数控系统范文10篇

时间:2023-04-10 10:14:01

数控系统

数控系统范文篇1

数控技术利用数字信号控制执行机构完成某种功能,实现自动化。随着我国计算机技术的变革,微小型计算机数字控制CNC是当今制造高精度、高质量以及形状复杂产品的基础设施,属于制造技术的关键环节。对于一般数控系统组织,运算器接收、运算、处理输入装置的指令或数据,并不断向输出装置送出运算结果。控制器能根据指令控制运算器和输出装置来实现各种操作及控制整机的循环工作,使数控系统执行所要求的运动,其中伺服驱动把来自控制器的脉冲信号经过功率放大、整形后,转换成执行部件的平移、进给或旋转等运动,主要包括驱动装置和执行结构两大部分。驱动装置由进给驱动单位电机、主轴驱动单元等组成,步进电机、直流和交流伺服电机是常用的伺服元件。执行机构根据控制器发出的指令信号,完成驱动装置对系统旋转和进给运动的控制。作为数控系统改进生产设备的实例,数字喷印技术是非接触印刷技术的主流,以低廉的价格和精美的印刷质量越来越受到用户的青睐。数字喷印吸收喷墨打印等新技术,墨水经过喷腔组件的小孔射出,喷印器在基材上方以高速度喷射墨水,同时晶体振荡器高速纵向振荡,使墨线分裂成一系列大小和间距相等的墨点,机器内部微处理器监视回馈的信号,随着物体的移动,更多的墨点打在物体表面就形成了字符或图线。经调研,市场上还没有针对薄膜开关制造工艺而开发的专业喷印设备,部分生产厂家引入用于广告喷印的喷墨打印设备进行面板的喷墨印刷,主要有2种:热泡式喷墨打印机和平板式喷绘机。深圳某公司生产的热泡式喷墨打印机,采用爱普生配件,底座同步,并采用步进交流电机和IC芯片控制模块化。由于该打印机源于办公打印机技术,墨量不厚,所以不能采用UV油墨,不能立体打印,且印制速度慢,无法满足规模化生产。广州某公司生产的平板喷印机,采用陶瓷压电式工业高速Konic,XAAR等喷头,由多色喷头组成单模组,且UV光跟随固化,可形成立体墨痕和喷印彩色图案,但不能用于电路喷印。由于该打印机在制造中各工序对位困难,故不能完全满足彩色面板、上电路、绝缘层、下电路的套印,工序切换速度慢,不符合一次流水套打的工艺要求。为了提高定位精度,采用计算机视觉定位技术、MARK高精度光学影像定位系统及图像AOI技术,印制精细度达0.1mm,对位精度≤0.2mm。采用多喷头阵列高速流水喷印技术,以4—12个喷头为1组并行喷印,从而实现高速输出。为消除喷头间喷印干扰,对12个喷头的喷印进行同步控制。采用2套独立控制电路,分组传输,每组喷头数不超过6个,从而能保证一般的4色彩油墨、金属导电油墨、特色工艺油墨的喷印阵列。DSP的定位圆图像采集及参数提取更进一步提高了定位精确度和喷印速度。设计的阵列双模式喷印平台基于数字控制器现场可编程门阵列(FPGA),DSP,PC及软件,由程序协调操作FPGA等多芯片运作,同时解决数据分配、时分信号和信号优化等数据处理问题。在数控系统中可以利用FPGA处理接口板与上位主控板之间的数据传输,接收下位伺服的反馈信号,监测伺服电机的工作状态。针对x,y,z和w方向的移动,利用可靠性、可编程多轴控制器构建精确位置控制系统。以PLC控制变频电机为执行元件,通过RS-485通信实现驱动单元的远程控制,提高系统的集成度与可靠性。基于以上设计和工艺,集成高速、柔性、精密配套技术以及制造工艺,利用数控系统的核心技术,喷印平台简化了传统工艺流程,只需改变电气参数就能完成不同的喷印任务,不需要为新产品的每一次改动而制作网版。设计的阵列喷印流水式装置通过交错及斜装阵列组合模式,由12通道静态喷头阵列与4通道动静双模式喷印模组构造,双模式构造能保证喷印清晰度和速度,解决缝接及拉线等问题。该装置能快速完成维护和喷头更换,提高了设备的灵活性和生产效率,其平台抗震、抗干扰能力较好,符合IP54标准。

2阵列双模式喷印平台的控制模块

2.1主要控制单元

作为一种典型的控制不同组合对象的多参数数控喷印平台系统,既有平移、旋转运动控制和图像识别辅助控制,又有喷墨头的温度、流量等过程控制。为保证高速阵列多喷印头的数据协调、时控合理,核心控制模块采用WDM类设备驱动程序架构和MINIPort层间驱动协议,驱动程序用VC编写和调试,使其达到4路USB准同步数据传输,时间关键帧技术保证操作系统达ms级响应。发挥硬件和软件的开放性,实现数控系统和伺服控制系统间的通讯、加工代码的自动生成、最佳模切顺序和最短空程路径。模块化设计后则重点关注控制器、数据处理、I/O系统、驱动接口等子模块,以上位机数控系统来扩展网络控制系统,使用计算机数控系统与FPGA控制器完成接口驱动,控制模块见图2。喷印控制电路系统重点包括基于FPGA的主控部分、基于DSP的定位圆图像采集及参数提取部分。采用现有控制技术的理论方法和技术条件,以FPGA嵌入式为主控制系统,FPGA有丰富的逻辑硬件资源,CycloneIIFPGA芯片有DSP系统、硬件协处理器、接口系统、通信系统、存储电路以及普通逻辑电路等功能子系统,能解决传统宽幅喷印机对大量图像数据在上下位机之间和系统内部传输速度的瓶颈。利用DSP实现复杂的电气控制算法,提高对字车电机和走纸电机运动的精度控制,从而提高宽幅喷印机的喷印精度。系统还开发了FPGA的时钟同步系统,在上位机获取时间戳并通过FPGA硬件电路矫正晶振频率的动态补偿,实现数控系统的精确时钟同步。FPGA主控部分主要包括USB接口模块、喷印数据处理模块、喷头驱动模块、温度控制模块、驱动电压调整模块、喷印图像存储及纠偏模块与DSP接口模块等7部分。

2.2模组控制单元的数据处理

FPGA接收数据并处理数据,发送数据到喷嘴、电机、相机等数字终端,数据缓冲区则使用多片DDR2,以加快数据传输速度。对输入数据进行分组,基于FPGA内核改变时钟域意味着整个喷墨头的处理在1个时钟周期内实现多目标的同步时钟系统。通过使用VHDL编写的时序程序发送控制字到FPGA的UART接收模块,根据控制字的不同,调整相应的数据,电机模块根据控制字产生相应的脉冲和控制信号,控制喷头电机的启停、方向和速度等数值,利用FPGA实现复杂的逻辑时序的控制信号。事件驱动控制的机电驱动系统也在FPGA实现,由有限状态机(FSM)定义所有可能的实现方向数据。其中,USB接口模块在每批次喷印开始前用于接收计算机发送下来的原始喷印图像,并将存储在外部缓存当中的定位原图像上传至计算机,用于在人机界面上检查初始标定参数是否正确。当喷印过程开始后,USB接口模块用于与计算机交互喷印过程中的实时参数,喷印数据处理模块用于将待喷印图像的像素数据进行拆解,并重新封装成适合喷头喷印的数据格式。喷头驱动模块用于计算时设置的有关喷印参数信息转化为适合喷头喷印的时序,以此时序来精确控制喷头的喷印。温度控制模块用于实时调整并显示喷头的温度,驱动电压调整模块用于实时调整喷头驱动电压的幅值及幅宽,存储喷印图像及工艺MARK参数信息处理,可以保证喷印位置的准确性。利用CycloneIIFPGA的并行执行特点,对2—4排喷嘴的数据进行处理及分配,实现实时喷射控制、装置控制逻辑与状态管理。多排喷嘴的数据收发1次,先将此行像素拆分成奇数像素数据和偶数像素数据,再将这2部分像素以相反的顺序发送至喷头,就能喷印1行完整的像素点矩阵。此时,将首先在存储中开辟一个动态的全局缓存,存放所要喷印的一排像素数据,再为若干个喷头分别开辟单独的缓存区和独立的进程,这些独立的进程将通过一定的交换机制,与其他相关进程进行数据交换,所有与喷头相关的进程完全并行,因此整个过程除了USB数据的接收外,其他部分所消耗的时间只相当于处理一个喷头数据所消耗的时间,从而提高数据处理的速度。

3结语

数控系统范文篇2

关键词:Linux系统;嵌入式;数控系统;实现路径

装备制造业对数控机床的要求逐渐提高,设备总体功能和性能离不开高效的数控系统,嵌入式系统具备小型化、低功耗、稳定可靠等优势,应用在数控系统中,可根据实际需要对计算机控制系统进行配置,实现智能控制、远程控制、故障检测等功能,作为数控机床的控制中枢,目前主流数控系统多采用单核ARM平台,数控系统性能的提升受到单核处理器自身不足的限制,因此对于多核平台的应用成为优化嵌入式数控系统的有效手段。

1现状分析

数控系统的硬件平台的构建目前多通过上位机同下位机协调工作的方式实现,上位机的主要功能在于代码解释、数据处理等,控制具体的运动以及采集信号则由下位机负责完成,但这种方式存在开发周期过长、成本较高,难以满足经济型数控系统的控制需求,随着嵌入式微处理器的发展与完善,可在同一个处理器上完成所有的数控任务,同时通过接口电路的设计,显著简化了数控系统的规范化研发过程,使系统具备较高的拓展性和稳定性[1]。

2系统设计

2.1系统硬件设计。在嵌入式数控系统中使用了S3C2440A,基于ARM920T核的S3C2440A嵌入式微处理器提供完整的通用系统外设,无需配置额外组件,能够降低整体系统成本,该芯片上集成了丰富的资源,系统硬件设计具体如图1所示。操作系统及软件程序都运行在S3C2440A上,系统总线上挂接存储设备(NANDFLASH,256M),用于存贮各数控程序、文件系统等,采用同步动态随机存储器(SDRAM,64M)作为内存,开机后,操作系统及数控程序在开机后会被依次装入SDRAM中运行,前期硬件可通过JTAG接口实现在线调试,对伺服电动机的控制则通过滤波处理4路PWM(分别控制x,y,z轴及主轴转速)实现,PWM信号经反相器转换成两路差分信号后再通过运算放大器电路得到具有负极性幅值的PWM信号,经滤波放大得到模拟量电压信号[-10V,10V],从而实现对驱动器转矩指令的控制(电动机在PWM输出占空比超过一半时正转)。采用FPGA进行扩展,转换编码器信号(相差90°相位)为计数脉冲信号和方向信号后,经过FPGA的双向计数器输出后得到当前编码器的计数值,控制单元通过读取相应地址即可完成编码器信号的采集,从而实现了闭环控制[2]。2.2软件平台的建立。软件平台是数控系统运行的基础,搭建工作在PC机上完成,采用Fedora9系统(RedHat公司)作为交叉开发环境,编译工作通过在PC机上指定的交叉编译器(arm-l4inux-gcc工具)完成,使其可在ARM处理器中运行,在此基础上即可完成Bootloader、Linux内核和文件系统的移植过程,系统的软件平台如图2所示。主要由引导装载程序、Linux内核、GUI(图形用户接口)等构成,作为软件平台的核心Linux内核的功能在于调度进程、内存管理及通信等;系统运行所需的文件和数控软件都包含在文件系统内;引导装载程序(u-boot)的作用功能在于硬件设备的初始化处理、内存空间映射表的建立等,以便于操作系统的后续运行;GUI提供了丰富的接口,显著降低了软件实现的难度[3]。2.3实时性改进的实现。由于Linux内核时钟粒度较为粗糙且不支持完全的抢占,且IRQ中断需经常关闭,导致Linux的实时性较差,为满足实时多任务控制要求需对其进行改进,本文采用双内核法对Linux进行实时扩展,将一个硬件抽象层加入到Linux内核与硬件间(使系统有两个内核),负责系统所有的硬件中断,根据进程对实时性的要求分配给实时内核或Linux内核进行处理和调度,采用该方法的Xenomai专注于实时性,兼容性较好可支持多平台使用,采用基于ADEOS的Xenomai使linux更好的满足工业实时性的需求,同时使操作系统建的灵活性和可扩展性得以提升,各操作系统运行于独立的域中,重点在于重新编译Linux内核及制作Xenomai库,具体的实时扩展工作流程为:先下载好Xenomai源代码,在Xe-nomai_root中执行scripts(脚本子目录)中prepare-kernel.sh,为linux内核源代码(位于linux_tree目录中)打上Xeno-mai补丁,指定目标平台为ARM架构,在此基础上完成Linux内核的配置及相关所需Xenomai选项的选取(如是否关闭FPU或开启n-ativeAPI等),makebzImage命令在获取正确的config文件后即可执行,通过编译实现最终嵌入式实时Linux内核(支持enomai)的获取,通过对Xenomai源码进行编译即可使用其API编写实时任务,从而得到相应的实时库文件,再将库文件拷贝到/lib目录中(位于目标平台文件系统),从而完成了数控系统实时化改造过程[4]。

3数控系统的实现

数控系统软件结构如图3所示。控制部分负责完成对实时性要求较高的相关数控加工任务,管理部分负责提供实时性要求低的支持。3.1控制模块的实现。该模块决定着系统的加工性能,需在读取相应数控程序代码的基础上完成一系列的处理,伺服电动机的驱动器接收到最终数据后,对电动机运转过程进行控制完成加工任务,其中位置控制对实时性的要求最高,可采用Xenomai提供的API编写实现,以位置控制模块为例具体实现过程如下[5]。(1)首先调用实时任务创建函数(位于XenomaiAPI中),函数在线程创建成功后返回0,具体的函数表达式如下:rt_task_create(task,constchar*name,intstksize,intprio,mode);(2)位置控制的处理函数表示如下:voidcontrol_process(void){/*程周期设为1000μs*/rt_task_set_periodic(NULL,TM_NOW,1000000);while(1)/*处理位置控制的代码*/……}(3)运行位置控制线程所调用的函数表示如下:rt_task_start((void*)control_process,void*arg);接下来开始运行control_process()函数,利用Xenomai的实时管道实现各控制模块的数据通信(实时性要求高),创建如下:intrt_pipe_create(constchar*name,intminor,pool-size)读写管道数据时实施层调用函数如下:ssize_trt_pipe_read(void*buf,size_tsize,timeout);ssize_trt_pipe_write(constvoid*buf,size_tsize,intmode);3.2管理模块的实现。采用Linux提供的系统调用API实现管理任务的处理,各管理模块的连接通过友好的交互界面实现以便于用户操作,本文采用Qt/Embedded实现,具体结构如图4所示。嵌入式领域的开源GUI项目中的Qt/Em-bedded支持多平台,基于C++面向对象,提供各种图形用户界面所需元素,窗口间相互依存关系在编程时可通过C++的继承来实现,能够使界面程序代码的重复部分得以有效降低;窗口中各控件间的通信则可使用Qt中的信号槽机制实现,简化界面程序编写过程[6]。

4系统测试

为检测本文所设计系统的有效性,对系统各模块的功能进行检测,检测结果表明系统具备友好的人机界面,在PC机上搭建的软件平台能够根据实际需要调度进程、管理内存等保证了通信质量,系统运行所需的文件和数控软件都包含在文件系统内,结合提供丰富接口的GUI,使数控系统调度任务的实时性得以有效提高,为缩短插补周期、提高加工效率打下基础,通过Xenomai提供的API编写可有效实现代码解释、刀具补偿、速度规划、逻辑运算及位置控制等子模块的功能,具备较高的实用性和稳定性。

5总结

数控系统范文篇3

计算机数控技术是一个国家制造业发展水平的标志。CAM和CNC的数据接口标准ISO6983(RS274D)协议,已经无法满足数控系统的发展的需要,其局限性已日益暴露并影响数控系统的广泛应用。因此,新的数据接口标准STEP-NC必然会取代旧的标准并且将给包括数控技术在内的整个制造业带来革命性影响。本文提出的基于STEP-NC的开放式数控系统旨在以STEP统一表征CNC加工过程中涉及的全部信息,实现CAD、CAM和CNC之间的无缝连接,同时为数控系统提供完整的产品数据,更好地提高数控系统的开放性能。

1.STEP-NC概述

1.1ISO6983协议的缺点

随着CAD/ACM系统和CNC系统性能的提高,ISO6983协议已经成为制约数控技术的智能化、集成化、网络化发展的“瓶颈”,已远不能满足数控技术高速发展的需要,其缺点如下:(1)现场编程或修改非常困难,对于稍具复杂性的加工对象,G、M代码一般需要事先由后处理程序生成,增加了信息流失或出错的可能性;(2)G、M代码只定义了机床的运动和开关动作,不包含产品数据的其它信息,因此CNC系统根本不可能获得完整的产品信息,更不可能真正实现智能化;(3)从CAD/CAM系统到CNC系统的传输过程是单向的,难以支持先进制造模式;(4)由于覆盖面太窄,厂商不得不开发各自的扩充功能和专有指令,造成不同控制系统之间互不兼容;(5)不支持基于样条数据的五轴铣和高速加工;(6)生产准备时间长,生产效率低。

1.2STEP-NC的优点

为了克服ISO6983的诸多缺点,一种新的数控接口标准STEP-NC(ISO14649)应运而生。STEP-NC将产品模型数据交换标准(STandardfortheEx2chargeofProductmodeldata,STEP)扩展至数控系统领域,重新规定了CAD/CAM与数控系统之间的接口。它要求数控系统直接使用符合STEP标准(ISO10303)的CAD三维产品数据模型(包括零件几何数据、设置和制造特征),加上工艺信息和刀具信息,直接产生加工程序来控制机床。其间,CAM系统只负责加入工艺信息和刀具信息而不必进行后置处理。STEP-NC的优点如下:(1)面向对象和特征,描述工件的加工操作,不依赖于机床轴的运动,同一加工程序可适用于不同CNC;(2)传统设计信息是图形,加工信息是数据,但STEP-NC使用系统和人都能解析的产品数据模型代替图形;(3)传统加工必须把图形描述的生产要求转变成机床指令,使用STEP-NC可利用工艺规划工具生成指令,使特征识别更快更准确;(4)使用STEP-NC可实现CAD、CAM、CNC信息的双向流动;(5)支持五轴铣,支持高速切削;(6)消除了后置处理器;(7)STEP-NC统筹考虑设计与制造模型,集成在产品数据模型中,不存在数据传递误差,可实现精确加工[1]。

2.STEP-NC产品数据模型

2.1STEP-NC涵盖的内容

STEP-NC定义了一个CAM和CNC之间的新的数据接口标准(AP238),其本质是面向对象,描述“加工什么”。STEP-NC采用工作步骤(Working2steps)指定加工过程,工作步骤将加工特征和具体操作联系起来,由CNC将其转化为轴的运动和刀具操作。AP238是一个充分集成的应用协议,其几何定义与AP203、AP214一致,加工特征与AP224相同,公差定义与AP219一致,因此可以直接使用相关模型[2]。AP238涵盖了产品从概念到成品(零件)全过程所需的全部信息。AP238文件中的工作步骤相当于传统数控文件中的G、M代码。

0.前言

计算机数控技术是一个国家制造业发展水平的标志。CAM和CNC的数据接口标准ISO6983(RS274D)协议,已经无法满足数控系统的发展的需要,其局限性已日益暴露并影响数控系统的广泛应用。因此,新的数据接口标准STEP-NC必然会取代旧的标准并且将给包括数控技术在内的整个制造业带来革命性影响。本文提出的基于STEP-NC的开放式数控系统旨在以STEP统一表征CNC加工过程中涉及的全部信息,实现CAD、CAM和CNC之间的无缝连接,同时为数控系统提供完整的产品数据,更好地提高数控系统的开放性能。

1.STEP-NC概述

1.1ISO6983协议的缺点

随着CAD/ACM系统和CNC系统性能的提高,ISO6983协议已经成为制约数控技术的智能化、集成化、网络化发展的“瓶颈”,已远不能满足数控技术高速发展的需要,其缺点如下:(1)现场编程或修改非常困难,对于稍具复杂性的加工对象,G、M代码一般需要事先由后处理程序生成,增加了信息流失或出错的可能性;(2)G、M代码只定义了机床的运动和开关动作,不包含产品数据的其它信息,因此CNC系统根本不可能获得完整的产品信息,更不可能真正实现智能化;(3)从CAD/CAM系统到CNC系统的传输过程是单向的,难以支持先进制造模式;(4)由于覆盖面太窄,厂商不得不开发各自的扩充功能和专有指令,造成不同控制系统之间互不兼容;(5)不支持基于样条数据的五轴铣和高速加工;(6)生产准备时间长,生产效率低。

1.2STEP-NC的优点

为了克服ISO6983的诸多缺点,一种新的数控接口标准STEP-NC(ISO14649)应运而生。STEP-NC将产品模型数据交换标准(STandardfortheEx2chargeofProductmodeldata,STEP)扩展至数控系统领域,重新规定了CAD/CAM与数控系统之间的接口。它要求数控系统直接使用符合STEP标准(ISO10303)的CAD三维产品数据模型(包括零件几何数据、设置和制造特征),加上工艺信息和刀具信息,直接产生加工程序来控制机床。其间,CAM系统只负责加入工艺信息和刀具信息而不必进行后置处理。STEP-NC的优点如下:(1)面向对象和特征,描述工件的加工操作,不依赖于机床轴的运动,同一加工程序可适用于不同CNC;(2)传统设计信息是图形,加工信息是数据,但STEP-NC使用系统和人都能解析的产品数据模型代替图形;(3)传统加工必须把图形描述的生产要求转变成机床指令,使用STEP-NC可利用工艺规划工具生成指令,使特征识别更快更准确;(4)使用STEP-NC可实现CAD、CAM、CNC信息的双向流动;(5)支持五轴铣,支持高速切削;(6)消除了后置处理器;(7)STEP-NC统筹考虑设计与制造模型,集成在产品数据模型中,不存在数据传递误差,可实现精确加工[1]。

2.STEP-NC产品数据模型

2.1STEP-NC涵盖的内容

STEP-NC定义了一个CAM和CNC之间的新的数据接口标准(AP238),其本质是面向对象,描述“加工什么”。STEP-NC采用工作步骤(Working2steps)指定加工过程,工作步骤将加工特征和具体操作联系起来,由CNC将其转化为轴的运动和刀具操作。AP238是一个充分集成的应用协议,其几何定义与AP203、AP214一致,加工特征与AP224相同,公差定义与AP219一致,因此可以直接使用相关模型[2]。AP238涵盖了产品从概念到成品(零件)全过程所需的全部信息。AP238文件中的工作步骤相当于传统数控文件中的G、M代码。

3.1开放式数控系统数控系统按结构形式可分为传统封闭式和开放式(包括PC嵌入NC、NC嵌入PC和SOFT型三种结构)。SOFT型开放式数控系统基于PC的概念实现CNC的功能,其软件在PC中,硬件是PC与伺服驱动和外部I/O间的标准化通用接口。用户可以利用开放的CNC内核,开发各种所需功能。我国硬件设计、制造水平不高,而软件开发人员众多,软件设计水平也比较高。完全采用软件在工业PC上实现数控系统,比较适合我国国情,也更易于实现开放性。

本文确定的开放式数控系统总体框架主要由以下几部分构成:

(1)系统软件平台。采用WindowsNT和美国Venturcom公司的RTX(Real-TimeExtension)作为系统的软件平台。

(2)系统硬件平台。以PC机和SoftSERCANS通讯卡为系统的硬件平台。

(3)符合SERCOS协议的伺服系统与I/O设备。

SERCOS协议作为国际标准,不仅可以用于运动控制与伺服系统之间的实时通讯,而且它还对I/O功能做出了相应规定,能够同时完成PC机与I/O设备之间离散数字信号的实时通讯。这样可以在众多厂家提供的符合SERCOS标准的伺服驱动器和I/O模块产品中进行选择和配置,以满足控制轴数、控制方式等要求。我们选用了德国力士乐公司的伺服驱动器和I/O模块产品。

(4)数控功能软件。基于Windows和RTX提供的应用程序编程接口编制全软件型开放式数控系统,主要功能是接收输入的加工信息,完成数控计算、逻辑判断和I/O控制等功能。

3.2STEP-NC数控系统

基于STEP-NC的开放式数控系统应该使用统一的数据模型来实现CAX与CNC的无缝连接,STEP-NC数控系统与传统的ISO6983数控系统相似,其关键部分是STEP-NC产品数据模型和STEP-NC解释器。因此在上述的开放式数控系统内用STEP-NC解释器代替G代码解释器,再增加一个刀轨生成器,即可实现STEP-NC数控系统的功能。系统的结构模型如图2所示,主要由以下几个功能模块组成。

(1)车间级编程系统模块

该模块的主要功能为读取三维实体模型的几何信息,生成AP238文件。目前大多数CAD软件(比如UG、Solidworks等)都内嵌有STEP转换接口,能够有效处理3D几何形状。此模块可以解释AP203/AP214文件,从其中的几何特征中自动识别出ISO14649(Part10)所定义的加工特征,并根据ISO14649(Part10、Part11)定义的加工步骤所描述的特征操作进行工艺规划,最后输出AP238文件。

这一过程中可以应用Steptools公司的ST-Plan软件,其主要功能就是读取STEP文件输出STEP-NC文件。

它拥有强大的用户界面,有利于使用者重新对特征进行分类,改变加工顺序,选择加工和工具属性。

(2)NC用户图形界面模块

该模块是STEP-NC数控系统的人机接口,也是其它模块之间实现通讯联系的接口。通过此模块可以导入STEP-NC程序文件,并可以对工作步骤进行增添、删除和次序更改;可以显示和编辑某一工作步骤的几何形状、公差、特征、技术要求、刀具、材料和坐标等相关信息,并以同样的格式返回到上游的设计阶段,体现了STEP-NC设计制造模型的一体化和数据可以双向流动的特点。

(3)一致性检测模块

该模块主要是对AP238文件进行一致性检测。该模块用来检查加工工步、加工特征、刀具信息、几何尺寸和公差以及其它STEP-NC特征信息是否符合国际标准,若符合标准,则STEP-NC程序文件被送到程序信息树模块和刀轨生成模块继续处理;若不符合,则返回到NC用户图形界面模块重新编辑修改直至符合标准。

(4)程序信息树模块

此模块负责把STEP-NC数控程序中的数据信息显示成树状,用户可以通过点击不同的节点观察各个实体的属性及其取值情况,让用户对整个程序的信息结构具有一个直观、形象的认识。这种表示形式符合人类的认识规律,结构层次明显,表达清楚,界面比较友好,更加容易理解。

(5)智能工艺数据库模块

智能工艺数据库用来存放专家们所掌握的各种加工工艺以及对于各种故障原因及其处置方法的知识,可以包括加工条件、加工参数、刀具管理和故障诊断处理等各种数据库、知识库和策略库等多种信息。推理软件依据智能工艺数据库中存储的知识、经验和推理方法等大量信息,对机床运行中的实时加工状态进行监测、调节和故障诊断处理等控制[4]。

(6)刀轨生成模块

该模块的功能是根据加工特征、操作以及加工策略等信息生成每一加工工作步骤的刀位轨迹。由于STEP-NC程序文件里包含了零件从设计到成品所需要的全部加工信息,因此可以根据智能工艺数据库模块提供的加工条件和加工参数等信息对刀轨进行优化,通过最优刀轨算法决定最合适的走刀路线、切削进给量以及切削速度等。

(7)加工仿真模块

在零件进行实际加工之前,通过此模块模拟运行所有加工步骤,以检查是否存在干涉或其它问题,然后再进行真实加工[5]。

值得一提的是,从ISO6983到ISO14649,无论如何都要有一个过渡周期,因此本文所设计的数控系统保留了ISO6983解释器,即本系统除了可以执行STEP-NC文件外,还可以执行传统ISO6983的G代码。只是该解释器是作为CNC系统的一个子系统,而不是STEP-NC解释器模型的一部分。

数控系统范文篇4

PLC以其可靠性高、逻辑控制功能强、体积小、适应性强和与计算机接口方便等优势在工业测控领域广泛运用,已大量替代由中间继电器和时间继电器等组成的传统电器控制系统。近年来,PLC技术发展迅猛,新产品层出不穷。高端PLC不仅擅长开关量检测和逻辑控制,而且能够处理模拟信号、进行位置控制和回路控制,还可以连接各种触摸屏人机界面并具有强大的网络功能。高端PLC配备适当的位置控制单元和触摸屏人机界面,并根据计算机集成制造系统(CIMS)或柔性制造系统(FMS)的具体要求,配置相应的网络模块或网络单元,即可实现网络互连,构成开放的数控系统。本文介绍一种基于OMRON高端PLC的磨削数控系统,这种数控系统装备的位置控制单元可以实现两轴联动,并可根据实际需要,任意扩展控制轴数;触摸屏人机界面可以根据操作需要灵活设计;还可通过DeviceNet、ControllerLink和TCP/IP协议单元进行多层次的网络互连。这种数控系统目前已在3MZ2120磨床数控技术改造中获得成功应用。

1.数控系统的开放特征与典型模式

开放式数控系统一般基于PC平台,具有模块化、标准化、平台无关性、可二次开发和适应联网工作等特征。基于PC平台的开放式数控系统目前有3种典型模式。第一种为衍生型(专用NC+PC),在传统CNC中插入专门开发的接口板,使传统的专用CNC带有PC的特点。此种模式是由于数控系统制造商不能在短期内放弃传统的专用CNC技术而产生的折中方案,尚未实现NC内核的开放,只具有初级开放性;第二种为嵌入型(PC+NC控制卡),将基于DSP的高速运动控制卡(NC控制卡)插在PC的标准扩展槽中,由PC机执行各种非实时任务,NC控制卡处理实时任务。是目前基于PC平台的开放式数控系统的主流;第三种为全软件数控系统,PC机不仅能够完成管理等非实时任务,也可以在实时操作系统的支持下,执行实时插补、伺服控制、机床电器控制等实时性任务。这种模式的数控系统实现了NC内核的开放和用户操作界面的开放,可以直接或通过网络运行各种应用软件,是真正意义上的开放式数控系统。与PC平台开放式数控系统相比,基于高端PLC的数控系统的开放性主要体现在网络层面和系统扩充层面。高端PLC采用类似于PC的总线结构和面向操作的梯形图语言编程,模拟量处理单元、位置控制单元、回路控制单元、网络模块或网络单元等高端部件都有专用控制语句,具有系统构建灵活、扩充能力强、应用软件设计便捷等优点。编程语言标准化和部件可互换性的不断增强,现场总线技术和工业以太网络标准的普遍采用,都使基于高端PLC的数控系统变得更加开放,将成为面向CIMS或FMS的设备层的重要组成部分。

2.基于高端PLC的磨削数控系统

2.1开关信号监测与逻辑控制

当前系统输入输出单元是PLC的基本组成部分,在磨削数控系统中承担所有开关信号的监测和全部逻辑控制功能。监测信号主要有:机械手进出、机械手上下、料盘正反转、修整器起落等动作的位置信号,磨削设备和辅助装置上的各种工作状态信号和异常报警信号。系统输出单元控制磨削设备上所有电磁阀和机床电器系统等,通过磨削设备上的液压系统,控制机械手、料盘、工件卡盘、砂轮轴、床身、修整器等基本部件和冷却、润滑、过滤等辅助装置按照磨床动作和磨削工艺要求工作,实现磨削加工过程的自动化。

2.2工件与砂轮运转速度控制

保持工件与砂轮转动速度恒定,对提高磨削加工质量十分有利。为此系统配备了2台带RS-485串口变频器,分别驱动工件轴和砂轮轴。PLC采用联机随动控制保证两者之间速度的配合与稳定。操作人员依据磨削加工要求设定工件轴变频器速度参数,PLC接收该参数后,参照砂轮直径(设定或记忆值)和转动速度比例关系,计算并自动设定砂轮轴变频器的速度参数。在磨削加工过程中,PLC对砂轮在磨削及修整过程中的损耗给予速度自动补偿。PLC最多可以控制32台变频器,不同厂家的变频器可采用协议宏通信联接。PLC按照变频器地址(0-31)、指令代码和相关数据顺序向变频器传送命令,对变频器运行、停止、正转、反转等实施控制;PLC还可以监视变频器运行状态,当变频器发生过电流、过电压、变频器过载、硬件异常、电机过载、过力矩检测、电源异常、通信超时等情况,可将异常参数传输给PLC,由PLC作出相应处理。

2.3位置控制单元(PCU)与位置控

制高端PLC配备单轴位置控制单元,与步进电机或交流伺服电机驱动器配套使用,可以完成开环或半闭环位置控制及速度控制,配备两轴联动位置控制单元可以进行实时插补控制,实现直线和圆弧曲面等加工控制。目前全球各主要PLC制造商都已推出与高端PLC配套的PCU,具备高速和高精度的位置控制功能。OMRON公司的CJ1MCPU自带PCU的位置脉冲速度为1kBPS,高级PCU的速度可达到500kBPS,松下PP2或PP4系列的位置控制速度高达1MBPS。采用高端PLC设计数控系统,需根据控制精度、运行速度和运行轨迹要求选择适合的位置控制单元(PCU)。磨削数控系统控制精度要求较高(F1μm),一般选择数字交流伺服系统。OMRON高端PLC专用高级指令控制脉冲输出,可选择梯形、S形或三角形速度曲线运行,实现定程、点动、返回原点和原点搜索等运动控制。程序设计可选择相对坐标系或绝对坐标系,按照图2所示的梯形图编程运行,可实现各种磨削加工所应遵循的运行曲线。图3表示该数控系统准确实现铁路轴承内套挡边粗、精、光磨削加工和3MZ2120磨床快进、快退几个阶段的速度控制和位置控制的运动轨迹。

2.4触摸屏人机界面设计

基于高端PLC的磨削数控系统可选用触摸屏人机界面(ProgrammableTer2minal,PT),采用组态工具软件和图形库(开关、灯、棒图等)以及动画功能等,按照磨削工艺流程要求进行系统操作界面设计。下面以3MZ2120磨削数控系统操作界面为例介绍设计过程和效果。根据磨削数控操作和显示的需要,该系统主界面下设8个子画面(图4)。系统上电自动进入主界面,核对操作密码后弹出主菜单,在主界面上点击操作可转移相应的子界面。加工参数和修整参数设置界面提供设置数控磨削相关参数提示;手动操作和手动修整界面用于快前、快退、慢前、慢退、返回等手动位置控制和手动修整砂轮操作,为设备调试提供便利;自动报警界面利用触摸屏人机界面本身具有的报警功能设计,对油雾润滑、液压系统、机床电器系统、料槽状态、冷却系统和伺服电机等实施监测和自动报警,当发生故障时触摸屏立刻弹出报警信息(报警时间、故障代码及应对措施等);自动运行界面(图5)采用棒图显示当前磨削余量值;采用动画方式实时显示加工状态和加工位置等。还设有“紧急停车”等应急按钮。PT有RS232/422/485通讯口,能够兼容众多厂家的PLC。人机界面应用程序可脱机编制和调试,然后下载到PT上运行,PLC一般通过RS232接口与PT相连。许多PT还配备并行接口,可直接与打印机连接,实时打印数据或进行屏幕拷贝。

2.5网络结构与联网功能灵活的网络结构和强大的联网功能是高端PLC的重要特征。OMRON高端PLC配有标准RS232接口连接触摸屏人机界面、上位机或编程工作站。还可扩展DeviceNet通信单元,使各种符合DeviceNet通信协议的产品都可以连入系统中,以构成基于DeviceNet开放式现场总线的数控系统;系统与车间管理层计算机及车间其它高端PLC的连接可以采用ControllerLink方式,在PLC中扩展ControllerLink通信单元,车间管理层计算机装备ControllerLink支持卡即可实现互连,由底层DeviceNet设备、基于高端PLC的数控系统或其它测控设备和车间管理层计算机构成3层递阶结构的网络测控系统。高端PLC一般都可配置符合TCP/IP协议标准的以太网单元,全面支持远程监控等应用。

数控系统范文篇5

在数控系统中,有时采用多台电机联动虚拟为一个坐标轴,来驱动机床坐标的运动。最常用的多电机驱动为同步(Synchronous)运动的形式,比如,要求两台以相同的速度和位移运动的电机带动齿轮与齿条啮合作为一个坐标轴运动。这样的坐标轴被称为“同步轴”,如图1。同步技术被广泛应用在数控技术中,比如大跨距龙门机床的龙门直线移动、大型三坐标测量机的双柱直线移动,为保持运动的均匀,都需要两个电机同步驱动。曲轴车床、曲轴磨床的双头工件夹持架,为保持加工时不扭搓工件,在作旋转运动时也必需同步。

图1同步轴

除此之外,为保证正确地加工出螺距相同的螺纹,车床在车螺纹时的主轴和进给轴必需同步。滚齿机的工作台的分齿运动与滚刀的运动在滚齿时也必需同步、刚性攻丝的Z轴进给与主轴同步等,但这种同步是指多个电机的运动速度、位移之间成一定的关系,而不是相等的关系,对这种同步运动,本文不予讨论。

实现同步一般有两种方法。一是机械同步:同步系统由机械装置组成。这种同步方法容易实现,但机械传动链复杂,传动件加工精度要求高,所需的零件多,难以更换传动比,且占用的空间大。二是电伺服同步:同步系统由控制器、电子调节器、功率放大器、伺服电机和机械传动箱等组成。所需机械传动链简单、调试方便、精度高、容易改变电子齿轮比。FANUC数控系统的电伺服同步功能对不同生产机械的要求可提供不同的配置,实现其同步要求。

在某些情况下,一个伺服电机驱动机械坐标轴转矩不够用,但改用一个更大的伺服电机又嫌体积或惯量过大,於是以两个伺服电机取代一个伺服电机驱动机床的坐标轴,这种坐标轴被称为串联轴,如图2所示。这样由於两个伺服电机以一个恒定的转矩相互作用,或者通过预加负荷,在机床内部减少间隙。这就是所谓串联控制(TandemControl),是另一种多电机控制。

图2串联轴

同步控制的概念

在电伺服同步系统中,“同步”的概念是指系统中具有两个或两个以上由电子控制的伺服放大器和伺服电机组成的“控制对象”,其中一个为“主(Master)控制对象”,另外一个或多个为“从(Slave)控制对象”,控制量为机械的位移或速度(对旋转运动为转角或转速)。通过控制器使“从控制对象”和“主控制对象”的输出控制量保持一定的严格比例关系,这种运动系统称为同步系统。一般同步系统的输出控制量为位置和速度。前面所提到的“同步轴”,“主控制对象”与“从控制对象”的输出控制量相等。

为了简化讨论,同步系统中的控制装置可被简化为具有一个积分环节的位置系统,其框图如图3A所示。其中KV为简化後控制装置的位置控制器的开环增益,XC、XO为位置输入、输出;FC为速度指令,Δ为位置误差。KF为速度环增益,当KF》1时,可把速度环近似为1;於是该控制装置的开环增益变为KV/S,如图3B所示。

图3简化的控制装置框图

利用图3的控制装置可以组成两种同步系统:

自同步系统(ActiveSynchronousSystem):该控制系统具有两个相同参数的控制装置和驱动电机,分别驱动主、从轴。控制器送出指令同时给主控制装置和从控制装置,经测量同步误差反馈给从控制装置的输入,用来校正同步的误差,以保证主、从的输出保持严格的比例关系,如图4A所示。

图4两种同步系统

A)自同步系统B)他同步系统

其中XAMO为自同步系统主控制装置的输出,XASO为自同步系统从控制装置的输出,由於从控制装置是数字控制的伺服系统,其输出跟随输入变化;也即从控制装置的输出可以自动跟随主控制装置的输出变化,故称它具有自同步能力。用C表示自同步能力:C=¶ASO/¶XAMO(1)

他同步系统(PassiveSynchronousSystem):在同步系统中,由控制器发出指令提供给主控制装置,同时也提供给从控制装置,用同样的指令控制主从装置使这两种控制装置的输出同步,如图4B所示。其中XPMO为他同步系统的主控制装置的输出,XPSO为他同步系统从控制装置的输出。这种同步系统如果由於某种原因,比如负载发生变化,主控制装置输出XPMO发生变化,从控制装置的输出不受控制,所以不能跟随其变化,即

C=¶XPSO/¶XPMO=0(2)

因此该系统缺乏自同步能力,被称为他同步系统。

自同步系统主要采用在要求主、从两轴有自同步能力的机械中,并要求从控制装置严格跟随主控制装置运动。

他同步系统主要应用在要求主、从控制装置的输出的位置和速度基本相同并且具有较小的误差的机械。比如大型龙门式双轴同步的驱动系统。除了上面提出的自、他同步系统外,还可以由这两种系统混合组成的混合系统。

FANUC数控系统具有两类不同的同步功能:

简易同步控制(SimpleSynchronousControl):控制器发出坐标轴移动信号送给主、从控制装置和两伺服放大器,以控制伺服电机运动。系统不进行同步误差补偿,一般情况下不对同步误差发出警报信号。把主、从伺服电机看做一个坐标轴的运动。但在手动回零时,主、从伺服电机一起运动一直到减速开始动作,然後分别检测栅格,分别进行螺距补偿和间隙补偿。这种简易同步控制见图4B,是他同步控制系统,由於系统不进行同步误差补偿,根据式(2)可知,系统缺乏自同步能力,说明这种控制比较适合於主动轴与从动轴负载条件不太相同,或者主、从两轴对同步误差没有特别要求,而又要求同步运动工作的情况。简易同步控制简单,容易实现;用软件也很方便实现,在数控系统中得到了广泛的应用。

同步控制(SynchronousControl):控制器发出主动轴移动的信号同时送给从动轴,於是,主、从具有相同的路径。同时移动过程中不断检测同步误差,并向从动侧输出补偿指令。如图4A所说明,这种控制是一种自同步控制系统,由於系统不断向从动侧输出补偿指令,设主、从控制器的增益为k1、k2,且k1=k2;那么根据式(1)可以推出,C=¶XSAO/¶XAMO=1,因此系统具有较好的同步能力。比较适合主动轴与从动轴间的转矩干涉较少的机械,但主动轴与从动轴间刚性较低。

对於长行程的同步轴,由於测量尺的绝对精度(误差)和热膨胀可能发生扭搓,在这样的情况下,同步轴的主、辅电机互相拉,由此如果电机流过大电流,电机可能过热,这主要是测量的位置误差所致。螺距补偿可以补偿测量尺的误差,但不能补偿因温度变化而产生的热膨胀误差。在此情况下,FANUC数控系统采用同步轴的自动补偿法进行补偿,该功能检测主、从轴的转矩差值并把这差值用来校正从动轴的位置以减少转矩误差。如图5所示。

图5同步轴自动补偿

串联控制的概念

串联控制的概念与电机的串联工作相似,以直流伺服电机为例,假定图6为两个相同参数的伺服电机串联在一起,电源电压为U,如果两个伺服电机所承受的负载一样,那麽,两个电机的反电势相等。如果M1电机承受较大的负载,电机的电流就会加大,流过电机M2的电流增大,M2的输出转矩也会加大,电机也加速。如果M1电机承受较大的负载而使电机速度有降低的趋势,那麽,由於M1速度降低,M2将施加较大的电压,因而也使M2反电势加大,其速度有增大的趋势,抵消M1的速度降落,使两个电机转矩相等,速度相等达到平衡。这类串联控制在机床驱动领域很早就得到了应用,如龙门刨床的刨台运动。对於大型机械的控制,在一个伺服电机的转矩不足以移动工作台时,往往采用两个电机。FANUC数控系统串联控制的两个电机,分别称为主(Main)电机和辅(Sub)电机;以区别於同步控制中的主(Master)电机和从(Slave)电机。以上利用两个电机说明了对串联控制的原理。

图6串联工作的电机

实际FANUC数控系统串联控制功能工作原理见图7。它是由数字伺服控制来实现。对於大型工作台的负荷,如果一个电机的转矩带不动,或者一个电机的惯量太大,那麽可以用两个电机代替,由软件控制给主和辅电机相同的转矩指令。於是可以把它当作一个“串联轴”进行处理,这就构成了串联控制。一般速度反馈从主电机反馈,如果机械具有较大的间隙,并且辅电机的移动在间隙之内,速度控制就进行不了,且机械会发生大的冲击。为了防止这种现象发生,把主、辅电机速度的平均值作为速度反馈值比较合理。

应该注意,同步控制是以同样的位置指令同时送给主轴和从轴;而串联控制是以同样的转矩指令同时送给主轴和辅轴。

图7串联控制原理

预加负荷与间隙的消除

一般来说,具有大齿轮降速比的机械,总存在机械间隙量。为了减少主、辅轴间的间隙,经常采用预加负荷的方法减少间隙。FANUC数控系统在串联控制时,可以加一个固定的预负荷到主、辅电机的转矩指令上。那麽相反方向的转矩可以一直维持主、辅电机的张力。在串联控制时,预加负荷可以很容易去除齿轮、齿条这样的机构主轴与辅轴间的间隙。不过这种预负荷并不能降低滚珠丝杆和工作台间的间隙。如图8所示,当预加负荷的机械在加速、减速时,主、辅电机产生相同方向的转矩,串联控制系统工作在负荷均分的工作方式,像图8的2和3;

图8预负荷的功能

当它在常速运行的情况,系统的工作取决於摩擦力与预负荷的情况,工作在负荷均分或者反间隙的工作方式。在预负荷大於摩擦力时,工作在反间隙的状态;在摩擦力大於预负荷时,工作在负荷均分的状态;当系统的进给停止时,这时预负荷在主、辅轴间产生张力,系统工作在反间隙的工作方式。根据上面的分析,可以合理选择预负荷的特性而保证在传动过程中消除间隙。

应用

上文已说明,多电机可采用同步轴和串联轴虚拟为一个数控坐标轴;那么什么情况下采用同步轴?什麽情况采用串联轴呢?串联控制主要用在下列场合:

一个驱动电机转矩不够,可用两个较小的驱动电机代替;

数控系统范文篇6

目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。

二、数控技术发展趋势

(一)性能发展方向

(1)高速高精高效化。速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。(2)柔性化。包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。(3)工艺复合性和多轴化。以减少工序、辅助时间为主要目的的一种复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。(4)实时智能化。而人工智能则试图用计算模型实现人类的各种智能行为。

(二)功能发展方向

(1)用户界面图形化。用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。(2)科学计算可视化。科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。(3)多媒体技术应用。多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。

(三)体系结构的发展

(1)集成化。采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。(2)模块化。硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。(3)网络化。机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。(4)通用型开放式闭环控制模式。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。

三、智能化新一代PCNC数控系统

当前开发研究适应于复杂制造过程的、具有闭环控制体系结构的、智能化新一代PCNC数控系统已成为可能。智能化新一代PCNC数控系统将计算机智能技术、网络技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,形成严密的制造过程闭环控制体系。

参考文献:

[1]电动机降压起动器的选择与分析,凌浩,2000.12vol.20P66.

[2]交流异步电动机的软起动与保护探讨,何友全矿山机械,2000.5.

[3]陈伯时、陈敏逊,交流调速系统,机械工业出版社,1997.

数控系统范文篇7

随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。

长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。

2数控技术发展趋势

2.1性能发展方向

(1)高速高精高效化速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。

(2)柔性化包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。

(3)工艺复合性和多轴化以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。

(4)实时智能化早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。

2.2功能发展方向

(1)用户界面图形化用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。

(2)科学计算可视化科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。

(3)插补和补偿方式多样化多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。

(4)内装高性能PLC数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。

(5)多媒体技术应用多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。

2.3体系结构的发展

(1)集成化采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。

(2)模块化硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。

(3)网络化机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。

(4)通用型开放式闭环控制模式采用通用计算机组成总线式、模块化、开放式、嵌入式体系结构,便于裁剪、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统的数控系统仅有的专用型单机封闭式开环控制模式提出的。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。

3智能化新一代PCNC数控系统

数控系统范文篇8

为了提高齿轮加工精度和加工效率,到了20世纪80年代以后,国内外开始对齿轮加工机床进行数控化改造和生产数控齿轮加工机床。特别是近年来,由于微电子技术的迅速发展和以现代控制理论为基础的高精度、高速响应交流伺服系统的出现,为齿轮加工数控系统的发展提供了良好的条件和机遇。我们将齿轮加工系统分为全功能和非全功能两大类。

差动挂轮箱

非全功能齿轮加工数控系统的结构

配这类数控系统的机床进给轴为数控轴,多采用伺服系统。由于80年代齿轮加工数控化刚开始起步,当时数控技术无法满足齿轮加机床展成分度链的高同步性的要求,因此展成分度链和差动链仍为传统的机械传动。这种数控加工方式,调整比机械式齿轮加工机床要方便的多。它们可以通过几个坐标轴的联动来实现齿向修形齿轮的加工,省去了传统加工修形齿轮所需要的靠模等装置,提高了生产率和加工精度。但是这类齿轮加工数控系统属经济型数控系统,由于其展成分度链和差动链仍为传统的机械式,齿轮加工精度取决于机械传动链的精度。目前这种齿轮加工数控系统多用于对现有机械式齿轮加工机床的数控改造。

全功能齿轮加工数控系统的结构

近年来,由于计算机技术的迅猛发展和高精度、高速响应的伺服系统的出现,全功能数控齿轮加工机床已成为国际市场上的主流产品。全功能数控指不仅齿轮机床的各轴进给运动是数控的,而且机床的展成运动和差动运动也是数控的。目前展成分度链和差动链的数控处理方法不尽相同,有基于软件插补以及基于硬件控制的两种类型。

分度挂轮箱

基于软件差补的齿轮加工数控系统

这类数控系统的刀具主轴一般采用变频装置控制,工件主轴通过数控指令经伺服电动机直接驱动。目前国产数控齿轮加工机床所配置的数控系统大多为国外知名品牌的通用数控系统,因而都是采用这种基于软件插补的数控加工方式。

基于软件插补方法的优点是工件主轴的转速完全由数控系统的软件控制,因此,可以通过编制适当的软件,用通用的刀具来高精度快速地加工非圆齿轮、修形齿轮,且加工精度远远高于传统的机械靠模加工方法。

目前,由于控制精度、动态响应等方面的原因,基于软件插补的齿轮加工数控系统还不能胜任高速高精度磨齿机的要求。随着计算机速度的不断提高、新控制方法的出现和控制精度的提高,这种方法的应用面越来越广。基于硬件控制的齿轮加工数控系统在传统齿轮机床的展成分度链中,刀具和工件是由同一个电动机来拖动的,传动链很长,并常需要采用精度不易提高的传动元件(如锥齿轮、万向联轴节等),所以提高机床精度受到限制。

目前多采用光电盘脉冲分频分度传动链。砂轮主轴以固定转速旋转,并带动发信元件(如光电盘),光电盘信号经数字分频后,控制工件轴伺服电机以一定的转速旋转以实现精确分度传动关系。同时把机床的差动链也纳入控制系统。

基于硬件控制的齿轮加工数控系统的优点:采用硬件控制,特别是采用高同步精度的锁相伺服控制时,精度高,响应速度快。缺点:机构上比较复杂,比软件插补的方式多一个硬件控制电路部分。硬件控制的电子齿轮比(差动系数、主传动比),目前还不能做到实时修改,即不能实时改变工件主轴的转速,因而不能用于加工非圆齿轮等。

非全功能数控系统由于加工精度取决于机械传动链,仍存在交换挂轮,操作较繁,已较少使用。目前多用于现有机械式齿轮加工机床的数控化改造;基于软件插补的齿轮加工数控系统具有柔性大的优点,可以很方便地通过程序控制,能加工非圆齿轮和各种修形齿轮,因而在加工精度不高的滚齿机和插齿机中有广泛的应用;基于硬件控制的齿轮加工数控系统,由于展成运动是直接采用硬件控制,特别是采用跟踪精度极高的锁相伺服技术时,能很好地保证齿轮机床差动和展成运动精度,响应速度快,但柔性差,适于加工精度要求高的磨齿机。

全功能的齿轮加工数控系统在国际上已是主流产品,也必将在国内成为主流产品。

磨削技术除向超精密、高效率和超硬磨料方向发展外,自动化也是磨削技术发展的重要方向之一。

目前磨削自动化在CNC技术日趋成熟和普及基础上,正在进一步向数控化和智能化方向发展,许多专用磨削软件和系统已经商品化。磨削是一个复杂的多变量影响过程,对其信息化的智能化处理和决策,是实现柔性自动化和最优化的重要基础。目前磨削中人工智能的主要应用包括磨削过程建模、磨具和磨削参数合理选择、磨削过程监测预报和控制、自适应控制优化、智能化工艺设计和智能工艺库等方面。近几年来,磨削过程建模、模拟和仿真技术有很大发展,并已达到适用水平。

我国在磨削过程建模与模拟,声发射过程监测与识别,工件表面烧伤及残余应力预报,磨削加工误差在线检测、评价与补偿等方面都有许多成果,并已开发出了新型磨削机器人。

数控系统范文篇9

数控技术作为未来先进制造技术的核心内容之一,正在朝着开放化,网络化,柔性化和智能化方向发展,数控装备产品的设计制造和应用开发都日益显示出基于开放接口标准的模块形态。基于模块和组件的系统构建策略更能体现产品设计制造过程中的人性化思想,每一个模块都是一个有针对性应用领域的技术产品形式,是该领域技术原理,应用方案和实现形式的综合体现,是其在数控加工环境下的具体应用,其设计理念和性能指标都体现数控加工技术的要求和市场应用的需求,这些充分体现设计者个性化的产品组件通过开放的标准接口形式有机的结合,组成了功能丰富性能完善的数控装备产品。

数控技术是一个综合性很强的技术学科,涉及系统控制,工业设计,机械结构,变频调速,网络通讯,信号分析等范围很广和适用性很强的技术领域,这些技术原理在工科学校的机电一体化教学中都有涉及,但在应用实践上相对分散,目前只注重在数控操作技能上的能力培养,一系列的计算机辅助设计制造软件也都是针对于这一目标,缺少一个贯穿于整个数控技术领域中的开发应用环境,来从系统规划的高度和应用开发的层面来实施数控技术能力素质培养的目标。

正是针对于这一数控技术培养模式的局限性,本文建立了一个针对于整个数控技术应用开发领域一体化实验平台,采用组件和模块的思想建立了一个集成的设计开发环境,实现从数控装备产品规划,方案选择,运动算法和人机交互等各个环节的教学实践活动,下面将从总体策略,结构特征,关键技术等几个方面给予阐述。

2系统组建策略

2.1数控系统的组成

在这里我们将一般数控系统的概念广义化,定义成由控制器,机械结构,伺服单元等三个主要部分组成的产品模式。控制器就是我们通常所说的计算机数控系统,它由专用或通用计算机硬件加上系统软件和应用软件组成,完成数控装备的运动控制功能,人机交互功能,数据管理功能和相关的辅助控制功能,是数控装备功能实现和性能保证的核心组成部分,是整个数控体系的中心模块。机械结构是展现控制器运动控制功能的执行机构和机械平台,如数控机床系统中的铣床、车床和加工中心等机械部分;数控机器人系统中机械手和机械臂等。机械结构根据具体应用场合的不同,具体形态千差万别,但都可以按照运动学和动力学方法简化成运动机构的各种组合形式,这种组合越复杂其对控制器的能力要求就越高,同一种控制器可以完成对不同机械结构的控制,同样一种机械结构可接受不同控制器的控制,这说明机械部分和控制器组合起来可形成形式多样的产品类型。伺服单元是连接控制器和机械结构的控制传输通道,它将控制器数字量的指令输出转换成各种形式的电机运动,带动机械结构上执行元件实现其所规划出来的运动轨迹。伺服系统包括驱动放大器和电机两个主要部分,其任务实质是实现一系列数模或模数之间的信号转化,表现形式就是位置控制和速度控制。在此基础上,随着开放式数控技术的出现,数控系统体系具备了自我扩展和自我维护的功能,这得益于各种二次开发手段提供了自由完善和自定义系统软硬件功能和性能的能力。因此,开放数控所特有的二次开发平台也作为一个新的组成部分融入了数控系统体系结构中,并在深刻改变着传统数控系统的结构特征和应用方式。

2.2应用开发系统组成和功能规划

本文所建立的一体化数控系统应用开发平台,完成对上面四个组成环节的统一管理控制,系统规划,设计开发和仿真校验流程,其组成结构如图1所示。系统组成规划模块完成所需数控装备产品的单元组合,功能规划和性能规划;机械结构设计模块完成对机械执行机构的物理建模,动态性能仿真,实体造型,结构绘图和工艺设计;伺服单元控制模块完成伺服系统的选型,位置控制规划,速度调节规划;运动规划控制模块完成运动轨迹规划,插补算法设计和仿真,控制策略设计和仿真;人机交互管理模块完成人机交互界面的设计和实现,数据管理和通讯功能。

整个应用开发系统的每个模块都分为应用和开发两个部分:应用部分针对于现有的系统模式和控制方法,从熟悉、使用、理解角度出发通过相应的软硬件技术手段实现对现有技术资源和产品资源的消化吸收;开发部分在应用部分的基础上,针对应用中发现的问题和产生的创意,对数控系统体系的某些组成环节进行旨在提高其性能和丰富其功能个性化的二次开发并提供进行这种二次扩展的软硬件技术支持环境。

应用开发系统以硬件调试平台和集成开发软件两种形式组合展现,硬件部分主要包括典型特征的机械结构实体和伺服单元实体,以及控制器的硬件实体部分,主要是满足对硬件组成部分的扩展和对软件应用开发的效果体现;集成开发软件是个基于PC机系统的统一的资源管理配置和开发调试环境,满足从系统规划、控制策略、人机交互和扩展应用等各主要环节的开发过程。集成开发软件由多个功能单元组成,既包括内嵌的功能单元也包括可与第三方软件进行通讯和数据交换的接口,这使得系统软件的可以灵活的集成到别的软件中或将其他优秀的组件集成到统一的开发环境中。系统采用网络化分布式的模块组合形式,使得多个模块可以分散地工作在不同的平台上,而且通过计算机网络远程共享彼此的数据资源和相对集中的同一个硬件资源。

2.3应用开发系统构建策略

应用开卡系统的构建始终遵循应用与开发紧密结合的原则,按照层次化教学的思路,从软件和硬件两个方面来规划实现不同规模的应用开发系统。

2.3.1应用与开发相结合的策略

熟练应用现有的技术方案是进行创新开发扩展的基础,而个性化开发扩展也是进一步加深对相关技术理解使用的有效途径,二者相辅相成,必须贯穿于整个数控技术的教学过程中。从应用角度将现有的技术和资源以可交互的方式体现在统一的软硬件平台中,是构建系统时的一个核心任务,为此我们充分采用了多媒体技术。首先集成了应用准备阶段所需的文档和图片资源,涵盖技术背景、技术原理、应用例程和产品资源等多方面内容;其次针对于其中涉及的操作实践环节,依托于某些具体的典型产品,建立了一整套操作仿真系统,实现对真实系统功能和操作的全真模拟,从技能层次加强对某种技术资源的深入理解。从开发角度将现有的各种计算机辅助设计制造手段有机集成是实现各个环节开发的有效途径,开发从仿真阶段开始,如机械结构的造型和动态评测,伺服单元的调速和位控测试,控制算法的轨迹规划曲线等;然后再进入到实际的硬件配合调试中,具体验证执行机构的运行特性;涉及到硬件结构扩展的部分,则需要从电路设计,逻辑测试方面去实践。

2.3.2结构和流程的层次化策略

根据不同的教学实验阶段和不同的教学目标,搭建相适应的应用开发环境和实现层次化系统结构是贯穿于应用开发系统功能规划和模块组建过程的重要原则。依赖于模块化的构成特征,用户可对系统进行策略配置改变应用和开发的难易水平、应用范围和流程顺序。如对处于原理性熟悉阶段的教学活动只保留系统组成中数控系统体系规划部分;对处于技能性培训阶段的实验活动可增加某些典型产品的仿真操作系统;对于控制能力实践阶段的开发活动又可以再增加运动规划控制模块等一系列逐层扩充功能的应用开发步骤。

2.3.3软件和硬件紧密结合策略

以往的教学活动只从上层控制软件的角度开展数控技术的教授,使得学生对于具体完成功能的硬件部分结构缺乏足够的认识。这种不明确造成了很多情况下对一些控制思想和控制算法的理解模糊,因为很多软件算法的形成都是跟底层硬件特征密切相关,特别是涉及到多种硬件平台的时候,这种相关性就更加明显,因此加强对硬件一定程度上的深入理解是机电一体化教学的必然要求。

应用开发系统采用两种模式来实现这一目标:第一种是硬件仿真模式,即为特定的典型硬件结构建立一个由软件虚拟的硬件层。硬件层以硬件电路图框的形式展现,其输入输出口可进行交互,以此来模拟整个硬件部分工作时的信号流程,并可像真实硬件一样接受软件算法的代码控制。第二种是建立模块化的硬件单元框架,以真实的硬件模块封装后加入到系统结构中,模块之间采用便于安装和检测的接口,以此来实践系统硬件部分的实际搭建能力。

2.3.4与实际产品相结合的策略

对现有的产品资源是消化吸收是进行独立个性化开发的重要手段,特别是一些技术成熟度高、技术资源丰富的产品更是应该广泛进入教学活动的过程中,让市场产品的发展态势来影响教学和实践活动的指向和重点。为此我们充分运用了互联网上的丰富资源,将众多数控技术厂商的网站集成到应用开发系统的资源模块中,并制作了可进行交互处理的资源向导。另外我们还专门制作了行业性专业网站——中国机床工具网(),该网站已全面运作并积累了丰富的产品资源。

3.关键技术及其实现

引导型应用和开发模式

层次化的教学模式要求应用开发活动有一个可依附的实践模板,它体现一种交互式的资源响应机制,对学生的实践活动作出引导和评价,并提供获取相关资源的渠道。本系统所建立的引导环境是一种浮动式内嵌帮助平台,它底层以数据库的形式作为资源实体,按照具体应用开发的层次和场合,主要采用交互对话模式,符号描述模式,精灵向导模式三种手段来集中或分散地展示资源。交互对话模式是采用工作步骤预定义的方式,将一些比较成熟的应用开发流程的顺序和内容固定下来,以对话框的形式体现配置环境,最后展现出整个过程的信息结果。符号描述模式采用自定义编程语言的模式对一些需要验证的软件算法和控制流程进行规划,它有别于一般通用的编程语言,只是针对于具体应用场合采用特征描述的方式搜集特定的信息表示,与其所连接的资源数据库进行交互后,给出算法或流程运行的结果和评价。精灵向导模式是提供一个实时在线的帮助信息窗口,该窗口具备智能化的交互形式,可自动根据当前所处的状态提供出相关的引导型帮助信息,并具备自学习的记忆模式,按照用户的应用开发进展调整引导的策略。

图2所示的是针对与控制器部分建立的引导型开发平台的结构,借助于预先定义的各种信息库,将使用特殊语言描述的用户功能要求转换成信息库中特定策略的组合,然后通过与控制器的微控制核心相匹配的代码编译器,将策略描述翻译并通过计算机的并口经由下载电缆传送至控制器的仿真开发接口。控制器内部存在一个与之相对应的仿真开发专门存储区,用于用户订制功能代码的在线校验,该存储区与正常数控程序存储区相互屏蔽,保证二次开发的安全性,并通过校验策略和评价机制返回二次开发的性能指标。

网络化分布式应用体系

网络为分布式资源的集中利用提供了有效的共享途径,经由互联网的交互式通讯机制和监控诊断机制为应用开发系统的远程教学活动提供了安全可靠的媒介。模块化组件、开放式接口和分布式互连三个关键技术实现了这种网络化的应用开发环境。其中模块化组件是基础,分布式互连是形式,开放式接口是连接手段。功能组件的模块化是基础,是对特定功能单元的软硬件进行封装的实体,具备明确定义的交互形式;分布式互连是个单元模块的运行模式,通过网络的连接使分散在不同平台上的软硬件建立起通讯和一种层次化的控制策略,并采用网络激活的技术方案动态配置整个网络中各模块资源的运行和响应特性;开放式接口是各个模块之间的连接通道,接口的开放特征体现在单一模块的多接口和分层次接口两方面:如运动控制单元模块具备伺服电机驱动、步进电机驱动和直线电机驱动三种接口,可按需要配置激活或屏蔽;又如运动轨迹算法模块具备表层的速度加速度曲线配置接口,中层的特定曲线轨迹插补算法定义接口和底层的运动规划策略定义接口三个层次。

图三展示了一种基于校园局域网和互联网的应用开发系统工作模式,从事机械设计,伺服规划和运动控制交互的三个实验室内部的每台计算机上运行着不同的模块单元,并通过局域网共享数据资源;另一方面三个实验室又通过校园网进行连接,实现各教学环节的有机联系,再加上互联网络,系统的功能便可拓展的远程监控领域。

结束语

采用模块化组件技术建立的开放结构模块化数控系统应用开发系统通过组建校园局域网的形式在天津大学机械学院的数控技术教学活动中得到了应用,在交互式学习中取得了很好的效果。

参考文献:

1李德庆等.计算机辅助制造.北京:机械工业出版社,1994

2李伯虎.计算机集成制造系统约定、标准与实施指南.北京:兵器工业出版社,1992

3任仲贵主编.CAD/CAM原理.北京:清华大学出版社,1991

4向文.参数化特造型系统的研究.武汉:华中理工大学博士论文,1997

5TienChienChang,R,A,Wysk.AnIntroductionTo

AutomatedProcessPianningSysten.PrenticeHallInc,1985.

黄乃康等译.工艺过程自动设计导论。西北工业大学出版社,1988

数控系统范文篇10

[关键词]数控系统伺服电机直接驱动

中图分类号:TP2文献标识码:A文章编号:1671-7597(2008)0820116-01

近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。

一、数控机床伺服系统

(一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路,电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控制系统多用于精度和速度要求不高的经济型数控机床。

(二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用在高精度和大型数控机床上。

(三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。

二、伺服电机控制性能优越

(一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。

(二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

(三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额定转矩的三倍,可用于克服启动瞬间的惯性力矩。

(四)速度响应快。步进电机从静止加速到额定转速需要200~400毫秒。交流伺服系统的速度响应较快,例如松下MSMA400W交流伺服电机,从静止加速到其额定转速仅需几毫秒。

(五)矩频特性佳。步进电机的输出力矩随转速升高而下降,且在较高转速时转矩会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩。

三、伺服电机控制展望

(一)伺服电机控制技术的发展推动加工技术的高速高精化。80年代以来,数控系统逐渐应用伺服电机作为驱动器件。交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,交流伺服取代直流伺服、软件控制取代硬件控制成为了伺服技术的发展趋势。由此产生了应用在数控机床的伺服进给和主轴装置上的交流数字驱动系统。随着微处理器和全数字化交流伺服系统的发展,数控系统的计算速度大大提高,采样时间大大减少。硬件伺服控制变为软件伺服控制后,大大地提高了伺服系统的性能。例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的发展,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。

另外,先进传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。交流伺服电机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器,其传感器具有小于1μs的响应时间。伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。为保证高速时电动机旋转更加平滑,改进了电动机的磁路设计,并配合高速数字伺服软件,可保证电动机即使在小于1μm转动时也显得平滑而无爬行。

(二)交流直线伺服电机直接驱动进给技术已趋成熟。数控机床的进给驱动有“旋转伺服电机+精密高速滚珠丝杠”和“直线电机直接驱动”两种类型。传统的滚珠丝杠工艺成熟加工精度较高,实现高速化的成本相对较低,所以目前应用广泛。使用滚,珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。但滚珠丝杠是机械传动,机械元件间存在弹性变形、摩擦和反向间隙,相应会造成运动滞后和非线性误差,所以再进一步提高滚珠丝杠副移动速度和加速度比较难了。90年代以来,高速高精的大型加工机床中,应用直线电机直接驱动进给驱动方式。它比滚珠丝杠驱动具有刚度更高、速度范围更宽、加速特性更好、运动惯量更小、动态响应性能更佳,运行更平稳、位置精度更高等优点。且直线电机直接驱动,不需中间机械传动,减小了机械磨损与传动误差,减少了维护工作。直线电机直接驱动与滚珠丝杠传动相比,其速度提高30倍,加速度提高10倍,最大达10g,刚度提高7倍,最高响应频率达100Hz,还有较大的发展余地。当前,在高速高精加工机床领域中,两种驱动方式还会并存相当长一段时间,但从发展趋势来看,直线电机驱动所占的比重会愈来愈大。种种迹象表明,直线电机驱动在高速高精加工机床上的应用已进入加速增长期。

参考文献:

[1]《交流伺服电机控制技术的研究》,中国测试技术,郑列勤,2006.5.