立体几何范文10篇

时间:2023-03-21 10:19:34

立体几何

立体几何范文篇1

一、电子白板下的立体几何教学

立体几何是一门枯燥的数学学科,学生们在学习时,如果提不起兴趣,那么学习立体几何的目标也就不会达到,很难去通过学习立体几何来培养学生的想象力和推理能力。但是现在这个时代,白板教学基本上普及到每个学校,白板教学有着许多丰富的资源,老师们应该好好地利用白板带来的好处、资源,来提高学生学习立体几何的兴趣。白板上带有许多的辅助教学工具,例如白板上的画图工具,可以用来引起学生的兴趣,然后让学生尝试在白板上画图,学生在亲自体验的过程中也能够提起他们的学习兴趣,而且白板上能够放映视频,老师们可采用以课件为主、视频为辅的教学方式,让课堂变得轻松愉快,从而激发学生的学习兴趣。

二、电子白板在立体几何教学中的应用策略

立体几何是一种抽象难懂的知识,学生们之所以觉得立体几何难懂,是因为他们的空间立体感不强,那么,如何才能让学生更好地理解,这也是教师在教学过程中面对的一大难题。以前,老师在教学时,会带上立体模型到课堂上给学生们展示,但是学生们看模型也只能够看到表面,不能够真正地理解一个立体模型的内在组成和模型中点面线之间的关系,不清楚这个模型是如何由点面线组成的。白板技术的普及很好地解决了这个问题,白板系统有图像处理功能,老师在网上找到立体模型,然后进行剖析,通过白板展示出来。白板的图像处理功能,不仅能够让学生直观地看到模型的表面,也能够对模型进行深层次的分析,然后将模型中内在的点面线的关系也直观地展示出来;电子白板也可以将模型进行平面和立体的转换,这样学生就会看得更直观。例如,教授长方体时,白板可以通过图像处理技术,将长方体转换成平面型,然后再将平面型的长方体一步步地折叠成立体的长方体,这样学生在观看这个转换的过程中,就能够清楚地知道长方体要如何做才能展开,平面型的长方体要先做哪一步才能够折叠成长方体。在这个学习过程中,学生们不知不觉就学会了一种学习立体几何的方法。立体几何需要很强的空间感,电子白板不仅有着图像处理功能,也有着动态演示功能,老师在讲课时就可以不用一直说要如何做,只需要用白板的动态演示功能,就能够将一个立体图形如何拆分成平面图形的过程给演示出来,在学生观看演示的过程中,学生的大脑也在想象着怎么做,这样不仅培养了学生的空间想象力,也让学生学习到了知识。在学习立体几何的过程中,求不规则的立体几何的体积对于学生们来说是个难题,但是通过白板技术教学,白板可以将一个不规则的立体图形通过分割、拼凑成一个规则的立体图形,然后再求其的体积。在白板进行切割拼凑的过程中,学生的大脑也在进行着思考,这样学生们的空间想象力就得到了提高,而且学生也可以通过白板进行自主操作,自主操作的过程中学生们也提高了学习的兴趣。

立体几何范文篇2

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

立体几何范文篇3

立体几何的典型特点就在于其“立体”,即三维。在学习平面几何时,学生完全可以通过平面的点、线以及相关的公理来证明和判断它们之间的关系,但是在立体几何学习过程中,如果仍仅仅依靠这样的判断是不够的,还需要增加空间想象能力。初学立体几何时,很多学生难以适应,其主要原因是难以从二维平面中感知到三维图像,也就是说,学习立体几何除了相关的公理之外,最重要的就是空间想象能力,这是立体几何的特点所决定的。

二、实现高中数学立体几何的有效性

相应的,高中数学立体几何的教学,不是一个简单的过程,恰恰相反,由于不同的学生有不同的特点,加上立体几何教学过程本身就十分繁琐,因此,对高中数学立体几何的有效性的实现,需要采取众多策略。

1.通过画图来提高学生对基础知识的运用

立体几何学习的难度,不仅仅在于通过二维空间表现三维空间的特点,还在于通过文字来表现三维空间,而后者则要求学生能够根据文字的描述,进行图画的创造。其实,教师引导学生通过画图来解答题目,还在一定程度上加深了学生对基础知识的理解和运用。比如在讲授面面垂直这一基本公理时,首先学生应该明白证明面A与面B垂直,只需要证明面A中的一条直线m与面B垂直,而要证明直线m垂直于面B,只需要证明直线m与面B中的两条相交的直线n和h垂直即可,通过这样的分析,学生就可以画出相应的图画。虽然学生在解答立体几何题目中,题干中往往会给出特定的图像,但是教师在对学生的日常训练中,要引导学生自主画图像,这对于培养学生的空间想象力,无疑具有十分积极的意义。

2.通过多媒体的运用来提高学习效果

多媒体教学最重要的特点,就是可以通过模拟的方式,来解决学生通过想象不能理解的问题。其优势体现在以下几个方面:第一,可以加深学生对立体几何知识的理解。前面提到过,学生学习立体几何最大的难点,就是需要通过空间想象能力来实现二维平面向三位空间的转换,而通过多媒体教学,可以向学生直观地展现三维的立体空间,以彻底打开学生的空间思维能力。第二,可以激发学生学习的积极性,学生的空间想象能力多是静态的,如果牵扯到动态图像,多数学生都将陷入到枯燥的冥想之中,但是多媒体教学,通过一些程序的设定,可以将一些图形变换的动态图像展现给学生,让学生通过眼睛来学习其大脑不能呈现的图像,从而感受其中的神奇,以调动其学习的兴趣。如学生在学面角时,教师在讲解时,往往会给学生提供众多的解体方法,如三垂线法等,一般学生在解答比较简单的二面角问题时,可以轻松解答,但是当遇到比较复杂的问题时,学生往往难以理解,遇到这种情况,教师就可以通过多媒体向学生展现立体的图像,这对学生加深对此题目以及二面角的定义都有积极作用。

3.通过模型法来提高学习效果

数学来源于生活,其最终的宿命也将回归到生活,如果在高中立体几何教学过程中,脱离了生活,那么即使学生的分数线上去了,其教学也是失败的。因此,将立体几何的学习与实际生活结合起来,是立体结合教学的必然选择,而模型法的使用,是实现这一目的的有效途径。所谓模型法,就是在教授立体几何知识时,从现实中寻找物体,来进行比对,一方面来加深学生对知识的理解,另一方面也能有效培养学生将知识运用于现实生活的能力。这就要求教师在使用多媒体教学时,除了运用一些多媒体手段向学生展现动态图像之外,更为重要的是向学生展现一些现实生活中的例子。

三、总结

立体几何范文篇4

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

由此可见,要作,最好考虑作“垂线段”。

综上所述,二面角其平面角的正确而合理的定位,要在正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的主观心理空间和客观心理空间,以不变应万变。定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

立体几何范文篇5

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

立体几何范文篇6

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

立体几何范文篇7

随着计算机的普及,计算机的应用随之渗透到社会生活的各个方面。学校的教学如果不利用这一新技术便会落后于时代。CAI在教学中的地位不会只是一种时髦,由于它的形象、方便、速度、效率等等方面的优点,这一方式势必会被大部分学生和教师所接受,而成为一种潮流。这一时刻的到来会比预想的快。实际上,当学校的教师们把计算机作为他们生活的一部分时,他们自然会把CAI作为他们教学手段的一部分。对于数学教师来说,这一进程可能会来得更快,毕竟我国高校第一代计算机教师有相当一部分出身于数学领域。

2.数学CAI软件的设计原则

目前流行于市的CAI著作并不多见,但软件市场可见到不少cAI软件商品。其中绝大部分是对学生进行课外辅导性质的。实际上,CAI所涉及的面很广,它包括教与学的各个方面。任何一个软件几乎都不可能覆盖它的全部内容。本文也只打算对数学课堂教学软件的设计问题进行探讨。任何一个软件产品,制作者都要事先确定该软件要达到的目的,然后根据此目的制定一系列具体的设计要求。如果该产品已经很成熟,这些要求会成为公认的标准。数学课堂教学CAI软件的制作目的当然也是数学教学的最终目的,即使学生掌握相应的教学内容。教学的最后效果是通过学生对知识的掌握来衡量的,但大部分时间往往采取一种更简易的评价方法----就课论课。例如大部分的公开教学或观摩课,最后的评价并不是去考学生而是听课者按照已有的或心目中的标准来衡量这节课的好坏。对教学软件的评价暂时也只好采取这种方法。实际上设计的原则与评价的原则应该一致。由于目前课堂教学软件不多,且大部分是各个教学单位为自己的教学而开发的,缺少统一的标准。笔者只是把自己在这方面的一些设想与心得写出来,与同行切磋。

2.1.“辅助”的含义就是以教师为主计算机永远也不会取代教师上课,就象计算机不能取代人的思维一样。把软件搞成录像式的就完全失去了教师的作用,这是最失败的软件。除了特殊情况,如偏远地区无教师或一些冷门学科找不到相应的教师只好采用纯电教手段外,教学软件应是主讲教师的助手。一个优秀的教师是任何软件也替代不了的。

2.2.交互功能

一个好的软件应能适合不同特点的教师的要求,这就需要软件更加灵活。比如一个立方体,有的教师喜爱正等测投影,而另一些教师喜爱正二测,这大部分取决于他们使用该软件前的讲课习惯。如果一个图形,教师自己看着都不习惯,当然不能指望他会很自然和流畅地讲给学生。那么对这个软件来说,该立方体的随机旋转能力便是非常重要的了。教师可根据自己的需要和习惯来选择该立方体关于三个坐标轴的转角,旋转过程对学生是透明的。实际上,教师在选择合适方位的过程本身也是一个很好的教学内容。教师甚至可以安排图形的颜色、说明文字的位置……,这时教师才会真正感觉到自己是这个软件的主人。试想一下,如果对一个使用软件的教师来说唯一能作的就是控制它的运行和停止,所有的画面都是编程者闭门造车设计出来的,这会是什么感觉!

2.3.动画的数学含量

数学教学的图形动画不同于卡通片。它对光学效果、色彩效果等一些对美术人员至关重要的指标并不在意,相反,它却极其重视图形的准确性。无论是旋转还是平移,无论是中心投影还是平行投影,画面上的每一点都是准确计算出来的。

比如说空间不同位置的两个全等三角形,由于所在的平面的法矢不同,投影自然不同。相等的角看上去不等,不等的元素却看起来相等;又如空间的垂线,反映在投影上当然不一定垂直。这些图形在没有CAI教学软件之前,教师只能在黑板上象征性地画一下,?根本谈不上准确性。而在CAI软件中,这些图形是一个点一个点计算出来的。教师可以用交互功能把需要的图形在平面旋转到与投影面平行的位置,使学生看到“不走样”的图形,这就需要准确性,而准确性是由一系列正确的数学变换公式保证的。在这里每一个画面都是算出来的,而下是象一般动画是从图形库里取出来的。

2.4.学生的临场操作功能

过去,一节电化教学课讲完,老师会为学生准备许多胶片。学生把老师临时留的练习题做在胶片上,在用投影仪映到银幕上以检查学生的掌握情况。这取代了让学生上黑板做题。为什么不能再前进一步,让学生操纵计算机屏幕,让学生在计算机的屏幕上画上他自己的辅助线,让学生控制计算机屏幕图形来讲解他的答案呢?我们正是这样设想的,让计算机的屏幕取代胶片投影仪,就象投影仪过去取代黑板一样。

2.5.人工智能

这一点正是目前CAI软件的欠缺。?但是对于课堂教学软件来说,这一点并不特别重要。最直接的应用是在学生把答案(图形或数据)输入计算机后,自动判断答案正确与否。?专家系统的最重要的用武之地是在CAI的另一个领域----课外辅导。但现在面临的全部辅导软件几乎没有涉及到该项功能,尽管这方面的讨论超出本文的范围。

2.6.独立性

立体几何范文篇8

在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在04高考卷中已有充分展示,应引起我们在复习中的足够重视。

1.1空间轨迹

教材中,关于轨迹,多在平面几何与平面解析几何中加以定义,在空间中,只对球面用轨迹定义作了描述。如果我们把平面解析几何中的定点、定直线不局限在同一个平面内,则很自然地把轨迹从平面延伸到空间。

例1,(04高考重庆理科)若三棱锥A—BCD的侧面ABC内一动点P到平面BCD距离与到棱AB距离相等,则动点P的轨迹与△ABC组成的图形可能是()

解:设二面角A—BC—D大小为θ,作PR⊥面BCD,R为垂足,PQ⊥BC于Q,PT⊥AB于T,则∠PQR=θ,且由条件PT=PR=PQ·sinθ,∴为小于1的常数,故轨迹图形应选(D)。

例2,已知边长为1的正方体ABCD—A1B1C1D1,在正方体表面上距A为(在空间)的点的轨迹是正方体表面上的一条曲线,求这条曲线的长度。

解:此问题的实质是以A为球心、为半径的球在正方体ABCD—A1­B1C1D1,各个面上交线的长度计算,正方体的各个面根据与球心位置关系分成二类:ABCD,AA1DD1,AA1BB1为过球心的截面,截痕为大圆弧,各弧圆心角为,A1B1C1D1,B1BCC1,D1DCC1为与球心距离为1的截面,截痕为小圆弧,由于截面圆半径为,故各段弧圆心角为,∴这条曲线长度为。

1.2平面几何的定理在立体几何中类比

高考考纲对考生思维能力中明确要求“会对问题或资料进行观察、比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理,能合乎逻辑地、准确地进行表述”,类比推理可考查考生利用旧知进行知识迁移、组合和融汇的能力,是一种较好地考查创新能力的形式,平面几何到立体几何的类比,材料丰富,操作性强,在历年高考中均有不俗表现。

例3,(04高考广东卷题15)由图(1)有面积关系:,则由图(2)有体积关系(答案:)

评注:数学结论的类比既需要数学直觉,也需要逻辑推理能力,它是高考考查创新能力的重要载体,从平面几何到立体几何的结论类比,更是这一类考题蕴藏丰富的宝库,从三角形到三棱锥,从正方形到正方体,从圆到球等等,如果我们稍加留意,就会有很多收获。

1.3几何体的截痕

例:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab,其中a,b为长、短半轴长)。

解:由于太阳光线可认定为平行光线,故广告球的投影

椭园等价于以广告球直径为直径的圆柱截面椭园:此时

b=R,a==2R,∴离心率,

投影面积S=πab=π·k·2R=2πR2=18π。

评注:囿于空间想象能力的限制,几何体的截痕和投影是立体几何中的一个难点,也是具,有良好区分度的考题素材,因此有必要适当进行相应的训练,才能形成基本的解题策略。

1.4几何体的展开

例:有一半径为R的圆柱,被与轴成45°角平面相截得“三角”圆柱ABC,则此“三角”圆柱的展开图为()

解:设圆柱底面中心O,底面圆周上任一点P'''',过P''''的圆柱母线与截点为P,

∠AOP''''=θ,则∵∠CBA=45°,作P''''Q⊥AB于Q,∴|PP''''|=|AC|-|AQ|=2R-(R-Rcosθ)=R(1+cosθ),AP''''=Rθ。

∴在柱面展开图中,以AB直线为x轴,AC为y轴建立直角坐标系,相应点P坐标为(x,y),则有消去得,展开图轮廓线为余弦曲线,故应选(D)

评注:几何体与其展开图,包含了平面与空间的大量信息,需要较强的空间想象能力,要进行点与对应点,线段与对应线段的位置与数量的细致分析,需找出变与不变量以及变化规律,因此,它是代数与几何、空间与平面的重要知识交汇点。

2.概率与数列的交汇

数列是以正整数n为自变量的函数,而n次独立重复试验中事件A出现k次的概率Pn(k)也是自然数n,k的函数,借助于自然数这一纽带,可实现数列与概率的交汇。

例4:质点从原点O出发,在数轴上向右运动,且遵循以下运动规律:质点向右移动一个单位的概率为,右移2个单位的概率为,设质点运动到点(n,0)的概率为Pn。

①求P1和P2。

②求证{Pn-Pn-1}是等比数列。

③求Pn。

解:①P1=,

②由题意可知,质点到达点(n,0),可分两种情形,由点(n-1,0)右移1个单位或由点(n-2,0)右移2个单位,故由条件可知:(n≥3)

评注:本题解题关键是数列的递归规律,建立概率数列的递推公式,用数列知识解题,这种复杂的系列问题通过撷取其片段,解剖其规律,是破解难题的常用手段。

3.向量与三角、几何的交汇

向量既有长度,又有方向,因此,向量蕴含长度和角度,因此,以几何、三角为背景的问题便可成为产生向量问题良好温床。

例5:(04高考湖北卷19)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以A为中点,问和夹角取何值时,的值最大?并求出这个最大值。

评注:本题为用向量形式表现的几何最值问题,具有较强的综合性,适时建立坐标系,利用向量的坐标形式,最终转化为三角函数,大大降低了解题的难度。同时,也对相关知识的化归能力提出了较高要求。

4.向量与立体几何的交汇

在最新版部编教材中,向量的内容有所加强,特别在平面向量的运算规律和平面向量基本定理进一步扩充到空间中,向量的工具性地位更加突出,因此,用向量解立体几何问题也不应局限在建立空间直角坐标系,用空间坐标运算来解决问题,而应着眼于向量的本质内容。

例6:已知平行六面体ABCD—A1B1C1D1各棱长均为1,

且棱AA1,AD,AB两两成60°角,E,F分别为

A1D1和B1B中点,求EF的长。

评注:本题新颖之处在于向量与立体几何的结合,并不只是建立空间直角坐标系,转化为坐标向量来解题。对于那种不方便建立空间直角坐标系的问题,如斜棱柱斜棱锥等可直接利用空间向量的运算性质解题。

5.向量与解析几何的交汇

由于向量在描述长度与角度上独特的工具性,解析几何有着向量展现的良好的基础,历年新高考试卷已在此积累了不少成功经验,04高考也不例外,使向量与解几的结合更加合缝与自然。

例7.(2005高考全国卷1)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。

(Ⅰ)求椭圆的离心率;

(Ⅱ)设M为椭圆上任意一点,且,证明为定值。

(I)解:设椭圆方程为

则直线AB的方程为

故为定值,定值为1.

评注:解向量与解几的交汇题,关键在于利用向量的坐标形式把向量条件转化为坐标条件。

6.数列与函数的交汇

数列与函数一脉相承,因此,数列与函数的交汇是传统的命题热点,04、05年高考更有长足的表现,把数列、函数、导数等知识点交汇在一起,综合程度和思维要求均有所提高。

例8(2005高考浙江卷)设点(,0),和抛物线:y=x2+anx+bn

(n∈N*),其中an=-2-4n-,由以下方法得到:x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点在抛物线:y=x2+anx+bn上,点(,0)到的距离是到上点的最短距离.

即时,等式成立

由①②知,等式对成立,故是等差数列。

立体几何范文篇9

关于数学能力,我国长期流行的提法是“三大能力”:数学运算能力,空间想象能力和逻辑思维能力。这一提法有很强的概括力。但是,它同样忽视应用,突出逻辑的地位,甚至认为“数学能力的核心是逻辑思维能力”。

1951年的数学教学大纲提出了四个方面:(1)数形知识;(2)科学习惯;(3)辨证思维;(4)应用技能。1952年的大纲里,仅提到“基础知识”与“基本技能”的“双基”要求,“能力”这个词都没有在大纲中出现。1953年10月颁布了《大纲》(草案),对能力的要求是:“发展学生生动的空间想象力,发展学生逻辑的思维力和判断力,锻炼学生既定的目的方面和合理地自动完成工作方面的坚毅性”。这个《大纲》虽已把培养能力的内容提出来了,但没有明确地提出“能力”一词。1955年的大纲里,在“双基”的同时,第一次明确提出了要培养运算能力、逻辑思维能力和空间想象能力。1960年首次提出了“发展学生的逻辑思维和空间想象能力”和“培养学生的辨证唯物主义观点”。1956—1957年度公布的《中学数学教学大纲(修订)草案》中又增加了“发展他们的逻辑思维和空间想象能力的要求。”1961年的大纲里,则提到五种,增加了绘图与测量能力的要求。1963年,教育部颁布《全日制中学数学教学大纲(草案)》,终于将我国数学教育的重点和盘托出:“使学生牢固地掌握代数、平面几何、立体几何、三角和平面解析几何基础知识,培养学生正确而迅速的运算能力、逻辑思维和空间想象能力,以适应参加生产劳动和进一步学习的需要。”1963年5月的大纲,提出了“培养学生正确而迅速的计算能力、逻辑推理能力和空间想象能力”。1965年,教育部颁布了建国后的第四个中学数学教学大纲:《全日制中学数学教学大纲(草案)》,第一次提出了培养想象能力,从而逐步培养学生分析问题和解决问题的能力。”学生“正确而迅速的运算能力、逻辑思维和空间想象能力”。1977年的大纲,关于能力的要求是这样写的:“具有正确迅速的运算能力,一定的逻辑思维能力和一定的空间想象能力。”1978年2月的大纲将上述的“计算能力”改为“运算能力”,“逻辑推理能力”改为“逻辑思维能力”。第一次提出“培养学生分析问题解决问题的能力”。

20世纪80年代,我国数学教育的“三要素结构”逐渐形成,“三要素结构”即指处于第一层次的双基(基础知识、基本技能)结构、第一层次的能力(三大基本能力及在此基础上逐步形成分析解决实际问题的能力)结构、第三层次的思想品质(兴趣、积极性、科学态度、辨证唯物主义观点等)结构。这在1986年的大纲中得到完整的表现。1986年的《大纲》提出的能力要求是“培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决问题的能力”,与1978年的《大纲》不同的是这里提出了逐步提高学生应用数学知识的能力。

1990年,中国教育发生了深刻的变化,它是渐进的,人们往往不甚觉察。但是回头一望,已经有了巨大的改变。国家整体上提倡“素质教育”和“创新教育”,中国数学界强调数学应用的重要性,社会进步把数学教学带入了计算机时代。数学教育界看到了“应用意识的失落”,提出了“淡化形式、注重实质”的口号,注意把学习的主动权交给学生。数学应用题终于重新进入高考,而且大量的数学新题型出现了。于是,数学能力的提法也逐渐有了变化。国家颁布的1992年数学教学大纲,继续提出三大能力,但是加上了“用所学知识解决简单的实际问题”。注意到“实际问题”,仅限于“简单的”。1996年大纲将“逻辑思维能力”改成“思维能力”,理由是数学思维不仅是逻辑思维;在三大能力之外,提出了“逐步培养分析和解决实际问题的能力”,这进一步注意到解决实际问题的能力,可惜还是“逐步培养”。1997年的《高中数学教学大纲(修订本)》中要求培养学生的运算能力、逻辑思维能力和空间想象能力,使其逐步形成运用教学知识分析和解决实际问题的问题。

进入21世纪之后,国内关于数学能力的提法又有新的变化。

2002年已颁布的全日制高中《数学教学大纲》,对高中学生应具备的数学能力有了更细致的描述。除了提到一般数学能力之外,更明确地界定了唯有数学学科才有的“数学思维能力”。它包括空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面。这一提法涵盖了三大能力,但更全面、更具体、更明确。体现了数学思维从直观想象和猜想开始,通过抽象表示和运算,用证明演绎方法加以论证,乃至构成学科体系的全过程。

二、《新课标》中对数学能力培养的要求

(一)立体几何部分对数学能力培养的要求主要表现在以下几个方面:

1.加强直观,侧重空间想象能力的培养

高中立体几何课程历来以培养逻辑思维能力为主要目的,而《新课标》更加强调空间想象能力的培养,强调空间观念的建立,逻辑思维能力的培养退至次要地位。立体几何课程改革引入大量的实物模型、计算机模拟与演示,加强学生的直观感受。由此可见,立体几何的教学目的已由重点培养逻辑思维能力转向培养几何直观能力和空间想象能力。

2.加强动手能力的培养

《新课标》要求学生“能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料制作模型,会用斜二侧法画出它们的直观图”。学生们在动手实践的过程中体会、感受、经历,从而增加对立体几何的认识和对现实世界的认识。。由此可见,立体几何注重学生动手能力的培养。

3.加强几何与代数的联系,注重学生空间想象能力和逻辑思维能力的培养

传统立体几何强调综合方法,强调逻辑推理,这种单一的处理方法使学生孤立的学习立体几何,从而学习难度较大,许多中学生惧怕立体几何问题,解答立体几何问题不理想。在《新课标》中,较初步的知识用综合方法去处理,以培养学生的空间想象能力和逻辑思维能力,较难处理的问题用代数方法解决,从而改变立体几何的态度,建立学好立体几何的信心,更重要的意义是加强几何与代数的联系,培养数形结合的思想。

4.强调应用能力的培养

加强立体几何与现实的联系强调应用是立体几何课程改革的又一特色。立体几何课程从空间几何体开始,利用实物模型、计算机软件观察大量的空间图形,使学生归纳出“柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构”。这就是善于从生活中获取知识,也善于将学到的知识应用于生活,培养学生用数学视角观察世界和用数学思维思考世界的习惯。

(二)代数部分对数学能力培养的要求主要表现在以下几个方面:

1.注重学生动手能力的培养

高中数学课程在《数学3》模块中增加了“概率、统计”内容,让学生通过实验计算器(机)模拟估计简单随机事件发生的概率,从而加强学生的动手能力。

2.注重提高学生的思维能力

《新课标》注重提高学生的思维能力。高中数学课程在《数学3》模块中增加了“算法初步”内容,通过“算法初步”内容的学习,能发展学生有条理的思考与表达能力,提高逻辑思维能力。

3.发展学生的数学应用意识,提高实践能力

高中数学课程提供基本知识的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立某些体现数学某些重要应用的专题课程。它力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其其他学科的联系,促进学生逐渐形成和发展数学应用意识,提高实践能力。具体表现在学生应用意识的三个方面:(1)让学生认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用。(2)让学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求问题的策略。(3)让学生面对新的数学知识,能主动地寻找其实际背景,并探索其应用价值。

参考文献

[1]普通高中数学课程标准(实验稿)[M].北京:人民教育出版社,2003.7

[2]傅海伦,数学教育发展概论[M]科学出版社,2001

[3]马忠林,数学教育史[M].广西:广西

[4]吴宪芳、郭熙汉等,数学教育学[M].武汉:华中师大出版社,1997

立体几何范文篇10

1.立体几何与平面解析几何的交汇

在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在04高考卷中已有充分展示,应引起我们在复习中的足够重视。

1.1空间轨迹

教材中,关于轨迹,多在平面几何与平面解析几何中加以定义,在空间中,只对球面用轨迹定义作了描述。如果我们把平面解析几何中的定点、定直线不局限在同一个平面内,则很自然地把轨迹从平面延伸到空间。

例1,(04高考重庆理科)若三棱锥A—BCD的侧面ABC内一动点P到平面BCD距离与到棱AB距离相等,则动点P的轨迹与△ABC组成的图形可能是()

解:设二面角A—BC—D大小为θ,作PR⊥面BCD,R为垂足,PQ⊥BC于Q,PT⊥AB于T,则∠PQR=θ,且由条件PT=PR=PQ·sinθ,∴为小于1的常数,故轨迹图形应选(D)。

例2,已知边长为1的正方体ABCD—A1B1C1D1,在正方体表面上距A为(在空间)的点的轨迹是正方体表面上的一条曲线,求这条曲线的长度。

解:此问题的实质是以A为球心、为半径的球在正方体ABCD—A1­B1C1D1,各个面上交线的长度计算,正方体的各个面根据与球心位置关系分成二类:ABCD,AA1DD1,AA1BB1为过球心的截面,截痕为大圆弧,各弧圆心角为,A1B1C1D1,B1BCC1,D1DCC1为与球心距离为1的截面,截痕为小圆弧,由于截面圆半径为,故各段弧圆心角为,∴这条曲线长度为。

1.2平面几何的定理在立体几何中类比

高考考纲对考生思维能力中明确要求“会对问题或资料进行观察、比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理,能合乎逻辑地、准确地进行表述”,类比推理可考查考生利用旧知进行知识迁移、组合和融汇的能力,是一种较好地考查创新能力的形式,平面几何到立体几何的类比,材料丰富,操作性强,在历年高考中均有不俗表现。

例3,(04高考广东卷题15)由图(1)有面积关系:,则由图(2)有体积关系(答案:)

评注:数学结论的类比既需要数学直觉,也需要逻辑推理能力,它是高考考查创新能力的重要载体,从平面几何到立体几何的结论类比,更是这一类考题蕴藏丰富的宝库,从三角形到三棱锥,从正方形到正方体,从圆到球等等,如果我们稍加留意,就会有很多收获。

1.3几何体的截痕

例:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab,其中a,b为长、短半轴长)。

解:由于太阳光线可认定为平行光线,故广告球的投影

椭园等价于以广告球直径为直径的圆柱截面椭园:此时

b=R,a==2R,∴离心率,

投影面积S=πab=π·k·2R=2πR2=18π。

评注:囿于空间想象能力的限制,几何体的截痕和投影是立体几何中的一个难点,也是具,有良好区分度的考题素材,因此有必要适当进行相应的训练,才能形成基本的解题策略。

1.4几何体的展开

例:有一半径为R的圆柱,被与轴成45°角平面相截得“三角”圆柱ABC,则此“三角”圆柱的展开图为()

解:设圆柱底面中心O,底面圆周上任一点P'''',过P''''的圆柱母线与截点为P,

∠AOP''''=θ,则∵∠CBA=45°,作P''''Q⊥AB于Q,∴|PP''''|=|AC|-|AQ|=2R-(R-Rcosθ)=R(1+cosθ),AP''''=Rθ。

∴在柱面展开图中,以AB直线为x轴,AC为y轴建立直角坐标系,相应点P坐标为(x,y),则有消去得,展开图轮廓线为余弦曲线,故应选(D)

评注:几何体与其展开图,包含了平面与空间的大量信息,需要较强的空间想象能力,要进行点与对应点,线段与对应线段的位置与数量的细致分析,需找出变与不变量以及变化规律,因此,它是代数与几何、空间与平面的重要知识交汇点。

2.概率与数列的交汇

数列是以正整数n为自变量的函数,而n次独立重复试验中事件A出现k次的概率Pn(k)也是自然数n,k的函数,借助于自然数这一纽带,可实现数列与概率的交汇。

例4:质点从原点O出发,在数轴上向右运动,且遵循以下运动规律:质点向右移动一个单位的概率为,右移2个单位的概率为,设质点运动到点(n,0)的概率为Pn。

①求P1和P2。

②求证{Pn-Pn-1}是等比数列。

③求Pn。

解:①P1=,

②由题意可知,质点到达点(n,0),可分两种情形,由点(n-1,0)右移1个单位或由点(n-2,0)右移2个单位,故由条件可知:(n≥3)

评注:本题解题关键是数列的递归规律,建立概率数列的递推公式,用数列知识解题,这种复杂的系列问题通过撷取其片段,解剖其规律,是破解难题的常用手段。

3.向量与三角、几何的交汇

向量既有长度,又有方向,因此,向量蕴含长度和角度,因此,以几何、三角为背景的问题便可成为产生向量问题良好温床。

例5:(04高考湖北卷19)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以A为中点,问和夹角取何值时,的值最大?并求出这个最大值。

评注:本题为用向量形式表现的几何最值问题,具有较强的综合性,适时建立坐标系,利用向量的坐标形式,最终转化为三角函数,大大降低了解题的难度。同时,也对相关知识的化归能力提出了较高要求。

4.向量与立体几何的交汇

在最新版部编教材中,向量的内容有所加强,特别在平面向量的运算规律和平面向量基本定理进一步扩充到空间中,向量的工具性地位更加突出,因此,用向量解立体几何问题也不应局限在建立空间直角坐标系,用空间坐标运算来解决问题,而应着眼于向量的本质内容。

例6:已知平行六面体ABCD—A1B1C1D1各棱长均为1,

且棱AA1,AD,AB两两成60°角,E,F分别为

A1D1和B1B中点,求EF的长。

评注:本题新颖之处在于向量与立体几何的结合,并不只是建立空间直角坐标系,转化为坐标向量来解题。对于那种不方便建立空间直角坐标系的问题,如斜棱柱斜棱锥等可直接利用空间向量的运算性质解题。

5.向量与解析几何的交汇

由于向量在描述长度与角度上独特的工具性,解析几何有着向量展现的良好的基础,历年新高考试卷已在此积累了不少成功经验,04高考也不例外,使向量与解几的结合更加合缝与自然。

例7.(2005高考全国卷1)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。

(Ⅰ)求椭圆的离心率;

(Ⅱ)设M为椭圆上任意一点,且,证明为定值。

(I)解:设椭圆方程为

则直线AB的方程为

故为定值,定值为1.

评注:解向量与解几的交汇题,关键在于利用向量的坐标形式把向量条件转化为坐标条件。

6.数列与函数的交汇

数列与函数一脉相承,因此,数列与函数的交汇是传统的命题热点,04、05年高考更有长足的表现,把数列、函数、导数等知识点交汇在一起,综合程度和思维要求均有所提高。

例8(2005高考浙江卷)设点(,0),和抛物线:y=x2+anx+bn

(n∈N*),其中an=-2-4n-,由以下方法得到:x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点在抛物线:y=x2+anx+bn上,点(,0)到的距离是到上点的最短距离.

即时,等式成立

由①②知,等式对成立,故是等差数列。

评注:函数是特殊的数列,因此函数与数列具有天然的亲密关系,可我们在学习中,往往过分关注数列的特殊性和数列解题的特殊技巧,高考强调函数和数列的结合,有助于纠正这一偏差。