵轴一起旋转,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时弹性元件对泵的振动、冲击起缓冲作用。机械密封在实际运行中是与泵的其它零部件一起组合起来运行的,机械密封的正常运行与它的自身性能、外部条件都有很大的关系。但是我们要首先保证自身的零件性能、辅助密封装置和安装的技术要求,使机械密封发挥它应有的作用。

二、机械密封的故障表现及原因

1、 机械密封的零件的故障旋转设备在运行当中,密封端面经常会出现磨损、热裂、变形、破损等情况,弹簧用久了也会松弛、断裂和腐蚀。辅助密封圈也会出现裂口、扭曲和变形、破裂等情况。

2、机械密封振动、发热故障原因 设备旋转过程中,会使动静环贴合端面粗糙,动静环与密封腔的间隙太小,由于振摆引起碰撞从而引起振动。有时由于密封端面耐腐蚀和耐温性能不良,或是冷却不足或端面在安装时夹有颗粒杂质,也会引起机械密封的振动和发热。

3、机械密封介质泄漏的故障原因

(1)静压试验时泄漏。机械密封在安装时由于不细心,往往会使密封端面被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合,都会造成介质泄漏。如果是轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。

(2)周期性或阵发性泄漏。机械密封的转子组件周期性振动、轴向窜动量太大,都会造成泄漏。机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.25mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。

(3)机械密封的经常性泄漏。机械密封经常性泄漏的原因有很多方面。第一方面,由于密封端面缺陷引起的经常性泄漏。第二方面,是辅助密封圈引起的经常性泄漏。第三方面,是弹簧缺陷引起的泄漏。其他方面,还包括转子振动引起的泄漏,传动、紧定和止推零件质量不好或松动引起泄漏,机械密封辅助机构引起的泄漏,由于介质的问题引起的经常性泄漏等。

(4)机械密封振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不仅仅是机械密封本身的原因,泵的其它零部件也是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

三、处理故障采取的措施

如果机械密封的零件出现故障,就需要更换零件或是提高零件的机械加工精度,提高机械密封本身的加工精度和泵体其他部件的加工精度对机械密封的效果非常有利。为了提高密封效果,对动静环的摩擦面的光洁度和不平度要求较高。动静环的摩擦面的宽度不大,一般在2~7毫米之间。

1、机械密封振动、发热的处理 如果是动静环与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,至少保证0.75mm的间隙。如果是摩擦副配对不当,就要更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

2、机械密封泄漏的处理 机械密封的泄漏是由于多种原因引起,我们要具体问题具体处理。为了最大限度的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,同时还要注意以下事项。

(1)装配要干净光洁。机械密封的零部件、工器具、油、揩拭材料要十分干净。动静环的密封端面要用柔软的纱布揩拭。

(2)修整倒角倒圆。轴、密封端盖等倒角要修整光滑,轴和端盖的有关圆角要砂光擦亮。

(3)装配辅助密封圈时,橡胶辅助密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。动静环组装完后,用手按动补偿环,检查是否到位,是否灵活;弹性开口环是否定位可靠。动环安装后,必须保证它在轴上轴向移动灵活。

3、泵轴窜量大的处理nbsp; 合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心泵,设计方案是:平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位。

机械密封工作原理篇8

关键词:机械密封;故障处理;原因分析

        机械密封在旋转设备上的应用非常广泛,机械密封的密封效果将直接影响整机的运行,严重的还将出现重大安全事故。

        从机械密封的内外部条件的角度分析了影响密封效果的几种因素和应采取的合理措施。

        1  机械密封的原理及要求

        机械密封又叫端面密封,它是一种旋转机械的轴封装置,指由至少一对垂直于旋转轴线的的端面在液体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。它的主要功用将易泄漏的轴向密封改变为较难泄漏的端面密封。它广泛应用于泵、釜、压缩机及其他类似设备的旋转轴的密封。

        机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环随泵轴一起旋转,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时弹性元件对泵的振动、冲击起缓冲作用。机械密封在实际运行中是与泵的其它零部件一起组合起来运行的,机械密封的正常运行与它的自身性能、外部条件都有很大的关系。但是我们要首先保证自身的零件性能、辅助密封装置和安装的技术要求,使机械密封发挥它应有的作用。

        2  机械密封的故障表现及原因

        2.1 机械密封的零件的故障旋转设备在运行当中,密封端面经常会出现磨损、热裂、变形、破损等情况,弹簧用久了也会松弛、断裂和腐蚀。辅助密封圈也会出现裂口、扭曲和变形、破裂等情况。

        2.2 机械密封振动、发热故障原因

        设备旋转过程中,会使动静环贴合端面粗糙,动静环与密封腔的间隙太小,由于振摆引起碰撞从而引起振动。有时由于密封端面耐腐蚀和耐温性能不良,或是冷却不足或端面在安装时夹有颗粒杂质,也会引起机械密封的振动和发热。

        2.3 机械密封介质泄漏的故障原因

        (1)静压试验时泄漏。机械密封在安装时由于不细心,往往会使密封端面被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合,都会造成介质泄漏。如果是轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。(2)周期性或阵发性泄漏。机械密封的转子组件周期性振动、轴向窜动量太大,都会造成泄漏。机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.25mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。(3)机械密封的经常性泄漏。机械密封经常性泄漏的原因有很多方面。第一方面,由于密封端面缺陷引起的经常性泄漏。第二方面,是辅助密封圈引起的经常性泄漏。第三方面,是弹簧缺陷引起的泄漏。其他方面,还包括转子振动引起的泄漏,传动、紧定和止推零件质量不好或松动引起泄漏,机械密封辅助机构引起的泄漏,由于介质的问题引起的经常性泄漏等。(4)机械密封振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不仅仅是机械密封本身的原因,泵的其它零部件也是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

 3  处理故障采取的措施

        如果机械密封的零件出现故障,就需要更换零件或是提高零件的机械加工精度,提高机械密封本身的加工精度和泵体其他部件的加工精度对机械密封的效果非常有利。为了提高密封效果,对动静环的摩擦面的光洁度和不平度要求较高。动静环的摩擦面的宽度不大,一般在2~7毫米之间。

        3.1 机械密封振动、发热的处理

        如果是动静环与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,至少保证0.75mm的间隙。如果是摩擦副配对不当,就要更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

        3.2机械密封泄漏的处理

        机械密封的泄漏是由于多种原因引起,我们要具体问题具体处理。为了最大限度的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,同时还要注意以下事项。

        (1)装配要干净光洁。机械密封的零部件、工器具、润滑油、揩拭材料要十分干净。动静环的密封端面要用柔软的纱布揩拭。(2)修整倒角倒圆。轴、密封端盖等倒角要修整光滑,轴和端盖的有关圆角要砂光擦亮。(3)装配辅助密封圈时,橡胶辅助密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。动静环组装完后,用手按动补偿环,检查是否到位,是否灵活;弹性开口环是否定位可靠。动环安装后,必须保证它在轴上轴向移动灵活。

机械密封工作原理篇9

关键词:中间再循环水泵;机械密封;泄露原因;压缩量;轴套 文献标识码:A

中图分类号:TH136 文章编号:1009-2374(2017)06-0163-02 DOI:10.13535/ki.11-4406/n.2017.06.082

1 系统简介

某厂凝结水系统装有一台中间再循环水泵,主要为凝结水精处理系统前置过滤器至凝结水高速混床提供冲洗水源。系统配有旁路系统。在高速混床投运前必须先用中间再循环水泵进行冲洗,当氢电导率、电导率、硅等指标化验合格后,高速混床才能投入运行,将凝结水输送至凝结水母管,再经过低压加热器输送至除氧器。泵的型号为AZ150-500A,单级单吸悬臂式离心泵,过流部分的材质是S30408不锈钢。

2 事件经过

运行人员在现场冲洗高速混床,投运中间再循水泵,检查发现水泵轴封处嗤水,泄漏量较大,需尽快处理,现运行的高速混床还有6小时失效,如不能将B混床冲洗合格,凝结水如走旁路系统会影响凝结水品质。维护人员接到通知后办理工作票对中间再循水泵进行解体检查。解体后,检查测量机械密封压缩量4.7mm(标准3.2~5.0mm)检查机械密封轴套没有磨损痕迹、用外径千分尺和内外径千分尺测量轴套外内径尺寸,尺寸在合格范围内。检查轴套0形圈没有老化、腐蚀、破损、变形现象。检查机械密封动静环面无裂纹、有轻度磨损现象。动静环内0形圈同样没有出现老化、腐蚀、破损等现象。同时在解体过程中,拆卸叶轮并帽螺母时,检查并帽四氟垫片没有严重变形。在未检查出问题的情况下,决定更换机械密封和轴套,领用一套新的0形圈进行更换,并决定将机械密封压缩量调整至标准值的上限5.0mm。

安装机械密封后中间再循环水泵投入试运行,水泵在启动阶段轴封处有微渗现象发生,当运行5分钟后轴封处由微渗变成线状泄露量。15分钟后,水泵机械密封开始甩水。

服务水泵再次大修,机封压缩量进一步增加,由上次的5.2mm调整到6.5mm,设备回装后试运发现机封已无泄露。至此,机械密封泄露问题得以彻底解决。

3 原因分析

由于解体时没有发现问题,水泵进行试运转过程中,又出现机械密封泄漏现象。可能出现的原因有以下四种:(1)泵体静环腔室有砂眼;(2)静环腔室与泵体连接螺栓力矩值紧力不均匀,造成泵体与静环腔室不同心;(3)轴套0形圈在安装过程中经过轴台时由于凡士林涂抹不均匀被轴台切断;(4)机械密封失效。

再次办理工作票,对中间再循水泵进行解体检查,检查静环腔室与泵体连接的四颗螺栓力矩值一致。不存在静环腔室与泵体不同心现象。泵体静环腔室解体后做金属探伤渗透检查,没有发现静环腔室有砂眼、裂纹等缺陷。从轴上取出轴套,拆除轴套上的机械密封。检查轴套内二道0形圈和动静环内0形圈完好无损伤。排除了上述三种原因后,着重对水泵机械密封进行检查和分析:

3.1 从机械密封工作原理分析

机械密封是一种依靠弹性元件对动、静环端面密封副的预紧和介质压力与弹性元件压力的压紧而达到密封的轴向端面密封装置。泵正常工作时,动环与静环之间的轴向间隙非常狭窄,在两个环的配合面之间形成了一层极薄的液体膜,起着冷却和端面的作用。同时水泵转动时机械密封的动环端面与静环端面相互贴合并相对运动而组成一个密封空间,它能有效防止泵体内的水泄漏。当动、静环端面圆周晃度大超过0.07mm以上时,动静环面贴合形成间隙,也能造成机械密封泄漏。

3.2 从机械密封结构上分析

中间再循环水泵的机械密封组件是由动环、静环、传动销、弹簧、弹簧座、防转销、动环0形圈、静环0形圈等部件组成。当泵进水时,进口电动阀没有遵循从开度10%~30%等过渡,一下全开势必造成动环弹簧受到挤压,在开泵时发生弹簧不回座的情况从而造成泄漏。机械密封结构,如图1所示。

从机械密封结构图中可以分析出:(1)密封副密封面处泄露a处泄露;(2)静环与压盖的辅助密封件b处泄露;(3)动环与轴(或轴套)的辅助密封c处泄露;(4)压盖与密封箱体之间静密封d处泄露;(5)轴套与轴静密封e处泄露;(6)动环镶嵌结构配合f处泄露。

其中,a、b、c三处为动密封,a处密封面是主要密封面,是决定机械密封摩擦、磨损和密封性能的关键,同时也决定机械密封的工作寿命。据统计,机械密封的泄露约有80%~95%是由于密封端面密封副造成的;b、c处是辅助密封面,是决定机械密封密封性和动环追随性的关键,特别是c处密封面,首先要防止因锈蚀、水垢、结焦等原因而造成的动环无法动弹;d、e、f处为静密封,应根据介质选用相容材料的密封垫或相应的配合。

根据现场中间再循环水泵机械密封结构分析,从泄漏情况判断,两次泄露点应为密封副密封面处泄露。

综合以上情况,分析造成机封泄露的原因有:(1)安装过程中,密封面损坏;(2)密封没有压缩量;(3)密封端面变形严重;(4)安装时端面没有处理干净,有异物。

3.3 机械密封失效从泵体振动情况分析

对振动的分析可以判断出不平衡及不同心等问题,经现场观察,中间再循环水泵运行时并无异常振动。

3.4 机械密封失效从水泵运行声音分析

根据异音情况可以判断出是否存在抽空、汽蚀等现象,端面液膜汽化(闪蒸),液膜不足,密封上有零件脱落或杂物落在密封腔内,未对中或叶轮及泵轴动平衡不良,汽蚀、轴承有问题等缺陷。

3.5 从机械密封泄露状态分析

泄露状态主要观察停泵时的泄露情况、开泵时的泄露情况、泄露量的大小及形态以及泄露与轴转速、介质压力、温度等的关系。通过观察,发现机械密封呈柱状泄露,转速变化过程中,泄漏量变化不明显。

4 处理措施

第一次机封拆卸后,检查机械密封各零部件,密封面无损伤,机械密封室内部无异物,动静环端有轻度磨损现象。此可以确定是机械密封磨损后造成动、静环面之间形成间隙,当中间再循环水泵在转动过程中,由于动静环相互贴合不紧密,未能形成一个有效的密封端面,造成中间再循环水泵内部压力水向外泄漏。在进行更换新机械密封、轴套及一套新0形圈后。还是出现甩水现象,虽然做了大量细致的检查工作,也未检查出造成机封泄漏的原因,为此从机械密封失效机理出发,从机械密封原理和结构入手,深入分析决定调整机械密封压缩量。通过查阅大量资料和图纸,得出增大机械密封压缩量超出生产厂家给定的标准范围。可能造成中间水泵电流过载,压缩量过大造成动环与静环之间相互贴合紧密形成液体膜极薄,当水泵运转时造成机械密封烧损。为了进一步判断是由于机械密封压缩量造成的泄漏,决定先将机械密封压缩量调整至5.1mm,然后制作压磅专用工具,将压力升至中间隙水泵工作压力的1.25倍,盘动泵转子,灵活无卡涩,静置10分钟后,再次盘动泵转子,灵活无卡涩,观察轴封处有介质从机械密封处渗出并呈线状泄漏。通过此次试验可以清晰得出,是由于压缩量造成。当将压缩量调整到5.9mm时,盘动泵转子卡涩现象,静置10分钟后,再次盘动泵转子,卡涩加剧,检查轴封处无渗水现象。如果就此运行,会出现中间水泵电机过载和机械密封烧损。如何解决此现象,就不能单纯从机械密封压缩量入手,通过对机械密封轴套与泵轴台长度测量得出,轴套与轴台配合端面位置相应缩短0.72mm。为验证,将上次更换下来的旧轴套(与轴台配合)端面车削0.50mm。将机械密封压缩量调整5.3mm(超标0.30mm)后,安装压磅专用工具,叶轮腔室注水,将压力升至工作压力的1.25倍,静置10分钟,盘动泵转子灵活,无卡涩,观察机械密封腔室处无渗水现象。

通过上述处理,中间再循环水泵试转30分钟,检查中间水泵机械密封无泄漏和渗水现象。

5 结语

中间再循环水泵的泄漏故障,造成效率的下降和能量损失。它表现的形式就是造成凝结水品质的下降,也给机组的经济、安全稳定运行带来隐患。

参考文献

[1] [美]斯克莱特.机械设计实用机构与装置图册[M].北京:机械工业出版社,2007.

[2] 李新华.密封元件选用手册[M].北京:机械工业出版社,2010.

[3] 蔡仁良.流w密封技术[M].北京:化学工业出版社,2013.

机械密封工作原理篇10

【关键词】填料密封;机械密封;渣浆泵

1.渣浆泵填料密封装置存在的弊端

传统的渣浆泵轴封以盘根密封为主。盘根表面粗糙,摩擦系数大,有渗漏现象,另外使用久了浸入的剂容易流失。浸油石棉盘根在水中长期浸泡会变得很硬,而且由于膨胀系数大,摩擦力较大。在生产中,经常出现这样的状况:新修好的设备,开始运行时轴封状况良好,但用不了多久,泄漏量便不断增加,调整压盖和更换填料的工作也逐渐频繁,运转不到一个周期,轴套就已磨损成花瓶状,严重时还会出现轴套磨断,并且水封环后面更换不到的盘根均已腐烂,无法起到密封作用。

盘根密封的缺点:①盘根填料与轴直接接触,且相对转动,造成轴与轴套的磨损,所以必须定期或不定期更换轴套;②为了使盘根与轴或轴套间产生的摩擦热及时散掉,盘根密封必须保持一定量的泄漏,而且不易控制;③盘根与轴或轴套间的摩擦,造成电机有效功率降低,消耗电能,有时比例占到5%~10%;④盘根密封轴封结构,运转和停车时物料大量泄漏。

2.机械密封的原理和优、缺点

机械密封是一种依靠弹性元件对静、动环端面密封副的预紧和介质压力与弹性元件压力的压紧而达到密封的轴向端面密封装置,故又称端面密封。

例如集装式机械密封(见图1)是把动环、静环、弹簧、辅助密封圈、轴套、压盖静密封垫圈等主要零件组合成一起的一个集合体。

机械密封与填料密封比较,有如下优点:①密封可靠,在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为填料密封的1/100;②使用寿命长在油、水类介质中一般可达1~2年或更长时间,在选煤介质中合理使用,通常也能达一年以上;③摩擦功率消耗小,机械密封的摩擦功率仅为填料密封的10%~50%;④轴或轴套基本上不受磨损;⑤维修周期长,端面磨损后可自动补偿,一般情况下,毋需经常性的维修;⑥抗振性好,对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;⑦适用范围广,机械密封能用于低温、高温、真空、高压、不同转速,以及各种腐蚀性介质和含磨粒介质等的密封。

但其缺点有:①结构较复杂,对制造加工要求高;②安装与更换比较麻烦,并要求工人有一定的安装技术水平;③发生偶然性事故时,处理较困难;④一次性投资较高。

根据两种密封的对比,东庞选煤厂渣浆泵机械式密封采用副叶轮+机械密封组合式的轴封结构,密封质量得到了根本性改善。泵运行时有副叶轮和机械密封共同作用,确保无泄漏;泵停车时有机械密封作用,保证无泄漏。因此,无论泵运行还是停车均不漏料,且轴套无磨损,不用换盘根。泵运行时不用高压轴封水,现场工况环境得到了较大改善,减轻了维修工人的负担,从根本上解决了困扰生产的难题。

3.渣浆泵机械式密封的改造

机械密封结构型式的选择必须对原有渣浆泵的工作参数(介质压力、温度、轴径和转速)、介质特性(浓度、黏度、腐蚀性、有无固体颗粒及纤维杂质)、主机工作特点与环境条件、主机对密封结构尺寸的限制及生产工艺的稳定性进行分析。东庞选煤厂使用的渣浆泵技术参数:流量280m/h,温度30℃,扬程80m,转速1480r/min,介质浓度500g/L,腐蚀性一般,介质粒度≤0.5mm,工作环境潮湿。依据以上技术参数,参考《机械设计手册》,选用MN206―90型双端面密封组件,技改后渣浆泵的机械密封装置为双端面密封组件+副叶轮组合式轴封结构。改造所选用的副叶轮+机械密封组合式的轴封结构,使用冷却水箱密封,不用高压轴封水,从根本上解决原泵轴封泄漏严重的问题。安装相对较简单,不需要对泵体进行任何的改造,机械密封改造的工作量较小。因此,渣浆泵机械密封装置改造在技术上是可行的。改用机械密封的渣浆泵如图2

图2改用机械密封后的渣浆泵简图

水泵原采用的填料价格约为30元/kg,东庞选煤厂平均每台水泵每月需要更换8次盘根,每次更换需用填料1.5kg左右,1台水泵1年需用材料费为4320元;每台泵更换填料的人工费120元/次。那么,1台水泵每年则需要总维护费用15840元。而采用的机械密封每套约10000元。所采用的机械密封正常运行时基本无损耗,寿命至少在一个1年以上,所以从经济角度看,改造也是合理的。

4.改造实施效果

自2012年3月,东庞选煤厂先后对4台加压过滤机入料泵和深锥底流泵实施了改造。改造后渣浆泵采用副叶轮+机械密封组合式的轴封结构,密封效果得到根本性改善。设备的整体可靠性大大提高,整个输送系统的安全性能也大大提高,从一定程度上保证了设备的安全稳定运行。原来几乎每天都要对盘根泄漏进行维修,同时由于泄漏而使得煤泥大量浪费。技改后几乎不用维护,大大降低了维修工人劳动强度,节约了大量人力和资源。

参考文献

[1]胡国桢.化工密封技术.北京:化学工业出版社,2001 107-109页

[2]王凤喜,杨红文,徐游.密封使用与维修问答.北京:机械工业出版社,1990 210-221页

[3]顾永泉.机械密封实用技术.北京:机械工业出版社,2005 96-106页

[4]陈德才,崔德容.机械密封设计制造与使用.北京:机械工业出版社,2001 654-680页

[5]米勒,程传庆.流体密封技术 原理与应用.北京:机械工业出版社,1993 236-265页