执行器范文10篇

时间:2023-03-28 01:49:41

执行器

执行器范文篇1

1.1推杆动作迟钝或不动作

执行器长期工作在生产现场,直接与各种工艺介质接触,在检查维护、测试及运行过程中经常出现执行机构中的推杆动作迟钝或无法动作的故障,须认真检查执行机构中滚动膜片,垫片是否老化、破裂,因为膜片的老化或破裂会导致标准压力信号的泄气,使与其相连接的推杆动作迟缓或不动作。

1.2测试运行过程中回差比较大

执行器的回差是指在同一输入信号上所测得的正、反行程的最大差值。回差一般情况下是由于仪表本身机械零部件松动或执行机械中推杆弯曲引起的,这时需要认真检查与推杆相连接的压缩弹簧有无损伤,同时观测推杆是否变形弯曲、划伤,上、下阀座连接螺栓有无异常现象,是否对称,特别是用缠绕热片密封的调节阀更应该注意这些方面的问题,有时回差过大也与密封填料压得太紧有关,应及时作相应的调整。

1.3流体泄漏

1.3.1阀杆长短选择不合适泄漏气开阀是指有压力信号时阀开的执行器。反之为气关阀。它们是由执行机构的正、反作用和调节阀的正、反作用组合而成。气开阀如图1中的(a)、(b),气关阀如图1中的(c)、(d)所示。

当执行机构中的膜片接受到标准气压信号时如果阀杆太长或太短,阀杆向上(或向下)移动距离不够,就造成了阀芯和阀座之间的间隙,使其不能很充分接触,导致调节阀关不严而发生内漏现象。

1.3.2填料泄漏在执行器内部存在有多处密封

装置,密封面的损伤,阀杆连接处弹簧被腐蚀或失去弹性以及阀座与阀体连接螺纹松动,都是造成泄漏的主要因素,填料装入填料函后,经压盖对其施加轴向压力,由于填料的可塑性,使其产生径向的压力与阀杆紧密接触。调节阀在使用过程中,阀杆与填料之间存在着频繁轴向运动,同时伴随着高温、高压和渗透性强的流体介质及填料自身老化等因素的影响,就会使填料界面发生泄漏,对于纺织填料还会出现渗漏现象(即压力介质沿着填料纤维之间的微小缝隙向外泄漏的现象)。

1.3.3阀芯、阀座变形泄漏阀芯、阀座泄漏的主要原因是由于调节阀生产过程中铸造、锻造缺陷造少戊的,细小的砂眼、局部的磨损都会导致冲刷腐蚀速度的加快。在调节阀中腐蚀主要以浸蚀和气蚀为主,它们都是由于流体介质在阀体内的流动所引起。当强酸、强碱等腐蚀性介质在通过阀体时,会对阀芯,阀座产生冲刷腐蚀,导致阀芯变形与阀座不配套,产生间隙而发生泄漏。

1.4卡堵

执行器的调节机构发生卡堵,主要是由于管道中的硬渣在节流口、阀芯与阀座之间的导向面部位、下阀盖平衡孔内造成堵塞,使阀芯动作迟钝或只能上不能下,导致不能动作或动作过头的现象,常发生于新投运系统和大修后投运初期。

1.5振荡和噪声

当调节阀的流通能力选取值过大时,造成调节阀前后压力比较大,当调节阀的弹簧钢度不足时,就产生阀体的振荡。当流体流经调节阀,如前后压差过大就会产生针对阀芯、阀座等零部件的气蚀现象,使流体产生噪声。这些现象的产生都会影响执行器平稳运行。

2执行器故障的处理方法

从以上执行器出现的故障原因分析来看,对于气动执行器在运行过程中或检修时应重点检查下列部位:阀芯、阀杆、阀座、阀体、内壁、膜片和弹簧、密封填料,针对这些部位出现的各种问题采用适当的方法予以处理。

(1)阀芯长期受介质冲蚀,可能会出现腐蚀、磨损损坏严重时应进行更换。

(2)检查阀杆表面有无刻痕,是否光滑、弯曲,若损坏过多或直径过细应及时更换。

(3)检查阀座锥形密合面的损坏程度,然后检查阀座的螺纹内表面有无因受腐蚀而使阀座松动,损坏程度较轻可经修理后继续使用,否则应更换。

(4)在高压差和腐蚀介质的情况下,阀体内壁出现缺陷或剥损时,应及时补焊修理。

(5)检查膜片和密封圈有无老化、破裂、压缩弹簧有无损伤,如果发现问题要及时更换。

(6)采用石棉绳填料的,应检查有无干涸,要常注润滑油;采用聚四氟乙烯填料时,应检查有无老化和接触面损坏,如发现问题应及时更换,为了有效地保护阀杆填料函的密封,保证填料密封的可靠性和长期性,填料可以选用气密性好、摩擦力小的柔性石墨。

(7)对振荡和噪声可以通过调整弹簧钢度,更换节流元件,减小阀内可动零件导向间隙,改变流动方向,限制阀座前后压差,合理选用阀体结构来消除。

3结语

通过对执行器常见故障的分析,有针对性地采取合适的维修方法,将会大大延长执行器的使用寿命,降低自动化仪表的故障率,有效提高调节系统的质量水平,确保自动调节装置长周期、高效率的运行。

参考文献

[1]陈荣.模拟调节仪表IMI.化学工业出版社,1994.

[2]梁雪萍.调节阀故障原因分析及处理方法[J].化工自动化及不义表,2000,27(5):63-64.

[3]厉玉鸣.化工仪表及自动化[M].北京:化学工业出版社,1998

执行器范文篇2

原9610R系列的全电子式电动执行器是以220V交流单向电源作为驱动电源,驱动电机采用单向交流电机,位置反馈采用高性能导电塑料电位器。

伺服放大器的原理如图1所示。

①当UY=0时,

K_=Uo/Ux=-[(R4+R5)/R5]×(R6/R1)

②当Ux=0时,

K+=Uo/UY=[R3/(R2+R3)]×[(R4+R5)/R5]×(1+R6/R1)

根据线性叠加原理,Uo=K+UY+K_UX。

由上可知,由于电阻很难做到完全匹配,所以原9610R电动执行器存在着电机正反转不对称的问题。电机驱动电路如图2所示。

图2中,Uo为从伺服放大器来的电压信号,当Uo>0.7V时,电机正转;当Uo<-0.7V时,电机反转。C1为控制电机制动的电容。

重新设计的全数字电动执行器对电机的驱动电路进行了改进,用±12V的开关量信号的时间长短来控制电机的正反转,并实现了电动执行器的制功与反向截止功能。新的电机驱动电路如图3所示。

图3中,Ukp和Ukn分别为80C196的两个高速输出引脚,T2-1/T2-2、T3-1/T3-2、T4-1/T4-2、T5-1/T5-2、T6-1/T6-2、T7-1/T7-2分别为6个光电隔离器。当Uk为+5V高电平时,T2-1/T2-2导通,从而T*-1/T6-2导通使电机正转;当Uk由高电平到低电平的瞬间,T4-1/T4-2瞬间导通,使得T7-1/T7-2瞬间导通,电机瞬间反转,电容放电结束后电机停止;同理,当Uk为0V低电平时,电机反转。这样便实现了电机正反向控制。

图3新设计的电机驱动电路

系统输出与驱动电路之间完全实现了光电隔离,这样可提高系统的抗干扰能力和可靠性。

2控制系统结构

以80C196KC单片机为核心的全数字电动执行器的控制系统结构如图4所示。图4中,除80C196KC单片机外,还选用了X25043实现掉电保护功能,以MAX7219驱动LED数码管显示阀位的给定值与反馈值以及阀位的状态与控制方式;同时,以改进的4~20mA恒流电路直接将阈位反馈信号转换成4~20mA的信号送至室内模拟二次表显示,以保证其模拟与数字控制的兼容性。利用80C196KC内部的A/D转换口,将阀位反馈与阀位模拟给定信号转换成10位的数字信号,用软件判断阀位故障(堵转,超限),进行故障处理(报警或停机),在控制输出端与故障处理端用MOC3061光电隔离将单片机系统与电机驱动电路隔离开来,达到抗干扰的目的。

选用1838红外遥控接收解码一体化集成芯片,接收来自遥控器的红外遥控信号。CAN控制器采用Philips的SJA1000集成芯片,CAN总线驱动选用82C250集成芯片,在SJA1000与CAN总线驱动82C250之间用6N137快速光隔进行光电隔离处理,与单片机接口实现单片机与上位机的通信功能。

各部分的主要硬件电路介绍如下。

(1)改进的4~20mA恒流电路

整个恒流电路,由1片集成的4通道运放LM324和6个精密电阻、1个可调电阻、1个瓷片电容及1个二极管组成,电路结构非常简单,电路如图5所示。图5中,R1=R2=R3=R4=R5=100kΩ,R6=200Ω,R7为0~100Ω可调电阻。

从图5电路可知:在R2、R3、R4、R5这四个电阻匹配得比较好的情况下,U1-U2=U1,通过调节R7使得R6+R7=250Ω,从而Io=U1/250Ω达到使1~5V电压转换成4~20mA的目的,且不论输出端的负载如何变化,这种关系都不会发生变化,达到恒流的目的。为为使该恒流电路可带的负载尽量大,集成运放LM324的电源最好用+18V电源。

(2)红外遥控接收电路

作为电动执行机构,在工业过程控制应用时,常常会遇到安装位置不便于调试的情况。采用红外遥控调可以说是一个很好的解决方案,可以免去常规调试所需要做的一些工作,比如打开控制盒盖进行调试线路更改等等。红外遥控接收芯片采用红外遥控接收解码一体化集成芯片1838。电路如图6所示。

图6中,电阻和电容组成去耦电路,以抑制电源干扰;除此以外不需要任何外接元件,中心频率为38kHz。但是,由于1838集成芯片的增益高且不可调,没有屏蔽,特别容易受到外界的干扰,因此必须采取屏蔽措施。最好的办法就是利用金属材料做一个屏蔽盒,将1838装入,只留红外接口在外。

我们选用一种通用红外遥控器作为电动执行机构的调试装置。80C196KC单片机首先将遥控器各按键的命令码测出,然后对它们分别赋予我们所需要的调试命令,这样就可使开发周期大大缩短。

图7CAN总线通信接口电路

(3)上下位机通信

CAN(CantrolAreaNetwork)是控制局域网络的简称,最早由德国BOSCH公司推出,用于汽车内部测量与执行部件之间的数据通信。其总线规范已被ISO国际标准组织制定为国际标准,广泛应用在离散控制领域。其信号传输介质为双绞线。通信速率高达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备最多可达110个。

CAN的信号传输采用短帧结构,每一帧的有效字节数为8个,因而传输时间短,受干扰的概率低。当节点严重错误时,具有自动关闭的功能,以切断节点与总线的联系,使总线上的其它节点及其通信不受影响,具有较强的抗干扰能力。CAN总线通信接口电路如图7的示。

80C196KC的AD15端口作为SJA1000的片选信号,故CAN控制器SJA1000所占用的地址为:8000H~80FFH。使用CAN总线收发器PCA82C250目的是进一步提高CAN总线的驱动能力。它的工作模式由RS控制引脚来提供,取决于斜率电阻(200kΩ可调电阻的阻值)。

上位机通过一块华控的公司的HK-CAN30BPCI总线非智能隔离型通信板,可对工业现场具有CAN通信接口的仪表和控制设备进行监控。

(4)掉电保护和抗干扰措施

系统实现现电保护的元件采用Maxim公司的X25043。X25043有三种常用的功能:看门狗定时器、电压监控和E2PROM,组合在单个封装内。X25043对于要求电路板空间尽可能小的该系统来说是非常适用的,电路如图8所示。

X25043的看门狗定时器对微控制器80C196提供了独立的保护系统,可选超时周期有:1.4s、600ms、200ms,也可禁用。当系统故障时,在超出所选的超时周期以后,X25043看门狗将以RESET信号作出反应,使系统复位。利用X25043低VCC检测电路,可以保护系统使之免受低电压情况的影响。当VCC降到最小VCC检测电平时,RESET变为低电平,给系统复位,直到VCC上升到最小VCC检测电平200ms为止。此外,X25043还具有512×8位串行E2PROM,使得本系统无须另外扩展数据存储器RAM。

系统的抗干扰措施包括硬件措施和软件措施。硬件上:①在输入和输出通道采用光电隔离来进行信号传输,电机驱动电路上采用光电隔离器MOC3061,在上下位机通信电路上采用快速光隔6N137;②在每一个集成电路芯片都安置一个0.01μF的陶瓷电容,以消除大部分高频干扰;③模拟地与数字地分开;④在CPU抗干扰措施上,除了配置掉电保护电路外,还配置了人工复位和自动上电复位电路。软件上:①指令冗余,在一些双字节和三字节指令之后插入两条NOP指令,以保证跑飞的程序迅速纳入正确的控制轨道;②利用软件陷阱强行将捕获到的程序引向对程序出错处理的程序;③启用80C196KC内部监视定时器(watchdogtimer);④对A/D输入信号采取软件数字滤波。

3系统的软件设计

本系统程序框图如图9所示。首先,是程序的初始化,包括对硬件和变量的初始化。然后,程序判断全局变量RUN,若RUN=0,表示程序终止运行,则跳转到程序的末尾复位看门狗,随后再跳转到程序的前面,判断RUN标志,循环执行;若RUN≠0,则程序执行主循环,再复位看门狗。这样,通过设定RUN变量来控制程序的执行。

在中断程序程序中只处理基本的操作,如数据的输入和输出等;一些复杂的数据处理,如输入通道的软件滤波等等,都放在主循环里面处理。在主程序里,给每一个断分配一个全局变量作为中断标志,当有中断发生时,对此标志置1。在主循环里,程序依次判断每个标志位,来决定是否要执行相应的子程序,即过程或函数。在主程序中处理完相应的中断服务后,要对对应的中断标志清零。

主程序的功能包括:确定阀位和阀位状态、阀位和阀位状态的LED显示、阀位控制输出、判断阀是否堵转以保护电机避免电机过热、红外外遥控命令解码和遥控命令控制输出。在阀位控制输出上,采用以控制电机正反转的时间来控制阀位,将A/D采样的周期控制得非常短,如10ms,甚至更短。以这产的周期来控制电机的动作,在要求的阀位0.5%精度范围以内,保持电机不动作,以保证阀位控制的准确性以及避免阀位来回震动。

执行器范文篇3

1.1推杆动作迟钝或不动作

执行器长期工作在生产现场,直接与各种工艺介质接触,在检查维护、测试及运行过程中经常出现执行机构中的推杆动作迟钝或无法动作的故障,须认真检查执行机构中滚动膜片,垫片是否老化、破裂,因为膜片的老化或破裂会导致标准压力信号的泄气,使与其相连接的推杆动作迟缓或不动作。

1.2测试运行过程中回差比较大

执行器的回差是指在同一输入信号上所测得的正、反行程的最大差值。回差一般情况下是由于仪表本身机械零部件松动或执行机械中推杆弯曲引起的,这时需要认真检查与推杆相连接的压缩弹簧有无损伤,同时观测推杆是否变形弯曲、划伤,上、下阀座连接螺栓有无异常现象,是否对称,特别是用缠绕热片密封的调节阀更应该注意这些方面的问题,有时回差过大也与密封填料压得太紧有关,应及时作相应的调整。

1.3流体泄漏

1.3.1阀杆长短选择不合适泄漏气开阀是指有压力信号时阀开的执行器。反之为气关阀。它们是由执行机构的正、反作用和调节阀的正、反作用组合而成。气开阀如图1中的(a)、(b),气关阀如图1中的(c)、(d)所示。

当执行机构中的膜片接受到标准气压信号时如果阀杆太长或太短,阀杆向上(或向下)移动距离不够,就造成了阀芯和阀座之间的间隙,使其不能很充分接触,导致调节阀关不严而发生内漏现象。

1.3.2填料泄漏在执行器内部存在有多处密封

装置,密封面的损伤,阀杆连接处弹簧被腐蚀或失去弹性以及阀座与阀体连接螺纹松动,都是造成泄漏的主要因素,填料装入填料函后,经压盖对其施加轴向压力,由于填料的可塑性,使其产生径向的压力与阀杆紧密接触。调节阀在使用过程中,阀杆与填料之间存在着频繁轴向运动,同时伴随着高温、高压和渗透性强的流体介质及填料自身老化等因素的影响,就会使填料界面发生泄漏,对于纺织填料还会出现渗漏现象(即压力介质沿着填料纤维之间的微小缝隙向外泄漏的现象)。

1.3.3阀芯、阀座变形泄漏阀芯、阀座泄漏的主要原因是由于调节阀生产过程中铸造、锻造缺陷造少戊的,细小的砂眼、局部的磨损都会导致冲刷腐蚀速度的加快。在调节阀中腐蚀主要以浸蚀和气蚀为主,它们都是由于流体介质在阀体内的流动所引起。当强酸、强碱等腐蚀性介质在通过阀体时,会对阀芯,阀座产生冲刷腐蚀,导致阀芯变形与阀座不配套,产生间隙而发生泄漏。

1.4卡堵

执行器的调节机构发生卡堵,主要是由于管道中的硬渣在节流口、阀芯与阀座之间的导向面部位、下阀盖平衡孔内造成堵塞,使阀芯动作迟钝或只能上不能下,导致不能动作或动作过头的现象,常发生于新投运系统和大修后投运初期。

1.5振荡和噪声

当调节阀的流通能力选取值过大时,造成调节阀前后压力比较大,当调节阀的弹簧钢度不足时,就产生阀体的振荡。当流体流经调节阀,如前后压差过大就会产生针对阀芯、阀座等零部件的气蚀现象,使流体产生噪声。这些现象的产生都会影响执行器平稳运行。

2执行器故障的处理方法

从以上执行器出现的故障原因分析来看,对于气动执行器在运行过程中或检修时应重点检查下列部位:阀芯、阀杆、阀座、阀体、内壁、膜片和弹簧、密封填料,针对这些部位出现的各种问题采用适当的方法予以处理。

(1)阀芯长期受介质冲蚀,可能会出现腐蚀、磨损损坏严重时应进行更换。

(2)检查阀杆表面有无刻痕,是否光滑、弯曲,若损坏过多或直径过细应及时更换。

(3)检查阀座锥形密合面的损坏程度,然后检查阀座的螺纹内表面有无因受腐蚀而使阀座松动,损坏程度较轻可经修理后继续使用,否则应更换。

(4)在高压差和腐蚀介质的情况下,阀体内壁出现缺陷或剥损时,应及时补焊修理。

(5)检查膜片和密封圈有无老化、破裂、压缩弹簧有无损伤,如果发现问题要及时更换。

(6)采用石棉绳填料的,应检查有无干涸,要常注润滑油;采用聚四氟乙烯填料时,应检查有无老化和接触面损坏,如发现问题应及时更换,为了有效地保护阀杆填料函的密封,保证填料密封的可靠性和长期性,填料可以选用气密性好、摩擦力小的柔性石墨。

(7)对振荡和噪声可以通过调整弹簧钢度,更换节流元件,减小阀内可动零件导向间隙,改变流动方向,限制阀座前后压差,合理选用阀体结构来消除。

3结语

通过对执行器常见故障的分析,有针对性地采取合适的维修方法,将会大大延长执行器的使用寿命,降低自动化仪表的故障率,有效提高调节系统的质量水平,确保自动调节装置长周期、高效率的运行。

参考文献

[1]陈荣.模拟调节仪表IMI.化学工业出版社,1994.

[2]梁雪萍.调节阀故障原因分析及处理方法[J].化工自动化及不义表,2000,27(5):63-64.

[3]厉玉鸣.化工仪表及自动化[M].北京:化学工业出版社,1998

执行器范文篇4

关键词:电动执行器单片机CAN总线

引言

本文所设计的全数字电动执行器,是在湘仪电子电器设备厂的9610R系列的全电子式电动执行器的电机驱动电路基础上所做出的进一步的改进。我们将控制部分用基于80C196单片机的数字控制代替原有的模拟控制,以提高具控制的精度与运行的可靠性。同时,为方便调试,增加了红外遥控的功能和基于CAN总线的通信功能,以适应现代工业控制的需要。

1原全电子式电动执行器的特点

原9610R系列的全电子式电动执行器是以220V交流单向电源作为驱动电源,驱动电机采用单向交流电机,位置反馈采用高性能导电塑料电位器。

伺服放大器的原理如图1所示。

①当UY=0时,

K_=Uo/Ux=-[(R4+R5)/R5]×(R6/R1)

②当Ux=0时,

K+=Uo/UY=[R3/(R2+R3)]×[(R4+R5)/R5]×(1+R6/R1)

根据线性叠加原理,Uo=K+UY+K_UX。

由上可知,由于电阻很难做到完全匹配,所以原9610R电动执行器存在着电机正反转不对称的问题。电机驱动电路如图2所示。

图2中,Uo为从伺服放大器来的电压信号,当Uo>0.7V时,电机正转;当Uo<-0.7V时,电机反转。C1为控制电机制动的电容。

重新设计的全数字电动执行器对电机的驱动电路进行了改进,用±12V的开关量信号的时间长短来控制电机的正反转,并实现了电动执行器的制功与反向截止功能。新的电机驱动电路如图3所示。

图3中,Ukp和Ukn分别为80C196的两个高速输出引脚,T2-1/T2-2、T3-1/T3-2、T4-1/T4-2、T5-1/T5-2、T6-1/T6-2、T7-1/T7-2分别为6个光电隔离器。当Uk为+5V高电平时,T2-1/T2-2导通,从而T*-1/T6-2导通使电机正转;当Uk由高电平到低电平的瞬间,T4-1/T4-2瞬间导通,使得T7-1/T7-2瞬间导通,电机瞬间反转,电容放电结束后电机停止;同理,当Uk为0V低电平时,电机反转。这样便实现了电机正反向控制。

图3新设计的电机驱动电路

系统输出与驱动电路之间完全实现了光电隔离,这样可提高系统的抗干扰能力和可靠性。

2控制系统结构

以80C196KC单片机为核心的全数字电动执行器的控制系统结构如图4所示。图4中,除80C196KC单片机外,还选用了X25043实现掉电保护功能,以MAX7219驱动LED数码管显示阀位的给定值与反馈值以及阀位的状态与控制方式;同时,以改进的4~20mA恒流电路直接将阈位反馈信号转换成4~20mA的信号送至室内模拟二次表显示,以保证其模拟与数字控制的兼容性。利用80C196KC内部的A/D转换口,将阀位反馈与阀位模拟给定信号转换成10位的数字信号,用软件判断阀位故障(堵转,超限),进行故障处理(报警或停机),在控制输出端与故障处理端用MOC3061光电隔离将单片机系统与电机驱动电路隔离开来,达到抗干扰的目的。

选用1838红外遥控接收解码一体化集成芯片,接收来自遥控器的红外遥控信号。CAN控制器采用Philips的SJA1000集成芯片,CAN总线驱动选用82C250集成芯片,在SJA1000与CAN总线驱动82C250之间用6N137快速光隔进行光电隔离处理,与单片机接口实现单片机与上位机的通信功能。

各部分的主要硬件电路介绍如下。

(1)改进的4~20mA恒流电路

整个恒流电路,由1片集成的4通道运放LM324和6个精密电阻、1个可调电阻、1个瓷片电容及1个二极管组成,电路结构非常简单,电路如图5所示。图5中,R1=R2=R3=R4=R5=100kΩ,R6=200Ω,R7为0~100Ω可调电阻。

从图5电路可知:在R2、R3、R4、R5这四个电阻匹配得比较好的情况下,U1-U2=U1,通过调节R7使得R6+R7=250Ω,从而Io=U1/250Ω达到使1~5V电压转换成4~20mA的目的,且不论输出端的负载如何变化,这种关系都不会发生变化,达到恒流的目的。为为使该恒流电路可带的负载尽量大,集成运放LM324的电源最好用+18V电源。

(2)红外遥控接收电路

作为电动执行机构,在工业过程控制应用时,常常会遇到安装位置不便于调试的情况。采用红外遥控调可以说是一个很好的解决方案,可以免去常规调试所需要做的一些工作,比如打开控制盒盖进行调试线路更改等等。红外遥控接收芯片采用红外遥控接收解码一体化集成芯片1838。电路如图6所示。

图6中,电阻和电容组成去耦电路,以抑制电源干扰;除此以外不需要任何外接元件,中心频率为38kHz。但是,由于1838集成芯片的增益高且不可调,没有屏蔽,特别容易受到外界的干扰,因此必须采取屏蔽措施。最好的办法就是利用金属材料做一个屏蔽盒,将1838装入,只留红外接口在外。

我们选用一种通用红外遥控器作为电动执行机构的调试装置。80C196KC单片机首先将遥控器各按键的命令码测出,然后对它们分别赋予我们所需要的调试命令,这样就可使开发周期大大缩短。

图7CAN总线通信接口电路

(3)上下位机通信

CAN(CantrolAreaNetwork)是控制局域网络的简称,最早由德国BOSCH公司推出,用于汽车内部测量与执行部件之间的数据通信。其总线规范已被ISO国际标准组织制定为国际标准,广泛应用在离散控制领域。其信号传输介质为双绞线。通信速率高达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备最多可达110个。

CAN的信号传输采用短帧结构,每一帧的有效字节数为8个,因而传输时间短,受干扰的概率低。当节点严重错误时,具有自动关闭的功能,以切断节点与总线的联系,使总线上的其它节点及其通信不受影响,具有较强的抗干扰能力。CAN总线通信接口电路如图7的示。

80C196KC的AD15端口作为SJA1000的片选信号,故CAN控制器SJA1000所占用的地址为:8000H~80FFH。使用CAN总线收发器PCA82C250目的是进一步提高CAN总线的驱动能力。它的工作模式由RS控制引脚来提供,取决于斜率电阻(200kΩ可调电阻的阻值)。

上位机通过一块华控的公司的HK-CAN30BPCI总线非智能隔离型通信板,可对工业现场具有CAN通信接口的仪表和控制设备进行监控。

(4)掉电保护和抗干扰措施

系统实现现电保护的元件采用Maxim公司的X25043。X25043有三种常用的功能:看门狗定时器、电压监控和E2PROM,组合在单个封装内。X25043对于要求电路板空间尽可能小的该系统来说是非常适用的,电路如图8所示。

X25043的看门狗定时器对微控制器80C196提供了独立的保护系统,可选超时周期有:1.4s、600ms、200ms,也可禁用。当系统故障时,在超出所选的超时周期以后,X25043看门狗将以RESET信号作出反应,使系统复位。利用X25043低VCC检测电路,可以保护系统使之免受低电压情况的影响。当VCC降到最小VCC检测电平时,RESET变为低电平,给系统复位,直到VCC上升到最小VCC检测电平200ms为止。此外,X25043还具有512×8位串行E2PROM,使得本系统无须另外扩展数据存储器RAM。

系统的抗干扰措施包括硬件措施和软件措施。硬件上:①在输入和输出通道采用光电隔离来进行信号传输,电机驱动电路上采用光电隔离器MOC3061,在上下位机通信电路上采用快速光隔6N137;②在每一个集成电路芯片都安置一个0.01μF的陶瓷电容,以消除大部分高频干扰;③模拟地与数字地分开;④在CPU抗干扰措施上,除了配置掉电保护电路外,还配置了人工复位和自动上电复位电路。软件上:①指令冗余,在一些双字节和三字节指令之后插入两条NOP指令,以保证跑飞的程序迅速纳入正确的控制轨道;②利用软件陷阱强行将捕获到的程序引向对程序出错处理的程序;③启用80C196KC内部监视定时器(watchdogtimer);④对A/D输入信号采取软件数字滤波。

3系统的软件设计

本系统程序框图如图9所示。首先,是程序的初始化,包括对硬件和变量的初始化。然后,程序判断全局变量RUN,若RUN=0,表示程序终止运行,则跳转到程序的末尾复位看门狗,随后再跳转到程序的前面,判断RUN标志,循环执行;若RUN≠0,则程序执行主循环,再复位看门狗。这样,通过设定RUN变量来控制程序的执行。

在中断程序程序中只处理基本的操作,如数据的输入和输出等;一些复杂的数据处理,如输入通道的软件滤波等等,都放在主循环里面处理。在主程序里,给每一个断分配一个全局变量作为中断标志,当有中断发生时,对此标志置1。在主循环里,程序依次判断每个标志位,来决定是否要执行相应的子程序,即过程或函数。在主程序中处理完相应的中断服务后,要对对应的中断标志清零。

主程序的功能包括:确定阀位和阀位状态、阀位和阀位状态的LED显示、阀位控制输出、判断阀是否堵转以保护电机避免电机过热、红外外遥控命令解码和遥控命令控制输出。在阀位控制输出上,采用以控制电机正反转的时间来控制阀位,将A/D采样的周期控制得非常短,如10ms,甚至更短。以这产的周期来控制电机的动作,在要求的阀位0.5%精度范围以内,保持电机不动作,以保证阀位控制的准确性以及避免阀位来回震动。

执行器范文篇5

关键词:新风机;热回收;风门执行器;智能;节能、新风机

一、热回收智能节能设计理论依据

新风机并不是所有时候都需要节能,要分具体情况而论,需要节能时开启节能措施进行节能,不需要时则关闭,实现智能节能方式。(1)室内温度小于所需温度,所需温度大于室外温度时。人体在室内最适宜的温度为22℃左右,也可根据自己需要设置合适温度T℃。在冬季时节,北方天气寒冷,室外空气经常在0℃以下,当室内温度不足T℃时,室内温度需要增加,这个时候需要热回收,以保证在新风机通风时室内温度不会变得更低。(2)室内温度小于所需温度,所需温度小于或者等于室外温度时。当室内温度较低,小于所需温度而所需温度又小于室外温度时,室内温度需要增加,这个时候不需要热回收,以便室外气体能够迅速进入室内,是室内气温上升到所需温度。(3)室内温度等于所需温度,所需温度大于或者小于室外温度时。当室内温度是所需温度T℃时,室内温度不需要调节,而室外温度较高或者较低,这个时候也需要热回收,以保证在新风机通风时室内温度不会变到受室外温度的影响而迅速发生变化。(4)室内内温度等于所需温度等于室外温度时,三者平衡,不需要热回收。(5)室内温度大于所需温度,室内温度小于室外温度时。当室内温度较高,大于所需温度,而室内温度又小于室外温度时,室内温度需要减少,这个时候需要热回收,以防止室外气体能够迅速进入室内,引起室内温度的进一步升高。(6)室内温度大于所需温度,室内温度大于室外温度时。当室内温度较高,大于所需温度,室内温度大于室外温度时,室内温度需要减少,这个时候不需要热回收,以便室外气体能够迅速进入室内,将室内气体温度降温,达到所需温度。(7)室内温度大于所需温度,室内温度等于室外温度时。当室内温度较高,大于所需温度,室内温度等于室外温度时,热回收失去了作用,这个时候不需要热回收。

二、新风机热回收智能节能设计要点

为了更好的节能,新风机热回收分具体情况进行节能,首先得需要在室外进风口和室内排风口分别设置两个温度传感器,以便检测室内及室外温度。同时要在新风机内设置一风门结构,在需要走热回收时,风门关闭;在不需要热回收时,风门打开,室外进风不走热回收,而是直接进入室内。针对以上要求,进行了新风机热回收智能节能设计。

三、新风机热回收智能节能设计结构组成

如下图所示,新风机热回收智能节能部分由风门执行器、风门执行器连杆、风门执行器中间连杆、风门执行器左连杆、2个固定销轴、风门口、风门等组成。风门执行器连杆与风门执行器下部中心相连;风门执行器左连杆与风门执行器连杆下部通过销轴相连;与此同时,风门执行器左连杆中部与风门执行器中间连杆通过开口销相连,风门执行器中间连杆另一端也是通过开口销与风门相连;风门下部通过固定销轴固定在新风机壳体上;风门执行器左连杆下部也通过一固定销轴固定在新风机壳体上。

四、新风机热回收智能节能设计结构组成原理

(1)风门执行器下部中心可以旋转,风门执行器左连杆绕固定销轴旋转,风门绕另一固定销轴旋转。当空气不需要走热回收时,风门执行器连杆顺时针旋转,带动风门执行器左连杆绕销轴逆时针旋转,风门执行器左连杆通过风门执行器中间杆带动风门逆时针旋转,风门打开,风门执行器左连杆与新风机壳体接触后密封,室外空气走热回收通道被封死,空气只能通过风门进入室内。各零件位置如上图所示。(2)当空气需要走热回收时,风门执行器连杆逆时针旋转,带动风门执行器左连杆绕销轴顺时针旋转,风门执行器左连杆通过风门执行器中间杆带动风门顺时针旋转,风门关闭,风门执行器左连杆与新风机壳体脱开,室外空气走热回收通道打开,空气只能通过热回收进入室内。

五、结语

本设计研究了一种智能节能的热回收方式,提出了新型热回收方式各部分名称、结构原理、结构要点及设计结论。新风机智能节能设计,在热回收节能的基础进行细化设计,使能量更好的节约,同时能够简便自动运行,符合新时代节能环保要求,为能量的节约带来了新的方法。

参考文献:

[1]杨治国,刘顺波,黄志刚,等.国防地下工程排风热回收技术经济性分析[J].制冷与空调(四川),2012,26(2):173-176.

执行器范文篇6

关键词:果蔬采摘机器人;研究现状;发展趋势

农业作为我国重要的经济产业支柱,其发展的道路上存在着众多的问题。在城镇化不断推进和人口老龄化现象日益严重以及大量青年人外出务工等的驱动下,农村严重缺乏生产劳动力,而缺乏生产劳动力是农业发展面临的主要问题之一[1]。目前,我国果蔬等农作物采摘方式以人工采摘方式为主,由于劳动力的不足,大量的人工成本严重影响了果蔬生产效益。因此,随着国家的发展,农业的发展逐渐从传统农业向智能化、智慧化农业发展,因而在农业生产中普及智能化设备、降低成本、提高工作效率,将成为未来农业发展的必然趋势,研发制造适用于果蔬等农作物采摘的机器人,代替人工进行农业生产,对于推进农业智能化和现代化进程具有重要意义[2]。

1果蔬采摘机器人的作业特性分析

1.1采摘对象多样化,生长环境差异化

果蔬的种类繁多,其大小、形状、颜色、重量以及坚硬度都有很大的差别,对于坚硬度不高的果蔬采摘时容易造成损坏,所以在作业时,采摘机器人需要根据果蔬的大小去调整末端执行器以及控制抓取力度。由于果蔬的生长受到环境因素的影响很大,而环境也存在着很大的差异性,所以采摘机器人的采摘作业环境也就大不相同,进而对其提出了更高的要求。

1.2采摘作业的不确定性和不均匀性

由于果蔬生长的位置分布不均匀,而且很容易受到枝叶的遮挡,在这种作业环境下,采摘机器人具有很多的不确定性,这就要求采摘机器人在准确识别、精准定位、采摘控制等方面具有更好的自适应能力和更高的智能化水平。

1.3采摘机器人的通用性与可更换性

由于采摘机器人采摘目标果实的多样化,进而对于不同种类的果蔬,采摘机器人都要能够进行采摘作业,这就要求采摘机器人具有良好的通用性。机器人在进行采摘作业时,其末端执行器直接与果蔬进行接触,而对于不同的果蔬其末端执行器也就不同,所以要求采摘机器人的末端执行器具有可更换性。

2果蔬采摘机器人研究现状

采摘机器人最早出现在1968年,受到当时科学技术的限制,出现的采摘机器人以机械式结构为主,但是这种以单一的机械式结构为主的采摘机器人工作效率不高;随着工业机器人技术、计算机图像和机器学习的逐步发展,采摘机器人也迎来了新的革命[3]。

2.1国外研究现状

日本的近藤直(NaoshiKondo)等[4-5]研发制造出用于采摘番茄的采摘机器人,具有7个自由度。在采摘环境中,该机器人通过双目视觉系统识别和定位已经成熟的果实,采摘机器人通过腕关节将果实与果柄分离后,具有软衬垫的末端执行器通过吸入的方式采摘果实。但当该采摘机器人位于枝叶茂密的环境中,则无法避开障碍完成采摘作业,影响采摘成功率。该采摘机器人采摘单个果实平均耗时15s,采摘成功率为70%。美国佛罗里达大学的MichaelW.Hannan等[6]研发制造出用于采摘柑橘的采摘机器人,具有7个自由度,如图1所示。该采摘机器人利用摄像机和超声波传感器对目标果实进行识别和定位,根据得到的位置信息,采摘机器人进行采摘作业时以球形坐标为坐标系,通过末端执行机构夹持目标果实进行采摘。其视觉系统处理时间为15ms~80ms,末端执行机构速度最高为508mm/s。日本的KanaeTanigaki等[7]研发制造出用于采摘樱桃的采摘机器人,具有4个自由度,如图2所示。该机器人有视觉伺服系统、采摘机械臂机构、工控机等部分,视觉系统用来对目标果实进行识别与定位,机械臂机构通过移动关节增大末端执行器的采摘作业范围。该采摘机器人主要以吸入式方式进行采摘,可以将果实和果梗一起采摘下来。美国的HemanthSarabu等[8]研发了一种具有6自由度的双臂协同苹果采摘机器人,如图3所示。其中双臂分别为抓取臂和搜索臂,搜索臂没有安装末端执行器。该采摘机器人创新与配备了协同机械臂(搜索臂),其搜索臂主要针对抓取臂未识别的苹果果实进行识别和定位,并且通过自身算法进行路径规划以实现搜索臂可行的路径方案。通过对该苹果采摘机器人的仿真和采摘实验分析得出,该双臂协同苹果采摘机器人可以实现苹果果实的定位与采摘作业。英国的BoazArad等[9]研发了具有6自由度的甜椒采摘机器人,如图4所示。该采摘机器人主要由自动行驶智能平台和平台上的机械臂以及视觉系统等组成。其机械臂末端配备摄像头对甜椒植株进行3D摄影,得到的图像通过图形处理单元形成三维高清影像从而精准定位甜椒果实。该采摘机器人末端执行器通过定端的震动刀片将桔梗与主干连接处分离,最终实现甜椒采摘机器人的采摘作业。

2.2国内研究现状

江苏大学的赵德安等[10]研发了一种具有5自由度的苹果采摘机器人,如图5所示。该采摘机器人有视觉伺服系统、控制系统、采摘机械臂机构等部分,其末端执行器配备视觉传感器等,进而采摘机器人能够对目标果实进行定位,通过新分类算法识别果实,根据识别到的苹果果实位姿进行逆解计算,结合伺服控制系统使得机械臂各个关节转动到逆解所示位姿,以实现对果实的采摘。该苹果采摘机器人采摘单个苹果平均耗时15s,采摘成功率为77%,可用于户外采摘作业。北京工业大学的王丽丽[11]研发制造出用于采摘番茄的采摘机器人,如图6所示。该采摘机器人具有4轮独立转向行走运动机构,通过激光导航系统控制机器人的运动,利用识别与定位技术确定目标果实的位置,使其灵巧型4自由度机械臂在空间较小的蔬菜大棚环境下进行采摘作业,机械手手指末端套上硅胶指套,手掌部位垫上柔软的硅胶衬垫,实现了番茄果实的无损采摘。该采摘机器人采摘单个番茄平均耗时15s,采摘成功率超过86.7%。江苏大学的高杨等[12]研发制造出适用于矮化密植环境下的采摘机器人,其具有4个自由度,如图7所示。该采摘机器人具有4条履带式的运动机构,其平台上搭载有剪叉式升降机构、机械臂、果箱和视觉传感器等部件。通过视觉系统定位目标果实,对于位置偏高的果实通过剪叉式升降机构抬高机械臂进行采摘,将采摘的果实直接存于果箱中。中国农业大学的张帆等[13]研发制造出用于采摘黄瓜的采摘机器人,该机器人可以实现无损抓取目标果实,如图8所示。其末端执行机构由夹持、剪切、叶片推挡以及导轨滑台等机构组成,夹持机构由两个气动柔性手指构成,手指兼顾柔性与刚度的要求。该采摘机器人通过移动平台进行初次定位,再利用推挡机构将遮挡果实的叶片推开,通过红外传感器进行次定位。夹持机构进行抓取并采用切刀切断果柄的方式进行采摘作业。该机器人采摘成功率大于85%,采摘速度约为8s/根,其视觉系统定位的最大误差为-7mm,果实识别率大于95%。沈阳农业大学的于丰华等[14]研发制造出用于采摘番茄的采摘机器人,其具有6个自由度,如图9所示。该采摘机器人适用于日光温室下进行采摘作业,利用具有4个麦克纳姆轮的平台搭载采摘机械臂,机械臂的末端执行器配备薄膜压力传感器。该采摘机器人通过视觉识别和STM32控制器对机械臂进行控制,以实现对果实的采摘。

3果蔬采摘机器人存在的问题

目前,国内外学者对果蔬采摘机器人进行了大量的研究,分别对采摘机器人的运动结构方式、视觉定位系统、控制系统以及末端执行器进行了深入的探索和研究,并取得了一定的成果。但是大部分果蔬采摘机器人尚处于实验和研究阶段,未能达到替代人工进行采摘的要求,仍有以下问题。

3.1果蔬采摘机器人的识别率和定位精度不高果蔬采摘机器人作业对象为生长的果实,其颜色和大小各不相同,而且作业环境复杂多变,采摘机器人受环境因素影响非常明显。即使目前的人工智能、大数据以及深度学习等算法使采摘机器人对果实的识别率有所提高,但是其视觉传感器等受到光照和遮挡等环境干扰时仍然存在较大的识别误差,进而影响采摘机器人对目标果实的定位精度。

3.2果蔬机器人的采摘效率较低且损伤率较高实际工作过程中,采摘机器人所处的作业环境具有很大的差异性,又由于机器人的视觉、控制系统的识别与定位精度不高,导致采摘机器人的采摘效率不高。果蔬机器人模仿人的动作进行采摘作业,但是与果蔬直接接触的末端执行器大部分为刚性结构,所以或多或少会对果实造成不同程度的损伤。

3.3果蔬机器人的避障性和通用性不足果蔬采摘机器人在进行采摘作业时处于作业环境多变的情况,比如采摘目标果实被枝叶遮挡以及果实之间的重叠性等,故采摘机器人需要在采摘的路径规划中具有避障功能。现有的采摘机器人只针对于某些特定的果蔬而研发,不同的果蔬之间不能通用,即通用性较差。

3.4果蔬机器人的维修和制造成本较高果蔬采摘机器人的作业环境不像工业机器人那样单一,所以其结构系统等更加复杂,因而研发周期长、制作成本高,并且果蔬采摘机器人作为智能农业装备,其设备的维护和保养费用相对而言也就更高。

4果蔬采摘机器人的发展趋势

根据上述研究可知,果蔬采摘机器人的发展过程存在一些亟待解决的问题,故结合采摘机器人未来的发展方向提出几点见解。

1)增强采摘机器人的可靠性。机械结构直接影响着采摘机器人的可靠性,在满足采摘作业的情况下,利用虚拟仿真、创新优化等设计手段,使其机械结构更加紧凑、简单。特别是针对采摘机器人的末端执行器,应改变其目前的刚性结构,增强末端执行器的柔顺性和灵巧性。

2)提高采摘机器人的识别率和定位精度。研发一种视觉传感器,其能够穿过遮挡物来确定目标果实的具体位置,再结合自适应学习能力和图像处理算法,提高采摘机器人定位精度和辨识率。

3)扩展设备的通用性。研发可以采摘外观形状相似的目标果实的机械手,对采摘机器人采用开放式系统以使采摘机器人可以采摘多种果蔬,进而增强其通用性,同时提高利用率。

4)降低维护和生产成本。目前采摘机器人的制造成本很高,其维修和维护费用也很高,因此,可以通过研发新型材料以及优化结构来降低成本。

5总结

目前,我国的果蔬采摘机器人尚处于研究探索阶段,多数果蔬机器人在实验室环境下进行采摘作业实验,距离实用化和商业化还有一段研究路程,故存在许多亟待解决的问题。随着国家大力发展智能化、智慧化现代农业,果蔬采摘机器人终会从实验室走向果蔬生产基地,推进现代化农业的发展。

参考文献:

[1]施辉城.智能化技术在农业机械中的应用与发展[J].农业科技与装备,2021(6):80-81.

[2]高文英.浅议现代农业机械智能化的应用与发展[J].南方农机,2020,51(11):65.

[3]肖旭,李明,谢景鑫,等.农业机器人技术发展综述[J].湖南农业科学,2020(11):113-118.

[10]赵德安,姬伟,陈玉,等.果树采摘机器人研制与设计[J].机器人技术与应用,2014(5):16-20.

[11]王丽丽.番茄采摘机器人关键技术研究[D].北京:北京工业大学,2017.

[12]高杨,刘继展,周尧.小型升降式采摘机器人设计与试验[J].农机化研究,2019,41(11):132-137.

[13]张帆,张帅辉,张俊雄,等.温室黄瓜采摘机器人系统设计[J].农业工程技术,2020,40(25):16-20.

执行器范文篇7

关键词:污水处理;机械设备;自动控制

1引言

目前城市人口数量正在不断增长,这就使得水资源日益短缺,同时还带来了大量的污水,从而诱发环境污染。要积极发展城镇污水处理技术,使污水能够得到及时处理,缔造良好的城市环境,实现城市可持续发展。本文主要对城镇污水处理技术和机械设备自动控制进行探讨,旨在完善城市生态环境。

2污水处理自动化系统与机械设备现状

在各大城镇污水处理厂中,为提高污水处理效率,一般会采用自动化系统,其中主要包括集中监视操作层、现场测量控制层、厂部生产管理层。对机械设备进行控制时,通常是利用调节器对变送器或者检测元件检测和传递的信号进行仔分析和对比,通过有效的处理后,再将设备传送给机械设备。在污水处理厂中,机械设备控制技术还比较落后,这这样就很难对信号进行及时的分析和处理,影响污水处理能力的提升。需合理提高机械设备的可靠性,实现自动化控制,才能改进这一现状。在污水处理厂中,机械设备的选择和应用需要遵循国家相关标准。第一种机械设备主要是具有一定的基础能力和生产能力,属于基础性设施;第二种设备具有一定的自动化控制能力;第三种主要是以自动化控制系统为主。

3城镇污水处理与机械设备自动控制现状

3.1自动化程度比较低。尽管我国污水处理厂已经拥有比较完善的自动化系统,但其自动化程度却比较低。我国污水处理自动化系统能力与国外发达国家相比还存在较大的差距,尽管越来越多的污水厂对污水处理技术进行改造和升级,但还存在许多不完善之处。3.2自动化系统适应性有待提升。在污水处理技术不断更新的过程中,污水处理机械设备执行器研发能力却不能满足现阶段的需求。执行器主要有两个作用,一是调节,二是执行,执行器会将信号转变成与相应的指令,这样就可以通过调节作用实现改造。自动化控制系统在许多领域中多有建树,不过,其在污水处理中却还存在一些问题。由于自动化系统缺乏良好的工作环境,这样就会影响机械设备正常运行。许多设备无法得到及时有效的维护,一旦出现问题,就会影响执行器的功能,甚至导致执行器罢工,降低污水处理能力。在工作环境比较恶劣的情况下,执行器的研发能力有限,就会导致执行器的性能无法得到提升,尽管自动系统需要更新换代,但还是受限于技术能力不足的窘境。3.3设备标准不统一。目前,我国污水处理设备的标准不统一,在生产的过程中缺乏必要的规范性,市场制度不够完善。国内与国外的设备标准不统一,规格多种多样,产品类型各异,这样就会使得污水处理厂很难选择合适的机械设备。

4城镇污水处理与机械设备自动控制改进对策

4.1加大技术创新力度,完善设备生产标准。要加强对城镇污水处理技术创新,积极研究和采用新工艺,这样才能提高污水处理能力。要加大设计力度,确保机械设备性能符合污水厂的需求。要不断提高设备自动化控制技术,使污水处理效果更有成效。各生产厂家要统一生产标准,确保机械设备生产更加规范,满足市场的需求,促进污水处理行业实现良性发展。可以对现阶段标准进行修改,通过不断检验后,进一步完善标准,使标准具有强制性。第一,要实现产品制造模块化,确保污水处理设备设计有统一的标准。第二,保证行业标准与国际标准接轨。第三,在设备产品设计中融入机电一体化技术。第四,确保执行机构与调节机构更加配套。4.2加强模块化设计,满足污水处理要求。为了确保污水处理与机械设备自动化控制水平得到进一步提升,就要加强模块化设计,在完善行业标准后,确保执行单元和接口更加匹配。模块化设计比较复杂,涉及到的内容比较多,对产品提出更加严格的要求。在一体化产品单元中包括智能调速、制集减速电机一体化的动力产品,以及典型操作的机械设备。通过模块化设计能够保证产品的性能更加优越,产品生产规模得到进一步扩大。污水处理厂可结合实际情况选择相应的设备,通过模块化操作的方式实现针对性处理,使污水处理达到预期的效果。4.3加大对执行器的研究与开发力度。要不断提高污水处理执行器的水平,通过专业的研究和探索,提高设备的性能。在执行器中包括调节机构和执行机构两个部分,可从这两部分入手,确保不同机构的性能更加完善。在执行机构中,包含不同的伺服传统装置,这些装置可以实现对机械的有效控制,确保设备得到有效的操作。当这两大机构的功能完善后,设备在运行时就会更加稳定,也更容易开展污水的处理,提高自动化操作水平。我国污水处理设备执行器还比较低端,虽然性能稳定,不会轻易发生故障,但是技术水平比较低。还有一些执行器虽然比较高端,但是其成本很高,配套性较差,这就需要加大研发力度,使执行器能够更加符合污水处理厂的需求。

5结束语

综上所述,在城镇污水处理中,要重视机械设备自动控制水平的提升,结合现阶段存在的问题,采取有效的改进对策,使机械设备自动化控制系统能够具有更加良好的污水处理能力,缔造我国城镇污水处理新格局。

参考文献

[1]张敏.智能化污水处理研究及发展应用[J].决策探索(中),2019(10):85.

[2]李志鹏.自动化监控系统在污水深度处理站的应用研究[J].四川水泥,2019(10):119.

[3]刘芹.城镇污水处理厂自动化控制设计[J].电子技术与软件工程,2019(14):127-128.

执行器范文篇8

1)汽车发动机基本原理和构造

当今世界上的汽车发动机工作过程基本上都由四个冲程组成,即进气、压缩、膨胀和排气。利用燃料和空气的混合气在气缸内燃烧产生的高温高压气体的膨胀,发动机借助于曲柄连杆机构通过曲轴对外输出扭矩而作功。发动机按照所用燃料可分成汽油机、柴油机和燃气发动机;按照点火方式可分成点燃式和压燃式;汽油机按照空气和燃油的比例可分成理论当量燃烧和稀薄燃烧;按照汽油喷射地点可分成中央喷射、进气口喷射和缸内喷射。

发动机的各个部分按其功能可分成燃油供应系统、进气排气系统、点火系统、曲柄连杆传动机构、润滑系统、冷却系统和辅助系统如发电机、起动机、空调压缩机和各种泵等。

发动机工况可分成冷起动、起动后、暖机、怠速、部分负荷、全负荷、加速、减速和倒拖滑行等。这些工况主要根据负荷与转速,结合发动机温度(即冷却液温度)来区分。

2)电子控制在发动机中的重要意义

汽车电子控制始于发动机电子控制。电子控制之于1957年引入发动机以及于1967年商品化,其初衷是为了满足越来越严格的排放法规要求,同时提高汽车的动力性、燃油经济性和舒适性。现代汽车和发动机技术离开了电子控制是不可思议的。电子产品的产值在整个汽车中所占的比例随着汽车级别的提升而升高,可达30以上。

3)发动机电子控制的核心问题

汽油机电子控制的核心问题是燃油定量和点火定时。柴油机电子控制的核心问题是燃油定量和喷油定时。

2.汽车和发动机电子控制系统的组成

汽车和发动机电子控制系统跟其它电子控制系统一样,也是由传感器、电子控制单元(ECU)和执行器组成。

1)传感器

(1)目前汽油机电子控制系统常用的传感器有:

l进气岐管绝对压力传感器(提供进气岐管绝对压力信息供计算负荷等)

l燃油压力传感器(提供油轨燃油压力信息)

l燃油箱压力传感器(提供燃油箱压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器提供(提供发动机温度信息)

l进气温度传感器(提供进气温度信息供计算空气密度等)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息供计算负荷等)

l节气门位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息等)

l霍尔传感器(提供转速信息、曲轴位置和相位信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l爆震传感器(提供发动机机体接收到的振动信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l是大于1还是小于1的信息)

(2)目前柴油机电子控制系统常用的传感器有:

l增压压力传感器(提供增压压力信息)

l燃油压力传感器(提供共轨燃油压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器(提供发动机温度信息)

l燃油温度传感器(提供燃油温度信息)

l进气温度传感器(提供进气温度信息)

l排气温度传感器(提供排气口和排气管的温度信息)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息)

l节气门位置传感器(提供节气门位置信息用于排气再循环控制)

l转角传感器(提供分配泵轴转角信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l霍尔传感器(提供转速和曲轴相位信息)

l海拔高度传感器(提供海拔高度信息)

l车速传感器(提供车速信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l的具体数值)

l压差传感器(提供微粒物捕集器的压差信息)

lNOX传感器(提供排气后处理系统的NOX浓度信息)

2)电子控制单元

电子控制单元(ECU)接受传感器提供的各种信息并加以处理,根据处理向执行器发出指令给,对发动机实施控制。电子控制单元由微型计算机和模拟电路组成。随着发动机技术的不断发展,电子控制单元的信息处理量越来越大,现在所用的芯片已经达到32位,晶体管数量可超过700万个,匹配参数可超过6000个,针脚数目可超过150个。

3)执行器

(1)目前汽油机电子控制系统常用的执行器有:

l电动燃油泵

l电磁喷油器

l点火线圈

l各种怠速执行器

l炭罐控制阀

l排气再循环控制阀

l电动节气门(又称电子油门)

l液压回路电磁阀(用于可变气门定时控制等)

l气动回路电磁阀(用于可变进气管长度控制等)

l全可变气门电子控制执行器

l涡轮增压废气放空控制阀

l电动二次空气泵

l三效催化转化器加热执行元件

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

(2)目前柴油机电子控制系统常用的执行器有:

l电动输油泵

l各种燃油喷射泵

l喷油量执行器(集成于燃油喷射泵内)

l喷油提前角执行器(集成于燃油喷射泵内)

l燃油切断阀(集成于燃油喷射泵内)

l共轨高压泵

l共轨压力控制阀

l各种共轨喷油器

l单元喷嘴系统和单元泵系统的高压燃油电磁阀

l炽热塞

l排气再循环控制阀

l电动节气门(又称电子油门)

l可变气门控制执行器

l可变进气管长度执行器

l涡轮增压废气放空控制阀

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

一部分柴油机传感器和执行器集成于燃油喷射设备之内,因所用的柴油喷射设备而异。

3.汽油机基本的电子控制项目

1)燃油定量。这是汽油机最重要的电子控制项目。控制对象是进入发动机的空气与燃油的质量比例,由ECU根据发动机的负荷、转速和冷却液温度等参数决定。负荷就是驾车人对发动机的扭矩要求,通过吸入空气量或油门踏板位置传递给ECU。执行器是电动燃油泵和电磁喷油器。燃油定量影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

2)点火定时。点火定时通常用点火发生时活塞在压缩冲程上止点之前多少度曲轴转角,即点火提前角来表征,也要根据发动机的负荷、转速和冷却液温度等工况参数决定。执行器是点火线圈。点火定时同样影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

3)爆震控制。汽油机爆震会损坏发动机,恶化排放和燃油经济性。通过电子控制避免爆震的主要途径是减小点火提前角。所以爆震控制通过点火定时控制实施。但是过小的点火提前角会影响燃油经济性。爆震控制的目的就是使点火提前角保持在恰好不发生爆震的临界点。

4)油箱蒸发排放物控制。油箱蒸发排放物都是碳氢化合物,是有害物质,必须利用活性炭罐加以吸附,并在适当的时候用新鲜空气清洗活性炭罐。清洗气流通过进气管送入气缸燃烧。并不是任何工况下都可以进行清洗,所以要利用炭罐控制阀对清洗气流加以控制。

4.柴油机基本的电子控制项目

柴油机基本的电子控制项目就是燃油定量和喷油定时。这两者都由喷射设备根据转速、负荷和冷却液温度等信息控制。这里,负荷信息由油门踏板传感器提供。如果说汽油机可以采用,也可以不采用油门踏板位置传感器的话,那么柴油机必须采用。

5.扩展的发动机电子控制项目

1)扩展的汽油机电子控制项目

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l二次空气电子控制。用于满足欧4以上法规对碳氢化合物和一氧化碳排放的要求。

l三效催化转化器燃油加热或电加热电子控制。用于满足欧4以上法规对排放的要求。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l喷油压力和喷油定时控制。用于汽油直喷,提高动力性和经济性,降低有害物质排放。

2)扩展的柴油机电子控制项目

l喷油压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l喷油规律电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l多次喷油电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l微粒物捕集器再生电子控制。用于降低发动机微粒物排放。

6.展望和结语

1)发动机电子控制系统是一个非常有潜力的市场。随着排放法规的逐步趋严和燃油经济性要求的逐步提高,发动机技术正在飞速发展,新的电子控制技术还在不断涌现。

2)都说世界制造业的重心正在向中国转移。汽车行业,包括汽车电子行业,也在一定程度上出现了这种趋势。但是,目前中国发动机电子控制系统的原配套产品基本上都出自外资企业。这些企业组装产品用的元件几乎都不是在中国生产的。由此我国丧失了许多GDP和就业岗位。国营和民营企业技术水平低下,只能仿造外资企业的产品,跟在外资企业后面从维修备件市场分一点残羹冷饭。有的甚至还偷偷摸摸地打着外资企业的招牌,干着生产假冒伪劣产品的勾当。这种局面应当扭转。政府应当看到,这个行业的发展将会带来巨大的GDP增长,并创造大量的就业机会。所以政府应当做出规划,对这一行业加以扶植和整顿。

执行器范文篇9

关键词:多层数据库损害控制;系统设计

最近,越来越多的人发现现有的安全的系统对于多种攻击来说依旧易于攻击,现有安全机制缺乏阻止攻击能力。入侵容忍系统不同于传统的安全系统,扩展传统安全系统经历攻击后能够生存或可操作。入侵容忍系统的焦点在于面临攻击时有能力提供持续的基本服务。本文中,我们给出一个多阶段数据库损害控制的完整模型,并且设计和实现一个多阶段数据库损害控制系统。本系统的关键特性是实现多阶段损害控制,因此能够确保修复期间不会存在损害漏出。同时能立即控制多个恶意事务造成的损害,没有损害漏出,而且对于最终用户是透明的,因此数据库应用开发人员感觉不到损害控制的复杂。

1多级数据库控制元素

1.1一阶段损害控制

可生存数据库系统执行一阶段损害控制,只对修复管理鉴别出被破坏的数据项进行控制,直到它们被修复。一个被控制的数据项不能被新的事务读取或更新。

1.2多阶段损害控制

可生存数据库系统实行多阶段损害控制:(1)一旦恶意事务B被发现,一组特殊的数据项,记做SE,将被立即控制。SE的定义是被B破坏的数据集,记做SD,是SE的子集。这个阶段叫做最初控制。最初控制应该迅速完成。被控制的数据集被称作控制集。为确保最初控制之后没有损害扩散,每一个活动事务应该被回滚到SE被控制之前。(2)整个多阶段损害控制过程是一系列控制集,即SE,S1,S2,...,Sk,...,这些集合汇聚到一个空集合¥,SE是最初控制的结果,而且可能包括很多错误控制的未被损害的数据项。Si(i>=1)是解除错误控制数据项或已经被修复的数据项的解除控制操作集合的结果。作为结果,当i<j时Sj包含于Si。当这个集合为空集时,所有被控制的损害都被修复,没有对象需要被控制了。解除控制操作通常非为几个解除阶段,尽管这些解除阶段能够同时存在。多阶段控制的优点在于修复期间没有损害漏出以及修复非常简便。

2应对多个恶意事务的算法设计

我们针对多个恶意事务提出一种多阶段控制算法,能够保证被控制的数据库部分不会有损害泄漏。处理多个恶意事务的具体算法如下:When系统只有一个恶意事务Bi正在被修复,且恶意事务Bj被发现:控制操作:(a)回滚所有当前活动事务(b)设置t2为当前时间(c)设置t1的值为min(tBis,tBjs)。这里tBis和tBjs分别是Bi及Bj开始时间。注意Bj可能早于Bi开始。(d)在U_SET被随后解除控制操作调整之后,允许新事务进入。解除控制操作:(1)Case1Bj早于Bi提交(a)从U_SET中移除所有数据(b)停止当前所有解除控制阶段(c)通过扫描Bj开始时间的日志来重启解除控制阶段A、B和C。被重启的阶段现在应该处理Bj和Bi,而不是仅仅处理Bi。例如,阶段A应该只把Bi和Bj都没破坏的数据项放入U_SET。(d)通过扫描Bj开始时间的日志来重启修复进程(连同解除控制阶段D)。被重启的修复进程现在应该处理Bi和Bj。(e)随时将解除控制的数据项放入U_SET。(2)Case2Bj晚于Bi提交If没有解除控制阶段完成这部分包含Bj提交之后执行操作的日志的扫描继续每一个解除阶段,方法是每一个控制阶段调整为不仅仅处理Bi,而是处理Bi和Bj。Else对于每个已经扫描到某些Bj提交之后执行的操作的解除控制阶段(包括修复进程)(a)停止解除控制阶段(或修复进程)(b)移除Bj提交之后被更新而且被这个阶段(或进程)从U_SET中解除控制的数据项(c)通过重新扫描Bj开始以后的日志重启这个解除控制阶段(或修复进程)。重启的阶段(或修复进程)现在应该处理Bj和Bi上述算法确保所有被恶意事务引起的损害将在恶意事务被检测到的时候立刻被控制,并且在如何时间点,不会有损害从被控制的数据库部分泄漏出去。

3系统组成

本系统的主要组成包括:控制执行器、解除控制执行器。系统的关键操作是通过三个主要事件触发的。

3.1控制执行器

当控制执行器从它的消息队列里取回一个恶意事务,它将执行算法1中的控制操作。特别的,它将(1)停止执行新事务,(2)中止所有活动事务,(3)调整控制时间窗口,(4)在从解除控制器和修复管理报告U_SET已经调整的“准备好”消息后,允许新事务执行。由于TRANS_LIST表包括活动事务的标识,控制执行器能够要求DBMS中止这些事务。因为事务的开始时间也保持在TRANS_LIST表,调整控制时间窗口将会很容易。当一个新的用户事务在上述控制操作完成后到达时,控制执行器需要这样实现损害控制:在控制时间窗口内更新的任何数据项都不允许访问,除非是U_SET中的对象。控制管理算法如下所示。注意损害控制管理的实现以SQL语句为单位而不是事务,因为:(1)读提取也是以SQL语句为单位;(2)在某些事务里某些稍晚的SQL语句执行可能依赖于先前的语句;(3)这中方法能够实现更快的控制检查。对于有多个SQL语句的事务,我们不检查任何其他SQL语句的读操作,就能够拒绝或延迟这个事务的访问。

3.2解除控制执行器

解除控制执行器负责解除控制阶段。为了实现控制,系统需要保持事务类型间的依赖关系。特别的,利用“类型图”表保持类型依赖。

作者:任强 单位:中国人民银行廊坊市中心支行

执行器范文篇10

关键词:LabVIEW;智能家居;语音控制

随着物质文化水平的提高,人们对生活家居环境越来越重视,要求越来越高。智能家居产品正是在这个背景下应运而生。当今社会中,对智能家居产品的要求主要体现在3个方面:安全舒适的环境、便捷灵活的操控、放心可靠的监控[1]。其中,便捷灵活的操控最主要的方式为语音控制,以语音控制信号向终端家居发出指令,从而实现预期的效果。这种方式给人们的生活带来前所未有的便捷与高效。因此,基于语音控制的智能家居产品得到大力发展。LabVIEW是一款以图形化编辑语言(G语言)编写程序,以框图形式呈现的程序开发环境,由美国国家仪器(NI)公司研制开发[2]。它主要有两个方面的特色,一方面LabVIEW可以依托计算机强大的处理器和存储器,从而节省开发成本,便于后期维护。例如,一般的语音识别电路会采用LD3320语音识别模块,而LabVIEW可以通过编程实现LD3320语音识别模块功能。另一方面LabVIEW图形化编程语言具有编程效率高、开发周期短的特点,包含信号处理模块、数据通信模块、数据采集模块等多种类型的模块函数[3]。基于上述内容,本设计利用LabVIEW2018强大的数据采集、分析能力,搭建一个语音控制、环境检测以及安防报警等功能集一体的语音智能家居控制系统。

1系统总体设计

系统总体设计包括LabVIEW上位机、单片机模块、执行器模块、传感器模块等。LabVIEW上位机一方面主要是监测各种参数,另一方面可以处理较复杂的数据,例如,音频信号,视频信号等。单片机模块主要是接收以及处理一些常见的传感器信号,如温湿度、光敏度、形变度、有害气体浓度等,并能够发送指令给执行机构。

2硬件系统

本设计系统的硬件系统主要包含两个部分:传感器部分和数据采集部分。数据采集部分主要分为模拟信号采集部分和数字信号采集部分。首先,传感器电路将物理量转换成模拟电信号。模拟信号采集部分,将模拟电信号采集,经过对信号的放大、滤波等处理后,分析给处理器处理。数字信号采集部分,主要是处理开关信号,例如继电器开关信号。通过LabVIEW对麦克风进行数据采集,得到语音信号,再对语音信号进行处理,识别出有用指令信号,发送给处理器,处理器发出指令通过无线通信模块发送给执行机构,执行机构接收指令后,执行指令。

3软件系统

本设计软件系统主要分为传感器模块、音频采集控制模块、执行器模块以及监控界面模块。通过LabVIEW的多层次结构,将各个模块程序作为子程序,且实现子程序的调用,从而实现系统程序的扩展,然后通过计算机的计算功能、存储功能及数据传输功能,得到智能家居控制系统的数据,通过LabVIEW前面板工控界面作为上位机界面显示出来[4]。

3.1传感器模块

传感器模块利用选定的传感器采集所需要监测的各种物理量,例如温度、湿度、光敏度等,经过信号处理电路,将物理量转换为所需要的各种模拟电信号。再由信号调理电路放大滤波处理后,进行A/D转换,将模拟电信号转换成计算机能够识别的二进制数字信号,最后将数字信号传输到个人计算机实现对数据的处理、保存和显示等功能[5]。

3.2音频采集控制模块

本系统通过麦克风,录入一段话,并使这段信号经过声卡放大转换为数字信号,然后通过LabVIEW软件搭建采集系统,利用声音相关VI实现语音信号的采集、存储[6]。再对存储的语音信号进行对比,找出信号中有用的指令信息,确认后执行相应的操作。

3.3执行器模块

执行器是指处理器发出命令指令后,执行器接收指令后执行对应的操作,属于系统的终端设备。执行器执行完指令后,终端设备状态发生改变,终端设备将自身状态信号数据通过数据采集模块返回到上位机,改变上位机监测界面的指示状态。为了更好地验证本系统的功能,本系统采用LED作为信号的指示灯,继电器模块作为信号的执行器件。

3.3监控界面

LabVIEW软件可以依托家庭个人计算机,以VI前面板作为系统的上位机监测界面,如图2所示。此监测界面可以实时监测家居环境的温度、湿度、空气质量等,又可以对各个模块进行监控。此外,还设置了总开关,对整个系统实行整体控制,方便后期对系统的维护与升级。最后,在监控界面的正中间,设置了安防报警指示灯,火灾烟雾报警灯以及蜂鸣器,可以第一时间警示家居主人,应对突发情况,及时采取应急措施。图2上位机监测界面

4系统测试

采用账号密码登录,登录成功时,自动运行下一个界面,登录界面关闭。系统启动后,数据采集模块实时采集各种信号并在上位机界面显示,随着计算机程序的运行,对各种信号进行分析,采取相应的措施,执行对应的模块。例如,温度超过26℃,空调启动制冷模式。另外,自动开启摄像头录像功能,全天候、无死角对家居屋内屋外进行监控,将视频文件保存到设定的文件夹内以便需要时方便调用。语音识别功能随时待命,通过开启声卡,并将采集到的声音通过波形显示在面板上,接收两级指令后,控制相应的执行机构执行指令。当家居中出现烟雾时,烟雾传感器将信号传给上位机,上位机马上做出响应,火灾烟雾报警灯闪烁,蜂鸣器鸣响,提醒家居主人发生意外情况,立即处理,以防事故发生。

[参考文献]

[1]张冷,钟山,刘飞,等.基于LabVIEW的智能家居系统设计[J].金陵科技学院学报,2020(1):40-43.

[2]曾柄杰.基于单片机和LabVIEW的无线葡萄酒窖环境测控系统设计[J].国外电子测量技术,2020(4):141-145.

[3]褚大伟.语音识别交互在智能家居中的研究与应用[D].石家庄:石家庄铁道大学,2019.

[4]袁嘉嵘.LabVIEW电子电路模拟仿真设计[J].电子技术与软件工程,2019(20):105-106.

[5]黄志强.基于LabVIEW多通道数据采集系统设计与调试[J].机械制造与自动化,2019(1):185-187.