声音采集电路设计论文

时间:2022-05-18 10:33:47

声音采集电路设计论文

1系统的总体结构与设计

1.1声音采集模块

声音采集模块是实现声音的采集与处理的第一步,其中传感器采用驻极体传声器。传声器的主要作用是将声音传换成电压量,以供后级电路的滤波和放大。经过调理后的电压信号再送入模数转换器(ADC)进行数字量化。

1.2A/D控制电路的设计

AD转换部分是整个声音采集系统的关键。本设计选用了一款精度采样频率较高(12位,1.65μs)的模数转换芯片AD7864,其采用5V单电源供电。4个通道上的输入信号可同步进行采样,因而可保留4个输入通道上的信号相位信息。模数转换器控制模块主要在FPGA的基础上来实现,其中FPGA采用Altera公司的Cyclone系列EP1C12FQ240C8。ADC控制器采用VerilogHDL程序编程实现,设计过程中主要采用了状态机。模数转换器控制流程图AD7864模数转换后数据的读取有两种方法:转换中读取和转换后读取。本设计采用先转换后读取数据的方法,具体工作过程如下:当转换起始信号CONVST上升沿时,4个采样保持器进入保持状态,开始对选择的通道采样。同时,BUSY输出信号被触发为高电平,并在转换过程中一直保持为高,当全部通道转换结束后,才变为低电平。EOC信号在AD7864,其采用5V单电源供电。4个通道上的输入信号可同步进行采样,因而可保留4个输入通道上的信号相位信息。AD7864模数转换后数据的读取有两种方法:转换中读取和转换后读取。本设计采用先转换后读取数据的方法,具体工作过程如下:当转换起始信号CONVST上升沿时,4个采样保持器进入保持状态,开始对选择的通道采样。同时,BUSY输出信号被触发为高电平,并在转换过程中一直保持为高,当全部通道转换结束后,才变为低电平。EOC信号在每一个通道转换结束时均有效。全部通道转换后的数据保存在AD7864内部相应的锁存器中。全部通道转换结束后,当片选信号和读信号有效时,就可以按照转换顺序从数据总线上并行读取数据。

1.3存储模块

模数转换的数据经过FPGA芯片内部的存储器进行缓存,之后通过UART向上位机传输或者存入SD卡。SD卡是基于快速闪存的新一代存储器,具有体积小、容量大、移动方便等特点。本设计采用闪迪公司的8G容量SD卡作为系统的存储模块。SD卡的读写采用SPI模式。SPI模式使用字节传输,其优点是简化主机的设计。读写SD卡的操作都需要先对SD卡进行初始化,完成SD卡的初始化之后即可进行读写操作。SPI总线模式支持单块(CMD24)和多块(CMD25)写操作,多块操作是指从指定位置开始写下去,直到SD卡收到一个停止命令CMD12才停止。单块写操作的数据块长度只能是512字节。单块写入时,命令为CMD24,当应答为0时说明可以写入数据,大小为512字节。SD卡对每个发送给自己的数据块都通过一个应答命令加以确认,其数据长度为1个字节,当低5位为00101时,表明数据块被正确写入SD卡。

2结论

本设计实现了利用FPGA与SD卡进行声音信息读写控制的功能,设计基本达到了设计的目的。由于FPGA芯片具有可在系统编程的能力,所以采集系统的采样频率、采样时长等都十分灵活。此外在数据传输方式上,由于采用了SD卡,因此具有低成本、大容量、小尺寸等优点。基于FPGA与SD卡的同步声音采集电路设计中采用的AD7864模数转换器,可以实现四个通道数据的同步采集,这对于声音信号的处理和分析具有十分重要的意义和价值。

作者:张小虎李东红李聪黄庆彩单位:太原科技大学电子信息工程学院