塑料范文10篇

时间:2023-03-17 18:38:50

塑料

塑料范文篇1

论文摘要:从大棚建造、温湿度控制、肥水管理、摘叶疏果、病虫害防治、适时采收等方面总结了塑料大棚草莓栽培技术,以供草莓种植户参考。

草莓在塑料大棚促成栽培,使果实成熟期大大提前。但有的农民只注重产量,忽视品质的提高,或虽重视但技术上不得要领,因而影响了大棚草莓的经济效益。为了提高大棚草莓的品质,现将塑料大棚草莓栽培技术总结如下。

1塑料大棚建设规格

塑料大棚应建在背风向阳、有灌溉条件、地势平坦、土壤肥沃的地块,以东西走向为宜,长60m,宽9m,高2.7m。两端建三墙长9m,底宽1.2m,顶宽0.8m,中点高2.7m,两端高1.2m。预制水泥中柱长3.1m(埋深40cm),需用水泥中柱19道,水泥拱架长6.3m(埋深40cm),需用水泥拱架19道,水泥拱架每3m栽1道,拱架顶端与中柱顶端用Φ14﹟铁丝捆绑连接牢固。在水泥拱架两侧距地面1.4m处,用Φ14﹟钢丝拉第1道横拉筋,从第1道横拉筋向上每隔0.5m拉1道横拉筋,共拉19道。2道水泥拱架之间架设3道竹竿拱架,间距0.75m,每道竹竿拱架用3根竹竿孔扎成拱形,需用竹竿180根,竹竿接头处要用布条绑扎不能露出竹竿头,防止刮破棚膜。在塑料大棚东西的山墙外侧距墙30cm处挖长7m、深80cm、宽30cm的地锚坑,埋入直径12~15cm的水泥预制件或檩条,预埋件上绑6根长1m的Φ8﹟铅丝作为横拉筋固定端点(要求端点高出地面10cm),预埋件放好后填土时每20cm夯筑1次。在塑料大棚两侧每隔3m挖一地锚坑(长50cm×宽30cm×深50cm),共挖40个,在坑里埋入直径8~10cm的木棒,将长60cm的Φ8﹟铅丝绑扎在木棒上,铅丝露出地面10cm,作为地锚线固定端点,地锚线用Φ14﹟钢丝分别固定在每个地锚端点上。选择晴天无风的中午扣膜,先将宽幅10m的棚膜扣在拱架上铺展,用长1.5~2.0m的木椽5~6根,把棚膜两端卷起拉紧,固定在东西两端的山墙上,最后将大棚北侧棚膜压在土槽内,埋土压实,再将窄幅2.5m的棚膜扣在大棚的南侧,上边掺入宽幅膜之下,下边压在土槽内,埋土夯实。扣好膜后,在膜上每隔2m系1道压膜线,共拉29根,压膜线的两端固定在大棚南北两侧的地锚线上,拉紧压膜线防止大风揭膜。

2控制适宜温湿度

草莓果实发育的适温为18~25℃,要在冬季和早春达到这一温度,可在大棚内套中棚并盖地膜,力争棚温白天达到25~28℃,夜间5℃以上,最低温度0℃以上。但出现30℃以上高温时要及时通风降温。土壤湿度以保持40%~60%为宜,过大过小均会影响草莓根系活力和果实正常的生长发育。

3肥水管理

塑料大棚草莓结果期长,为防止脱肥早衰,要重施基肥,及时进行追肥和经常喷施叶面肥。在施肥上要掌握适氮增磷钾(生长弱时增施氮肥,结果多时增施钾肥)。一般基施腐熟栏肥30t/hm2,配施复合肥450kg/hm2,钙镁磷肥1500kg/hm2。中后期结合喷药,可喷叶面肥(200倍绿威18),以促进中后期果实的发育,提高果重及含糖量。草莓在整个生长过程中要求水分充足,开花期土壤可稍干些,在草莓生长旺盛期和浆果膨大期需水就较多。灌水可结合施肥进行,将肥溶于水中配成1000倍左右溶液施用。在土壤湿度大不必灌水时,可将肥液直接通过管道施入土壤,在土壤干燥时,可将肥料稀释到4000倍,也采用管道灌水的方法,既省工又方便。翌年开春后随着气温回升,生产速度加快,为避免草莓果实酸化,应增施钾肥,施0.3%硫酸钾75kg/hm2左右。

4摘叶疏果

结果期及时摘除下部衰老叶,并及早去除匍匐茎。另外,在开花前后疏除一定的高级次花果,不仅可降低畸形果率,也有利于集中养分供应低级次花果发育,使果个增大,提高整齐度。

5综合防治病虫害

防治大棚草莓病虫害要以农业防治为主,药剂防治为辅。即通过采用脱毒壮苗、高垄栽植、地膜覆盖、水旱轮作及避免干旱、高湿等措施预防病果、烂果的发生。田间发现病烂株叶和果实要及时清除,严防扩展蔓延。药剂防治要注意开花前后不用药,以免影响授粉,使畸形果增多。采果期要尽量少用药,必须用药时应选择残毒低的药剂,并且喷药后2~3d内停止采果,防止果实残毒影响人体健康。

6适时采收

塑料大棚草莓果实以鲜食为主,必须在70%以上果面呈红色时方可采收。冬季和早春温度低,要在果实8~9成熟时采收。早春过后温度回升,采收期可适当提前。采摘应在上午8~10时或下午4~6时进行。不摘露水果和晒热果,以免腐烂变质。采摘时要轻拿、轻摘、轻放,不要损伤花萼,同时要分级盛放并包装。

参考文献

[1]冯琳,韩彩娥.大棚草莓高效栽培技术[J].现代农业科技,2008(15):62,64.

塑料范文篇2

关键词:塑料光纤光纤光缆光通讯POF

一、前言

自从业界开创了光纤通讯技术以来,大至归纳,光纤通讯比传统的电铜通讯有3大优点:一是通信容量大;二是抗电磁干扰、保密性能较好;三是重量轻,并可节省大量的铜,如铺设1000公里长的8芯光缆比铺设同样长度的8芯电缆可节省1100吨铜,3700吨铅。因此光纤光缆一经问世就受到通信业界的欢迎,带来了通讯领域的革命以及一轮投资发展热潮。

尽管玻璃光纤具有上述一系列优点,但它有一个致命的弱点就是强度低,抗挠曲性能差,而且抗辐射性能也不好。因此,近20多年来,业界一直没有停止过对光纤其他材料的代用研发,其中对塑料光纤的研发是目前业界最为感兴趣的研究领域之一,目前已经取得较大进展,已经有商用产品面世,现已广泛应用于汽车、CD播放机、工业电子系统、小型光盘系统和个人计算机中。今后还会有许多领域将使用塑料光纤,诸如传感器、光子晶体光纤等。

二、塑料光纤的优点

塑料光纤与玻璃光纤相比,虽透光性差一些,光损耗较大,初期一般为300分贝/公里,传输光带狭窄(限于可见光区),被认为难以适应多媒体通信网的需要,但它具有轻而柔软、抗挠曲、抗冲击强度高、价格便宜、抗辐照、易加工、并能制成大直径(1~3毫米,以增大受光角度,扩大使用范围)等一系列优点,所以备受青睐。此外,光通过塑料光纤的中心部分的直径约为1毫米,比玻璃光纤大100倍,与纤维之间的连接及与个人机等终端装置的连接都十分容易。因此塑料光纤安装费用很低,安装时采用十分简单的对准连接插头即可,这种插头可用现有的技术生产。

三、塑料光纤产品研发简述

塑料光纤的研究始于二十世纪60年代。1968年美国杜邦公司用聚甲基丙烯酸甲酯为芯材制备出塑料光纤,但光损耗较大。1974年日本三菱人造丝公司以PMMA和聚苯乙烯为芯材、以低折射率的氟塑料为包层开发出塑料光纤,其光损耗为3500dB/km,难以用于通信。

80年代日本的一些大企业和大学对低损耗塑料光纤的制备进行了大量的研究。1980年三菱公司以高纯MMA单体聚合PMMA,使塑料光纤损耗下降到100-200dB/km。1983年NTT公司开始用氘取代PMMA中的H原子,使最低光损耗可达到20dB/km,并可传输近红外到可见光的光波。

近几年来,欧日等国的公司对塑料光纤的研制取得了重要的进展。它们研制成的塑料光纤,光损耗率已降到25~9分贝/公里。其工作波长已扩展到870微米(近红外光),接近石英玻璃光纤的实用水平。美国研制的一种PFX塑料系列光纤,有着优异的抗辐照性能。此外,美国麻省波士顿光纤公司研制的Opti-Giga塑料光纤更是引人注目,它不仅比玻璃轻、柔性更好、成本更低,而且可在100米内以每秒3兆比特的速度传输数据。这种光纤还可以利用光的折射或光在纤维内的跳跃方式来达到较高的传输速度。现在美欧日已把塑料光纤用于短途传输,如汽车、医疗器械、复印机等。

就目前塑料光纤生产量而言,日本是世界上最大的塑料光纤生产者,然而却是欧洲推动了塑料光纤新应用领域的开发并建立了光纤检验标准。2001年下半年是欧洲塑料光纤工业发展的重要阶段,在这段时间内建立了欧洲塑料光纤检验和测量的新发展方针。世界上第一个专用塑料光纤应用中心(POFAC)在德国Nuremberg落成。德国采用塑料光纤已经研制成功了多媒体总线系统MOST(24Mbit/s),并且有几家轿车制造商已把该系统引入到自己的产品上。德国宝马公司(BMW)在其新的7个系列产品中开创了使用100m塑料光纤的记录。欧洲2001年塑料光纤学术交流会和欧洲光纤通信会议同时在荷兰的阿姆斯特丹举行。德国汽车工业不仅推动了塑料光纤的应用,而且也推动了塑料光纤检验和测量标准的建立。

日本也建立了塑料光纤标准,但这些标准对欧洲共同体是无效的。日本工业标准只给出了一种型号塑料光纤的标准,其数值孔径为0.5,而且只有650nm一种波长。该标准没有提及在塑料光纤中的不同激励光条件,也没有规定必须在塑料光纤内形成平衡模分布。

此前建立的玻璃光纤检验方法因为会出现瑞利散射而不适于检验塑料光纤,现在市场上仅有瑞士新成立的Luciol仪器公司出售的一种检验塑料光纤的仪器。

德国工程师学会和电子工程学会研究小组已经详细规定了塑料光纤数值孔径、衰减、传输和机械特性以及环境和寿命的测量方法。塑料光纤检验方法和标准的建立必将促进国际塑料光纤贸易的发展,并消除贸易中的误解。

日本对塑料光纤的应用十分重视,早在几年前,NEC、富士通、住友电器工业公司等45家光通信、多媒体产品的生产厂家就联合宣布,将共同实现已在日本开发成功的塑料光纤的实用化。塑料光纤的成本低廉,被认为是将多媒体引进到家庭的关键技术,随后一些生产厂家就着手建立生产线。?

1986年,日本F富士通公司以PC为纤芯材料开发出SI型耐热POF,耐热温度可达135摄氏度,衰减达450dB/km;

1990年,日本庆应大学的小池助教授开发成功折射率渐变型的塑料光纤,芯材为含氟PMMA、包层为含氟,用界面凝胶技术制造。该塑料光纤衰减在60db/km以下,光源650-1300nm,100m带宽3GHz,传输速率10Gb/s,超过了GI型石英光纤,并被广泛认为是高速多媒体时代光纤入户的新型光通信媒介;

1996年,人们纷纷建议以塑料光纤为基础建立极低成本的用户网ATM物理层;1997年,日本NEC公司进行了155Mbit/s的ATM、LAN的试验。

在2000年OFC会议上,日本ASAHIGLASS公司报道了氟化梯度塑料光纤衰减系数在850nm为41dB/km,在1300nm为33dB/km,带宽已达100MHz.km。用这种光纤成功地进行了50m、2.5Gbit/s的高速传输试验和70摄氏度长期热老化试验。实验结论为氟化梯度塑料光纤完全能满足短距离的通信使用要求。

从塑料光纤的研究发展来看,塑料光纤的研究重点主要集中在以下三个方面:

1.降低光损耗;

2.提高带宽(由SI型转为GI型);

3.提高耐热性。(聚碳酸酯(PC)、硅树脂、交联丙烯酸和共聚物可使耐热性提高到125-150摄氏度)

塑料光纤在衰减与带宽方面的最新实用进展为:日本ASAHIGLASS公司2000年7月称,该公司实施庆应大学的GI-POF技术商品化,采用全氟化聚合物CYTOP制造GI光纤,命名为GI-GOF,商品名为Lucina,衰减速率3Gb/s,带宽大于200MHz.km。

塑料光纤在耐热性方面的最新实用进展为:日本JSR与旭化株式会社联合发展耐热透明树脂ARTON(norbornene,冰片烯)制造的SI-POF,耐热170摄氏度,预计2001年上半年即可供应汽车市场。

四、塑料光纤产品的研发要点

1.光纤结构

塑料光纤顾名思义,即构成光纤的芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200-1000μm,其接续时可使用不带光纤定位套筒的便宜注塑塑料连接器,即便是光纤接续中芯对准产生±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音;

2.光纤材料

塑料光纤材料选择时,人们应重点解决的问题是材料的本身衰减要低、色散要小、化稳性要好、制造简单、价格低廉等。

选作塑料光纤芯材有:聚甲基丙烯酸甲酯、聚苯乙烯聚碳酸酯、氟化聚甲基丙烯酸酯和全氟树脂等;选作塑料光纤包层有:聚甲基丙烯酸甲酯、氟塑料、硅树脂等。究其原因是:这些聚合物①具有透光性好,光学均匀、折射率调整便利等;②以单体存在时通过减压蒸馏方法就可以提纯;③形成光纤的能力强;④加工和化稳性好及价格便宜等;

3.制造工艺

目前业界用来制造塑料光纤的两种方法:挤压法和界面凝胶法都是由塑料生产加工工艺演变而来的。

挤压法主要用于制造阶跃折射率分布塑料光纤。该工艺步骤大致如下:首先,将作为纤芯的聚甲基丙烯甲酯的单体甲基丙烯甲酯通过减压蒸馏提纯后,连同聚合引发剂和链转移剂一并送入聚合容器中,接着再将该容器放入电烘箱中加热,置放一定时间,以使单体完全聚合,最后,将盛有完全聚合的聚甲基丙烯甲酯的容器加温至拉丝温度,并用干燥的氮气从容器的上端对已熔融的聚合物加压,该容器底部小嘴便挤出一根塑料光纤芯,同时使挤出的纤芯外再包覆一层低折射率的聚合物,就制成了阶跃型塑料光纤。

梯度折射率分布塑料光纤的制造方法为界面凝胶法,界面凝胶法的工艺步骤大致如下:首先将高折射率掺杂剂置于芯单体中制成芯混合溶液,其次把控制聚合速度、聚合物分子量大小的引发剂和链转移剂放入芯混合溶液,再将该溶液投入一根选作包层材料聚甲基丙烯甲酯(PMMA)的空心管内,最后将装有芯混合溶液PMMA管子放入一烘箱内,在一定的温度和条件下聚合。在聚合过程中,PMMA管内逐渐被混合溶液溶胀,从而在PMMA管内壁形成凝胶相。在凝胶相分子运动速度减慢,聚合反应由于“凝胶作用”而加速,聚合物的厚度逐渐增厚,聚合终止于PMMA管子中心,从而获得一根折射率沿径向呈梯度分布的光纤预制棒,最后再将塑料光纤预制棒送入加热炉内加温拉制成梯度折射率分布塑料光纤;

4.光纤性能

塑料光纤的性能研究重点则是衰减、色散、热稳定性等。

(1)衰减

塑料光纤的衰减主要受限于芯包塑料材料的吸收损耗和色散损耗。人们是通过选用低折射率和等温压缩率小的塑料材料和通过稳定塑料光纤制造工艺降低结构缺陷(如芯直径波动,芯包界面缺陷等),来使塑料光纤获得小的散射损耗,而塑料材料的吸收损耗则是由分子键(碳氢、碳氟等)伸缩振动吸收和电子跃吸收所致的。

在碳氢键为基本骨架的塑料材料中,在波长650nm处的衰减系数大约为120db/km,如果用氟原子置换碳氢键中的氢所组成的氟化塑料材料,其不仅本征衰减小,而且色散也降低了。用氟化塑料制成的梯度折射率塑料光纤,其在红外区无原子振动引起的吸收损耗。故可制得在可见光至红外范围的衰减很小,即在0.85μm波长处衰减系数为41db/km,在1.3μm波长处衰减为33db/km的梯度折射率分布的塑料光纤。

(2)带宽

用作短距离光传输介质的塑料光纤,按其折射率分布形状可分为两种:阶跃折射率分布塑料光纤和梯度折射率分布塑料光纤。阶跃折射率分布塑料光纤由于模间色散作用使入射光发生反复的反射,射出的波形相对于入射波形出现展宽,故其传输带宽仅为几十至上百MHz.km。氟化梯度折射率分布塑料光纤从选择低色散的材料出发,再以优化的梯度折射率分布手段,即可将其折射率分布指数在0.85-1.3μm波长范围内选定为2.07-2.33,从而抑制模间色散,控制出射光波相对于入射光波展宽的效果,进而可制得传输带宽高达几百MHz.km至10GHz.km的梯度折射率分布的塑料光纤。(公务员之家整理)

(3)热稳定

由于塑料光纤是由塑料材料构成的,故其在高温环境中工作会发生氧化降解。氧化降解是光纤芯材料中的羰基、双键和交联形成的。氧化降解将促使电子跃迁加快,进而引起光纤损耗增大。为切实提高塑料光纤的热稳定性,通常的做法是:①选用含氟或硅的塑料材料来制造塑料光纤;②将塑料光纤的光源工作波长选择在大于660nm,以求得塑料光纤热稳定性长期可靠。

五、技术关键

目前对塑料光纤产品的技术关键攻关问题有两个:一是设计新的透光材料和包皮材料。塑料光纤同石英玻璃光纤一样由两部分组成:一为芯材,二为皮层。要制造出高质量的光纤二者都很重要,光纤的芯材要求透明度和折射率越高越好,而皮层则要求折射率小于芯材,并且两者相差越大越好。但要提高芯材的折射率比较难,而降低皮层折射率还有潜力可挖,主要集中在含氟高聚物上。第二个攻关点是工艺条件,研究如何控制芯材聚合物分子量、均匀性和提高透明度的新的光纤技术,进一步提高光的传输效率,降低光损耗率。这两个问题一旦得以圆满解决,则塑料光纤将完全可取代石英光纤。

近年来,日本公司针对塑料光纤透光性较差进行了分析和改进,他们认为,其主要原因在于树脂内的碳氢结合吸收了近红外波长。为此,旭玻璃制造公司开发了一种全氟树脂材料,因为不含氢所以不会吸收近红外波长。同时,由于其具有的环状构造是非晶质的,可见光的透光率已达95%以上。?

光纤内侧的芯线,光的折射率高,而外侧的金属包层折射率低。因此,要采用在芯线中轴线处光的折射率最高,向四周逐渐降低的缓变折射率的结构形式。采用此种结构,能够扩大传送带域,可以每秒传送1吉字节的速度将信息传送200~500米。旭玻璃制造公司将视样品上市情况,在一两年内将这种新型光纤投入批量生产。这些新开发的塑料光纤改善了中心部分的折射率,克服了信号容易衰减的缺点,每条纤维的传输能力可达1~2.5GB/秒,同时在纤维连接时,不需要精确对准位置,在这方面优于玻璃光纤。?

在塑料光纤的容量方面,日本三菱人造纤维公司研制的高容量塑料光纤,有可能取代石英玻璃光纤。这种塑料光纤的原料很普通,由一种在60年明的称之为Polym-ethylmethacrylate的合成树脂制成。三菱人造纤维公司采用一种从光纤中央到边缘递减的渐变折射技术,使信号能够以恒定的正弦曲线在光纤内有效地通过,传输容量是普通塑料光纤的30倍。与直径为0.1—0.01mm的玻璃光纤相比,这种直径1mm的塑料光纤截面大,较易联接,因此安装成本也只有玻璃光纤的1/10左右,与普通铜缆线差不多。过去的玻璃光纤连接一处需花费2万一3万日元,而新塑料光纤的连接费用只要1O日元,可大幅度地节省费用。有关人士称,从成本的角度考虑,若没有此技术,将光纤铺设到家庭是不能实现的。

六、发展展望

塑料光纤作为短距离通信网络的理想传输介质,在未来家庭智能化、办公自动化、工控网络化。车载机载通信网、军事通信网以及多媒体设备中的数据传输中具有重要的地位。

通过塑料光纤,我们可实现智能家电(家用PC、HDTV、电话、数字成象设备、家庭安全设备、空调、冰箱、音响系统、厨用电器等)的联网,达到家庭自动化和远程控制管理,提高生活质量;通过塑料光纤,我们可实现办公设备的联网,如计算机联网可以实现计算机并行处理,办公设备间数据的高速传输可大大提高工作效率,实现远程办公等。

在低速局域网的数据速率小于100Mbps时,100米范围内的传输用SI型塑料光纤即可实现;150Mbps50米范围内的传输可用小数值孔径POF实现。

POF在制造工业中可得到广泛的应用。通过转换器,POF可以与RS232、RS422、100Mbps以太网、令牌网等标准协议接口相连,从而在恶劣的工业制造环境中提供稳定、可靠的通信线路。能够高速地传输工业控制信号和指令,避免因使用金属电缆线路而受电磁干扰导致通信传输中断的危险。

POF重量轻且耐用,可以将车载机通信网络和控制系统组成一个网络,将微型计算机、卫星导航设备、移动电话、传真等外设纳入机车整体设计中,旅客还可通过塑料光纤网络在座位上享受音乐、电影、视频游戏、购物、Internet等服务。

塑料范文篇3

关键词:塑料光纤光纤光缆光通讯POF

一、前言

自从业界开创了光纤通讯技术以来,大至归纳,光纤通讯比传统的电铜通讯有3大优点:一是通信容量大;二是抗电磁干扰、保密性能较好;三是重量轻,并可节省大量的铜,如铺设1000公里长的8芯光缆比铺设同样长度的8芯电缆可节省1100吨铜,3700吨铅。因此光纤光缆一经问世就受到通信业界的欢迎,带来了通讯领域的革命以及一轮投资发展热潮。

尽管玻璃光纤具有上述一系列优点,但它有一个致命的弱点就是强度低,抗挠曲性能差,而且抗辐射性能也不好。因此,近20多年来,业界一直没有停止过对光纤其他材料的代用研发,其中对塑料光纤的研发是目前业界最为感兴趣的研究领域之一,目前已经取得较大进展,已经有商用产品面世,现已广泛应用于汽车、CD播放机、工业电子系统、小型光盘系统和个人计算机中。今后还会有许多领域将使用塑料光纤,诸如传感器、光子晶体光纤等。

二、塑料光纤的优点

塑料光纤与玻璃光纤相比,虽透光性差一些,光损耗较大,初期一般为300分贝/公里,传输光带狭窄(限于可见光区),被认为难以适应多媒体通信网的需要,但它具有轻而柔软、抗挠曲、抗冲击强度高、价格便宜、抗辐照、易加工、并能制成大直径(1~3毫米,以增大受光角度,扩大使用范围)等一系列优点,所以备受青睐。此外,光通过塑料光纤的中心部分的直径约为1毫米,比玻璃光纤大100倍,与纤维之间的连接及与个人机等终端装置的连接都十分容易。因此塑料光纤安装费用很低,安装时采用十分简单的对准连接插头即可,这种插头可用现有的技术生产。

三、塑料光纤产品研发简述

塑料光纤的研究始于二十世纪60年代。1968年美国杜邦公司用聚甲基丙烯酸甲酯为芯材制备出塑料光纤,但光损耗较大。1974年日本三菱人造丝公司以PMMA和聚苯乙烯为芯材、以低折射率的氟塑料为包层开发出塑料光纤,其光损耗为3500dB/km,难以用于通信。

80年代日本的一些大企业和大学对低损耗塑料光纤的制备进行了大量的研究。1980年三菱公司以高纯MMA单体聚合PMMA,使塑料光纤损耗下降到100-200dB/km。1983年NTT公司开始用氘取代PMMA中的H原子,使最低光损耗可达到20dB/km,并可传输近红外到可见光的光波。

近几年来,欧日等国的公司对塑料光纤的研制取得了重要的进展。它们研制成的塑料光纤,光损耗率已降到25~9分贝/公里。其工作波长已扩展到870微米(近红外光),接近石英玻璃光纤的实用水平。美国研制的一种PFX塑料系列光纤,有着优异的抗辐照性能。此外,美国麻省波士顿光纤公司研制的Opti-Giga塑料光纤更是引人注目,它不仅比玻璃轻、柔性更好、成本更低,而且可在100米内以每秒3兆比特的速度传输数据。这种光纤还可以利用光的折射或光在纤维内的跳跃方式来达到较高的传输速度。现在美欧日已把塑料光纤用于短途传输,如汽车、医疗器械、复印机等。

就目前塑料光纤生产量而言,日本是世界上最大的塑料光纤生产者,然而却是欧洲推动了塑料光纤新应用领域的开发并建立了光纤检验标准。2001年下半年是欧洲塑料光纤工业发展的重要阶段,在这段时间内建立了欧洲塑料光纤检验和测量的新发展方针。世界上第一个专用塑料光纤应用中心(POFAC)在德国Nuremberg落成。德国采用塑料光纤已经研制成功了多媒体总线系统MOST(24Mbit/s),并且有几家轿车制造商已把该系统引入到自己的产品上。德国宝马公司(BMW)在其新的7个系列产品中开创了使用100m塑料光纤的记录。欧洲2001年塑料光纤学术交流会和欧洲光纤通信会议同时在荷兰的阿姆斯特丹举行。德国汽车工业不仅推动了塑料光纤的应用,而且也推动了塑料光纤检验和测量标准的建立。

日本也建立了塑料光纤标准,但这些标准对欧洲共同体是无效的。日本工业标准只给出了一种型号塑料光纤的标准,其数值孔径为0.5,而且只有650nm一种波长。该标准没有提及在塑料光纤中的不同激励光条件,也没有规定必须在塑料光纤内形成平衡模分布。

此前建立的玻璃光纤检验方法因为会出现瑞利散射而不适于检验塑料光纤,现在市场上仅有瑞士新成立的Luciol仪器公司出售的一种检验塑料光纤的仪器。

德国工程师学会和电子工程学会研究小组已经详细规定了塑料光纤数值孔径、衰减、传输和机械特性以及环境和寿命的测量方法。塑料光纤检验方法和标准的建立必将促进国际塑料光纤贸易的发展,并消除贸易中的误解。

日本对塑料光纤的应用十分重视,早在几年前,NEC、富士通、住友电器工业公司等45家光通信、多媒体产品的生产厂家就联合宣布,将共同实现已在日本开发成功的塑料光纤的实用化。塑料光纤的成本低廉,被认为是将多媒体引进到家庭的关键技术,随后一些生产厂家就着手建立生产线。?

1986年,日本F富士通公司以PC为纤芯材料开发出SI型耐热POF,耐热温度可达135摄氏度,衰减达450dB/km;

1990年,日本庆应大学的小池助教授开发成功折射率渐变型的塑料光纤,芯材为含氟PMMA、包层为含氟,用界面凝胶技术制造。该塑料光纤衰减在60db/km以下,光源650-1300nm,100m带宽3GHz,传输速率10Gb/s,超过了GI型石英光纤,并被广泛认为是高速多媒体时代光纤入户的新型光通信媒介;

1996年,人们纷纷建议以塑料光纤为基础建立极低成本的用户网ATM物理层;1997年,日本NEC公司进行了155Mbit/s的ATM、LAN的试验。

在2000年OFC会议上,日本ASAHIGLASS公司报道了氟化梯度塑料光纤衰减系数在850nm为41dB/km,在1300nm为33dB/km,带宽已达100MHz.km。用这种光纤成功地进行了50m、2.5Gbit/s的高速传输试验和70摄氏度长期热老化试验。实验结论为氟化梯度塑料光纤完全能满足短距离的通信使用要求。

从塑料光纤的研究发展来看,塑料光纤的研究重点主要集中在以下三个方面:

1.降低光损耗;

2.提高带宽(由SI型转为GI型);

3.提高耐热性。(聚碳酸酯(PC)、硅树脂、交联丙烯酸和共聚物可使耐热性提高到125-150摄氏度)

塑料光纤在衰减与带宽方面的最新实用进展为:日本ASAHIGLASS公司2000年7月称,该公司实施庆应大学的GI-POF技术商品化,采用全氟化聚合物CYTOP制造GI光纤,命名为GI-GOF,商品名为Lucina,衰减速率3Gb/s,带宽大于200MHz.km。

塑料光纤在耐热性方面的最新实用进展为:日本JSR与旭化株式会社联合发展耐热透明树脂ARTON(norbornene,冰片烯)制造的SI-POF,耐热170摄氏度,预计2001年上半年即可供应汽车市场。

四、塑料光纤产品的研发要点

1.光纤结构

塑料光纤顾名思义,即构成光纤的芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200-1000μm,其接续时可使用不带光纤定位套筒的便宜注塑塑料连接器,即便是光纤接续中芯对准产生±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音;

2.光纤材料

塑料光纤材料选择时,人们应重点解决的问题是材料的本身衰减要低、色散要小、化稳性要好、制造简单、价格低廉等。

选作塑料光纤芯材有:聚甲基丙烯酸甲酯、聚苯乙烯聚碳酸酯、氟化聚甲基丙烯酸酯和全氟树脂等;选作塑料光纤包层有:聚甲基丙烯酸甲酯、氟塑料、硅树脂等。究其原因是:这些聚合物①具有透光性好,光学均匀、折射率调整便利等;②以单体存在时通过减压蒸馏方法就可以提纯;③形成光纤的能力强;④加工和化稳性好及价格便宜等;

3.制造工艺

目前业界用来制造塑料光纤的两种方法:挤压法和界面凝胶法都是由塑料生产加工工艺演变而来的。

挤压法主要用于制造阶跃折射率分布塑料光纤。该工艺步骤大致如下:首先,将作为纤芯的聚甲基丙烯甲酯的单体甲基丙烯甲酯通过减压蒸馏提纯后,连同聚合引发剂和链转移剂一并送入聚合容器中,接着再将该容器放入电烘箱中加热,置放一定时间,以使单体完全聚合,最后,将盛有完全聚合的聚甲基丙烯甲酯的容器加温至拉丝温度,并用干燥的氮气从容器的上端对已熔融的聚合物加压,该容器底部小嘴便挤出一根塑料光纤芯,同时使挤出的纤芯外再包覆一层低折射率的聚合物,就制成了阶跃型塑料光纤。

梯度折射率分布塑料光纤的制造方法为界面凝胶法,界面凝胶法的工艺步骤大致如下:首先将高折射率掺杂剂置于芯单体中制成芯混合溶液,其次把控制聚合速度、聚合物分子量大小的引发剂和链转移剂放入芯混合溶液,再将该溶液投入一根选作包层材料聚甲基丙烯甲酯(PMMA)的空心管内,最后将装有芯混合溶液PMMA管子放入一烘箱内,在一定的温度和条件下聚合。在聚合过程中,PMMA管内逐渐被混合溶液溶胀,从而在PMMA管内壁形成凝胶相。在凝胶相分子运动速度减慢,聚合反应由于“凝胶作用”而加速,聚合物的厚度逐渐增厚,聚合终止于PMMA管子中心,从而获得一根折射率沿径向呈梯度分布的光纤预制棒,最后再将塑料光纤预制棒送入加热炉内加温拉制成梯度折射率分布塑料光纤;

4.光纤性能

塑料光纤的性能研究重点则是衰减、色散、热稳定性等。

(1)衰减

塑料光纤的衰减主要受限于芯包塑料材料的吸收损耗和色散损耗。人们是通过选用低折射率和等温压缩率小的塑料材料和通过稳定塑料光纤制造工艺降低结构缺陷(如芯直径波动,芯包界面缺陷等),来使塑料光纤获得小的散射损耗,而塑料材料的吸收损耗则是由分子键(碳氢、碳氟等)伸缩振动吸收和电子跃吸收所致的。

在碳氢键为基本骨架的塑料材料中,在波长650nm处的衰减系数大约为120db/km,如果用氟原子置换碳氢键中的氢所组成的氟化塑料材料,其不仅本征衰减小,而且色散也降低了。用氟化塑料制成的梯度折射率塑料光纤,其在红外区无原子振动引起的吸收损耗。故可制得在可见光至红外范围的衰减很小,即在0.85μm波长处衰减系数为41db/km,在1.3μm波长处衰减为33db/km的梯度折射率分布的塑料光纤。

(2)带宽

用作短距离光传输介质的塑料光纤,按其折射率分布形状可分为两种:阶跃折射率分布塑料光纤和梯度折射率分布塑料光纤。阶跃折射率分布塑料光纤由于模间色散作用使入射光发生反复的反射,射出的波形相对于入射波形出现展宽,故其传输带宽仅为几十至上百MHz.km。氟化梯度折射率分布塑料光纤从选择低色散的材料出发,再以优化的梯度折射率分布手段,即可将其折射率分布指数在0.85-1.3μm波长范围内选定为2.07-2.33,从而抑制模间色散,控制出射光波相对于入射光波展宽的效果,进而可制得传输带宽高达几百MHz.km至10GHz.km的梯度折射率分布的塑料光纤。

(3)热稳定

由于塑料光纤是由塑料材料构成的,故其在高温环境中工作会发生氧化降解。氧化降解是光纤芯材料中的羰基、双键和交联形成的。氧化降解将促使电子跃迁加快,进而引起光纤损耗增大。为切实提高塑料光纤的热稳定性,通常的做法是:①选用含氟或硅的塑料材料来制造塑料光纤;②将塑料光纤的光源工作波长选择在大于660nm,以求得塑料光纤热稳定性长期可靠。

五、技术关键

目前对塑料光纤产品的技术关键攻关问题有两个:一是设计新的透光材料和包皮材料。塑料光纤同石英玻璃光纤一样由两部分组成:一为芯材,二为皮层。要制造出高质量的光纤二者都很重要,光纤的芯材要求透明度和折射率越高越好,而皮层则要求折射率小于芯材,并且两者相差越大越好。但要提高芯材的折射率比较难,而降低皮层折射率还有潜力可挖,主要集中在含氟高聚物上。第二个攻关点是工艺条件,研究如何控制芯材聚合物分子量、均匀性和提高透明度的新的光纤技术,进一步提高光的传输效率,降低光损耗率。这两个问题一旦得以圆满解决,则塑料光纤将完全可取代石英光纤。

近年来,日本公司针对塑料光纤透光性较差进行了分析和改进,他们认为,其主要原因在于树脂内的碳氢结合吸收了近红外波长。为此,旭玻璃制造公司开发了一种全氟树脂材料,因为不含氢所以不会吸收近红外波长。同时,由于其具有的环状构造是非晶质的,可见光的透光率已达95%以上。?

光纤内侧的芯线,光的折射率高,而外侧的金属包层折射率低。因此,要采用在芯线中轴线处光的折射率最高,向四周逐渐降低的缓变折射率的结构形式。采用此种结构,能够扩大传送带域,可以每秒传送1吉字节的速度将信息传送200~500米。旭玻璃制造公司将视样品上市情况,在一两年内将这种新型光纤投入批量生产。这些新开发的塑料光纤改善了中心部分的折射率,克服了信号容易衰减的缺点,每条纤维的传输能力可达1~2.5GB/秒,同时在纤维连接时,不需要精确对准位置,在这方面优于玻璃光纤。?

在塑料光纤的容量方面,日本三菱人造纤维公司研制的高容量塑料光纤,有可能取代石英玻璃光纤。这种塑料光纤的原料很普通,由一种在60年明的称之为Polym-ethylmethacrylate的合成树脂制成。三菱人造纤维公司采用一种从光纤中央到边缘递减的渐变折射技术,使信号能够以恒定的正弦曲线在光纤内有效地通过,传输容量是普通塑料光纤的30倍。与直径为0.1—0.01mm的玻璃光纤相比,这种直径1mm的塑料光纤截面大,较易联接,因此安装成本也只有玻璃光纤的1/10左右,与普通铜缆线差不多。过去的玻璃光纤连接一处需花费2万一3万日元,而新塑料光纤的连接费用只要1O日元,可大幅度地节省费用。有关人士称,从成本的角度考虑,若没有此技术,将光纤铺设到家庭是不能实现的。

六、发展展望

塑料光纤作为短距离通信网络的理想传输介质,在未来家庭智能化、办公自动化、工控网络化。车载机载通信网、军事通信网以及多媒体设备中的数据传输中具有重要的地位。

通过塑料光纤,我们可实现智能家电(家用PC、HDTV、电话、数字成象设备、家庭安全设备、空调、冰箱、音响系统、厨用电器等)的联网,达到家庭自动化和远程控制管理,提高生活质量;通过塑料光纤,我们可实现办公设备的联网,如计算机联网可以实现计算机并行处理,办公设备间数据的高速传输可大大提高工作效率,实现远程办公等。

在低速局域网的数据速率小于100Mbps时,100米范围内的传输用SI型塑料光纤即可实现;150Mbps50米范围内的传输可用小数值孔径POF实现。

POF在制造工业中可得到广泛的应用。通过转换器,POF可以与RS232、RS422、100Mbps以太网、令牌网等标准协议接口相连,从而在恶劣的工业制造环境中提供稳定、可靠的通信线路。能够高速地传输工业控制信号和指令,避免因使用金属电缆线路而受电磁干扰导致通信传输中断的危险。

POF重量轻且耐用,可以将车载机通信网络和控制系统组成一个网络,将微型计算机、卫星导航设备、移动电话、传真等外设纳入机车整体设计中,旅客还可通过塑料光纤网络在座位上享受音乐、电影、视频游戏、购物、Internet等服务。

塑料范文篇4

[关键字]塑料光纤FTTH

2003年的统计数据显示,中国电信业的业务收入呈现增长速度下滑趋势,业务收入增幅继续下滑到13.9%,但数据通信收入在全部电信业务收入中的比例连年上升,2003年的数据通信收入达到232.2亿元,占全部电信业务收入的5个百分点,同比增长高达46.1%。报告据此分析,中国电信业的业务发展,形成了以数据通信为新兴增长业务的结构特点。而数据通信收入在全部电信业务收入中的比例连年上升,主要得益于宽带用户的雪崩式增长。数据通信的高速增长和网络的发展需要传输介质具有高的数据通信能力。中国工程院院士赵梓森告诉《通信产业报》,目前被称为宽带的ADSL、局域网以及有线、电视电缆上网并不是最终的接入方式,如果要在网上看数字电视或者参加远程教育,这三种方式都满足不了需求,只有光纤到户才FTTH能解决问题。即FTTH能够满足现在和未来各种带宽的需求,被业内视为宽带接入的终极目标。

在FTTH的应用方面,很多国家已经取得重大进展。2003年,美国的FTTH敷设量增长了200%以上。截止到2004年2月,美国共有96个地区约18万个家庭将FTTH用光纤铺设到家。在2004年底使用FTTH服务用户数将达到100万,在2005年底前用户数升至300万。FTTH在日本的应用也取得了一定的成绩。2003年底,日本FTTH用户数已达100万,预计2004年底将达到340万,2005年底发展至580万。韩国在FTTH方面也并不落后。尽管韩国通信(KTCorp.)到2003年11月才开始进行实地试验,但KT首席执行官兼总裁LeeYong-Kyung在“OFC2004”上演讲中表示,“韩国通信正在为2006年内开通FTTH商用服务进行准备,计划在2010年使FTTH的家庭普及率超过70%。中国武汉光谷FTTH试点是国内目前最大规模的FTTH工程。它标志着中国的FTTH建设进入实质阶段。武汉FTTH工程的开通拉开了国内FTTH建设的序幕,FTTH的建设热潮开始逐渐形成,国内各大运营商都开始计划进行FTTH的试点工程的建设,随着时间的进展,运营商将会进行选型工作,进行小批量的建设。随着设备价格的逐步下降,建设量将会逐步加大,预计在2-3内成为主要的接入手段。HDTV和点播电视将等高带宽业务的逐步发展,将会加快FTTH的建设步伐,而FTTH这种能够提供高带宽的接入方式反过来亦会为以上业务的开展提供高品质的服务支持,这是其他接入方式所无法比拟的。

但是,由于ADSL技术成熟、设备价格低,以及运营商已经建设了大规模的铜线网络并仍会进行大规模建设等原因,可以预见到在未来几年内,ADSL仍将是份额最大的宽带接入技术。另一方面,对于商业大客户和一些高端客户,由于ADSL速率低、出线率不高、距离短等固有缺陷,不能很好地满足用户要求,尤其是无法满足交互式业务(如互动游戏、视频点播、远程教育,电子医疗等)需求,而这些用户又是运营商ARPU值最高的客户,发掘和巩固这些大客户直接关系到运营商经营任务的完成。在这种情况下,FTTH结合了光纤等的技术优势,在大客户接入方面有着不言而喻的优势。

数据通信的高速增长和网络的发展需要传输介质具有高的数据通信能力。CCITT已将BISDN的用户网络接口速率规定为155Mbit/s和622Mbit/s。VESA开展家庭网络标准化作业,分析表明入户网络必须具备100Mbit/s以上的数据传送速率。.若采用双绞铜线或同轴电缆,由于带宽的限制,传送距离短,电缆重(70g/m),价格高;更重要的是噪声很大,在100Mbit/s以上的传送速率下,电磁辐射噪声远超过FCC的规定值。石英光纤具有带宽宽,衰减低等特点,是长距离通信干线的理想的传输介质,但在光纤入户时却遇到巨大困难。其芯径细(8~6.25um),在光纤耦合,互接中需要高精密度对准,几微米的连接偏差就会引起很大的耦合损耗,连接器件成本和安装费用大大增加了系统的造价。而聚合物光纤(又名塑料光纤)由于其较粗的芯径(0.3-3mm)和良好的柔韧性,所以连接方便,耦合效率高,更适合各种布线情况,从而解决了上述石英光纤遇到的困难。同时具有高带宽、耐震动、抗辐射、价格便宜、施工方便的优点,成为未来光纤入户工程中的首选材料之一。塑料光纤(POF)与石英光纤相比,具有以下优点:1、模量低,芯径大(0.3-1.0mm),接续时可使用简单的POF连接器,即使是光纤接续中心对准产生30μm的偏差也不会影响耦合损耗;2、数值孔径大(NA0.5左右),受光角θA可达60°,而石英光纤只有16°,可用便宜的LED,并且耦合效率高;3、挠曲性好,易于加工和使用;4、在可见光区有低损耗窗口;5、重量轻;6、成本及加工费用低。7、POF对电磁干扰不敏感,也不发生辐射,不同数据速率下的衰减恒定,误码率可预测,能在电噪声环境中使用;8、其尺寸较长,可降低接头设计中公差控制的要求,故成网成本较低等。

塑料光纤作为短距离通信网络的理想传输介质,一旦发展到了FTTH(光纤到家庭),塑料光纤凭借其塑料光纤在高速短距离通信传输中成本也对称电缆相当,在100米范围内传输带宽可达数GHz,且易连接,可挠性好、易于弯曲等优势,在全光网络中的用户接入方面的将具有广泛的前景。通过塑料光纤,我们可实现智能家电(家用PC、HDTV、电话、数字成象设备、家庭安全设备、空调、冰箱、音响系统、厨用电器等)的联网,达到家庭自动化和远程控制管理,提高生活质量;通过塑料光纤,我们可实现办公设备的联网,如计算机联网可以实现计算机并行处理,办公设备间数据的高速传输可大大提高工作效率,实现远程办公等。塑料光纤局域网硬件主要包括服务器、用户计算机、塑料光纤光网卡、塑料光纤交换机、POF-RJ45光纤收发器(可选)和塑料光纤光缆。在本方案中,选用2台DELLPowerEdgetm650作为服务器。并在服务器上插上千兆塑料光纤网卡,与中心交换机的千兆口相连,使服务器的传输速度达到千兆。计算机塑料光纤网卡具有以太网塑料光纤接口的PCI网卡,采用标准SC接口,支持即插即用、全双工1000Mbps传输速率,符合IEEE802.31000Base-FX标准。考虑到要求联网的机算计数量,我们选用的交换机带12个以太网塑料光纤下行接口,符合IEEE802.31000base-FX标准,支持1000Mbps的传输速率,可在工作组之间或不同网络之间提供高带宽、高性能的光纤连接,让用户能快速存取整个网络资源,解决计算机与工作组交换机之间的网络带宽瓶颈。塑料光纤光缆采用日本旭硝子生产的LUCINA塑料光纤光缆。其光纤直径为0.5mm,数值孔径(NA)约为0.185,衰减小于50dB/km,应用波长为850nm,带宽可达200Mhz·km。网络的物理拓扑结构如上图所示。

塑料范文篇5

光是通过光源内大量的分子或原子振动而产生的辐射。1894年,麦克斯韦从理论上指出,光是一种电磁波,1905年爱因斯坦提出光是一粒一粒的粒子流,每个粒子可被称为光子。也就是说光既具有粒子性,又具有波动性,光在传播时表现为波动性,而与物质作用时又表现为粒子性。通常我们所说的光是电磁波的一种,它通常由紫外光、可见光和近红外光组成,其中1-390nm波段的光为紫外光UV,波长为280-300nm波段为UV-B,它的强光可以杀死或严重损伤地球上的生物;200-280um波段为UV-C,它的强光可以杀死地球上一切生物,包括人类,比紫外光频率更高的还有X光和γ射线等;390-760nm波段的光为可见光;波长在760-1500nm为近红外光,中红外波段波长范围为1.5-25μm,远红外光谱波长范围25-300μm,比远红外光频率更小或波长更长的有毫米波、微波、短波、中波和长波等。而可见光又是由七色光组成的,即可见光含有红色光、橙色光、黄色光、绿色光、蓝色光和靛青光等色光[2]:?

紫色/nm靛青/nm蓝色/nm绿色/nm黄色/nm橙色/nm红色/nm

390-430430-450450-500500-570570-600600-630630-760

国际照明委员会统一规定的标准是:选水银光谱中波长为700nm的红光为红基色光,波长为546.1nm的绿光为绿基色光,波长为435.8nm的蓝光为蓝基色光。常规POF一般在紫外光波段并没有很好的透光性,而石英光纤和特制的液芯光纤在这一区域有很好的透光率,POF在可见光区域有很好的透光率,由POF芯材选用氟化和氘化聚合物材料制备的POF在近红外光区域才有很好的透光率。

光在真空中的传播速度C为3×108m/s,光的传输波长λ,频率f和光速C之间关系参见如下公式:

C=fλ……………………(1)

其中f的单位为赫兹Hz或1/秒(s),波长的单位为米(m)。

只有真空的折射率n为1.0,故光在任一传输介质的传播速度V是光速除以该介质的折射率,即:

光在真空中的传播速度是最快的,传输介质不同,其折射率不同,传光速度也不同。相对而言,折射率大的传输介质是光密介质,折射率小的传输介质是光疏介质,对于POF而言,POF芯材为光密介质,POF皮材为光疏介质,由于光在光密媒介-芯材中的传播速度会降低,故光在芯材中的传输速度慢于皮材中的传输速度;在空气中,由于n≈1,光波的传播速度接近于真空中的传播速度C;纯PMMA的折射率为1.49,故光在其中的传输速度约为2.01×108m/s。

光在均匀媒质或不均匀媒质中传输时,满足费玛(Fermat)原理,即光从空间一点到另一点是沿着时间为极值的路程而传播的,即光沿着光程为最小或最大或恒量的路径传播。

2.几何光学理论

要了解POF传光原理,必须了解一些几何光学的知识。

首先光学分为几何光学和物理光学,几何光学是研究光在均匀介质中的传播特性,通常采用直线来描述,它是研究光在介质中传播的基础光学理论。物理光学又分为波动光学和量子光学,波动光学认为光是一种电磁波,但它不能解释光的微观现象;量子理论认为光的能量不是连续分布的,光是一粒粒运动着的光子组成,每个光子具有确定的能量。几何光学理论的四大基本定律为:

2.1光的直线传播定律:在各向同性的均匀介质中,光是沿直线传播的。

2.2光的独立传播定律:不同光源发出的光线从不同方向通过某点时,彼此不影响,各光线的传播不受其它光线影响。

2.3光的反射定律:当一束光投射到某一介质光滑表面时,保存一部分光反射回原来的介质,这一光线称为反射光线,反射光线、入射光线和法线位由于同一平面内,入射线同法线组成的角称为入射角,反射光线同法线组成的角称为反射角,反射角等于入射角,即θ1=θ3,其绝对值相等,这就是反射定律。

2.4光的折射定律:当一束光投射到某一介质光滑表面时除了有一部分光发生反射外,还有一部分光通过介质分界面入射进第二传输介质中,这一部分光线称为折射光线,折射光线和入射光线分别位于法线的两侧,折射光线位于入射光线和法线所决定的平面内。折射光线同法线组成的角称为折射角,入射角的正弦值同折射角正弦值的比值为一恒定值,这就是折射定律。需要指出的是采用几何光学分析光在某一研究对象中的传输特性时,这一研究对象的几何尺寸必须远远大于所传输的光波长,这样才能忽略波长的长度,否则就必须采用物理光学分析光在研究对象中的传输特性。也即是光纤纤芯直径是所传播光波长的几十倍或几百倍时,其传播现象就可用几何光学而不用波动光学来研究。

3.子午光线在阶跃型POF中的传输

?阶跃型POF是一种具有芯皮结构的光纤。

子午平面指的是包含有光纤轴的平面,所谓子午线,就是光线的传播路径始终在同一平面内,子午光线总是和光纤轴相交的,光在一种均匀介质传播时是一种直线式传播:当光从一种介质传至另一介质表面时,一般同时发生反射和折射;如果光从折射率小的光疏介质射入折射率大的光密介质时,则折射角小于入射角;而当光从光密介质射入光疏介质时折射角将大于入射角,因而当光从光密介质射入光疏介质时就有可能出现只有反射而无折射的现象,这就是全反射,全反射是光折射的一种边界效应,即光从一种透明介质进入到另一种介质里而发生弯曲的现象。POF就是通过全反射原理进行光传输的。

?由折射定律公式可得出:

n1sinθ1=n2sinθ2(4)

这里n1、n2分为芯皮折射率,θ1、θ2分为入射角和折射角,设发生全反射的临界角为θm,此时θ2=90°,故而

当入射角θ1>θm时,则光在芯皮界面上发生全反射,而当入射角θ1<θm时,则光在芯皮表面上出现折射,有一部分光从芯材泄漏至皮层外。由全反射临界角同样可推出光纤截面临界入射光纤角θ0,在空气和光纤截面界面上,同样有:

n0sinθ0=n1sin(90°—θm)

=n1cosθm

其中,n0为空气折射率,设定其值同于真空折射率值1.0即n0=1.0,因而

?即外界光入射角θ小于θ0时,光线才能在光纤中以全反射的形式向前传播,从光纤一端传至光纤另一端,所以,光纤临界接受角为:

故光在SIPOF光纤的传输方式为全反射式锯齿型。

光纤数值孔径是光纤一个重要指标之一,NA值越大,则θ0越大,光纤临界入射角越大,则光纤端面接受光或发射光角度越大,光纤的集光能力愈强,愈便于光纤同光纤连接或同光源耦合。常规POF的光纤数值孔径。

4.子午线在阶跃型光纤中的几何行程和反射次数

由于子午光线入射光纤中并不是同一角度,故而其在光纤中的几何行程也不相同。无论是子午线在光线中的行程计算公式还是反射次数计算公式,都是假定光纤是处于非常理想状态下:光纤非常直,光纤直径均匀,光纤内部无缺陷和光纤入射端面平直等,倘若光纤不在这一理想条件下,则入射子午线全反射的状况就会发生变化,如有的会从光纤中反射出,有的反射角会发生变化等,因此光纤的传输损耗也会增加。

5.斜光线在阶跃型折射率POF中的传输

所谓斜面光线,就是光在光纤中传输中时,并不是像子午光线一样保证在同一平面内,它在光纤中传输时,其轨道通常是一空间螺旋曲线,其最大入射角比子午线的大,但通常以子午线传输表征光纤的传输特性,自然这是最理想的一种状况。

6.光在渐变型折射率分布POF中的传输

?对于渐变型折射率GIPOF,同样有子午线和斜光纤,这种光纤折射率并不是一恒定常数,而是随着离轴距离的增加而折射率下降,其渐变折射分布图参见如下;抛物线型折射率分布光纤具有较小的模式色散的特点,渐变折射分布有多种形式,当折射率分布按二次方抛物线分布时,子午线在光纤中的传播路径为正弦曲线型,参见下图,斜光纤的传播路径为螺旋曲线,渐变型折射率POF多用于短距离数据传输,用于光纤照明较少。

?这种光纤传输的激光能量分布接近Gauss分布,即在光纤轴附近具有更高的光能量密度,也就是说激光能量更为集中,其传输的激光功率密度(或称激光强度)I可认为与纤芯直径α的平方成正比。若保持光纤传输的激光功率不变的话,减小光纤芯径即减小传输激光能量的光纤纤芯的横截面面积,则光纤传输的激光功率密度将增加[5],当光在这种GIPOF传输时,可以说是一种极低能量的传输,亦满足如上所述的公式。

7.侧面发光POF的传光原理

侧面发光POF是指光在光纤传输过程中,不仅将传输光从光纤的入射端面传输至出射端面,而且还有一部分光从光纤包覆层透射出来,从而形成光纤侧面发光的现象,这种光纤被称为侧面发光POF,其传光示意图如下,其实质是传输光有一部分从光纤侧面泄漏出,是一种光散射的结果,对于单芯侧面发光POF多是由非固有损耗产生的,而对于多芯侧面发光POF则是由于弯曲损耗产生的。

?侧面发光POF最显著的特征是侧面发光,据JanisSpigulis等人[5].推算,侧面发光POF的侧面发光强度是随其长度的增加而呈指数性下降的,同于普通光纤光传输方向的发光强度是随其传输长度的增加呈指数下降,在作出如下假定后而得出的结论:

7.1侧面发光的原理仅被认为是由于光纤芯传输辐射引起的。

7.2所有最初的侧面散射光没有损耗穿透光纤圆形表面,其结果是均匀地传输至光纤外表面。

侧面发光POF在长度为X米处的发光强度Is(x)可用如下公式表示:

Is(x)=Aexp(-kx)(24)

其中K为侧面发光系数,单位m-1,常数A可用如下式表示:

A=(4π)-1I。(expk-1)(25)

其中I。是侧面发光POF光输入强度。

因此在实际使用过程中,为保证侧面发光POF侧面发光强度的均匀性,通常限制侧面发光POF的使用长度,并且在侧面发光POF的两端皆设置相同功率的光源或者一端设置全反射镜或反光膜,当然前者在更长的使用长度上保证光纤侧面发光的均匀性,选用双光源的侧面发光POF在某一处的发光强度IS2(x)可用如下公式(26)计算。

IS2(x)=A{exp(-kx)+exp[-k(L-x)]}(26)

其中L为侧面发光POF总长度。

选用全反射镜计算的侧面发光POF强度可用如下公式计算,侧面发光POF的发光强度和距离的关系参见如下图。

ISR(x)=A{exp(-kx)+Rexp[-k(2L-x)]}………(26)

其中R为镜面反射率。

因存在光传输损耗,侧面发光的亮度将随着与光源距离的增大而减小,为使光纤单位长度内的亮度接近一致,可对单端光源的光纤按长度进行刻痕处理,随光纤长度递增,刻痕间距递减。在实际使用过程中,当侧面发光POF的使用长度在30m以下时,多配用一台150W金卤灯光源,另端配用反光镜或反光膜;当侧面发光POF的使用长度在30~60m之间时,多配用两台150W金卤灯光源,以保证侧面发光POF的侧面发光的均匀性,下图为实测三根直径为14mm的侧面发光POF侧面光照度示意图,可以看出当选用一台150W金卤灯光源时,1.5m处POF侧光照度为800lx左右,而60m处的照度不到20lx,照度计测试时离光纤的表面距离为2.5cm。

8.荧光POF的传光原理

荧光POF就是在POF芯材中掺入一定量的荧光剂制备而成的POF,这种POF经过特定波长的光照射后,将发出特定波长的光,其原理比较复杂,可简单认为基态分子中成键电子吸收光后激发,然后单线态分子返回到基态,即发出荧光。荧光POF按折射率分布结构分类,可分为荧光SIPOF和荧光GIPOF,掺杂有机染料的POFA最重要特性是在宽波长范围内提供高功率输出。荧光POF的传光原理示意图如下,它满足一般的SI型光纤的传光特性,但入射光的波长不同于出射光的波长。

荧光POF还有另一种传光方式,这就是入射光可从侧面照射荧光POF,出射光从光纤两端面出射,当然入射光的波长不同于出射光的传输波长。

荧光材料的光特性主要依赖于基质材料,荧光POF增益放大特性同泵浦波长、荧光POF长度及所用掺杂剂和浓度有关。所谓增益G是指POF输出信号光功率Pout与输入光功率Pin之间的一种比值。

9.结语

POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行传光的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;同时为了简化计算,选用子午线进行了参数计算,子午线就是光线的传播路径始终经过光纤轴并在同一平面内,这些参数计算包括最大入射角或发射光角度、数值孔径、子午线在阶跃型光纤中的几何行程及反射次数;侧面发光POF和荧光POF也是按全反射原理进行传光的,对于单芯侧面发光POF多是由非固有损耗导致侧面发光,而对于多芯侧面发光POF则是由弯曲损耗产生侧面发光的。荧光POF经过特定波长光激发后发出特定波长的光,而且激发光不仅可从端面入射,而且可从侧面入射。

摘要:塑料光纤POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;子午线就是光线的传播路径始终经过光纤轴并在同一平面内,选用子午线进行了参数计算,这些参数计算包括最大入射角或发射光角度、数值孔径、子午线在阶跃型光纤中的几何行程及反射次数;侧面发光POF和荧光POF也是按全反射原理进行传光的,对于单芯侧面发光POF多是由非固有损耗导致侧面发光,而对于多芯侧面发光POF则是由弯曲损耗产生侧面发光的。荧光POF经过特定波长光激发后发出特定波长的光,而且激发光不仅可从端面入射,而且可从侧面入射。

关键词:聚合物光纤,塑料光纤,POF,传光,原理

参考文献

1.江源,刘玉庆.塑料光纤的发展史[J].广东照明电器,2003,(5):21-24

2.邮电部武汉邮电科学研究院编写组.激光通信[M].北京:人民邮电出版社,1979.14-20

3.杨同友.光纤通信技术[M].北京:人民邮电出版社,1986.31-54

4.徐大雄.纤维光学的物理基础[M].北京:高等教育出版社,1982.6-16

4.项仕标,冯长根.光纤的能量传输特性及应用[J].光学技术,2002,28(4):341-342

塑料范文篇6

贤銮公司主要生产电动磨指甲器、塑料玩具、榨汁机、电吹风、碎冰机等产品,产品由该厂生产,雷达公司代销,主销德国、法国、美国、日本等多个国家。

一、采购情况

该公司在采购方面做得较合理,香港交易会前后2~3个月淡季,淡季时不再采购原料,因为有相熟的供应商,补充物料方便,不需多存货,所以仓库只保持最基本数量的物料,直到有订单时再购入更多的物料,这样可以减低库存成本,增加可供周转的流动资金额。

二、仓库情况

凭仓库收发通用登记表领用物料,但只限于表格的形式,而没有定期把零部件、物料使用情况、库存定时数量存入电脑,须知“仓库是了解企业情况的眼睛”,仓库各种物料存储量是直接关系着公司生产的安排,所以为了生产的正常运行,我建议设计一套记录物料、零部件定点定时数量的管理信息系统,并应该定期盘点库存,更新数据资料,不足的物料要按时补给。

三、机器生产情况

机器使用不合理,使用率相对较低,淡季时机器多为闲置,有订单时则由生产部主管自行安排内部的生产时间,管理部不作干预。设备的闲置意味着资源的浪费,产品平均成本的增加,我建议淡季时可以多生产一些通用的零部件备用,这样可以在有订单时节省装配的时间,提高生产率,又可以避免资源(机器、人手)的闲置。

四、接单及生产安排

订单多时,如果客户同意延迟交货时间的话,就延迟生产,不同意就不接受订单。我建议实行优先调度的生产方式,要货比较急的订单和数量少的订单可优先生产,至于不急的订单就可以压后生产。人手不足就扩招工人或者集体加班。交货期应该要有弹性,可用来调整生产的均衡性,为了排得比较均衡合理,可制定一个记录物料、零部件数量的管理信息系统,让计算机自动显示上述数据,观察是否均衡,用以调整客户的需求和生产的均衡性。

五、人员安排及其管理情况

管理部由4人组成:老板、一人对外联络、一人内务管理、工程师。管理层次简单,但在实际的工作过程中则比较混乱,通常是工作内容交叉互换。

企业内部人员管理方式:全体生产工人有单一起做,有假一起放,加班一起加。由于旺季和淡季的存在,人员流动率十分高,一般有50人左右为固定员工,20~30人流动。企业可以通过多接来料加工的订单来稳定员工数量。

六、检验及发货

检验方法:跌落测试(每单货共试一卡通箱)。依据卡通箱之包装总重量,决定跌落高度65~70cm,然后以一角三边六面的方式自由跌落于水泥地板上,再折机进行安全、功能、结构及外观方面的检查。只接受外观受损,不接受功能上的缺陷。

来料加工的产品由该厂出车或出钱雇运输公司搬运,由雷达代接订单的产品则由雷达公司雇车出货。

七、产品搬运

本公司的原料仓库设在一层,零部件仓库设在二层,而零件的生产工人一般在三层作业,然后把零件装箱经楼梯搬运到二层的仓库,等待零部件的装配,但有时由于生产线的关系会直接在三层装配完再搬运到二层的仓库。成品更是采用一种特别的方式搬运,把一个扇篷架在一层和二层中央大片的空地上,以滑动的方式使1大箱/次或4小箱/次的成品顺着扇篷由二层滑落下来。这样的搬运方式相当不方便,更好的办法是在厂里三层楼之间装置搬运货物用的电梯,虽然短期内增加了支出,但长期来说搬运的人手减少,支出的资金通过效益的提高很快就能回收。

八、贤銮公司与雷达公司的关系

两者是互惠互利的双赢关系。雷达公司是一间出口贸易公司,贤銮聘请它负责产品的出口事务,并由雷达代接订单。利润分配:贤銮的产品价格不变(A),但雷达将会根据各国利率,计算差额向客户报价(B),即雷达每单订单的盈利是A-B。这种合作方式有助于贤銮的出口业务。对内,减少了接单、销售、运输等环节使企业的支出大大减少,管理容易;对外,能够降低风险,有利于提高竞争力。再说,像贤銮这样的中小型企业要想更快打进国外市场,除了产品要有质量的保证之外,一间专业的进出口公司的辅助更是必不可少的。正如曾教授所说的,市场的竞争就好象“鸡蛋碰鸡蛋,厚一点点的就能生存”,惟有寻找最适合的同盟者才能在有限的资源下实现最大的盈利。

九、生产运作方式

本企业的生产与运作组织方式属于混合组织,一层的物料加工车间是工艺对象专业化,优点是:(1)产品制造顺序有一定的弹性(2)便于工艺管理,有利于员工进行技术交流,员工技术应用熟练,提高生产效率。而二层的零部件装配车间是产品对象专业化,生产规范,容易操作,对人员的培训简单、快速。这两种组织方式的有效结合大大的提高了企业的工作效率,但相对的对管理水平的要求就更高了。

十、集成方式

塑料范文篇7

关键词:聚合物光纤,塑料光纤,POF,传光,原理

1.前言

光纤自身不能发光,但光纤可以传光,用于照明;光纤照明所选用的光纤,按照光纤材质的不同,通常可分为石英光纤、多组分玻璃光纤和塑料光纤POF等,本文主要介绍POF的传光原理,其它的光纤传光原理同POF的传光原理是一致的。

人们很早就观察到光在透明柱体中通过多次全反射向前传播的现象,他们就是古代的玻璃吹制艺人。而首次科学阐述这一现象的,却是英国皇家学会的约翰·丁达尔向英国皇家学会演示了一个著名的实验,他当时用一只盛满水的器皿,让水从器皿的侧孔中流出,这时投射在水中的光也随着水流传导出来。

1880年,威廉·惠勒(WilliamWheeler)提出“管道照明”的设想,并获得美国专利,这是有案可查的最早的“遥控照明”装置,其基本原理是:用内壁涂有反射层的管子把中心光源的光象自来水一样引至若干个需要照明的地点,这实际上是光纤用于照明的雏形,光纤照明系统简单地就可以看作是和上述的“管道系统”相类似的一个系统,在这个系统中,所传输的介质是光,而用以传输光的“管道”就是光纤,光纤可以把光线从光源处传输至需要照明的特定区域。1954年,《自然》杂志发表了Hopkin''''s和Kapany成功地用一束10,000到20,000的纤维来传输图像的文章,VanHeel发现低折射率光纤包层的作用,纤维的图像传输的成功实现和光纤包层的提出这两个进步标志着光导纤维作为一个新兴学科的诞生,1966年,英国标准电信研究所英籍华裔科学家高锟(K.C.Kao)博士和G.A.Hockham在详细研究了玻璃的传输损耗后,撰写的文章《用于光频的介质纤维表面波导》发表在伦敦电气工程师协会(IEE)会刊上,他们从理论上指出:如果减少或消除光导纤维中的有害杂质如过渡金属离子,可大大降低光纤传输损耗,提高光纤的传光能力,从而推动了光纤制造工艺的研究。美国杜邦DuPont公司亦在这一年向市场推出了世界上第一根POF[1],POF就是光纤的一种,而光纤用于光纤照明的基本原理是利用光线在不同折射率介质的界面发生全反射,实现光在光纤中的高效传输以及光纤与光源的充分耦合,并通过与各种光学元件的组合,达到需要的照明效果,为了解光在光纤中的传输方式,现介绍子午光线在POF中的传输特性。

2.光的基础知识

光是通过光源内大量的分子或原子振动而产生的辐射。1894年,麦克斯韦从理论上指出,光是一种电磁波,1905年爱因斯坦提出光是一粒一粒的粒子流,每个粒子可被称为光子。也就是说光既具有粒子性,又具有波动性,光在传播时表现为波动性,而与物质作用时又表现为粒子性。通常我们所说的光是电磁波的一种,它通常由紫外光、可见光和近红外光组成,其中1-390nm波段的光为紫外光UV,波长为280-300nm波段为UV-B,它的强光可以杀死或严重损伤地球上的生物;200-280um波段为UV-C,它的强光可以杀死地球上一切生物,包括人类,比紫外光频率更高的还有X光和γ射线等;390-760nm波段的光为可见光;波长在760-1500nm为近红外光,中红外波段波长范围为1.5-25μm,远红外光谱波长范围25-300μm,比远红外光频率更小或波长更长的有毫米波、微波、短波、中波和长波等。而可见光又是由七色光组成的,即可见光含有红色光、橙色光、黄色光、绿色光、蓝色光和靛青光等色光[2]:?

紫色/nm靛青/nm蓝色/nm绿色/nm黄色/nm橙色/nm红色/nm

390-430430-450450-500500-570570-600600-630630-760

国际照明委员会统一规定的标准是:选水银光谱中波长为700nm的红光为红基色光,波长为546.1nm的绿光为绿基色光,波长为435.8nm的蓝光为蓝基色光。常规POF一般在紫外光波段并没有很好的透光性,而石英光纤和特制的液芯光纤在这一区域有很好的透光率,POF在可见光区域有很好的透光率,由POF芯材选用氟化和氘化聚合物材料制备的POF在近红外光区域才有很好的透光率。

光在真空中的传播速度C为3×108m/s,光的传输波长λ,频率f和光速C之间关系参见如下公式:

C=fλ……………………(1)

其中f的单位为赫兹Hz或1/秒(s),波长的单位为米(m)。

只有真空的折射率n为1.0,故光在任一传输介质的传播速度V是光速除以该介质的折射率,即:

光在真空中的传播速度是最快的,传输介质不同,其折射率不同,传光速度也不同。相对而言,折射率大的传输介质是光密介质,折射率小的传输介质是光疏介质,对于POF而言,POF芯材为光密介质,POF皮材为光疏介质,由于光在光密媒介-芯材中的传播速度会降低,故光在芯材中的传输速度慢于皮材中的传输速度;在空气中,由于n≈1,光波的传播速度接近于真空中的传播速度C;纯PMMA的折射率为1.49,故光在其中的传输速度约为2.01×108m/s。

光在均匀媒质或不均匀媒质中传输时,满足费玛(Fermat)原理,即光从空间一点到另一点是沿着时间为极值的路程而传播的,即光沿着光程为最小或最大或恒量的路径传播。

3.几何光学理论

要了解POF传光原理,必须了解一些几何光学的知识。

首先光学分为几何光学和物理光学,几何光学是研究光在均匀介质中的传播特性,通常采用直线来描述,它是研究光在介质中传播的基础光学理论。物理光学又分为波动光学和量子光学,波动光学认为光是一种电磁波,但它不能解释光的微观现象;量子理论认为光的能量不是连续分布的,光是一粒粒运动着的光子组成,每个光子具有确定的能量。几何光学理论的四大基本定律为:

3.1光的直线传播定律:在各向同性的均匀介质中,光是沿直线传播的。

3.2光的独立传播定律:不同光源发出的光线从不同方向通过某点时,彼此不影响,各光线的传播不受其它光线影响。

3.3光的反射定律:当一束光投射到某一介质光滑表面时,保存一部分光反射回原来的介质,这一光线称为反射光线,反射光线、入射光线和法线位由于同一平面内,入射线同法线组成的角称为入射角,反射光线同法线组成的角称为反射角,反射角等于入射角,即θ1=θ3,其绝对值相等,这就是反射定律。

3.4光的折射定律:当一束光投射到某一介质光滑表面时除了有一部分光发生反射外,还有一部分光通过介质分界面入射进第二传输介质中,这一部分光线称为折射光线,折射光线和入射光线分别位于法线的两侧,折射光线位于入射光线和法线所决定的平面内。折射光线同法线组成的角称为折射角,入射角的正弦值同折射角正弦值的比值为一恒定值,这就是折射定律。需要指出的是采用几何光学分析光在某一研究对象中的传输特性时,这一研究对象的几何尺寸必须远远大于所传输的光波长,这样才能忽略波长的长度,否则就必须采用物理光学分析光在研究对象中的传输特性。也即是光纤纤芯直径是所传播光波长的几十倍或几百倍时,其传播现象就可用几何光学而不用波动光学来研究。

4.子午光线在阶跃型POF中的传输

?阶跃型POF是一种具有芯皮结构的光纤。

子午平面指的是包含有光纤轴的平面,所谓子午线,就是光线的传播路径始终在同一平面内,子午光线总是和光纤轴相交的,光在一种均匀介质传播时是一种直线式传播:当光从一种介质传至另一介质表面时,一般同时发生反射和折射;如果光从折射率小的光疏介质射入折射率大的光密介质时,则折射角小于入射角;而当光从光密介质射入光疏介质时折射角将大于入射角,因而当光从光密介质射入光疏介质时就有可能出现只有反射而无折射的现象,这就是全反射,全反射是光折射的一种边界效应,即光从一种透明介质进入到另一种介质里而发生弯曲的现象。POF就是通过全反射原理进行光传输的。

?由折射定律公式可得出:

n1sinθ1=n2sinθ2(4)

这里n1、n2分为芯皮折射率,θ1、θ2分为入射角和折射角,设发生全反射的临界角为θm,此时θ2=90°,故而

当入射角θ1>θm时,则光在芯皮界面上发生全反射,而当入射角θ1<θm时,则光在芯皮表面上出现折射,有一部分光从芯材泄漏至皮层外。由全反射临界角同样可推出光纤截面临界入射光纤角θ0,在空气和光纤截面界面上,同样有:

n0sinθ0=n1sin(90°—θm)

=n1cosθm

其中,n0为空气折射率,设定其值同于真空折射率值1.0即n0=1.0,因而

?即外界光入射角θ小于θ0时,光线才能在光纤中以全反射的形式向前传播,从光纤一端传至光纤另一端,所以,光纤临界接受角为:

故光在SIPOF光纤的传输方式为全反射式锯齿型。

光纤数值孔径是光纤一个重要指标之一,NA值越大,则θ0越大,光纤临界入射角越大,则光纤端面接受光或发射光角度越大,光纤的集光能力愈强,愈便于光纤同光纤连接或同光源耦合。常规POF的光纤数值孔径参见如下表。

?表常规POF的光纤数值孔径参

?POFPS芯POFPMMA芯POFPC芯POF(ESK-PH)侧面发光POF

芯材折射率1.591.495?1.59?1.475

皮材折射率1.491.4021.311.34

?数值孔径NA0.550.50.9?0.65

最大入射角或发射光角度/度6760?12875

5.子午线在阶跃型光纤中的几何行程和反射次数

由于子午光线入射光纤中并不是同一角度,故而其在光纤中的几何行程也不相同。无论是子午线在光线中的行程计算公式还是反射次数计算公式,都是假定光纤是处于非常理想状态下:光纤非常直,光纤直径均匀,光纤内部无缺陷和光纤入射端面平直等,倘若光纤不在这一理想条件下,则入射子午线全反射的状况就会发生变化,如有的会从光纤中反射出,有的反射角会发生变化等,因此光纤的传输损耗也会增加。

6.斜光线在阶跃型折射率POF中的传输

所谓斜面光线,就是光在光纤中传输中时,并不是像子午光线一样保证在同一平面内,它在光纤中传输时,其轨道通常是一空间螺旋曲线,其最大入射角比子午线的大,但通常以子午线传输表征光纤的传输特性,自然这是最理想的一种状况。

7.光在渐变型折射率分布POF中的传输

?对于渐变型折射率GIPOF,同样有子午线和斜光纤,这种光纤折射率并不是一恒定常数,而是随着离轴距离的增加而折射率下降,其渐变折射分布图参见如下;抛物线型折射率分布光纤具有较小的模式色散的特点,渐变折射分布有多种形式,当折射率分布按二次方抛物线分布时,子午线在光纤中的传播路径为正弦曲线型,参见下图,斜光纤的传播路径为螺旋曲线,渐变型折射率POF多用于短距离数据传输,用于光纤照明较少。

?这种光纤传输的激光能量分布接近Gauss分布,即在光纤轴附近具有更高的光能量密度,也就是说激光能量更为集中,其传输的激光功率密度(或称激光强度)I可认为与纤芯直径α的平方成正比。若保持光纤传输的激光功率不变的话,减小光纤芯径即减小传输激光能量的光纤纤芯的横截面面积,则光纤传输的激光功率密度将增加[5],当光在这种GIPOF传输时,可以说是一种极低能量的传输,亦满足如上所述的公式。

8.侧面发光POF的传光原理

侧面发光POF是指光在光纤传输过程中,不仅将传输光从光纤的入射端面传输至出射端面,而且还有一部分光从光纤包覆层透射出来,从而形成光纤侧面发光的现象,这种光纤被称为侧面发光POF,其传光示意图如下,其实质是传输光有一部分从光纤侧面泄漏出,是一种光散射的结果,对于单芯侧面发光POF多是由非固有损耗产生的,而对于多芯侧面发光POF则是由于弯曲损耗产生的。

?侧面发光POF最显著的特征是侧面发光,据JanisSpigulis等人[5].推算,侧面发光POF的侧面发光强度是随其长度的增加而呈指数性下降的,同于普通光纤光传输方向的发光强度是随其传输长度的增加呈指数下降,在作出如下假定后而得出的结论:

8.1侧面发光的原理仅被认为是由于光纤芯传输辐射引起的。

8.2所有最初的侧面散射光没有损耗穿透光纤圆形表面,其结果是均匀地传输至光纤外表面。

侧面发光POF在长度为X米处的发光强度Is(x)可用如下公式表示:

Is(x)=Aexp(-kx)(24)

其中K为侧面发光系数,单位m-1,常数A可用如下式表示:

A=(4π)-1I。(expk-1)(25)

其中I。是侧面发光POF光输入强度。

因此在实际使用过程中,为保证侧面发光POF侧面发光强度的均匀性,通常限制侧面发光POF的使用长度,并且在侧面发光POF的两端皆设置相同功率的光源或者一端设置全反射镜或反光膜,当然前者在更长的使用长度上保证光纤侧面发光的均匀性,选用双光源的侧面发光POF在某一处的发光强度IS2(x)可用如下公式(26)计算。

IS2(x)=A{exp(-kx)+exp[-k(L-x)]}(26)

其中L为侧面发光POF总长度。

选用全反射镜计算的侧面发光POF强度可用如下公式计算,侧面发光POF的发光强度和距离的关系参见如下图。

ISR(x)=A{exp(-kx)+Rexp[-k(2L-x)]}………(26)

其中R为镜面反射率。

因存在光传输损耗,侧面发光的亮度将随着与光源距离的增大而减小,为使光纤单位长度内的亮度接近一致,可对单端光源的光纤按长度进行刻痕处理,随光纤长度递增,刻痕间距递减。在实际使用过程中,当侧面发光POF的使用长度在30m以下时,多配用一台150W金卤灯光源,另端配用反光镜或反光膜;当侧面发光POF的使用长度在30~60m之间时,多配用两台150W金卤灯光源,以保证侧面发光POF的侧面发光的均匀性,下图为实测三根直径为14mm的侧面发光POF侧面光照度示意图,可以看出当选用一台150W金卤灯光源时,1.5m处POF侧光照度为800lx左右,而60m处的照度不到20lx,照度计测试时离光纤的表面距离为2.5cm。

9.荧光POF的传光原理

荧光POF就是在POF芯材中掺入一定量的荧光剂制备而成的POF,这种POF经过特定波长的光照射后,将发出特定波长的光,其原理比较复杂,可简单认为基态分子中成键电子吸收光后激发,然后单线态分子返回到基态,即发出荧光。荧光POF按折射率分布结构分类,可分为荧光SIPOF和荧光GIPOF,掺杂有机染料的POFA最重要特性是在宽波长范围内提供高功率输出。荧光POF的传光原理示意图如下,它满足一般的SI型光纤的传光特性,但入射光的波长不同于出射光的波长。

荧光POF还有另一种传光方式,这就是入射光可从侧面照射荧光POF,出射光从光纤两端面出射,当然入射光的波长不同于出射光的传输波长。

荧光材料的光特性主要依赖于基质材料,荧光POF增益放大特性同泵浦波长、荧光POF长度及所用掺杂剂和浓度有关。所谓增益G是指POF输出信号光功率Pout与输入光功率Pin之间的一种比值。

10.结语

POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行传光的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;同时为了简化计算,选用子午线进行了参数计算,子午线就是光线的传播路径始终经过光纤轴并在同一平面内,这些参数计算包括最大入射角或发射光角度、数值孔径、子午线在阶跃型光纤中的几何行程及反射次数;侧面发光POF和荧光POF也是按全反射原理进行传光的,对于单芯侧面发光POF多是由非固有损耗导致侧面发光,而对于多芯侧面发光POF则是由弯曲损耗产生侧面发光的。荧光POF经过特定波长光激发后发出特定波长的光,而且激发光不仅可从端面入射,而且可从侧面入射。

参考文献

1.江源,刘玉庆.塑料光纤的发展史[J].广东照明电器,2003,(5):21-24

2.邮电部武汉邮电科学研究院编写组.激光通信[M].北京:人民邮电出版社,1979.14-20

3.杨同友.光纤通信技术[M].北京:人民邮电出版社,1986.31-54

4.徐大雄.纤维光学的物理基础[M].北京:高等教育出版社,1982.6-16

4.项仕标,冯长根.光纤的能量传输特性及应用[J].光学技术,2002,28(4):341-342

5JanisSpigulis,DaumantsPfafrods,MarisStafeckis,WandaJelinska-Platece.The“glowing”opticalfiberdesignsandparameters[J].SPIE,1997,2967:231-236.

塑料范文篇8

关键词:Pro/E;三维造型;塑料包装;设计应用

塑料质轻、防潮、耐腐蚀、抗老化、工艺性好,可以制做成各种形状,搭配各种颜色,色彩鲜艳,光泽度好。各种优越的性能,使得塑料非常适合用作包装材料,并逐渐取代一部分传统包装材料,成为市场上主流的包装材料,极大地推动了包装行业的快速发展。市场需求不断扩大,塑料包装产品的更新换代速度也越来越快,各种新产品的推出,其包装效果的影响因素至关重要,制造厂商纷纷加大这方面的投入,引进各种先进的设计方法,同时对产品申请外观设计专利加以保护,形成独有知识产权。如何快速响应市场,设计和制作出符合要求的塑料包装作品越来越受到关注。范军、邓发云等[1-2]讨论了Pro/Engineer(Pro/E)软件行为建模器功能模块在产品塑料包装设计中的应用方法。蔡建等[3]讨论了Pro/E三维造型的功能与特点,并以包装箱为例,介绍了Pro/E在兵器包装上的应用。刘莜霞等[4]以日常生活中所用台灯为案例,介绍了Pro/E在产品造型方面的应用。Pro/E三维设计软件是由美国参数技术公司设计开发的一款集设计、分析、加工制造为一体的工业化软件。具有产品装配设计、零件设计、钣金设计、模具设计、数字控制(NC)加工、计算机辅助工程(CAE)分析、虚拟仿真等多个模块。广泛应用于机械设计、工业设计、包装设计等多个行业,并在实际应用中得到快速推广。Pro/E三维设计软件是一款基于参数化设计和特征操作的软件,设计人员可以充分借助日常生活经验,采用具有智能特性的基于特征的功能去创建模型,所有作为产品几何模型构造要素特征都是日常生活中常见的,这给设计创作带来了极大的简易和灵活性。本文分析了塑料包装设计的特点,针对塑料包装产品的快速更新换代需求,应用Pro/E的参数化设计原理,以日常的饮料包装为例,介绍了Pro/E在塑料包装设计中三维造型、色彩搭配、材料选型、效果图处理等方面的应用。

1塑料包装设计特点

塑料包装是最为常见的一种包装形式,广泛应用于日常生活及工业生产之中。与传统的纸质包装相比,塑料包装防潮隔湿,抗老化,寿命长,色彩鲜艳,可塑性好,可制成各种形状复杂的包装结构。塑料包装有软包装和硬包装之分。软包装指各种采用塑料薄膜的包装,一般将薄膜厚度在0.25mm以下的片状塑料包装定义为软包装。硬包装应用较为广泛,各种造型,各种色彩搭配,其中以容器形式居多,市场上需求量大,更新速度快的塑料包装以硬包装为主。塑料硬包装强调造型设计,兼顾美学设计,要将塑料包装结构设计得既符合产品的功能需求、美学要求、人机工程学要求,又符合塑料结构件的成型工艺要求,其难度非常大[5]。需要在设计阶段充分构思,反复沟通,进行细节化设计,采用三维造型软件可以方便地实现这些要求。

2基于Pro/E的塑料饮料瓶设计

2.1塑料饮料瓶体三维造型设计

2.1.1塑料饮料瓶设计

对产品初步构思后,可以借助Pro/E勾勒出轮廓图形,在这一阶段就要明确需要控制的关键参数,由于塑料包装属于壳体零件,首先建立实体轮廓。分析构思中产品结构特征,对特征进行分解,选择最佳命令组合。本例中塑料饮料瓶体为回转零件,利用Pro/E中旋转特征,在草绘环境下进行瓶体回转截面设计,明确需要控制的关键参数。草绘完成后执行旋转命令,生成瓶体基体,此时瓶体拐角处均比较尖锐,工艺性不好,在制作过程中容易出现裂痕,同时也不美观,因此需要进一步修饰调整,此处采用Pro/E中倒圆角命令,对所有尖锐拐角进行光滑处理。

2.1.2塑料饮料瓶体特征设计

设计完成的瓶体能满足基本功能,但还不能体现产品自身特点,需要加入自己独特的特征,Pro/E强大的造型功能可以将设计师的构思快速转化为实体特征,便于进一步修改。本例为体现饮料的绿色天然特性,在瓶体设计三维树叶形状。在瓶体轴剖面中设计树叶二维造型,利用投影命令将树叶轮廓投影到瓶体上,此时轮廓随瓶体变化,呈现为三维曲线,借助曲面混合特征,设计出树叶三维结构,进行阵列,将三维树叶特征均布瓶体一周,最后对树叶造型轮廓进行倒角光滑处理。

2.1.3塑料饮料瓶底的加强处理

塑料饮料瓶用于包装液体,需要一定的结构强度,防止在运输过程中发生变形损坏,同时保证瓶体保持设计之初的形状。为此在饮料瓶体底部设计星型突状结构,在不改变局部厚度的情况下,加强瓶体刚性。本例采用扫描剪切命令创建这一特征,在瓶体轴剖面创建扫描轨迹线,截面设计为圆形,执行命令后,圆形截面沿轨迹线运动,在瓶体底部创建出一条内凹圆弧槽,再次进行阵列,形成星型加强特征,如图3所示。

2.1.4塑料饮料瓶薄壳化处理

饮料瓶体为薄壳结构,以上完成的为实体特征,进行抽壳处理后,可以对瓶体进行等厚偏移,制作出不同厚度的饮料瓶体,如图4所示。在对硬质塑料包装设计时,一般均采用先进行实体建模,完成主要特征后,进行抽壳处理,使得包装壁厚均匀一致,更加符合塑料制品的制造工艺性。

2.1.5塑料饮料瓶瓶口螺纹设计

在容器类的塑料包装产品中,有大量的螺纹结构。本例中饮料瓶的封口采用螺纹连接,瓶口的螺纹特征可以利用Pro/E中螺旋扫描实现,在螺旋扫描命令下,定义扫描轨迹、螺距及螺纹截面形状就可制作出螺纹特征。在此可以感受到Pro/E参数化建模的便利性,确定特征命令后,输入特征参数即可获得特征造型。

2.1.6塑料饮料瓶瓶盖设计

瓶盖和瓶体搭配使用,可以在同一创建环境下,创建瓶盖特征,完成整个塑料饮料瓶功能性设计。

2.2塑料饮料瓶体外观设计

三维造型设计完成后,才是完成了包装的功能性设计,要达到吸引顾客和占领市场的目的,还需要对包装结构进行外观美化处理。传统的平面图片处理软件只能进行二维平面处理,难以在设计阶段展示包装的立体化效果,借助Pro/E可以对包装的最终效果充分展示。

2.2.1三维商标设计

醒目的商标可以让顾客更容易记住产品,Pro/E中具有丰富的字库,还可以手工绘制个性化象形字体或图形,不但可以制作平面标签,还可以使用偏移等命令制作浮雕图案,使包装设计元素更加丰富。

2.2.2塑料包装材料的选择

同样的造型结构,选用不同材质不同色彩的材料制作,其效果差别非常明显。Pro/E中可以对材料进行定义,观察采用不同材质制作的产品包装的视觉效果,为后期的加工制造提供参考。

2.2.3包装外软包装的设计

在曲面上制作广告标语、产品使用说明比较困难,一般制作完成的塑料包装,外表面需要黏贴软包装材料,硬包装从造型上吸引顾客,软包装从色彩角度展示产品特色,两者搭配最终决定包装的视觉效果。Pro/E中具有丰富的表面处理功能,采用贴画选项可以在塑料包装外部虚拟黏贴各种软包装材料,模拟最终效果。

2.2.4增强的真实感及渲染特效设计

包装是产品的形象代言,对于包装设计一般都需要借助专业软件对其进行特效处理,获取最佳效果。Pro/E中兼具了产品效果图处理功能,可以在完成三维造型建模后,通过设置不同场景、光源、视角等制作出各种特效。塑料包装产品经过渲染特效处理后,可以保存不同格式,用于制作宣传图册。

3结语

塑料包装在包装行业得到广泛应用,市场需求不断扩大,塑料包装产品的更新换代速度也越来越快,各种新产品的推出,其包装效果的影响因素至关重要。借助Pro/E三维造型软件建立参数化模型,通过改变特征参数,可以快速开发出系列化产品族,丰富产品线,满足不同领域的需求;借助Pro/E着色及渲染功能对产品三维造型进行视觉效果处理,确定最佳图案设计,可以减少打样环节,缩短了产品开发周期。Pro/E三维造型软件以其强大的功能,在机械设计、工业设计、包装设计等多个行业得到广泛应用,并在实际应用中得到快速推广。

参考文献

[1]范军.PRO/E的行为建模器在产品包装设计中的应用[J].科技信息,2006(10):40-41.

[2]邓发云.PRO/E行为建模技术容器设计中的应用[J].机械管理开发,2010,25(2):52-56.

[3]蔡建,黎明,程涛.PRO/E在兵器包装中的应用[J].包装工程,2005,26(6):106-107.

[4]刘莜霞,张美艳,舒祖菊,等.Pro/E在产品造型设计中的应用[J].包装工程,2008(3):152-155.

塑料范文篇9

关键词:塑料光纤光纤光缆光通讯POF

一、前言

自从业界开创了光纤通讯技术以来,大至归纳,光纤通讯比传统的电铜通讯有3大优点:一是通信容量大;二是抗电磁干扰、保密性能较好;三是重量轻,并可节省大量的铜,如铺设1000公里长的8芯光缆比铺设同样长度的8芯电缆可节省1100吨铜,3700吨铅。因此光纤光缆一经问世就受到通信业界的欢迎,带来了通讯领域的革命以及一轮投资发展热潮。

尽管玻璃光纤具有上述一系列优点,但它有一个致命的弱点就是强度低,抗挠曲性能差,而且抗辐射性能也不好。因此,近20多年来,业界一直没有停止过对光纤其他材料的代用研发,其中对塑料光纤的研发是目前业界最为感兴趣的研究领域之一,目前已经取得较大进展,已经有商用产品面世,现已广泛应用于汽车、CD播放机、工业电子系统、小型光盘系统和个人计算机中。今后还会有许多领域将使用塑料光纤,诸如传感器、光子晶体光纤等。

二、塑料光纤的优点

塑料光纤与玻璃光纤相比,虽透光性差一些,光损耗较大,初期一般为300分贝/公里,传输光带狭窄(限于可见光区),被认为难以适应多媒体通信网的需要,但它具有轻而柔软、抗挠曲、抗冲击强度高、价格便宜、抗辐照、易加工、并能制成大直径(1~3毫米,以增大受光角度,扩大使用范围)等一系列优点,所以备受青睐。此外,光通过塑料光纤的中心部分的直径约为1毫米,比玻璃光纤大100倍,与纤维之间的连接及与个人机等终端装置的连接都十分容易。因此塑料光纤安装费用很低,安装时采用十分简单的对准连接插头即可,这种插头可用现有的技术生产。

三、塑料光纤产品研发简述

塑料光纤的研究始于二十世纪60年代。1968年美国杜邦公司用聚甲基丙烯酸甲酯为芯材制备出塑料光纤,但光损耗较大。1974年日本三菱人造丝公司以PMMA和聚苯乙烯为芯材、以低折射率的氟塑料为包层开发出塑料光纤,其光损耗为3500dB/km,难以用于通信。

80年代日本的一些大企业和大学对低损耗塑料光纤的制备进行了大量的研究。1980年三菱公司以高纯MMA单体聚合PMMA,使塑料光纤损耗下降到100-200dB/km。1983年NTT公司开始用氘取代PMMA中的H原子,使最低光损耗可达到20dB/km,并可传输近红外到可见光的光波。

近几年来,欧日等国的公司对塑料光纤的研制取得了重要的进展。它们研制成的塑料光纤,光损耗率已降到25~9分贝/公里。其工作波长已扩展到870微米(近红外光),接近石英玻璃光纤的实用水平。美国研制的一种PFX塑料系列光纤,有着优异的抗辐照性能。此外,美国麻省波士顿光纤公司研制的Opti-Giga塑料光纤更是引人注目,它不仅比玻璃轻、柔性更好、成本更低,而且可在100米内以每秒3兆比特的速度传输数据。这种光纤还可以利用光的折射或光在纤维内的跳跃方式来达到较高的传输速度。现在美欧日已把塑料光纤用于短途传输,如汽车、医疗器械、复印机等。

就目前塑料光纤生产量而言,日本是世界上最大的塑料光纤生产者,然而却是欧洲推动了塑料光纤新应用领域的开发并建立了光纤检验标准。2001年下半年是欧洲塑料光纤工业发展的重要阶段,在这段时间内建立了欧洲塑料光纤检验和测量的新发展方针。世界上第一个专用塑料光纤应用中心(POFAC)在德国Nuremberg落成。德国采用塑料光纤已经研制成功了多媒体总线系统MOST(24Mbit/s),并且有几家轿车制造商已把该系统引入到自己的产品上。德国宝马公司(BMW)在其新的7个系列产品中开创了使用100m塑料光纤的记录。欧洲2001年塑料光纤学术交流会和欧洲光纤通信会议同时在荷兰的阿姆斯特丹举行。德国汽车工业不仅推动了塑料光纤的应用,而且也推动了塑料光纤检验和测量标准的建立。

日本也建立了塑料光纤标准,但这些标准对欧洲共同体是无效的。日本工业标准只给出了一种型号塑料光纤的标准,其数值孔径为0.5,而且只有650nm一种波长。该标准没有提及在塑料光纤中的不同激励光条件,也没有规定必须在塑料光纤内形成平衡模分布。

此前建立的玻璃光纤检验方法因为会出现瑞利散射而不适于检验塑料光纤,现在市场上仅有瑞士新成立的Luciol仪器公司出售的一种检验塑料光纤的仪器。

德国工程师学会和电子工程学会研究小组已经详细规定了塑料光纤数值孔径、衰减、传输和机械特性以及环境和寿命的测量方法。塑料光纤检验方法和标准的建立必将促进国际塑料光纤贸易的发展,并消除贸易中的误解。

日本对塑料光纤的应用十分重视,早在几年前,NEC、富士通、住友电器工业公司等45家光通信、多媒体产品的生产厂家就联合宣布,将共同实现已在日本开发成功的塑料光纤的实用化。塑料光纤的成本低廉,被认为是将多媒体引进到家庭的关键技术,随后一些生产厂家就着手建立生产线。?

1986年,日本F富士通公司以PC为纤芯材料开发出SI型耐热POF,耐热温度可达135摄氏度,衰减达450dB/km;

1990年,日本庆应大学的小池助教授开发成功折射率渐变型的塑料光纤,芯材为含氟PMMA、包层为含氟,用界面凝胶技术制造。该塑料光纤衰减在60db/km以下,光源650-1300nm,100m带宽3GHz,传输速率10Gb/s,超过了GI型石英光纤,并被广泛认为是高速多媒体时代光纤入户的新型光通信媒介;

1996年,人们纷纷建议以塑料光纤为基础建立极低成本的用户网ATM物理层;1997年,日本NEC公司进行了155Mbit/s的ATM、LAN的试验。

在2000年OFC会议上,日本ASAHIGLASS公司报道了氟化梯度塑料光纤衰减系数在850nm为41dB/km,在1300nm为33dB/km,带宽已达100MHz.km。用这种光纤成功地进行了50m、2.5Gbit/s的高速传输试验和70摄氏度长期热老化试验。实验结论为氟化梯度塑料光纤完全能满足短距离的通信使用要求。

从塑料光纤的研究发展来看,塑料光纤的研究重点主要集中在以下三个方面:

1.降低光损耗;

2.提高带宽(由SI型转为GI型);

3.提高耐热性。(聚碳酸酯(PC)、硅树脂、交联丙烯酸和共聚物可使耐热性提高到125-150摄氏度)

塑料光纤在衰减与带宽方面的最新实用进展为:日本ASAHIGLASS公司2000年7月称,该公司实施庆应大学的GI-POF技术商品化,采用全氟化聚合物CYTOP制造GI光纤,命名为GI-GOF,商品名为Lucina,衰减速率3Gb/s,带宽大于200MHz.km。

塑料光纤在耐热性方面的最新实用进展为:日本JSR与旭化株式会社联合发展耐热透明树脂ARTON(norbornene,冰片烯)制造的SI-POF,耐热170摄氏度,预计2001年上半年即可供应汽车市场

四、塑料光纤产品的研发要点

1.光纤结构

塑料光纤顾名思义,即构成光纤的芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200-1000μm,其接续时可使用不带光纤定位套筒的便宜注塑塑料连接器,即便是光纤接续中芯对准产生±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音;

2.光纤材料

塑料光纤材料选择时,人们应重点解决的问题是材料的本身衰减要低、色散要小、化稳性要好、制造简单、价格低廉等。

选作塑料光纤芯材有:聚甲基丙烯酸甲酯、聚苯乙烯聚碳酸酯、氟化聚甲基丙烯酸酯和全氟树脂等;选作塑料光纤包层有:聚甲基丙烯酸甲酯、氟塑料、硅树脂等。究其原因是:这些聚合物①具有透光性好,光学均匀、折射率调整便利等;②以单体存在时通过减压蒸馏方法就可以提纯;③形成光纤的能力强;④加工和化稳性好及价格便宜等;

3.制造工艺

目前业界用来制造塑料光纤的两种方法:挤压法和界面凝胶法都是由塑料生产加工工艺演变而来的。

挤压法主要用于制造阶跃折射率分布塑料光纤。该工艺步骤大致如下:首先,将作为纤芯的聚甲基丙烯甲酯的单体甲基丙烯甲酯通过减压蒸馏提纯后,连同聚合引发剂和链转移剂一并送入聚合容器中,接着再将该容器放入电烘箱中加热,置放一定时间,以使单体完全聚合,最后,将盛有完全聚合的聚甲基丙烯甲酯的容器加温至拉丝温度,并用干燥的氮气从容器的上端对已熔融的聚合物加压,该容器底部小嘴便挤出一根塑料光纤芯,同时使挤出的纤芯外再包覆一层低折射率的聚合物,就制成了阶跃型塑料光纤。

梯度折射率分布塑料光纤的制造方法为界面凝胶法,界面凝胶法的工艺步骤大致如下:首先将高折射率掺杂剂置于芯单体中制成芯混合溶液,其次把控制聚合速度、聚合物分子量大小的引发剂和链转移剂放入芯混合溶液,再将该溶液投入一根选作包层材料聚甲基丙烯甲酯(PMMA)的空心管内,最后将装有芯混合溶液PMMA管子放入一烘箱内,在一定的温度和条件下聚合。在聚合过程中,PMMA管内逐渐被混合溶液溶胀,从而在PMMA管内壁形成凝胶相。在凝胶相分子运动速度减慢,聚合反应由于“凝胶作用”而加速,聚合物的厚度逐渐增厚,聚合终止于PMMA管子中心,从而获得一根折射率沿径向呈梯度分布的光纤预制棒,最后再将塑料光纤预制棒送入加热炉内加温拉制成梯度折射率分布塑料光纤;

4.光纤性能

塑料光纤的性能研究重点则是衰减、色散、热稳定性等。

(1)衰减

塑料光纤的衰减主要受限于芯包塑料材料的吸收损耗和色散损耗。人们是通过选用低折射率和等温压缩率小的塑料材料和通过稳定塑料光纤制造工艺降低结构缺陷(如芯直径波动,芯包界面缺陷等),来使塑料光纤获得小的散射损耗,而塑料材料的吸收损耗则是由分子键(碳氢、碳氟等)伸缩振动吸收和电子跃吸收所致的。

在碳氢键为基本骨架的塑料材料中,在波长650nm处的衰减系数大约为120db/km,如果用氟原子置换碳氢键中的氢所组成的氟化塑料材料,其不仅本征衰减小,而且色散也降低了。用氟化塑料制成的梯度折射率塑料光纤,其在红外区无原子振动引起的吸收损耗。故可制得在可见光至红外范围的衰减很小,即在0.85μm波长处衰减系数为41db/km,在1.3μm波长处衰减为33db/km的梯度折射率分布的塑料光纤。

(2)带宽

用作短距离光传输介质的塑料光纤,按其折射率分布形状可分为两种:阶跃折射率分布塑料光纤和梯度折射率分布塑料光纤。阶跃折射率分布塑料光纤由于模间色散作用使入射光发生反复的反射,射出的波形相对于入射波形出现展宽,故其传输带宽仅为几十至上百MHz.km。氟化梯度折射率分布塑料光纤从选择低色散的材料出发,再以优化的梯度折射率分布手段,即可将其折射率分布指数在0.85-1.3μm波长范围内选定为2.07-2.33,从而抑制模间色散,控制出射光波相对于入射光波展宽的效果,进而可制得传输带宽高达几百MHz.km至10GHz.km的梯度折射率分布的塑料光纤。

(3)热稳定

由于塑料光纤是由塑料材料构成的,故其在高温环境中工作会发生氧化降解。氧化降解是光纤芯材料中的羰基、双键和交联形成的。氧化降解将促使电子跃迁加快,进而引起光纤损耗增大。为切实提高塑料光纤的热稳定性,通常的做法是:①选用含氟或硅的塑料材料来制造塑料光纤;②将塑料光纤的光源工作波长选择在大于660nm,以求得塑料光纤热稳定性长期可靠。

五、技术关键

目前对塑料光纤产品的技术关键攻关问题有两个:一是设计新的透光材料和包皮材料。塑料光纤同石英玻璃光纤一样由两部分组成:一为芯材,二为皮层。要制造出高质量的光纤二者都很重要,光纤的芯材要求透明度和折射率越高越好,而皮层则要求折射率小于芯材,并且两者相差越大越好。但要提高芯材的折射率比较难,而降低皮层折射率还有潜力可挖,主要集中在含氟高聚物上。第二个攻关点是工艺条件,研究如何控制芯材聚合物分子量、均匀性和提高透明度的新的光纤技术,进一步提高光的传输效率,降低光损耗率。这两个问题一旦得以圆满解决,则塑料光纤将完全可取代石英光纤。

近年来,日本公司针对塑料光纤透光性较差进行了分析和改进,他们认为,其主要原因在于树脂内的碳氢结合吸收了近红外波长。为此,旭玻璃制造公司开发了一种全氟树脂材料,因为不含氢所以不会吸收近红外波长。同时,由于其具有的环状构造是非晶质的,可见光的透光率已达95%以上。?

光纤内侧的芯线,光的折射率高,而外侧的金属包层折射率低。因此,要采用在芯线中轴线处光的折射率最高,向四周逐渐降低的缓变折射率的结构形式。采用此种结构,能够扩大传送带域,可以每秒传送1吉字节的速度将信息传送200~500米。旭玻璃制造公司将视样品上市情况,在一两年内将这种新型光纤投入批量生产。这些新开发的塑料光纤改善了中心部分的折射率,克服了信号容易衰减的缺点,每条纤维的传输能力可达1~2.5GB/秒,同时在纤维连接时,不需要精确对准位置,在这方面优于玻璃光纤。?

在塑料光纤的容量方面,日本三菱人造纤维公司研制的高容量塑料光纤,有可能取代石英玻璃光纤。这种塑料光纤的原料很普通,由一种在60年明的称之为Polym-ethylmethacrylate的合成树脂制成。三菱人造纤维公司采用一种从光纤中央到边缘递减的渐变折射技术,使信号能够以恒定的正弦曲线在光纤内有效地通过,传输容量是普通塑料光纤的30倍。与直径为0.1—0.01mm的玻璃光纤相比,这种直径1mm的塑料光纤截面大,较易联接,因此安装成本也只有玻璃光纤的1/10左右,与普通铜缆线差不多。过去的玻璃光纤连接一处需花费2万一3万日元,而新塑料光纤的连接费用只要1O日元,可大幅度地节省费用。有关人士称,从成本的角度考虑,若没有此技术,将光纤铺设到家庭是不能实现的。

六、发展展望

塑料光纤作为短距离通信网络的理想传输介质,在未来家庭智能化、办公自动化、工控网络化。车载机载通信网、军事通信网以及多媒体设备中的数据传输中具有重要的地位。

通过塑料光纤,我们可实现智能家电(家用PC、HDTV、电话、数字成象设备、家庭安全设备、空调、冰箱、音响系统、厨用电器等)的联网,达到家庭自动化和远程控制管理,提高生活质量;通过塑料光纤,我们可实现办公设备的联网,如计算机联网可以实现计算机并行处理,办公设备间数据的高速传输可大大提高工作效率,实现远程办公等。

在低速局域网的数据速率小于100Mbps时,100米范围内的传输用SI型塑料光纤即可实现;150Mbps50米范围内的传输可用小数值孔径POF实现。

POF在制造工业中可得到广泛的应用。通过转换器,POF可以与RS232、RS422、100Mbps以太网、令牌网等标准协议接口相连,从而在恶劣的工业制造环境中提供稳定、可靠的通信线路。能够高速地传输工业控制信号和指令,避免因使用金属电缆线路而受电磁干扰导致通信传输中断的危险。

POF重量轻且耐用,可以将车载机通信网络和控制系统组成一个网络,将微型计算机、卫星导航设备、移动电话、传真等外设纳入机车整体设计中,旅客还可通过塑料光纤网络在座位上享受音乐、电影、视频游戏、购物、Internet等服务。

塑料范文篇10

关键词:UG软件;塑料模具设计;应用

塑料模具设计直接影响塑料加工产品质量与设计水平,是工业制作中的一个重要环节。UG软件是一种有强大辅助功能与设计功能的软件,既能够提高塑料模具性能,又能够使设计更为便捷化、人性化,因此,在塑料模具设计中有广泛的应用。

1UG软件概述

UG软件即Unigraphics,其主要功能即为塑料模具设计加工增加一个虚拟设计制造平台,能够运用计算机辅助完全塑料模具设计与制造,不仅能够用于设计、制造、绘图、装配各种复杂塑料模具,还能够通过UB CAD软件构建模具三维模型,并对三维模型进行检测,以检测结果与3D数据为依据对模具结构进行优化设计,大大提高了设计效率与设计质量。UG软件在目前的塑料模具设计中主要运用于脱模方向、模具具体布局、开口与孔的修补、分型线与分型面、镶块与侧轴芯、型芯与型腔镶块等设计方面。UG软件中的专业注塑模具导向模块Mold Wizard,还包含自动检测工具,集成了模架标准件库,运用主模型结构进行设计时,可将塑料产品的修改参数反馈至模具设计中,并对相关模具部件进行自动更新。

2UG软件在塑料模具设计中的应用分析

2.1UG软件在塑料模具设计中的制作流程首先,要将塑料制品产品图或产品样件输入导向模块中,按照图纸尺寸大小或测绘样件尺寸大小,结合客户的性能、精度、外观要求等,构建并修改三维实体模型,输入模块作为模具设计核心,能够被后续工艺设计、计算、模具设计调用。第二,分析并选择模具规格,结合模具具体尺寸、坐标、自身特性、材料要求及性能参数等分析并选择合适的模具规格。利用已经获取的三维实体信息,结合材料收缩率与机械加工精度等,选择型芯面与型腔面,并将三维实体按照一定比例适当放大后,选择合适的型芯面、型腔面及其他部位尺寸。第三,设计模具结构,该环节是整个设计的关键环节,需要先处理工艺设计与计算模块相关信息,采用交互式方法设计各个装置、产品三维实体模型。根据注塑件特性与精度要求,结合材料收缩率,选择合适的模架与型腔材质,确定模具方案,在设计中,要注意测试模具压力,结合所获取的资料完成模拟生产后,对模拟产品进行分析,发现设计中的不足及问题,并进行优化。之后再设计模具装配与零件,并生成三维实体造型图。最后,根据设计完成的模具三维实体造型图完成数控加工,结合零件特点撰写加工工艺参数,并根据工艺参数修改模型,通过仿真功能模拟加工效果,之后再进行加工,以确保获得最优加工效果。2.2UG软件在塑料模具设计中的应用实例以简单盘类零件作为实例,采用UG软件的Mold Wizard模块进行设计。该零件结构仅包括一个型面与出模方向,型腔外侧设计一个凹坑,模具结构为侧抽芯,便于成型与出模。第一,建立立体三维实物图,根据模具实际形状,创建三维立体实物图,或者运用内置零件库,选择所需成品零件并按照具体要求进行适当修改后,对零件进行优化组合,亦可获得模具三维立体实物图。第二,初始化设计,将该盘类零件产品3D模型输入导向模块中,确定材料、坐标系与收缩率等基本参数,注意模型工作坐标系要与模具坐标系保持一致,开模方向选择+ZC方向,分型面为XC-YC平面。产品尺寸要确保与产品尺寸单位要求一致,导向模块则会根据选定的材料自动计算收缩率。布局要充分考虑到生产批量、内铡抽芯与外侧抽芯结构的存在等。完成初始化设计后,选择好自动对准中心,则能够在添加模架时与框架坐标系自动对准。第三,分型,采用分型面与分型线创建、型芯与型腔区域抽取、型芯与型腔创建等功能自动完成分型,该步骤是准确快速分析模型、分割模胚的重要步骤。创建分型面时,要注意修补好零件表面破空处,侧抽孔则运用实体进行补孔,利用自动搜索功能创建分型线,若分型线为非平滑曲线时,要注意创建分型导引线,再创建连续分型面,避免无法分割分型。创建型芯与型腔时要注意分别选择完整的型腔面与型芯部位。第四,置入模架与标准件。运用模块中的自定义框架功能,自定义零件模架,再利用标准件库、组件安装调整功能、零件自定义功能等,将该零件的浇口套、螺钉、定位环、顶杆、拉料杆、滑块与抽芯结构等标准件添加到模型中。第五,完成设计。完成所需型芯、型腔、标准件等设计后,创建浇注系统与冷却系统等其他辅助系统,最后再完成总装后,好完成了模具设计工作。2.3UG软件在塑料模具设计应用中应注意的问题在设计塑料模具,尤其是复杂塑料模具时,分型线的创建还需要考虑到加工工序与电极制作过程,合理确定定模与动模,并充分考虑外观情况,确保制作完成后脱模顺利,保证模具表面光滑,不遗留任何痕迹。在设计是尤其是要注意抽芯与镶块等问题,镶块要留在模具动模上,确保动模与镶块紧密结合,避免成品表面遗留痕迹。

3结语

塑料制品在现代生产与生活中,有广泛的运用范围,模具作为塑料产品生产的基础,是塑料产品加工生产的一个重要环节,UG软件作为一种计算机辅助设计与制造方法,为传统的塑料模具设计提供了极大的便利,本文对UG软件的塑料模具设计流程与设计实例的应用分析,展示UG软件在塑料模具设计中的应用方法与优势,通过UG软件的运用,塑料模具设计周期大幅缩短,设计难度明显降低,使塑料模具设计更为便捷化、人性化。

参考文献:

[1]桑建国.UG软件在复杂塑料模具设计中的应用[J].企业技术开发,2015(24):48-49.

[2]付波.UG软件在塑料模具设计中的应用分析[J].科技资讯,2013(19):8.

[3]蔡厚道.基于UG和Moldflow的塑料外壳注塑模具设计与数控加工[J].塑料,2015,44(06):89-92.