剩余电流范文10篇

时间:2023-03-25 21:02:10

剩余电流

剩余电流范文篇1

关键词:剩余电流保护装置线运行探讨

目前,在农网等低压配电系统中,大量使用的是普通电流型电子式剩余电流保护装置,包括剩余电流继电器、剩余电流断路器等,选用这些产品除了应满足国家相关产品标准,取得合格3C认证外,对其安装后在线运行时,应具有的动作特性,如动作电流、动作时间等,也应满足国家相关安装和运行管理标准要求。

1三相漏电流不平衡因素的影响

农网等低压配电系统正常运行时,由于三相负荷及绝缘水平存在差异,客观上使得三相泄漏电流存在不平衡现象,而供电线路和用电设备的泄漏电流与气候、温度、负载特性、负荷大小等因素有关,变化范围大,不易控制。从剩余电流保护技术角度讲,供电线路泄漏电流数值较大时,在不同相上出现突然施加的相同值瞬时故障电流,会合成出不同值的剩余电流。对普通电流型产品而言,在某相上虽然瞬时接地故障电流等于或大于额定动作值,但合成的剩余电流可能小于该产品的额定动作值,此时剩余电流保护装置可能不动作,即通常遇到的三相供电系统,存在有剩余电流动作不灵敏相的现象。

正常运行状态下对剩余电流保护装置做试验,除了用保护装置本身的试验按钮检查外,用剩余电流保护装置专用测试仪器检查其在线运行时的动作特性。例如当额定动作电流I△n为300mA在线运行时,某时刻线路存在泄漏电流,见图1。此时若用300mA作为试跳故障电流,分别在A、B、C三相上做试验,就会合成出不同值的剩余电流。

图1中,I△是由穿过剩余电流互感器的相线及N线的泄漏电流合成得到的,其幅值和相角受其影响是个随机变化量。一般而言剩余电流保护装置专用测试仪器是纯阻性负载特性,因此用其分别在A、B、C三相作试跳时,可以认为I△n与UA、UB、UC同相位。从图1中可求出与在三相上分别合成为不同幅值与相角的剩余电流I△(A)、I△(B)、I△(C),以幅值为例,则得出I△(A)≈400mA,I△(B)≈240mA,I△(C)≈280mA。也就是说用IΔn作试验出现了三种不同结果:A相I△(A)>U△n正确动作,B相I△(B)<I△n,不能动作,从运行角度可认为指标不合格。C相I△(C)<I△n,但可能接近于该产品的整定动作值,处于动作与不动作的临界状态。上述现象尽管为特定例子,但仔细分析后不难发现,在向量图中还有不少由于实际存在的泄漏电流,从而形成不灵敏相的区域。

从低压配电系统安全可靠运行角度看,出现单相接地等瞬时故障(树枝碰线、断线落地、接地短路电弧等)占有一定比例。而在农网等低压配电系统中选用的,用于间接接触电击保护和防止电气火灾及电气设备损坏的剩余电流保护装置,国家相关产品标准要求能检测突然施加或缓慢上升的剩余电流,且在额定动作值时应符合分断时间要求。因此,注意到我国低压配电系统现状,在选用剩余电流保护装置产品时,也应充分重视其在线运行时动作电流、最大分断时间、极限不驱动时间等动作特性参数指标是否仍能符合标准。从技术措施角度讲,这对低压配电系统剩余电流保护,更具有安全可靠的实际意义。

2动作时间因素的影响

根据剩余电流保护装置国家相关产品标准,以分断时间分类有一般型和延时型两大类。S(选择)型作为延时型的一种,有时可以单独列为一类,例如JB/T8756-1998《剩余电流动作保护继电器》标准中,以分断时间分为一般型、延时型、S型三类。剩余电流继电器与交流接触器或各种具备电动合分闸功能的低压断路器组成组合式剩余电流保护装置,具有技术含量较高、可维护性好等优点,在农网等低压配电系统得到了广泛应用。S型剩余电流继电器作为延时型的一种,可与一般型产品配合,用作选择性分级保护,可以设置一次自动重合闸功能。因其在额定动作电流下较一般型分断时间长得多,对雷击感应或系统操作过电压等形成的尖峰干扰有较强的抗干扰能力,明显减少了误动作机会。此外,由于住宅或单台设备使用的大多为小型剩余电流断路器,分断时间小于0.1s,额定动作电流一般在50mA左右,因此与S型剩余电流保护装置(最小不驱动时间为0.13s)组成分级保护,能满足下一级极限不驱动时间大于上一级动作时间的要求。实际使用效果证明,S型剩余电流继电器更适合在我国农网中大量推广使用。S型剩余电流继电器与一般型、延时型动作时间比较见表1。

目前大量使用的电流型电子式产品,动作时间的设置多采用阻容元件组成的模拟电路技术。常温状态下在做型式试验或其它试验时,可以达到相关产品标准要求。但安装运行较长时间后,应考虑是否仍能满足在I△n、2I△n、5I△n时均能符合分断时间和极限不驱动时间要求。GB13955-2005《剩余电流动作保护装置安装和运行》中,对产品的运行管理特别提出:为检验剩余电流保护装置在运行中的动作特性及其变化,运行管理单位应配置专用测试仪器,并应定期进行动作特性试验,包括测试动作电流值、分断时间、极限不驱动时间等,有很强的针对性和实用意义,对考核剩余电流保护装置的质量,指导正确选用和运行管理有很好的督促作用,应引起供电管理部门和生产厂商的高度重视。

4电流型剩余电流继电器技术改进措施

从以上分析可以看出,现有普通电子式电流型剩余电流保护装置,在三相供电系统使用中,存在剩余电流动作不灵敏相现象。而采用模拟电路设置动作电流值及分断时间和极限不驱动时间等整定值,离散性大,难以完全满足农网等低压配电系统安全可靠运行的技术要求。

随着单片机技术的快速发展,其信息处理功能大大增强。引入单片机技术对现有的电流型剩余电流保护装置进行技术更新升级,可以克服目前产品的缺陷,大幅度提高动作时间及动作电流值设置的精确度,以适应低压配电系统安全可靠运行对剩余电流保护装置更高的要求。南京工程学院附属工厂在这方面做了一定工作,研制开发了LJM微机S型剩余电流继电器产品等。它在普通S型产品基础上增加了单片机技术,对经过剩余电流互感器检测到的突然施加或缓慢上升的剩余电流信号,采用适当的数学处理方法,进行动态相位检测、数字滤波、实时计算等,且对互感器无同名端方向性要求。使得剩余电流动作保护值在360°相角变化范围内不受漏电流影响,解决了普通电流型产品在低压配电系统存在三相不平衡漏电流且数值较大时,有不灵敏相的问题。此外,采用数字及软件设置技术,使得动作电流与动作时间的额定整定值设置精确度大大提高,低压配电系统的可靠性、稳定性得到保证,克服了模拟电子电路易产生性能漂移的问题。

·当被保护的低压配电系统漏电流值小于额定整定剩余动作电流值时,各相用同样的接地试跳电流(产品铭牌标称的额定剩余动作电流),对剩余电流保护装置做动作特性试验,均可确保动作准确。

·当线路任一相发生瞬时接地故障出现突然施加的漏电流,该产品能准确检测到,当其达到额定动作值时均能可靠动作,不受三相漏电流不平衡因素影响,使得单相接地故障剩余电流动作值保持一致,并具有一次重合闸功能,保证了产品安全可靠投入运行。

·当被保护的低压配电系统缓变剩余电流达到额定动作值时,立即动作跳闸,也有一次重合闸。若故障继续存在则跳闸闭锁,需关掉剩余电流继电器工作电源后重新合上开关,才能继续运行。

·剩余电流互感器安装无方向要求,互感器与本机没有一一对应关系约束,互换性好,便于大批量生产、安装、维护。

·剩余电流实时数字显示,可设置报警功能。

·接地故障剩余电流动作值记录、储存,有助于故障原因分析。

·可附加通信接口功能。

剩余电流范文篇2

关键词:剩余电流保护装置跳闸故障

1剩余电流保护装置的一般故障跳闸

1.1电源侧、分支线线路故障跳闸

剩余电流保护装置受雷击感应过电压的影响,造成故障跳闸。

低压电网中,线路绝缘子受外力撞击绝缘受损,使泄漏电流增大,引起电源侧或分支线的剩余电流保护装置跳闸。

在台风和雷雨季节,低压电网架空线断线落地,造成单相接地故障,故障电流使电源侧或分支线的剩余电流断路器跳闸。

电气线路或电气设备,由于长期超负荷运行,使绝缘下降,当电气回路中的剩余电流值,大于动作电流值时,会引起剩余电流断路器跳闸。

电气线路的中性(N)线受损,绝缘水平降低,形成了不平衡电流的分流,也会使电源侧保护装置跳闸。

1.2产品制造质量引起的故障

剩余电流保护装置的电流互感器制造过程中的平衡特性、过载特性和温度特性较差,受到外界杂散磁场影响,和自身电气线路中大功率电动机起动的影响,发生动作跳闸。

受温度、湿度影响引起的误动,在每年夏季的高温季节,温度超过+35℃时,剩余电流保护装置经常出现间隙性跳闸,由于保护装置质量差,电子线路受温度影响引起的动作跳闸。

当配电变压器有两条以上分支线路,操作其中一台剩余电流保护装置试验按钮,或其中一条被保护线路发生接地故障时,会引起另一条线路的剩余电流保护装置动作,这是保护装置自身抗干扰性能力较差,引起的动作跳闸。

对于三相电源只接两相负荷,如弧焊变压器、大功率的电焊机,起动电流比较大,当剩余电流互感器的平衡特性较差时,可会引起剩余电流保护装置频繁跳闸。

1.3选型不当而引起的动作跳闸

1.3.1电源侧或分支线剩余电流保护装置选型错误

电源侧或分支线由于选用了无延时(一般型)的剩余电流断路器,会引起动作。

在电源侧或分支线安装的剩余电流保护装置,是作为间接接触电击保护。为此应选用低灵敏度,延时(S)型或动作特性可调剩余电流保护装置,避免在单相大电流电器起动、早晚用电高峰时,因电流过大,引起电源侧或分支线剩余电流保护装置的误动作。

1.3.2分级保护选型错误

电气线路上采用剩余电流保护装置作分级保护时,由于末端保护和电源侧或分支线保护装置的动作电流和动作时间不匹配,如上下级保护的动作时间差小于0.2s、下一级保护装置的动作电流值深入到上一级保护装置,因此造成在电气线路的末端发生故障时,电源侧、分支线或末级剩余电流保护装置同时动作。

1.3.3额定剩余动作电流选择不当

电源侧或分支线剩余电流保护装置的额定剩余动作电流值选择不当,对被保护线路的剩余电流没进行测量,一般额定剩余动作电流值选择过小,在高峰负荷时,剩余电流超过额定剩余电流保护装置整定值,而引起电源侧或分支线剩余电流保护装置动作。一般情况下,当剩余电流保护装置动作电流小于电路正常泄漏电流值的2倍时,保护装置就不能投入运行。

2剩余电流断路器常见故障分析

剩余电流断路器是集剩余电流保护、过电流保护和短路保护为一体的断路器,发生故障后应有专业人员排除故障,若需检修,也必须有专业检修人员进行,必要时应返回生产单位。常见故障一般如下。

2.1剩余电流断路器不能合闸

剩余电流断路器不能合闸,是指断路器操作机构接通电源位置时,立即脱扣跳闸。

若因分合闸操作机构不良引起的故障,应检查机构连杆及机械传动部分有无损坏,并予以更换。

剩余电流脱扣装置不良引起的故障。

由热脱扣过电流保护动作引起的故障。热脱扣机构因过流动作后双金属片没有得到充分冷却,不能马上操作合闸。

2.2剩余电流断路器不跳闸(拒动)

电子式剩余电流断路器信号放大电路,电源的降压元件损坏,在发生接地故障时,因放大电路无电源而引起拒动。

剩余电流断路器中的剩余电流互感器损坏,接地故障时无信号输出而引起拒动。

剩余电流断路器脱扣线圈开路,无法执行跳闸指令而引起拒动。

剩余电流断路器脱扣器失灵而引起拒动。

剩余电流断路器机构故障或触点熔焊引起拒动。

2.3剩余电流断路器灵敏度低

剩余电流断路器动作灵敏度低的原因,主要是剩余电流互感器特性变差,电子式元件、电磁式剩余电流脱扣器性能变差所至。

纯电磁式,因为大短路电流接地造成的剩余电流互感器过载特性差,或采用铁镍合金非晶态磁性材料,因高温造成的塑料铁心骨架变形导致的灵敏度下降(严重变形时会造成拒动)。这类故障应返厂修理。

电子式剩余电流断路器灵敏度低,一般常见的多为晶体管放大倍数下降,晶闸管控制极触发参数变差等。

2.4剩余电流断路器误动作

剩余电流断路器误动作故障,是指在动作电流值满足使用条件的情况下,由使用环境条件、线路结构、负载特点、外界电磁干扰、设备大电流启动等造成的误动作,以及断路器本身因使用操作不当,机构零件性能变差所产生的误动作。

因错接线引起,如N线、PE线混接,会引起剩余电流断路器误动作。

10kW以上电动机降压起动时,由于自保持线圈碰壳或绝缘油及绝缘纸板老化,起动时弧光对外壳放电,引起剩余电流保护装置动作。

电动机启动时,由于定子绕组存在匝间短路故障,也可能引起剩余电流保护装置跳闸。

3组合式剩余电流保护装置故障分析

3.1线路故障引起动作

不带支线负荷时,剩余电流保护装置投运正常,合上各支线后,保护装置跳闸,自动重合一次后,又立即分断,永久性断开,则为支线线路故障。

电力线路剩余电流超过额定动作值,如保护装置额定动作电流值为300mA,当线路剩余电流大于150mA时,就有可能使剩余电流保护装置频繁动作。此时用钳形电流表测量各支路的剩余电流,将剩余电流大的支路排除或采取措施。

线路负荷不平衡,特别是线路支线较长,用电设备多,相应剩余电流增大,当在用电高峰时,造成保护装置动作跳闸。

裸导线架空线路(无绝缘保护)与其它线路(如广播线、电话线)交叉时,发生间断性接触,特别是刮风下雨天气容易产生对地短路,造成断电器跳闸。

室外的裸架空线路与其它物体相碰(如树枝)等造成单相接地故障。

线路接头绝缘破损,漏电流增大。

线路断线接地。

保护范围内,大电机启动时,造成跳闸:

·剩余电流保护装置互感器安装位置不对;

·剩余电流互感器有故障;

·剩余电流动作值接近继电器临界动作电流值;

·大电机外壳漏电。

当保护范围外线路投动时,引起继电器动作:

·若剩余电流动作保护装置是新安装时,应考虑剩余电流保护装置之间PE线与N线有混线现象;

·外电流线路距离剩余电流保护装置太近,电磁干扰引起。

设备投切或操作过程中引起继电器跳闸的原因:

·电气设备存在漏电故障;

·电气设备N线和PE线混用。

电气线路故障引起继电器跳闸:

·剩余电流未超过动作电流值,但变化较频繁,变化幅度较大,一般为线路上有漏电点或树枝碰到的导线。

·电气线路中有剩余电流大的设备投入运行,当该设备投入时,就会引起跳闸,应特别注意的是可能有一相一地的照明等。

·两台配电变压器负荷较小,而末端引至同一地点,易发生两台配电变压器间混接。当负载投入时,即发生跳闸现象。

·穿过剩余电流保护装置的中性(N)线对地绝缘不合格,或与有线电视或广播线交叉,也会产生剩余电流变化幅度大的现象,而引起继电器频繁动作。

同一配电箱的两台或三台继电器间互相干扰,即其中一台合上后,另一台跳闸或引起另两台均跳闸:

·首先查找该配电箱各支路有无混接现象,特别应注意的是中性线(N),三相剩余电流保护装置后的动力线路不能混接单相照明设备。

·剩余电流互感器位置不对应(即将A路的剩余电流互感器接在了B路上,B路的剩余电流互感器接在了A路上),当A路应该跳闸时,A路不跳而引起B路跳闸。

·变压器的接地线断开或接地不良,电阻值较大,也可引起各分路间互相干扰,可合上另一台剩余电流保护装置,观察表头指示值有无变化的办法来判别,如合上另一路后,这一路的剩余电流指示有变化,必然有混接或接地不良现象。

使用单相电机或功率很小的用电设备时,引起剩余电流继电器的动作。

单相小电机起动电流比正常运行时电流大几倍或十几倍,当该设备直接起动时,引起继电器动作,有可能存在着重复接地现象。当电机起动时,继电器的指示用表的指针会有明显的变化,当重复接地点与接地点距离、用电设备与中性点接地的距离均是引起动作的各种因素。重复接地在剩余电流动作保护装置投运时极易被忽视。某些地区存在剩余电流动作保护装置合不上,将相线,N线对换后,投运正常。此时会引起以上的情况(因为相线对地剩余电流较严重,调整后,出现上述接地现象,剩余电流变小),所以必须将重复接地点排除,否则会产生误动的情况。

用电高峰时会经常跳闸:

·有较大剩余电流的设备定期投入使用,由于这些设备有剩余电流故障,使用后,总剩余电流量增大,就会使继电器跳闸。

·标准中要求安装末端剩余电流保护装置,而用户端的改造不彻底,如用户家中将单相剩余电流动作保护装置上下侧短接,当有故障时,强行送电造成上一级保护动作跳闸。

3.2组合式剩余电流保护装置拒动原因分析

·剩余电流互感器损坏,信号放大电路没有信号输入。

·剩余电流继电器中的输出接点烧坏,无法断开合闸电源。

·由剩余电流继电器控制的线圈,存在接地现象,虽接受了跳闸指令,但线圈无法释放。

·由剩余电流继电器控制的分励脱扣线圈开路,无法执行剩余电流继电器的跳闸电源。

·电源主开关(塑壳式、框架式空气断路器,交流接触器)主触头熔化,无法切断电源。

·接线错误引起的拒动。

·配电变压器的工作接地装置与低压侧中性点连接处锈蚀,接触电阻增大,或接点松动,影响到剩余电流保护装置的灵敏度。

4单相或家用剩余电流保护装置常见故障及排除

单相或家用剩余电流保护装置,一般容量较小(5~40A)以10~26A的较为普遍。因其容量较小,整体结构、内部电路较为简单,故障率较低,运行中检修较为方便。一般故障原因如下:

·家用的剩余电流断路器,由于受潮,电流增大,导致家用剩余电流断路器跳闸;

·房屋装修时,预埋导线不规范(未用绝缘管穿线),导致接头处未用绝缘缠包,在阴雨天墙体受潮,引起家用剩余电流断路器跳闸;

剩余电流范文篇3

关键词:剩余电流保护装置电击保护应用

GB13955-2005《剩余电流动作保护装置的安装和运行》中,对保装装置在直接接触电击和间接接触电击保护的作用已有明确要求。

在电气事故中,最为常见的是电击事故。电击事故的发生,一般是由于人体直接触及带电体,接触到因绝缘损坏而漏电的电气设备、或者是站在发生接地故障点的周围而使人体受跨步电压引起的电击;有时人体虽未直接接触高压带电体,但由于超过了安全距离,高压带电体对人体放电,造成单相接地所引起的电击。

这里所讲的电击事故主要是发生于交流50Hz的低压电网中,一般可分为直接接触电击和间接接触电击两类。

1直接接触电击

直接接触是指人体或牲畜与带电部分的接触。由直接接触所引起的电击现象,称为直接接触电击。

直接接触电击往往根据电击时碰到带电导体的相线,又分为单相电击和两相电击等。

单相电击指人体的某一部位与大地接触,而另一部位碰到一相带电导体时而发生电击事故。这时,通过人体的电流回路是从带电的单相导体经人体入地,使人体承受220V相电压而引起的电击事故,严重时会导致死亡。

当发生单相电击时,人体所遭受的伤害程度与电网的运行方式有关。在低压电网中,变压器低压侧中性点有接地和不接地两种系统。

变压器低压侧中性点接地系统是目前广泛采用的220/380V低压网络。如TN系统和TT系统,当处于地电位的人体碰触系统中任一相带电体时,人体所承受的电压是相线对地的电压(即相电压)。此时通过人体的电流,决定于人体与带电体的接触电阻、人体阻抗、人体和鞋子与地面接触处的电阻、以及中性点接地电阻的大小等。

2间接接触电击

间接接触电击是指人体或牲畜与故障情况下变为带电的外露可接近导体的接触。由间接接触所引起的电击现象,称为间接接触电击。

间接接触电击方式,一般分以下几种:

2.1跨步电压电击

由于外力(如雷电、大风等)的破坏等原因,电气设备、避雷针的接地点,或者断落导线着地点附近,将有大量的扩散电流向大地流入,而使周围地面上分布着不同电位,具有双曲线的特点,如图1所示。

跨步电压电击是指人的双脚同时踩在不同电位的地面时,因双脚间具有电位差而引起的电击事故。最大的跨步电压出现在离带电体接地处地面水平距离0.8m处与带电体接地处之间。

当人体遇到跨步电压时,电流也会流过人体。虽然电流没有通过人体的重要器官,仅沿着下半身流过,但当跨步电压较高时,就会发生双脚抽筋,跌倒在地上,由于头脚之间的距离大,故作用于身体上的电压增高,电流相应增大,并且有可能使电流通过人体的重要器官,而引起人身电击死亡事故。

2.2接触电压电击

接触电压是指在同时可触及的两点之间所呈现的电位差。如因电气设备绝缘损坏或发生接地短路故障,而使人体同时接触具有不同电位的两处,这时加在人体两处之间的电压,即为接触电压。由于接触电压引起人体电击,称为接触电压电击。

接触电压的大小是随着人体所站立的位置不同而不同,一般仅是带电设备对地电压的一部分。譬如图1中所示的接触电压Ue,在距接地体周围20m之内是小于带电设备的对地电压Ue,20m之外是等于带电设备的对地电压。人若站在20m外触及电动机的外壳,则所承受的接触电压为:220-0=220V,即等于带电设备的对地电压。

3直接接触电击保护

直接接触电击保护是防止人体直接触及电气设备的带电导体而造成的电击伤亡事故,剩余电流保护装置在直接接触电击保护中,当基本保护措施失效时,可作为直接接触电击保护的补充保护和后备保护。对于接触电动工具及移动式用电设备的人员,如接触电钻、电锤、脱粒机、潜水泵,鼓风机,电喷砂机、吸尘机,以及临时架设的供电线路等,因为在使用时往往容易发生带电导体和人体直接接触的电击事故。当额定工作电压为安全电压以上时,如果发生了直接接触的电击事故,导致伤亡的危险性较高,所以应在供电回路中安装动作电流为30mA,一般型(无延时)动作的剩余电流动作断路器。

对于手持式电动工具,如电钻、电砂轮、电锯等,如果没有双重绝缘或加强绝缘,当额定工作电压为安全电压以上时,使用时容易发生带电导体和人体直接接触电击事故。所以,这类电动工具也应在供电回路中安装动作电流为30mA,一般型(无延时)动作的剩余电流动作断路器,或使用动作电流为30mA,一般型(无延时)动作的剩余电流动作保护插座。

这里应当强调指出,当人体和带电导体直接接触时,在剩余电流动作保护装置动作切断电源之前,通过人体的电流和剩余电流动作保护装置的动作电流选择无关,它完全由人体触及的电压和人体电阻所决定。

剩余电流动作保护装置不能限制通过人体的故障电流,用于直接接触电击保护的剩余电流保护装置,必须具有一般型(无延时)动作特性,这是对直接接触电击提供安全保护的必要条件。

4间接接触电击保护

剩余电流保护装置的主要功能是作为间接接触电击保护。作间接接触电击保护的目的,是为了防止用电设备在发生绝缘损坏时,在金属外壳等外露部件上呈现危险接触电压。当电气设备发生故障时,正好人体碰触故障设备的外壳,被电击者与故障回路并联,大部分的故障电流流经保护导体,使剩余电流保护装置立即切断电源。对人体不会造成伤害。

在TN系统间接接触电击保护,必须满足:

Zs×Ia≤UO

式中Zs--阻抗,包括电源到故障点间的带电导体,以及故障点到电源之间的保护导体阻抗之和(W);

UO--对地标称交流电压有效值(V);

Ia--保证保护装置在规定的相应时间内自动断开的电流(对剩余电流保护装置即为IΔn)(A)。

在TT系统中间接接触保护必须满足:

RA×Ia≤50V

式中RA--接地装置电阻和外露可接近导体的接地电阻之和(W);

Ia--保证保护装置在规定的相应时间内自动断开电流(对剩余电流保护装置即为IΔn)(A);

50V--在一般情况下,允许的接触电压极限值。

一般对于额定电压为220V或380V的固定式电气设备,如水泵、辗米机、磨粉机、排风机、压缩机,以及其他容易和人接触的电气设备,当这些用电设备的金属外壳接地电阻在500W以下时,单机配用的剩余电流保护装置可选用30~50mA一般型(无延时)动作的保护装置;对额定电流在100A以上的大型电气设备,或者带有多台电气设备的供电回路,可以选用50~100mA动作的剩余电流动作保护装置;当用电设备的接地电阻在100W以下时,也可选用动作电流为200~500mA的剩余电流动作断路器,用于间接接触保护的剩余电流动作保护器,可以用一般型(无延时)动作型产品。有些重要的电气设备,为了减少偶然的停电事故,也可以选用延时0.2s的延时型保护装置。

对额定电压为220V家用电气设备,如洗衣机、电冰箱、电熨斗、电视机、电风扇等,经常要和没有经过安全用电专业训练的居民接触,而这些用电设备往往带有频繁操作的插头,容易发生直接接触电击的危险;另一方面按照家用电器安全标准,这些家用电气设备外壳都应有接地保护,因此必须带有接地专用线的三眼插座,有些未经改造的老式住宅没有考虑接地保护设施,一般都不带三眼插座,所以用户往往购买了家用电器后,仍旧将带有接地保护的三眼插头改为二眼插头使用,因此有些家用电器在没有安全保护措施的情况下使用。这样,当用电设备发生漏电碰壳等故障时,设备外壳可呈现和工作电压相同的危险电压,当人体触及时,危险程度和直接接触电击相同。而且在实际应用中,有时还把与外壳相连的接地保护线和电源线接错,而发生电击事故,再加上一些家用电器绝缘差,电击危险性更大。

剩余电流范文篇4

1.1选择额定剩余动作电流IAn

正确合理地选择RCD的额定剩余动作电流非常重要,一方面在发生触电或泄漏电流超过额定值时,RCD应可靠动作。另一方面,RCD在正常泄漏电流作用下不应动作,防止供电中断而造成不必要的经济损失。RCD的额定剩余动作电流应注意以下事项。

1.1.1对于手持式电动工具、移动电器、家用电器等设备,应选用额定剩余动作电流不大于30mA的迅速动作型(一般型)RCD。

1.1.2为保证供电系统可靠运行,额定剩余动作电流应躲过系统正常漏电电流。用于单台用电设备保护时,应留有一定裕量,适应以后设备老化绝缘降低以及季节变化等引起的泄漏电流增大,选用的RcD的额定剩余不动作电流I△no应不小于正常泄漏电流的2倍;用于配电线路保护时,RCD的额定剩余动作电流应不小于正常泄漏电流的2.5倍,同时还应满足不小于其中泄漏电流最大的一台用电设备的正常泄漏电流的4倍;用于垒网保护时,RCD的额定剩余动作电流应不小于正常泄漏电流的2倍。

1.1.3供电系统采用分级保护时,为保证跳闸选择性,上级RCD整定值应大于下级RCD整定值的2倍。同时上下级保护的时间差应有不小于0.2s的级差。

1.2选择RCD的极数

根据低压配电系统的接地方式(IT、TT、TN—c、TN—C—s、TN—s)及线路的实际布线方式,选择RCD的极数。对此,GBl3955-2005《剩余电流动作保护装置安装和运行》已有具体论述。

1.3选择RCD的脱扣形式

RcD的脱扣器主要有电磁式和电子式两种。

1.3.1电子式RCD。通过放大器线路对零序互感器检测到的电流信号进行比较放大,进而触发晶闸管或导通晶体管开关电路,使脱扣器线圈得电,RcD动作。其特点是:体积小,成本较低,灵敏度高,但易受电源电压波动和环境温度影响,抗干扰能力弱。值得注意的是,供电系统采用TN形式时,如果接地故障点距RcD很近,由于故障残压很低,电子式RCD可能拒动。IEC1008规定,当RcD处线路电压低于RcD额定电压的85%时,电子式RCD应因欠压而自动脱扣。

1.3.2电磁式RCD。当ReD的零序电流互感器检测出接地故障电流时,ReD利用故障电流本身的能量来动作。对电源电压偏差较大的电气设备或在高温或特低温环境中的电气设备,应使用电磁式RCD。

1.4根据直流分量的影响选择RCD

现实中,许多用电设备在发生接地故障时会产生直流分量。用于这些线路的RCD如果选用不当,就会拒动,无法发挥RcD的保护作用。所以,对于可能产生直流剩余电流的场所(如含有整流元件的电子设备),应选用A型ReD。

2RCD的使用

要充分发挥RCD的作用,还须正确安装,合理使用。在使用RCD的过程中,必须注意以下几点。

防止中性线N体外循环引起误动作。

RcD使用中,必须所有电源线通过RCD,不能有任何一相或零线体外循环。例如在三相四线制系统中,选用三极RCD作保护,使N线体外循环,这种情况下,如果后面的电路中有单相负载,就会引起误动作。正确的做法,是选用四极RcD供电,或增加一个两极RCD保护单相负载。

防止中性线N重复接地引起的误动作。

RcD后面的中性线N不能重复接地,否则无法合闸。如因运行需要,N线必须接地时,不应将RCD用作线路电源端保护。

2.3在TN-C供电系统中接线不当引起的误动作。

在TN-C系统中装设RcD时,使用RCD的线路须改为TN-C-S,或将使用RCD的电气设备的外露可接近导体的保护线接在单独接地装置上,形成局部r丌系统。

2.4RcD后面的工作中性线N与保护线(PE)不能合并为一体。如果二者合并为一体时,当出现漏电故障或人体触电时,RCD将拒动,不能起到保护作用。

2.5正确判断非故障性误动作

在设备运行过程中,有时在线路并无发生漏电事故,RCD本身也无故障的情况下,RCD出现跳闸。造成这种现象的原因主要有以下这些:

2.5.1冲击过电压。在迅速分断低压感性负载时,会产生很高的冲击过电压,因而产生很大的不平衡冲击泄漏电流,导致RcD跳闸。

2.5.2不同步合闸。不同步合闸时,零序电流互感器检测到“故障电流”,RcD分闸。

2.5.3大型设备启动。大型设备启动时,会产生很大的堵转电流。如果RCD的零序互感器的平衡特性不好,就可能令RCD跳闸。

所以,规范规定,当RCD跳闸后,允许对RCD试合闸一次。

2.6电子式RcD接线时只能采用上进线,不能采用下进线,否则会烧坏漏电脱扣线圈。

3、使用RCD的一些错误认识

3.1RCD发生误动作造成停电,因此而不装

RCD运行过程中,有时会出现误动作,例如上文2.5所述情况。有些人怕麻烦,就会不加分析的拆除RcD。我们必须认识到,RcD是国家规范强制安装,用以保护人民生命财产安全和设备安垒的装置,绝不能因怕一时的麻烦,打开祸患进来的大门。

只要接地可靠,就不装RCD

电气设备接地是安全用电的基本措施,但即使接地体的电阻符合规程要求,也不能保证电气设备的接地绝对可靠。因为住宅用户电气设备的接地线一般不超过2.5mm2。从按地体、按地干线、接地支线到电气设备,中间有很多连接点,只要有一点连接不可靠或断裂,尤其是插座中的触头接触不良,都可能会造成接地不可靠。因此,要有其它措施保证用电的安全度,在实际应用中,装设RCD是一个非常有效的补救措施。

3.3装设RCD,电气设备的外壳就可以不接地

剩余电流范文篇5

关键词:接地故障电气火灾防护

新的GB13955-2005《剩余电流动作保护装置安装和运行》,强调了安装剩余电流动作保护装置不仅对防止人身电击事故起保护作用,而且在防止接地故障引起的电气火灾事故中起重要的保护作用。

标准中的引言、术语和定义中的3.26、分级保护中的4.4.5等处,都强调了安装剩余电流保护装置对防止接地故障引起电气火灾的作用,并对在建筑物内安装剩余电流动作火灾监控装置及动作参数都作了明确规定,在附录中列出了分级保护方式中安装剩余电流动作火灾监控装置的模式图。修订后的标准从实际出发,提出了发生接地故障时因故障电流小,过电流保护无法保护接地故障引起的电气火灾,而剩余电流保护装置正是弥补了这方面的不足。

1电气火灾事故的多发性

近10年来,我国发生电气火灾高居火灾事故总数的首位,约占总数的30%左右。在电气火灾中,电气短路引起的火灾事故又占一半以上。

电气短路的形成有两种:一种是由导体间直接接触,如相与相之间、相与N线之间短路,短路点往往被高温熔焊的金属短路,称为金属性短路;另一种则是带电导体对地短路,是以电弧为通路的电弧性短路。前者短路电流以若干千安计,金属线心产生高温以至炽热,绝缘被剧烈氧化而自燃,火灾危险甚大,但金属性短路产生的大短路电流能使断路器瞬时动作切断电源,火灾往往得以避免。后者因短路电流受阻抗影响,电弧长时间延续,而电弧引起的局部温度可高达3000~4000℃,很容易烤燃附近可燃物质引起火灾,但由于接地故障引起的短路电流较小,不足以使一般断路器动作跳闸切断电源,所以电弧性短路引起火灾危险远大于金属性短路。

2接地故障的危险性

在电气线路短路引起的火灾中,接地故障电弧引起的火灾远多于带电导体间金属性短路引起的火灾。这首先是因为电弧性接地故障发生的几率远大于带电导体间短路的几率。

一旦发生接地故障,由它引起危险电弧的几率也远大于带电导体间产生危险电弧的几率,这可用图1来说明。图中a、b、c和d各为相线、中性线和PE线的连接端子。a、b两端子如连接不良或不导电,设备将不运转或运转不正常,可及时觉察予以修复,不致引发事故。但PE线的端子c、d不导电或导电不良却不易觉察,因设备仍能照常运转,这时c、d端子的连接不良将成为一个事故隐患而持续存在。若一旦发生图1所示碰外壳接地故障,如果c、d端子不导电,设备外壳对地带相电压而导致电击事故。如果c、d端子导电不良,端子处将迸发电火花或电弧(延续和集中的电火花即为电弧),很易引起火灾。

因此在接地故障回路全为金属导体的TN-C-S系统中,其导电性能不良失去接地保护时,并不影响电气设备的正常运行,故不易发现。但一旦发生接地故障,连接点的阻抗限制了短路电流,不能使断路器动作,而导致上述电弧性短路的发生。至于TT系统,其接地故障回路内串有电源的接地保护和设备外壳的接地保护,两个接地电阻造成回路本身的阻抗就很大,更易发生电弧性短路。由此可知,接地故障的回路阻抗大,使它易以电弧短路的形式出现,这也是单相接地短路故障容易导致火灾的一个重要原因。

电力线路受机械损伤而发生短路,如当导线与金属管道构件接触而无套管保护时,长期磨擦使绝缘损坏,这种短路多为单相接地故障造成,易发生电弧性短路。通常电气设备绝缘损坏产生电弧性接地故障的情况还有:导线和电气设备绝缘老化;电器或电动机的接线端子周围绝缘因长期发热而炭化;电动机过载而发生匝间短路;电气设备受潮或严重凝露;在电气设备中有导电尘埃沉积等。这类故障会引起接地电弧性短路,并酿成火灾。在这种情况下,泄漏电流产生的发热功率约为60~100W,这功率如释放在几个平方毫米上,此时只要周围有可燃材料就会引起火灾。

当线路因过负荷使绝缘温度超过最高允许工作温度,绝缘老化加速使绝缘水平降至规定值以下,如果没有外因触发,短路一般还不会发生。如果有外因触发,如雷电引起的瞬态过电压、邻近大功率设备的操作过电压,以及变电所高电压侧接地故障引起的暂态过电压等,则在此大幅值过电压冲击下,老化的绝缘将被击穿而形成弧光短路。过电压转眼消失,工频短路电弧却能长时间延续,这是因为电弧的高阻抗限制了短路电流,使断路器不可能动作。这类过电压多出现在带电导体与地之间,所以这种短路也多为单相接地短路。

电气短路以单相接地故障居多,电气火灾的危险则以电弧性接地为最严重。还需说明,接地故障回路的阻抗较大,这是形成电弧性短路的一个重要原因。不论是TN系统还是TT系统,接地故障回路的阻抗都大于带电导体短路回路的阻抗。

3安装剩余电流保护装置和火灾监控系统的必要性

一般的低压断路器主要针对电力线路和设备的过载和短路保护,因此其额定动作电流较大,而接地故障引起的接地短路电流较小,一般不足以使断路器动作跳闸,因此低压断路器不能防止因接地故障引起的电气火灾,而只有带剩余电流动作保护的断路器,在过电流保护装置不动作的情况下,能有效地切断故障电路,防止电气火灾。

应用剩余电流保护装置来防止电气火灾,必须正确选择额定剩余动作电流。在IEC《火灾保护》的有关条文中规定,在有火灾危险的场所,要防止故障电流引起火灾,必须在线路中装设剩余电流保护装置,或装设火灾监控系统,在发生接地故障时发出警报。

为防止电弧性接地短路故障引起的电气火灾,在电源进线处装用带剩余电流保护功能的断路器和电气火灾监控系统是一项重要的防火灾措施。其剩余电流保护功能对建筑物的电弧性接地故障引起的电气火灾进行防范。这在一些发达国家已是广泛应用的电气防火技术,一些供电公司,包括新加坡和我国香港的供电公司,为了用户的安全用电,对不具备这一防火措施的用户是不予接电的。国际电工标准IEC60364-5-53第531.2.4条规定,TT系统的电源进线端必须装用剩余电流保护装置。TN系统的电源进线端为切断建筑物内的电弧性接地故障,也应装用剩余电流保护装置。我国有关的《住宅设计规范》,也规定每幢住宅楼的总电源进线断路器,应带有剩余电流保护功能的明确规定。因用户不懂得用电安全知识,又无专业电工维护管理,住宅电气火灾发生较多。据近年统计,我国住宅电气火灾占电气火灾总数的一半以上,所以这一规定是十分必要的。

在进线处安装带过载保护、短路保护、剩余电流保护于一体的多功能低压断路器和电气火灾监控装置,不仅可以保护线路、保护设备,而且还可防止因接地故障引起的电气火灾。

4剩余电流动作电气火灾监控装置及其应用

为防止电气设备或线路因绝缘损坏引起电气火灾,应装设当接地故障电流(包括对地泄漏电流)超过预定值时,能发出报警信号或自动切断电源的剩余电流动作的电气火灾监控装置。安装电气火灾监控装置时,应对建筑物内防火区域作出合理的分布设计,确定适当的保护范围、预定的剩余电流动作值和动作时间,并应满足分级保护的动作特性要求。

为有效地防止人身电击和接地故障引起的火灾事故,建筑物内应设两级或三级剩余电流保护装置。图2所示为建筑物内两级或三级剩余电流保护装置的方案。第三级保护通常为末端回路上安装30mA或100mA的一般型瞬时动作剩余电流保护装置,第二级为建筑物第二分支线处安装的延时动作的剩余电流保护装置,第一级保护一般安装在第一分支线处,常选用延时型、动作特性可调的保护装置或火灾监控装置。第二级保护的动作特性选择应与第一级和第三级协调配合,这样,三级剩余电流保护装置在动作时间和动作电流上都满足了选择性要求。第一级和第二级剩余电流保护装置是防止间接接触电击和接地故障引起电气火灾的防护,更重要的是建筑物电气装置内任一处发生电弧性接地故障时,它都能有效地切断电源,以防止最常见多发性的电弧性接地火灾的发生。

强调电源端和分支线路上的剩余电流保护装置,应能满足防止接地故障引起电气火灾的要求。

剩余电流范文篇6

一、剩余电流末级保护器动作电流值的整定

剩余电流末级保护器是根据触电引起心室颤动的电流极值确定的,主要是以防止人身直接接触触电为主要目的,安装在家庭用电气设备、移动式电力设备、手持电动工具和临时用电设备上,按《农村低压电力技术规程》规定,家用电器、固定安装电器、移动式电器及临时用电设备,其动作值≤30毫安;手持式电动器具为其动作值≤10mA;特别潮湿的场所其动作值≤6mA。因此,末级保护应选择高灵敏快速动作型剩余电流保护器。高灵敏快速动作型剩余电流保护器,当漏电流达到一倍以上二倍以下时,其动作时间为0.2s;当漏电流达到二倍以上五倍以下时,其动作时间为0.1s;当漏电流达到五倍及以上时,其动作时间为0.04s。

二、剩余电流中级保护器动作电流值的整定

中级保护的目的防止分支线(含进户线)发生接地漏电或用电设备外壳漏电而引起的间接接触触电及电气火灾,其动作电流应满足以下两个条件:

Im△n≥2Im0Im△n≥2I△ns

式中:Im△n-剩余电流中级保护器的额定动作电流值,毫安;

Im0-被保护分支网路的正常漏电流,毫安。

I△ns-剩余电流末级保护器的额定动作电流值,毫安。

选择同时满足以上两个条件的最大额定动作电流值,作为中级保护的额定动作电流值。

作为中级保护的剩余电流保护器,应选用具有0.2s~0.4s延时动作时间且固定分档可调的延时型剩余电流保护器。

三、剩余电流总保护器动作电流值的整定

总保护的目的是防止干线断线、金属性接地等故障和电气火灾及间接接触触电事故,其动作电流应满足以下两个条件:

I∑△n≥2I∑0I∑△n≥2Im△n

式中:I∑△n-剩余电流总保护器的额定动作电流值,毫安;

I∑0-被保护的低压电网的正常漏电流,毫安。

Im△n-剩余电流中级保护器的额定动作电流值,毫安。

用于总线路保护的剩余电流保护器,为防止越级跳闸或频繁动作,影响供电可靠性,动作电流值除按上述两条件选择,同时为更好地与下级保护配合,应选用具有动作时间大于0.4秒且固定分档可调的延时型剩余电流保护器。

《农村低压电力技术规程》5.5.1规定:剩余电流总保护在躲过农村低压电网正常剩余电流情况下,额定剩余动作电流应尽量选小,以兼顾人身间接接触触电保护和设备的安全。剩余电流总保护的额定剩余动作电流宜为固定分档可调,其最大值可参照下表确定。

表1:剩余电流总保护额定剩余动作电流(mA)

注:剩余电流动作保护器主要特性参数见附录B。

农村低压电网正常剩余电流,系指农村低压电网的正常漏电,是非故障情况下各项对地的总的合成泄漏电流。它有容性泄漏电流和阻性泄漏电流组成。如下图所示:

农村低压电网正常漏电流有电阻通路和电容通路,其中电阻通路是经过供电导线的绝缘层、支持绝缘子、套管、墙壁、电气设备外壳、外壳接地线等处,最后经大地返回电源中性点的。因此,在整定总保护的电流动作值时应对低压电网的正常的不平衡泄漏电流进行测量,其测量方法如下图所示,将配电线路的中性接地线断开,将电流表接在中性线和地线之间,即可测得低压电网的不平衡泄漏电流。

天气变化低压电网的不平衡泄漏电流的影响非常显著,雨天湿度增大,不平衡泄漏电流大,反之,不平衡泄漏电流小。所以,应根据阴雨季节和非阴雨季节时的现场实测值进行调节,但应不大于《农村低压电力技术规程》5.5.1所规定数值,见表1。如大于表1所列值,应对低压电网进行整修。

根据以上所述,举例加以说明,如实际测得一分支不平衡泄漏电流为30mA,整个电网的不平衡泄漏电流为50mA,便可以确定各级保护的动作电流和动作时间:

末级保护:I△ns=30mA、t△n=0.1s

剩余电流范文篇7

关键词:火灾监控系统电气系统原理安装方式

1电气火灾的防范

为了预防和减少电气火灾,应在线监测220/380V供电线路的绝缘状态,可以使用电气火灾监控系统进行漏电检测并实施报警。电气线路或电气设备一旦漏电并超过额定值时,报警器立即发出声光报警信号并显示漏电电流大小。从发生接地电弧到引起火灾以至火势蔓延,需要一段时间,这有足够时间去检查并排除故障提前预报,能有效地避免电气火灾的发生。报警但不切断电源,可以避免电源开关跳闸引起整个建筑物的停电,既保证了用电安全又保证了供电的不间断性。

为了保证人民生命财产安全,严格执行GB13955-2005《剩余电流动作保护装置安装和运行》规定的防范措施,在建筑物的电源进线处及干线上安装电气火灾监控系统是十分必要的。

2电气火灾监控系统原理

2.1原理方框图

监控系统是由电流互感器、监控探测器、报警器或控制器构成的电气火灾实时监测并实施报警或切断电源的装置,其系统组成方框图如图1所示。

电流互感器为传感器件,由它提取的漏电信号,经放大、AC/DC变换、A/D变换、CPU处理后,送至输出级。输出信号经总线输往监控设备。监控设备接收的漏电信息经CPU处理后,送往报警器、显示器、信号输出级。报警器由报警指示灯、蜂鸣器组成,显示器由三位数码管(LED)组成,用以显示漏电电流大小,信号输出级输出各种报警及控制信号,用于附加报警及切断电源等。监控设备还有信号存储及打印功能,供随时查询。

另一种监控系统由电流互感器、漏电探测报警器构成,探测报警器集探测报警于一体,称为电气火灾监控探测报警器或漏电探测报警器,其原理与第一种监控系统是相同的。系统组成方框图如图2所示。这种探测报警器安装使用极其方便,是被广泛采用的监测装置。

2.2监控系统的三种组成方式

①电气火灾监控系统由电流互感器、漏电探测器、漏电报警器组成。探测器、报警器以有线方式连接如图3所示。

②电气火灾监控系统由电流互感器、漏电探测报警器组成,探测报警器由第一种的探测器与报警器组合而成。为了实现远程报警,可以再增加远程报警盒如图4所示,探测报警器与远程报警盒以有线方式连接。

③电气火灾监控系统由电流互感器、监控探测器与监控设备组成,监控探测器与监控设备以总线方式连接如图5所示。漏电及故障等信息由监控探测器通过总线传至监控设备。

3电气火灾监控系统安装方式

3.1低压配电系统总剩余电流检测

如果想监测本单位用电系统的总体绝缘状态,可以检测系统的总剩余电流,前提是单位需有独立的变电系统。电流互感器安装于变压器接地线中以提供剩余电流,探测器、报警器可以选用分体式或一体化结构,如图6所示。

此种剩余电流检测要求供电系统的接地形式为TN-S系统。

3.2干线剩余电流检测

干线指低压配电线路的主要支路,此种安装方式比较简单,电流互感器安装于干线线路中,检测的信号是互感器以后线路及负载产生的剩余电流,如图7所示。

3.3多路干线剩余电流检测

以8路检测为例:8个电流互感器分别装于配电盘的各输出干线上如图8(a)、(b)所示。

4电气火灾监控系统安装注意事项

4.1分级保护

为了缩小发生人身电击事故和接地故障切断电源时引起的停电范围,通常在供电线路的不同地点安装三级(或两种)不同容量的剩余电流保护装置,以形成分级保护。根据用电负载及线路情况,一般分两级或三级保护。适用于城镇和农村第一级和第二级保护,其具体安装图在GB13955-2005中已有明确规定。

4.2安装注意事项

4.2.1系统剩余电流检测

在系统接地型式为TN-C-S系统中,变压器低压侧出线为PEN线对地是绝缘的。

PEN经接线端子分成N线与PE线后,N线不再接地。这时,电流互感器必须安装在PEN线分成PE线、N线后的PE线的中间段上,如图6。

4.2.2干线剩余电流检测

对220V供电系统,电流互感器只要套住二根电源线即可,要求其中的N线不得再重复接地。

对于380V配电系统,电流互感器必须同时套住L1、L2、L3、N线,PE线不得穿过互感器,同时N线此后不得再接地。

在接地型式为TN-C系统中,必须将其改造为TN-C-S、TN-S或局部TT系统后,才可以安装使用报警式剩余电流保护装置。

4.2.3互感器的安装

电流互感器应安装易于检修的地方,互感器的安装没有方向问题。对插式互感器安装时无需断线、断电,互感器可以直接挂在线上,也可以固定在配电盘上,但安装时应注意安全。

剩余电流范文篇8

关键词:农网安全保护措施剩余电流动作保护器

随着农村经济的发展和广大农民生活水平与生活质量的不断提高,特别是近些年来,我国东南部和沿海经济发达地区农村经济结构发生了根本变化,农村城镇建设城市化,缩小了农村和城市的差别;农业适度规模经营,种植技术引入了高科技手段,农业生产机械化水平不断提高;乡镇集体企业和个体经济蓬勃发展,农村的大好形势对安全用电提出了更高的要求。

在农村用电中安全用电的主要任务有:

——防止人身触电的伤亡事故;

——防止电气设备损坏事故;

——防止电气火灾事故。

触电伤亡事故的类型,可分为直接接触触电和间接接触触电两种。直接接触触电是指人员直接接触了带电体而造成的触电。这种类型的触电,触电者受到的电击电压为系统的工作电压,其危险性较大,一般情况下,直接接触触电多发生于电气专业工作人员。但在农村电网中,由于设备的具体条件和用电的特点,非电气专业人员的触电也时有发生。间接接触触电是由于电气设备(包括各种用电设备)内部的绝缘故障,而造成其外露可导电部分(金属外壳)可能带有危险电压(在设备正常情况下,其外露可导电部分是不会带有电压的),当人员误接触到设备的外露可导电部分时,便可能发生触电。由于目前在生产领域里各种电气化的工具、设备被广泛应用;生活电器品种多,数量大且已普及应用,这些设备、电器的操作人员多为非电气专业人员,一旦电气设备或生活电器的绝缘故障损坏,使其外露可导电部分带有电压,在没有保护措施的情况下,极易造成人员触电伤亡事故。所以,在安全用电工作中的首要重点,应是防止人身间接接触触电事故。设备内部绝缘故障时,在设备外露可导电部分接地的情况下,还可能造成单相对地短路损坏设备。另外,电气设备和电气线路(特别是室内电气线路)由于绝缘损坏故障引起的单相接地故障。当接地故障长期存在,局部发热、使温度升高,以致烤燃了其周围的易燃物而引起火灾事故(电气火灾发生的原因很多,如设备或线路运行过负荷、绝缘损坏而造成相间短路、导体接触不良、易发热设备安装不合理等),因此,防止电气火灾事故亦为安全用电工作的重点。在有关的国际标准(ISO)及我国的国家标准中,为保证安全用电都制订了防止发生触电事故的措施。

防止直接接触触电的安全措施:

——防止与带电体接触,将带电体绝缘起来;

——在带电体外,加装遮栏和外护物;

——防止无意地触及带电体,设置临时阻挡物;

——保持一定距离,防止人员活动时接触带电体;

——在低压系统(220V/380V)安装动作电流不超过30mA、快速动作型的漏电保护器。

防止间接接触触电的安全措施:

——自动切断电源,以保证发生人身触电事故时能及时脱离电源;

——做好电气设备的接地保护,降低接地装置的接地电阻,以限制接触电压;

——在各种建筑物内实施等电位连接;

——一些电器特别是家用小电器和手持式电动工具选用增强绝缘型,即双重绝缘型;

——在重要用电场所或环境恶劣场所,使用隔离变压器,改变供电制式为不接地型;

——在特殊环境条件下作业,如地下、沟道等,使用安全低电压(50V以下)的电器。

上述各项措施可根据电网和用电单位的具体情况选用。在我国目前农村电网的低压用电系统中,防止触电伤亡事故最基本的措施是能及时、迅速地切断电源。在低压电气系统中,自动切断电源的实现,主要靠各种型式的过电流保护系统,如过流脱扣、熔丝保险。而电流保护系统的关键是在发生故障时,要能形成一个故障电流回路,形成故障回路的主要条件是电气设备要有完善的保护接地系统。

国家标准GB14050《系统接地的型式及安全技术要求》中,电气系统接地保护的型式有TN系统、TT系统及IT系统。TN系统是指电气系统本身有一点接地,系统中电气设备和外露可导电部分与电气系统的接地点直接连接(在低压电气系统中电气设备的外露可导电部分,通过保护线与电气系统的中性线相连接)。TN系统中电气设备外露可导电部分与电气系统接地点的连接方式,又可分为TN-C方式,即电气设备的保护线直接接在系统的中性线,保护线与中性线共用合一的;TN-S方式,即电气设备的保护线与系统的中性线是分开的,电气设备的保护线接在系统专设的保护线上;TN-C-S方式,即电气设备的保护线与系统的中性线,在系统中一部分是合一的,一部分是分开的,也就是系统的保护线不是接在系统电源的接地点,而是连接在系统的中性线的某一部分。

TT系统是指电气系统本身有一点接地。电气设备的外露可导电部分不与电气系统接地点相连接,而独立接地。

IT系统是指电气系统本身不接地或有一点经大阻抗接地,电气设备的外露可导电部分独立接地。

无论在哪一种接地保护型式下,发生设备单相接地事故或人身接触了故障情况下的电气设备外露可导电部分时,电流保护切断电源的首要条件是故障短路电流值要大于保护设备的动作电流值。而故障短路电流的大小,在TN系统中接地故障短路电流取决于故障点距保护装置的距离,故障电流通过导线和保护线的截面、材质;在TT系统中接地故障短路电流除取决于故障点距保护装置的距离和故障电流通过导线的截面、材质外,还取决于电源接地点和设备保护接地点的接地电阻值,同时还要考虑电流保护动作的动作时间。运行实践证明:在一些发生间接接触触电的事故中,由于线路距离过长,接地故障的阻抗大或系统的电流保护的动作电流大,故障电流不足以使保护动作及时切断电源或切断电源的时限过长,而造成伤亡事故。特别是在TT系统中,发生间接接触触电或单相故障接地时,故障电流的大小受各接地点接地电阻的影响,更难以在发生间接接触触电时,使电流保护迅速动作切断电源。在我国农村低压电网中普遍采用TT系统,上述问题更为突出。

为了解决系统的电流保护在单相接地短路故障时,不能迅速动作切断电源的问题,经过多年的研究和实践应用的经验,使剩余电流动作保护器这个问题基本得以解决,为保证用电安全发挥了重要作用。

剩余电流动作保护器切断电源的动作原理不是决定于接地故障电流的大小,而是靠系统中发生接地短路故障时或人员触电时,系统各线间电流形成不平衡的差值来动作脱扣,切断电源。通过接在线路上的零序互感器可以得到电流不平衡的差值,这个差值可以精确到毫安级,剩余电流动作保护器通过高灵敏度的电磁继电器或电子电路可以使其脱扣时间控制在0.1s以内。目前,农村低压电网的保护接地系统普遍采用TT系统,即用户电气设备的外露可导电部分采用独立接地的措施。在TT系统中,过流保护动作的基本条件是,保护接地点接地装置的接地电阻值决定故障电流值。在农村低压电网发生触电事故时,靠TT系统的过电流保护装置动作切断电源,往往因接地电阻值大,无法迅速切断电源,而酿成伤亡事故。在农村低压电网具体条件下,也不可能投入大量资金、金属材料用以改善接地电阻,并造成巨大的浪费。而安装剩余电流动作保护装置,其动作不需要决定于接地电阻的大小,甚至在安装剩余电流动作保护器后,可以适当放宽对电气设备保护接地装置接地电阻的要求。所以在电网中认真执行防止间接接触触电的各项技术措施的同时,安装剩余电流动作保护器作为各项技术措施的后备保护是不可缺少的。应该强调的是:不能因为安装了剩余电流动作保护器而削弱或放弃其他技术措施,剩余电流动作保护器和各项技术措施是不能互相代替的。实践证明:自80年代中期以来,在用电设备上安装使用剩余电流动作保护器对防止单相接地短路故障(人员触电事故、电气设备接地烧毁事故、电气线路剩余电流造成的电气火灾事故等)起了一定的保护作用,特别是大大降低了人员间接接触触电伤亡事故,在农电系统中效果尤为明显。在农网中安装剩余电流动作保护器一般宜按分级保护方式,即农网的终端(用户负荷端)及电源端装设漏电保护器。电源端装设剩余电流动作保护器后,不但可防止架空线路上的故障造成人员触电伤亡事故,还可监测架空线路的运行绝缘水平和泄漏电流。

当前,农网改造工程正紧张地进行,在农电管理体制改革各项工作进行的同时,尤其要做好农电安全用电工作。根据有关用电安全方面的国家标准,在用电中防止发生人身触电伤亡事故有多项技术措施,其中包括从对设备的要求、操作要求、安全设施、改进系统条件等。在目前具体条件下,推广使用剩余电流动作保护器仍是防止人身触电事故、设备损坏事故和防止电气火灾事故,保证安全用电的有效措施之一。

在农电系统推广使用剩余电流动作保护器,应认真贯彻执行国家标准GB13955《漏电保护器的安装和运行》,做好下列几项工作:

1根据国标要求,在用电范围内,下列场合应装设漏电电流动作保护器

(1)属于防电击保护绝缘等级I类的移动式电气设备和手持式电动工具。(电气产品按防电击保护绝缘等级可分为0、I、II、III四类。I类为产品的防电击保护,不仅依靠设备的基本绝缘,而且还包含一个附加的安全预防措施。其方法是可能触及的可导电的零件与已安装的固定线路中的保护线连接起来,以使可触及的可导电的零件在基本绝缘损坏的事故中不成为带电体。)

(2)安装在潮湿、强腐蚀性等恶劣环境场所的电气设备;

(3)建筑施工的电气施工设备;

(4)暂设临时用电的电器设备;

(5)各种民用建筑物内的插座回路;

(6)其他需要安装剩余电流动作保护器的场所。

2正确选用严格把好剩余电流动作保护器的质量关

(1)应选用技术条件符合国家标准的有关规定,并已检测合格,具有国家认证标志的产品,其技术额定值应与被保护线路或设备的技术参数相配合。

(2)选用剩余电流动作保护器时要考虑到:供电方式、电气设备的使用环境、被保护线路或设备的正常泄漏电流大小及被保护设备的具体情况及要求,以确定选用的型式及动作参数。

(3)可根据被保护线路或电气设备具体情况及要求,选用带有附加功能的剩余电流动作保护器,如过电压保护、过负荷保护、三相缺相保护等。

剩余电流范文篇9

关键词:漏电断路器安装

剩余电流动作保护器(俗称漏电保护器,以下简称保护器)在我国已走过了地方自发、政府引导、国家制订“标准”和“规程”,规范生产和使用以及健康发展四个阶段。随着我国综合国力的增强,确定了对农电实施“两改一同价”的策略,作为当前扩大内需,拉动经济增长的有效手段。

农网改造后,“小容量多布点”的农网结构和高质量的输电线路,取代了供电范围大,线路绝缘低的用电模式;低压电网供电系统产权由用户所有变为供电部门所有,统一了管理。给保护器的安装使用创造了极为有利的条件。

在新的条件下,正确配置安装和严格管理、使用保护器,是一项紧迫的任务。

1保护器的安装

1.1保护器的配置

在配电变压器低压侧出线处装设保护器,以实现对配电系统总保护。在每一居民住户装设保护器,实行末端保护,防止直接接触电击时的人身事故。根据这个原则,农网配电系统就形成了两级保护。在实际运行中,居民住户中保护器的安装率和投运率要达到百分之百是难以实现的。倘若有一家没有安装保护器,或安装了保护器退出运行,一旦发生故障,产生的剩余电流可能使总保护跳闸切断电源,致使大面积停电。如果有条件时在自然村的单相进线处安装分支保护,当末端发生故障,产生的故障电流,使分支保护器跳闸,那么可将因故障引起的停电范围,控制在该自然村的故障相,不影响其他用户的用电,这样可充分体现分级保护的优势。为此,在有必要的农网中,可实现三级保护。分级保护在实现全电网总保护的同时,将剩余电流故障引起的停电,限制在最小范围,并可根据不同电网结构灵活掌握。

1.2各级保护器额定动作电流值的选择

(1)总保护:保护器安装在低压电网电源端或进线端,实现对全网络的整体保护,总保护作为消除配电系统事故隐患为目的的间接接触保护。剩余电流动作值的选择应躲过电网正常泄漏值。要躲过电网正常泄漏电流,首先要对电网正常泄漏电流进行估算。农网改造后,可忽略输电线路的泄漏电流。泄漏电流源主要来自各用电家庭。首先对家庭进户线的绝缘性能应提高要求,一般选用双层绝缘导线。使进户线的绝缘电阻不小于1MΩ,作为总保护的保护器,应根据保护范围内具体设备容量确定动作特性,一般选用低灵敏度延时型,保护器额定动作电流值可根据实测三相不平衡剩余电流来选择,一般额定动作值不小于三相不平衡电流的两倍。总保护额定动作电流值和动作时间应与下级保护器协调配合,实现具有选择性的分级保护。

(2)分支线保护:分支保护仍以实现间接接触保护为主。在分级保护系统中,分支电路保护器的动作电流值选用时,应大于正常运行中实测最大泄漏电流的2.5倍,同时还应满足泄漏电流最大设备泄漏值的4倍。在总保护中的单相线路有两条以上支线时,可按每户允许剩余电流与用户数乘积的两倍确定额定剩余电流动作值,也可按实测值确定。分支保护器的动作额定电流值应小于总保护值。

(3)末级保护:末级保护器一般指家用保护器和电动机用三相剩余电流断路器。末级保护应实现直接接触电击保护,保护器应选用额定动作电流值不大于30mA,动作时间不大于0.1s快速动作的保护器。对大中容量的单台用电设备,选用的保护器其动作电流应大于正常泄漏电流值的4倍。一般选用30mA以上,100mA以下快速动作的保护器。

1.3各级保护器动作时间的选择.在分级保护系统中,选择各级保护器动作特性应遵循额定动作电流值与动作时间协调配合。不应出现越级跳闸现象。一般总保护动作时间选择延时0.1s~2.0s,一般延时时间宜定:0.2s;0.4s;0.8s;1s;1.5s;2.0s。延时动作特性可定为:在IΔn时,最大动作时间为规定的延时时间加0.1s;在5IΔn时,最小动作时间为规定的延时时间。这样级间间隔时间为0.2s,上级最小动作时间与下级最大动作时间留有0.1s余地,不可能出现越级跳闸。末级剩余电流保护器的动作时间应选择≤0.1s的快速动作型。

1.4各级保护器的选用与功能设置

(1)总保护:在有人值班的配电室,可选用具备过流、短路保护功能的剩余电流动作断路器,如DZ15L、DZ20L、DZ25L系列产品等。(2)分支线保护:在三级保护系统中,分支线保护采用单相保护器。单相保护器应具备过流和短路保护功能。在三级保护系统中,用于三相保护的保护器,应选用具有过流和短路保护功能的剩余电流断路器。(3)末级保护:用于末级保护的家用保护器,有带过流保护与不带过流保护两种,这两种均可选用。为防止家用电器因过电压造成的损坏事故发生,应设置过电压保护功能。这里指的过电压是故障过电压。指中性线断开、相线与中性线搭连或电工维修线路后误送380V电压等事故而产生的过电压。这种事故时有发生,且大批量损坏家用电器。明确了过电压保护的对象后,即可确定过电压保护动作参数:额定过电压动作值≥300V额定过电压不动作值≤260V带过电压保护的保护器,常将过电压动作值调试在270V至290V之间,保证在保护线断线后,保护器能够动作。对于大中容量的用电设备,如排灌、农产品加工用的电动机等,应设置过流、短路与缺相保护功能。

1.5安装

(1)安装用的检测仪表:a.带剩余电流测试功能的钳形电流表。b.带动作电流和动作时间测试功能的测试仪。(2)保护器测试:保护器在安装前,应进行测试。用于直接接触保护的家用保护器,动作值选用30mA、0.1s快速型保护器,动作时间应小于0.1s,在0.25A时,应小于0.04s;用于分支保护和总保护的保护器,在额定动作电流时的最大动作时间应小于延时时间加0.1s,5倍额定电流动作值流时的最小动作时间应不小于0.04s。(3)进户线的检测:安装保护器时,应首先安装末级保护。安装前,要对进户线进行检测。在全部用电设备通电后,用钳形表测试泄漏电流。一般情况下,绝缘不合格的原因是,导线接头绝缘处理不当,导线绝缘层硬伤等引起的,时大时小的不规则漏电,也可能有废弃不用的带电导线头碰墙。查找室内故障点工作量大,有些故障发生在多年不用的潮湿阴暗的房间里。有些导线老化、绝缘下降的线路,应重新换线。(4)保护器的安装与检查:末级保护器应在进户线检测合格后安装,末级保护器全部投运后再安装分支线保护,所有分支线保护器安装投运后,总保护的安装便水到渠成了,即便投运不上,架空线上查故障也很方便。只有两级剩余电流保护的保护系统,总保护后面每相可安装单极刀闸,分别控制三条相线,在三相不平衡泄漏电流较大时,投切每条相线,能方便判断故障相。在确定保护器动作电流时,应先测试线路的泄漏电流。线路正常泄漏电流一般小于估算值。若运行中的分支线保护器出现跳闸时,应重点检查其支路未装末级保护或装了保护器退出运行的用户。其次,要检查正在运行的末级保护器是否正常。

2保护器的管理

2.1总结运行经验,为修订“国标”和“规程”提供依据在新的形势下,建立科学的低压农网漏电保护系统至关紧要。在总结运行经验的基础上,统一认识,修订“国标”和“规程”,使“国标”和“规程”相互协调;“国标”、“规程”与其他标准互相协调。这样,保护器的生产和应用不但有章可循,而且各种标准、规程互不冲突,可操作性强,这才达到了修订“国标”和“规程”的目的。2.2培养一支懂技术、善管理、高素质的管理和运行队伍上级主管部门应设立一个常设机构,有计划地、系统地培训省、地、县(市)各级管理人员和运行人员,这对落实保护器的应用,保证农网安全运行很有必要。过去,在实践中造就了一批骨干队伍。但是,要把实践中积累的经验上升到理论高度,从而更好的指导实践,必须经过系统的学习。只有这样,省、地、县各级管理人员才能成为内行。保护器投运中出现的各种问题,固然有线路绝缘水平低的原因,但更多的是故障电流引起的或人为造成的。查找故障点,给电工工作带来很大压力,为此有的电工不愿花费精力查找和排除故障,导致保护器退出运行。要改变这种状况,当务之急是抓培训。性能再好的保护器,再完善的保护系统,再行之有效的规程,最终都得靠人来实现,靠具有高素质、懂技术、善管理、责任心强的管理和运行人员来落实。2.3把保护器的投运工作纳入正常工作考核有布置、有检查、有考核、有奖惩,才能把保护器安装和运行工作落在实处。经验证明,有的单位连续多年无人身触电伤亡事故,主要是狠抓安全用电的结果。主管部门重视,不定期突击检查,发现保护器退出运行,对当事人处以警告和罚款,单位负责人写检查,所以从上到下,工作人员不敢有丝毫放松的思想,总保护器安装率和投运率基本保证在100%。也有的地方对保护器的安装和投运放任自流,触电伤亡事故时有发生。可见,建立和执行严格的制度,才能把保护器安装运行工作抓好。

3加大宣传力度,争取全社会的理解与支持

剩余电流范文篇10

关键词:保护器分级保护正确应用

引言

剩余电流断路器把检测剩余电流的功能和断开主电路的功能组合在一起,同时还可对线路进行过载和短路保护,不仅可缩小装置的体积,降低制造成本,而且可大大提高电网的保护水平。为了加快分级保护的实施,剩余电流保护器产品的制造厂和用户应相互配合,积极开发性能可靠、动作时间稳定的延时型剩余电流断路器,以满足主干线和分支线保护的需要。对于家用剩余电流断路器,制造厂和用户应共同努力,摆脱低价位竞争的怪圈,设法在提高抗干扰性能和可靠性方面下功夫,进一步改进产品性能,加强对剩余电流断路器的运行管理和售后服务,使农村电网通过技术改造,设备水平和安全水平产生一个质的飞跃。

近30年来,我国应用保护器的发展,经历了自然发展阶段、组织推广阶段、规范管理阶段和普及发展阶段等四个阶段。从第三阶段开始,保护器的研究、生产、安装使用的管理得到了提高,管理规范化、标准化逐步完善,并与国际标准接轨。

原电力部制订的行业标准DL499《农村低压电力技术规程》和DL493《农村安全用电规程》中均对农村电网中安装使用保护器作了有关规定。

国家建设部在GB50054《低压配电设计规范》和GB50096《住宅设计规范》等国家标准中,对低压配电系统和住宅中保护器的应用均作了规定。这些标准和规范的制订,对保护器的生产和安装使用起到了技术指导和推动作用。在两网改造工程中,特别是低压配电网改造的工程量大、任务急,对保护器在应用中,学习和理解相关的国家标准、行业标准和规范的有关内容不足,所以在保护器的安装使用中,还存在一些问题,需要引起重视。

一、正确选用分级保护方式

随着农村电网改造后负荷的增加,农村用电的可靠性要求也进一步提高,农村电网使用保护器采用分级保护方式后,迫切要求解决保护器正确动作率和供电可靠性。因此,分级保护必须合理分级,并且各级保护器的动作特性应互相协调。

分级保护方式中,末端保护为居民住宅、生产企业车间、服务场所,作为防止直接接触电击或间接接触电击损伤和电器设备损坏及电气火灾的保护。末端保护应装于用电设备的最近电源处,如电源插座,甚至用电设备体内(按目前我国居民家庭的具体情况,可装于分路进线的进线电源处)。末端保护的上一级保护为中间保护,应具有末端保护的后备保护和防止电气线路单相接地短路引发火灾事故的功能。中间保护的位置应为负荷集中点的电源进线处,如工厂企业内车间的进线电源处、服务场所、商业点的电源进线处、居民住宅楼的单元的电源进线处,农村居民集居点的总电源进线处(村镇内的分支线处、大型(别墅型建筑)住宅的电源进线处)等。

二、分级保护各级保护器动作参数的选择

一般情况下,各级保护均应选用带有短路、过载保护的,具有剩余电流动作保护功能的断路器,如条件许可还应具有冲击电压不动作和抗电磁干扰功能。各级保护器动作参数的选择:

末端保护应选用高灵敏度、快速动作型的保护器,其额定剩余动作电流IΔn≤30mA,额定动作时间Tn<0.1s;

末端保护的上一级,中间保护其额定动作电流应与末端保护动作电流有2倍以上的级差,动作时间上有0.2s的级差。中间保护选用延时性保护器,额定电流IΔn=60~100mA,额定动作时间Tn=0.3s;

总保护应选用延时型保护器,额定动作电流应根据线路具体情况确定,不应小于300mA,额定动作时间Tn=0.5~1.0s。

三、剩余电流动作保护装置应用中的几个问题

3.1保护器设备的选型:以产品质量为先,认真比较产品的质量、性能、价格比,切不可以价格作为唯一依据。国家对保护器产品生产有严格的管理规定,要求保护器产品必须经过部级的安全质量认证合格后,方可准入市场。据了解,目前市场仍有一批质量粗糙的劣质产品和假冒产品,甚至是早已明令淘汰的产品,以低价招揽,鱼龙混杂不易发现。因此,在设备选型时,要坚持原则,把住质量关。

3.2正确安装、接线:①根据安装部位和保护功能的需要,合理选择保护器型式及其各项动作参数。②按保护产品说明要求正确安装。③正确接线,低压系统为TN-C保护系统时,保护器负载侧的设备的接地保护(PE)线必须改为按TT系统的独立保护接地,中性(N)线不得重复接地,不得作为保护线。④三相不平衡负载应选用三极四线或四极式保护器,其中N线应通过零序电流互感器,并只能用作中性(N)线。

3.3正确认识保护器的“动作”:保护器按其功能要求,应在发生人身直接接触电击及间接接触电击、电气设备绝缘故障时,使其金属外壳带电或电气线路故障,泄漏电流增大和自然泄漏电流过大时,及时切断电源起到保护作用。所以,当保护器发生动作时,应认真查找原因,及时处理。而不应因受短时断电的影响,随意判断为误动作,忙于恢复送电,避免造成事故扩大。

3.4保护器的拒动和“不适当”动作:保护器运行中有本文3.3中的情况而未及时动作切断电源时,称为保护器拒动。保护器拒动的原因,除因其质量不良、工艺水平低,元件质量低劣或保护器动作参数选择不当外,还应注意到以下情况:日益发展的各种电子电器设备,如电视机、微型计算机、各种家用电器等普遍存在电子整流电路,其整流电路的直流分量使交流正弦波发生畸变,形成谐波,谐波中的直流分量通过保护器的零序电流互感器时,不会产生感应电势,所以当负载谐波电流严重时,即使保护器负载侧发生上述3.3中的情况时,保护器无法动作。公务员之家