交流电机范文10篇

时间:2023-03-20 20:19:27

交流电机

交流电机范文篇1

【论文摘要】:对变频调速器在实践应用中容量的正确选择、传动系统的优化设计以及外接制动电阻等方面的问题,总结了一些经验。

随着电力技术的迅速发展,交流电机变频调速技术取得了突破性的进步,进入了普及应用阶段。在我国,变频调速器也正越来越广泛地被采用,与此同是地,如何正确地选好、用好已成为广大用户十分突出的问题了。

1.关于容量选择

在变频调速器的说明书中,为了帮助用户选择容量,都有"配用电动机容量"一栏,然而,这一栏的含义却不够确切,常导致变频器的误选。

各种生产机械中,电动机的容量主是根据发热原则来选定的。就是说,在电动机带得动的前提下,只要其温升在允许范围内,短时间的过载是允许的。电动机的过载能力一般定为额定转矩的1.8-2.2倍。电动机的温升,所谓"短时间"至少也在十几分钟以上。而变频调速器的过载能力为:150%,l分钟。这个指标,对电动机来说,只有在起动过程才有意义,在运行过程中,实际上是不允许载。

因此,"配用电动机容量"一栏的准确含义是"配用电动机的实际最大容量"。实际选择变频器时,可按电动机在工作过程中的最大电流来进行选择,对于鼓风机和泵类负载,因属于长期恒定负载,可直接按"配用电动机容量"来选择。

2.传动系统进行优化设计

交流异步电动机经变频调速后,其有效转矩和有效功率的范围。配用变频调速器时,必须根据生产机械的机械特性以及对调速范围的要求等因素,对传动系统进行优级化设计,优化设计的主要内容和大致方法如下:

2.1确定电动机的最高运行频率

(1)鼓风机和泵类负载,这类负载的阻转矩TL与转速n的平方成正比TL=KTn2,输出功率PL与转速的在次方成正比PL=KPn3,(KT和KP为常数),由此可知,如转速超过额定转速,负载的转矩和功率将分别按平方律和立方律增加,因此,在一般情况下,不允许在额定频率以上运行。

(2)一般情况下,各种机械的强度、振动以及耐磨性能等,都是以电动机转速不超过3000r/min为前提设计的。因此,在没有对机械重新进行设计的情况下,2级电机的最高运行频率不要超过额定频率太多。

(3)当异步电机在额定频率以上运行时,由于电源电压是恒定的,其在调到fx时电磁转矩Tx近乎和频率调节比Kf的平方成反比,即T≈TN/Kf2(而TN为额定频率fN时的转矩)。因此,最高运行频率不宜超过额定频率

(4)异步电机在低频下运行时,为了获得足够的转矩,常需进行转矩补偿。而转矩补偿将使电机的磁路趋于饱和,从而增加附加损失,降低了效率,因此,只要情况许可,应尺可能地提高运行频率的上限。

2.2确定传动系统的传动比并校核电动机的容量

(1)鼓风机和泵类负载,一般均为直接驱动,不必考虑传动比的问题。

(2)恒转矩负载,首先,根据有效转矩线以及所要求的频率调节范围,确定电机运行的最高频率和最低频率。

假设已经确定的电动机最高运行频率为fmax最低运行频率为fmin与此对应的转矩相对值为tTL,则电动机的额定转矩Tn=TL/qTL(TL负载转矩)。如果原选电机并未留有余量的话,则配用变频调速器后,电动机的容量应扩大1/tTL倍。传动系统的传动比入等于电动机在最高运行频率下的转速nDmax负载所需求的最高转速nLmax之比。

(3)恒功率负载:和恒转矩负载类似,首先根据有效功率线和频率调节范围,求出电动机运行频率的上、下限。

同样,在求出最高和最低运行频率的同时,得到对应的功率相对值tPL,而电动机的额定功率PN≥PL/tPL(PL为负载要求功率)。

在设计恒功率负载时,应注意两点:(1)尽量多利用额定频率以上的部分;(2)当调整范围较大时,尽量采用两档传动比。因为当传动比分成两栏时,频率范围αf与αn转速范围之间的关系为。可见,在转速范围相同的情况下,频率范围将大为减小,从而可减小电动机的容量。

负载的机械特性,因是恒功率负载,故曲线上任一点的横坐标与纵坐标的乘积均相等,且与负载功率成正比,即PL=KPTLnL=KPTLmaxLmin。全部转速都在额定频率以下调节时的有效转矩线,在这种情况下,所需电动机的容量PN=KPTNnLmax>KPTLmaxLmax=αnPL。这说明,所需电动机的容量比负载功率的On倍还要大,是很不经济的。

⑴当最高运行频率为额定频率的2倍,传动比只有一档时的情形。在这种情况下,所需电机的容量PN=KPTN1/2nLmax1/2αnPL。可见,所需用容量只要大于负载功率的On/2倍就可以了。

⑵当最高运行频率为额定频率的2倍,传动比为两档时的情形。这时,所需电机的容量PN1/2PL。可见,对于恒功率负载,当αn>4时,这种方案是比较理想的。

3.自配外接制动电阻

各种变频调速器都允许外接制动电阻,加快制动速度,外接电阻。但配套的制动电阻价格昂贵,不易买到,自动配置时,其阻值与功率可如下决定:

直流电路的电压值UP=×380=53V;制动电流Is一般以不超过电机的额定电流IDN为原则,即Is≤IDN,故制动电阻Rs≥UD/Is。

因Rs内通过电流的时间只有几秒钟,故其功率PR可按工其工作时的(1/10-1/8)选择,即PR=(0.1-0.125)UD2/Rs。

因Rs接入电路时,应注意将变频调速器内部的制动电阻切除,如不能切除,则应适当加大Rs的值,以免出现制动电流过大的情形。

在外接制动电路时,为了避免烧毁变频器内部的放电用大功率晶体管(GTR)有时也可以外接整个制动电器(即包括制动电阻和放电晶体管,这时,GTR应选取其VCEX≥700伏;ICN≥(1.2-1.5)IDN安。

参考文献

[1]马新民,矿山机械,徐州:中国矿业大学出版社,2002

[2]李纪等,煤矿机电事故分析与预防,北京:煤炭工业出版社,1997

交流电机范文篇2

【论文摘要】:对变频调速器在实践应用中容量的正确选择、传动系统的优化设计以及外接制动电阻等方面的问题,总结了一些经验。

随着电力技术的迅速发展,交流电机变频调速技术取得了突破性的进步,进入了普及应用阶段。在我国,变频调速器也正越来越广泛地被采用,与此同是地,如何正确地选好、用好已成为广大用户十分突出的问题了。

1.关于容量选择

在变频调速器的说明书中,为了帮助用户选择容量,都有"配用电动机容量"一栏,然而,这一栏的含义却不够确切,常导致变频器的误选。

各种生产机械中,电动机的容量主是根据发热原则来选定的。就是说,在电动机带得动的前提下,只要其温升在允许范围内,短时间的过载是允许的。电动机的过载能力一般定为额定转矩的1.8-2.2倍。电动机的温升,所谓"短时间"至少也在十几分钟以上。而变频调速器的过载能力为:150%,l分钟。这个指标,对电动机来说,只有在起动过程才有意义,在运行过程中,实际上是不允许载。

因此,"配用电动机容量"一栏的准确含义是"配用电动机的实际最大容量"。实际选择变频器时,可按电动机在工作过程中的最大电流来进行选择,对于鼓风机和泵类负载,因属于长期恒定负载,可直接按"配用电动机容量"来选择。

2.传动系统进行优化设计

交流异步电动机经变频调速后,其有效转矩和有效功率的范围。配用变频调速器时,必须根据生产机械的机械特性以及对调速范围的要求等因素,对传动系统进行优级化设计,优化设计的主要内容和大致方法如下:

2.1确定电动机的最高运行频率

(1)鼓风机和泵类负载,这类负载的阻转矩TL与转速n的平方成正比TL=KTn2,输出功率PL与转速的在次方成正比PL=KPn3,(KT和KP为常数),由此可知,如转速超过额定转速,负载的转矩和功率将分别按平方律和立方律增加,因此,在一般情况下,不允许在额定频率以上运行。

(2)一般情况下,各种机械的强度、振动以及耐磨性能等,都是以电动机转速不超过3000r/min为前提设计的。因此,在没有对机械重新进行设计的情况下,2级电机的最高运行频率不要超过额定频率太多。

(3)当异步电机在额定频率以上运行时,由于电源电压是恒定的,其在调到fx时电磁转矩Tx近乎和频率调节比Kf的平方成反比,即T≈TN/Kf2(而TN为额定频率fN时的转矩)。因此,最高运行频率不宜超过额定频率

(4)异步电机在低频下运行时,为了获得足够的转矩,常需进行转矩补偿。而转矩补偿将使电机的磁路趋于饱和,从而增加附加损失,降低了效率,因此,只要情况许可,应尺可能地提高运行频率的上限。

2.2确定传动系统的传动比并校核电动机的容量

(1)鼓风机和泵类负载,一般均为直接驱动,不必考虑传动比的问题。

(2)恒转矩负载,首先,根据有效转矩线以及所要求的频率调节范围,确定电机运行的最高频率和最低频率。

假设已经确定的电动机最高运行频率为fmax最低运行频率为fmin与此对应的转矩相对值为tTL,则电动机的额定转矩Tn=TL/qTL(TL负载转矩)。如果原选电机并未留有余量的话,则配用变频调速器后,电动机的容量应扩大1/tTL倍。传动系统的传动比入等于电动机在最高运行频率下的转速nDmax负载所需求的最高转速nLmax之比。

(3)恒功率负载:和恒转矩负载类似,首先根据有效功率线和频率调节范围,求出电动机运行频率的上、下限。

同样,在求出最高和最低运行频率的同时,得到对应的功率相对值tPL,而电动机的额定功率PN≥PL/tPL(PL为负载要求功率)。

在设计恒功率负载时,应注意两点:(1)尽量多利用额定频率以上的部分;(2)当调整范围较大时,尽量采用两档传动比。因为当传动比分成两栏时,频率范围αf与αn转速范围之间的关系为。可见,在转速范围相同的情况下,频率范围将大为减小,从而可减小电动机的容量。

负载的机械特性,因是恒功率负载,故曲线上任一点的横坐标与纵坐标的乘积均相等,且与负载功率成正比,即PL=KPTLnL=KPTLmaxLmin。全部转速都在额定频率以下调节时的有效转矩线,在这种情况下,所需电动机的容量PN=KPTNnLmax>KPTLmaxLmax=αnPL。这说明,所需电动机的容量比负载功率的On倍还要大,是很不经济的。

⑴当最高运行频率为额定频率的2倍,传动比只有一档时的情形。在这种情况下,所需电机的容量PN=KPTN1/2nLmax1/2αnPL。可见,所需用容量只要大于负载功率的On/2倍就可以了。

⑵当最高运行频率为额定频率的2倍,传动比为两档时的情形。这时,所需电机的容量PN1/2PL。可见,对于恒功率负载,当αn>4时,这种方案是比较理想的。

3.自配外接制动电阻

各种变频调速器都允许外接制动电阻,加快制动速度,外接电阻。但配套的制动电阻价格昂贵,不易买到,自动配置时,其阻值与功率可如下决定:

直流电路的电压值UP=×380=53V;制动电流Is一般以不超过电机的额定电流IDN为原则,即Is≤IDN,故制动电阻Rs≥UD/Is。

因Rs内通过电流的时间只有几秒钟,故其功率PR可按工其工作时的(1/10-1/8)选择,即PR=(0.1-0.125)UD2/Rs。

因Rs接入电路时,应注意将变频调速器内部的制动电阻切除,如不能切除,则应适当加大Rs的值,以免出现制动电流过大的情形。

在外接制动电路时,为了避免烧毁变频器内部的放电用大功率晶体管(GTR)有时也可以外接整个制动电器(即包括制动电阻和放电晶体管,这时,GTR应选取其VCEX≥700伏;ICN≥(1.2-1.5)IDN安。

参考文献

[1]马新民,矿山机械,徐州:中国矿业大学出版社,2002

[2]李纪等,煤矿机电事故分析与预防,北京:煤炭工业出版社,1997

交流电机范文篇3

关键词:微控制器;晶闸管开关;电路板

1引言

在日常生产与生活中,大量电动机都以规定的速度和功率去拖动各种机械。而在军事上,很多应用往往要求旋转天线在各种条件下都要保持匀速转动,这就要求在不同的情况下,电动机能相应调整工作速度,以保持恒定的速度。要实现这一功能,最常用的方法是对电动机的转速进行调节。改变直流电动机的电枢或交流电动机的定子电压,都可以在一定的范围里改变转速;也可用双向晶闸管交流开关或直接选用模拟控制的通用电动机驱动器来取代笨重的电动机、发电机组以及饱和电抗器。本文介绍一个直接由110/240V电源供电的通用电动机驱动电路和一个MCU以及一个双向晶闸管开关来实现控速的设计方法。其中单片机选用Microchip公司的PIC12F675。与用户接口的方式有三种一个是接触传感器;一个是按钮;一个是电位器。笔者在该仿真实验中采用的是电位器。辅助电源从电源电压中变压整流获得。

2设计方案和结构

2.1电路结构

电动机的调速系统是一个闭环系统,其结构图如图1所示。使用时,可通过设置电位器的电阻大小,并经A/D输入单片机来预设速度;单片机通过同步电路与220V交流电源同步,并通过输出脉冲控制晶闸管的通断,从而控制电动机的速度,同时将电动机的速度通过速度检测装置(霍尔开关)反馈给单片机以形成闭环。

2.2单片机电路的功能原理

该设计中单片机电路的功能原理图如图2所示。它由5V直流副电源和220V交流主电源、单片机、双向晶闸管开关和电机整流电路和霍尔开关组成。其中,单片机的脚1(Vdd)接+5V脚8(Vss)接地,其它引脚的功能与设计如下:

(1)GP3用于上电复位。在通电的瞬间,C3通过R2充电GP3以经延迟后低电平触发。延迟的大小和CPU的频率有关,对于PIC12F675单片机,延迟只要大于72ms就可以了。GP3外的电阻可以选1kΩ电容应大于0.1μF。二极管D2的作用是在电源快速反复通断时,保证C3电容能及时放电。

图2

(2)GP4主要用于速度信息的输入。该脚外的电位器R1用于为GP4输入一个电平(GP4在这里的功能是10位A/D转换器)。该输入电平通过A/D转换后,用于给单片机输入一个预设速度。将该速度和实际速度进行比较,并计算出速度的偏差,然后查表或通过算法便可以得到延迟Td。电位器R1的阻值应较大(在100kΩ左右),以减少5V副电源的负载压力。

(3)通过GP2可输入同步信号。由于220V的交流电源频率不是很稳,因此,为了保证延迟Td的精确,应通过R5输入交流信号进行同步。GP2在这里的功能也是A/D转换器,它可将通过R5输入的交流信号转化成数字信号。R5的阻值要大约在1MΩ左右。因为R5直接接在220V的交流电源上,而单片机的输入电流不能太大。

(4)通过GP0可输入霍尔器件产生的电动机转速信号。

霍尔开关是用于磁场检测的半导体传感器,霍尔开关的实际接线图如图3所示,PIC12F675的1脚接5V直流电源,2脚接地,3脚输出频率脉冲给单片机的GP0脚。

在正常工作时,霍尔开关被放置在电动机内按周期强度和方向发生变化的磁场中。其输出电压的大小随着垂直通过霍尔开关半导体薄片的磁场的强度变化,霍尔开关有电流式和开关式两种。电流式霍尔开关输出的是模拟信号,可完全包含磁通量的变化情况;而开关式霍尔开关则由于集成了比较器,因而可直接输出数字信号。本设计采用数字式无疑是最方便的。如果采用电流式,由于选用的是功能全面的自带比较器的PIC12F675单片机,它的GP1脚上输入的一个门限电平(由两个电阻分压得到)通过单片机内部的比较器和GP0脚的转速模拟信号进行比较,也可以实现信号检测。

由于实际的霍尔开关要接在电动机的线圈附近,手工改造电动机相对比较困难。因此,该设计为了方便演示,可以使用一个由555定时器设计的多谐振荡器产生的频率脉冲信号来替代霍尔开关的输出信号。

(5)GP5脚输出的低电平脉冲用于触发双向晶闸管开关,其脚输出低电平脉冲的时间是由延迟Td决定的,要保证和主电源同步才能使相位平稳的前后移动。GP5脚的低脉冲可以使双向晶闸管开关保持导通,直到220V电源反向。

此外,在实际应用中,双向晶闸管开关对触发电路的要求如下:

(1)双向晶闸管开关从截止到完全导通需要一定的时间(一般在10μs下),所以触发脉冲的宽度要在10μs以上,最好为20~50μs。如果是感性负载,由于电流上升比较慢,实际上还需要更宽的脉冲宽度。

(2)触发电路要有足够大的电压和电流。电压应在4~10V,电流要大于10mA,所以可使用5V的副电源。在双向晶闸管开关和GP5之间应接一个0.2kΩ的电阻。

(3)不触发时的电压应小于0.15~0.2V。触发脉冲的前沿要尽量陡,应在10μs以下。

3软件的实现

图4是该设计中转速和检测信号的波形时序图,图5是本设计方案的软件程序流程图。该程序的主要步骤是复位、初始化、设置GP2上升沿中断、设置A/D通道GP4、读取电位器设定的速度值n(n经过A/D)和读取Td预先设定值等。当交流电源变为负半周期时,设置GP2下降沿触发和延迟Td即可输出宽度为Tg的脉冲,同时设置GP0接收中断源请求等。一般当霍尔开关输入为上升沿时中断,计数器计数,而当霍尔开关再输入一个上升沿中断时,计数器停止,并记下数值a,最后在通过比例积分调节算法计算出延迟Td后清除n和a。当交流电源变为正半周期时,在设置GP2上升沿触发、设置A/D通道GP4、等待中断、补偿延迟T0、延迟Td以及触发脉冲Tg后,便可通过GP4读取设置速度n。设计时正负周期的程序循环进行。通过计数器的数值a计算转速s的算式如下:

s=f/a

其中,f是十六位计数器1的频率,为1MHz。

实际上,通过n和a由单片机计算延迟td需要一个准确的算法。数字调节算法一般选择PI算法,这是在工业过程控制中应用最广泛的一种控制形式。其作用在于能够集比例调节的快速和积分调节的清除静差作用于一体,从而使系统的静、动特性都有所改善。

交流电机范文篇4

关键词:STM32;交流电机;SVPWM

1绪论

如今生产生活中交流电机的使用已经远远超过了直流电机,而在交流电机中由于转子旋转的速度与旋转磁场的转速不同,分成了异步电动机和同步步电动机。前者由于负载的转速与输入电网的频率之比可以不为定值。[1]它与后者相比内部结构简单,制造、使用和维护方便、运行可靠,而且质量轻,花费成本低,因此我们把交流异步电动机作为研究对象。[2]

2系统硬件总体设计

系统的主电路采用交-直-交变压型电路。该系统主电路主要由整流,滤波以及IPM等部分组成。本文选择的控制部分也是当今使用最为广泛的STM32F1系列单片机,可用来处理反馈环节返回来的变量以及产生精确地SVPWM波来驱动IPM模块,总体框图如图1所示。2.1电流采样电路。它的主要作用是采集系统运行时的电流,通过该模块处理后返回到MCU中,电流采样电路如图2所示。2.2测速模块。本系统中我们采用的是M法,我们将它的A和B两个引脚同时进行计数。由于它每一次旋转都可以产生产生1024个脉冲。两个引脚同时计数可以让我们的结果更加精确。将这两个引脚的输入到MCU的IO口中进行处理。2.3主电路设计。它是来执行变频调速的关键环节。该电路采用的是交-直-交变压变频。如图中间经过的是直流,它采用的是大电容来进行滤波操作。本系统采用的整流器是二极管,最右侧输出的波形接近正弦波。2.4IPM选择。在选用它时,我们首先要考虑的是系统能正常运行。额定电压值计算:Un1.5Ud=1.5×540=810V额定电流值计算:In=(1.2~2)*λ*Im=(1.2~2)×1.5×槡2×8=20.34~33.9A该式中的为我们通常所说的安全裕量。λ为所有电机的过载倍数,最终选择的IPM型号为PM50RSA120。该型号的最大耐压为1200V,电流为50A。[3]

3系统软件设计

大体分为两部分即首先是主程序设计,它包括我们使用的各模块的初始化,以及使用的MCU的各部分功能的初始化,还要加一个循环语句确保程序一直可以执行。其次另外一部分是中断设计,它的作用是在上一部分程序完成的基础上,执行各种矢量算法,以及输出SVPWM波形来进行调制IPM。当有一些故障出现时也要进入中断服务函数,处理或者运行新程序使系统停止,这些程序都是在keil5下操作完成的。

4结语

本文在深入学习了解交流变频调速控制方法的基础上,设计了一套基于STM32和IPM模块的交流异步电机变频调速控制系统。介绍了主电路、控制电路等部分电路的硬件设计以及系统软件的设计,并对整个系统做了仿真与测试,验证了本系统设计方案的可行性与优越性。

参考文献:

[1]常红军.交流传动系统PSpice与Matlab仿真技术的研究[D].河北工业大学,2006.3.

[2]任晓刚.永磁同步电机无速度传感器控制的研究[D].西南交通大学,2014.

交流电机范文篇5

【关键词】电机与拖动基础;教学改革;模块化教学;任务驱动

近年来,培养创新型人才已成为各个高校培养人才的方向,各个专业增开涉及到新技术、新理论的各类课程,多门专业基础课和专业课程的学时被压缩,学时少、任务重是日常教学中必须解决的矛盾。如何在有限的学时内,高质量地教,高质量地学,是当前教学过程必须解决的问题。

1教学中面临的问题

《电机与拖动基础》在自动化专业的课程中,是一门既难学又难教的课程,具有以下几个特点:1.1内容多而学时少。《电机与拖动基础》课程内容包含电机学、电力拖动两方面内容,概念繁多,公式种类纷繁复杂。本校教学学时为40学时,包含8个学时的实验。如何更好地利用这40个学时,使学生对电机、电力拖动这两大模块知识具有基础理论与基本的实践操作技能,是这门课教学过程中急需解决的问题。1.2内容抽象而实践性强。《电机与拖动机车》课程是以《高等数学》中的微积分运算、《大学物理》中的电磁学、《电路理论》中的基本概念、元件等知识点为基础。需要学生对上述知识点熟练掌握,理解透彻,否则会对本课程的学习产生畏难情绪,甚至影响学习效果。实践上包含电机的启动、工作特性与机械特性的测定、调速与制动等电机运行的几个环节,需要了解电机结构、掌握电机工作原理以及运行性能,才能够更好地理解实验目的、分析实验结果。

2《电机与拖动基础》模块化划分

从电机与拖动基础课程的教学实际出发,结合教学中遇到的问题,对该课程教学内容进行模块化划分,开展教学改革研究与实践。该课程的知识点主要包括直流电机、变压器、交流电机的工作原理与基本结构;直交流电动机的运行特性和实验;电力拖动系统的运行性能和分析计算方法;各种电机的启动、制动与调速。从电机角度进行分类,可以将知识分为直流电机知识、交流电机知识以及变压器知识。那么,我们将教学内容分为三个模块:直流电机、交流电机与变压器。模块一:直流电机直流电机模块包括直流电机基本工作原理、结构、绕组、电磁特性、稳态运行时电压平衡方程式、机械特性、工作特性、过渡过程以及启动、调速与制动。模块二:变压器变压器模块包含变压器基本工作原理、结构、空载运行与负载运行、等效电路、参数测定以及连接组别。模块三:交流异步电动机交流异步电动机模块包含异步电动机工作原理、等效电路、功率与转矩、机械特性、启动制动与调速。

3教学改革措施

3.1理论教学中的改革措施。各个知识模块之间既相互关联,又相对独立,因此在教学过程中,启发学生思考各个模块知识的共性,同时对比各个模块知识的个性,从而更好地理解各个模块知识的基础理论,加深理解各种电机的实践应用。电机的工作原理是基于物理学的电磁感应定律,涉及到电生磁、磁生电、电磁力等,电机的运行涉及到电压平衡、受力平衡、功率守恒等物理规律,因此在讲授直流电机工作原理之前,先对电磁感应定律、基尔霍夫典雅与电流定律、安培环路定则以及受力平衡等物理规律进行回顾。然后,进行直流电机、变压器与交流电机理论内容的讲授。在讲授过程中,注重启发式教学。比如,讲解直流发电机原理时,请同学们利用运动导体在磁场中运动产生电来分析电能的产生,然后利用整流的方式获得直流电,从而引申出直流电机结构上的特殊性——换向器的存在。在讲解三相异步电动机的工作原理时,引入三相交流电产生旋转磁场,启发学生思考磁场与定子之间的相对运动、磁场与转子之间的相对运动、转子与定子之间的相对运动,从而理解同步转速、转子转速与转差率之间的关系。在讲授过程中,注重知识点的对比,从而启发学生主动思考。比如,在直流发电机和直流电动机的工作原理教学过程中,引导学生对比这两种电机能量转换的方向以及电枢电流进出电机的方向,从而加深对这两种电机工作原理的理解;在讲授交流电机原理时,注意与直流电机原理进行对比,加深对异步交流电机工作原理的理解。由于各种电机既有其共性,也有其个性,因此在教学过程中,引导学生总结共性,对比个性。在讲授三相异步电动机的等效电路时,引导学生与变压器的等效电路进行对比。3.2实践教学的改革措施。电机与拖动基础课程是一门实践性强的课程,而教学过程中受限于实验条件以及学时等因素,不可能将每个环节都进行实践教学,因此我们充分利用动画展示以及MATLAB软件仿真,将抽象的电机运行展示出来。利用动画展示直流电动机的能耗制动、电压反接制动、倒拉反转制动以及回馈制动过程,使用MATLAB软件仿真直流电机的制动方法,学生可以选择电机的负载、修改各种电气参数,来观察电机的机械特性,分析电机的功率分配关系。在学习直流电动机启动时,将电枢回路串电阻启动作为一个项目,采用项目驱动的教学方式,将理论学习与工程实践结合起来,使学生掌握理论知识的同时,熟悉工程实践中的基本安全操作章程以及直流电动机的启动方法在具体工程中的应用,做到学以致用。首先通过仿真,观察直流电动机直接启动的电枢电流(如图1所示);然后设计电枢回路串电阻分级(3级)启动的电路,并用MATLAB软件仿真验证可行性仿真结果如图2所示;最后在实验台上操作,验证电枢回路串电阻启动的可行性。实验结束后,分析电枢回路串电阻的可行性以及还可以通过什么方法启动直流电动机。从仿真结果可以看出,直流电机直接启动时,启动电流最大值接近45A,比额定电流3A大得多,而采用串电阻分级启动,最大电流只有6A左右,启动电流在直流电动机容许通过的最大电流之内,因此可以采用串电阻分级方法启动直流电动机。3.3教学管理。采用雨课堂教学软件对教学过程进行管理,比如出勤率、作业正确率以及常错题等。考核上,注重平时过程管理,将作业、实验、项目实施与完成纳入考核范围,平时成绩占比40%,期末试卷占比40%,课程过程中的测验占比20%。

4结论

通过将课程内容模块化处理,教学过程中注意知识点的比对,加深了学生对基本原理的理解,调动了学生主动思考、主动参与课堂教学;采用任务驱动式教学,使学生主动将理论付诸于实践,在实验中主动动手的学生增多了;教学管理上,更多地关注学生的平时学习过程,夯实了学生的基础理论,提高了学生的实践操作能力。

参考文献

[1]许俊杰,林木泉,郑洪庆.浅谈应用型本科院校电机与拖动技术课程改革[J].轻工科技,2019,35(5):175-176.

[2]原菊梅.基于能力培养的“电机及拖动基础”课程改革[J].电气电子教学学报,2019,41(3):45-47.

[3]高宁宇,羌予践.任务驱动法在“电力拖动”课程教学中的应用[J].电气电子教学学报,2019,41(5):98-100.

交流电机范文篇6

直流电机电枢绝缘结构,是由绕组绝缘、换向器绝缘、支架绝缘、扎钢丝绝缘和层间绝缘等组成。由于采用的电枢绕组的型式,电压等级和绑扎材料不同,电枢绝缘结构某些地方有所变化。

1.1电枢绕组绝缘电枢绕组绝缘结构随绕组结构型式不同而有所区别。为了提高防潮性能,大型直流电机电枢绕组一般采用连续式绝缘。

1.1.1匝间绝缘作用是绝缘同一线圈中的相邻元件,只承受片间电压。大型直流电机匝间绝缘一般采用裸铜线外半叠包一层0.1毫米云母带,或直接采用高强度漆包双玻璃丝包线。中、小型电机一般采用双玻璃丝包线即可。在F级薄膜绝缘大型电机可采用0.05毫米薄膜半叠包一层并将薄膜“烧结”在导体上,或加包一层玻璃丝带。中、小型电机半叠包0.05毫米薄膜一层或将薄膜“烧结”在导体上。

1.1.2对地绝缘主绝缘,承受线圈对铁心间的全电压。1000伏级大型电机:0.14毫米醇酸云母带半叠绕三层。660伏级中型电机:0.14毫米醇酸云母带半叠绕二层(连续式绝缘)或0.2毫米云母箔卷包2层(套筒式绝缘)。F级薄膜大型电机:0.05毫米聚酰亚胺薄膜半叠绕四层。中、小型F级或H级电机:0.05毫米聚酰亚胺薄膜半叠绕2~3层。

1.1.3保护布带主要保护主绝缘免受机械损伤。一般B级绝缘电机采用0.1毫米玻璃丝带半叠绕或平绕一层。F级薄膜绝缘一般不用保护布带,有时为可靠起见,也用0.1毫米玻璃丝带半叠绕一层。

1.1.4电枢绕组端部绝缘绝缘方式和材料一般和直线部分相同,仅是对地绝缘比直线部分可少包1-2层。虽然端部对地和层间都存在全电压,但主要是因为有层间绝缘和支架绝缘的存在,同时也为了改善冷却条件,所以绕组端部绝缘制造时适当减少。

1.2线圈在槽内的保护绝缘

1.2.1槽绝缘防止槽内毛刺或槽口尖棱划伤线圈。B级绝缘:0.2毫米聚脂薄膜一黄玻璃漆布复合绝缘、0.2毫米聚脂薄膜一青壳纸复合绝缘,或用0.2毫米青壳纸代用。F级薄膜绝缘:0.15毫米聚酰亚胺一黄玻璃漆布或0.1毫米聚酰亚胺漆布。

1.2.2槽底垫条和层间垫条保护绕组在下线过程中免受机械损伤。B级绝缘采用0.5毫米醇酸柔软云母板。F级绝缘采用二苯醚玻璃布板或硅有机云母板。

1.3电枢线圈端部固定绝缘结构以端部中间带通风孔四层式蛙绕组为例来说明:

1.3.1支架绝缘大型电机B级绝缘,一般最内层用0.1毫米玻璃丝带半叠绕一层,外面包0.14毫米醇酸云母带半叠绕三层,其绕0.3毫米柔软云母板二层,外面半叠绕0.03毫米聚脂薄膜带和0.1毫米玻璃丝带各一层。F级绝缘一般用硅有机云母带和云母板来代替醇酸云母带。

1.3.2端部层间绝缘承受线圈层间全电压和保护线圈免受相互压伤。B级绝缘一般用0.5毫米衬垫云母板二层,并用0.1毫米玻璃丝布包边,以免运行中飞散。F级绝缘一般用硅有机云母板或F级薄膜。

1.3.3扎钢丝绝使钢丝和绕组绝缘起来,并保护绕组免受钢丝勒伤。靠近绕组先绕0.6毫米黄绝缘纸板一层,外面绕0.5毫米衬垫云母板二层(用玻璃丝布包边),最外面绕1毫米黄绝缘纸板一层,每层都用玻璃丝带扎紧。为防止爬电,扎钢丝绝缘比钢丝箍每边宽8-15毫米。为限制钢丝箍中涡流损耗,每10匝钢丝间应垫0.2毫米石棉纸一层,使之相互隔离。F级绝缘扎钢丝绝缘,则是采用二苯醚玻璃布板和硅有机云母板。如用无纬带绑扎端部,则不用垫任何绝缘。

1.3.4换向器绝缘结构换向器片间云母在换向器中起片间绝缘和增加换向器弹性的作用,要求含胶量小。一般用1.0毫米或1.1毫米换向器云母板5531。F级绝缘则用硅有机云母板。V型环在换向器中承受对地电压,并承受压圈对换向片的束紧力,一般是由5238虫胶云母板热压成型,厚度1000伏级为2毫米。F级绝缘为硅有机型云母板。为了防止尘埃进入换向器3°面,换向器进行了端面涂封,涂封材料为环氧酚醛漆,F级绝缘用1053硅有机树脂。为防止V型环外露部分在运行中飞散,在V型环上扎以玻璃丝绳,玻璃丝带或无纬玻璃丝带。

1.3.5电枢整体绝缘处理电枢在下线完后,浸三次1032或3404漆,以提高防潮性能,并在表面喷1321或8363灰瓷漆,以改善防灰、防油和防霉性能。

1.4直流电机主极绝缘结构极身绝缘:承受主极线圈对地电压。

1.4.1成型极身绝缘,由环氧酚醛玻璃布热压成成型极身绝缘,厚度4毫米。

1.4.2用0.1毫米玻璃丝布围绕2层,再在外面围绕0.2毫米醇酸云母箔5层,最外层围绕0.1毫米玻璃丝布2层。层间均刷环氧酚醛漆,每层均用电熨斗熨平。

1.4.3补偿绕组绝缘对地绝缘0.14毫米云母带半叠绕三层,0.1毫米玻璃丝带半叠绕一层(或用0.17*25B级胶粉云母带5438半叠绕四层,热压成型)。槽绝缘0.2毫米聚脂薄膜玻璃漆布复合绝缘1层,槽底垫条0.5毫米环氧酚醛玻璃布板一层。

1.4.4主极绕组绝缘单层式主极绕组,匝间垫0.1毫米环氧酚醛玻璃布四层,热压成型,首、末两匝加包0.14毫米云母带与0.1毫米玻璃丝带各一层。多层式主极绕组,匝间绝缘用高强度漆包双玻璃丝包线或双玻璃丝包线。外面半叠绕0.1毫米玻璃丝带一层作保护绝缘,并浸3404漆—次。串联绕组(均衡绕组)0.14毫米云母带半叠绕3层,0.1毫米玻璃丝带半叠绕一层,并浸3404漆(1千伏级)。绝缘垫圈,3240环氧酚醛玻璃布板,刷3404漆。厚度根据爬电距离而定。主极整体绝缘处理:浸3404漆一次,以增加导热性和防潮能力。

1.5换向极绝缘结构换向极绕组固定形式因电机容量、用途不同而有多种形式,其绝缘结构也略有区别。换向极绕组一般系包绕铜线绕组,无层间绝缘。极身绝缘和主极极身包绕方式完全相同。螺杆绝缘有两种:—种是用壁厚1.0~2.0毫米环氧酚醛玻璃布管作为螺杆绝缘,另一种在螺杆上包绕0.1毫米环氧酚醛玻璃布热压成型。绝缘垫块与三角垫块,均为3240环氧酚醛玻璃布板。线夹绝缘:线夹处换向极绕组用0.14毫米云母带半叠绕三层,0.1毫米玻璃丝带半叠绕一层,宽度各边大于线夹各边50毫米。固定夹绝缘:0.3毫米柔软云母板二层(在内),0.2毫米绝缘纸板二层<在外),宽度大于固定夹各边12.5毫米,并用直径Φl玻璃丝绳扎紧。

1.6直流电机其它部分绝缘

1.6.1电枢冲片绝缘B级绝缘刷1611硅钢片漆。H级绝缘刷1053硅有机漆。

1.6.2电枢、主极、换向极拉紧螺杆绝缘B级绝缘一般用5438B级胶粉云母带连续包绕并热压成型。F级用薄膜带连续包绕。

2高压交流电机定子绝缘

2.1高压交流电机定子绝缘结构:由于电压等级、绝缘材料和电机容量不同,对运行可靠性影响很大。定子的绝缘结构种类是繁多的。交流高压电机分3000伏、6000伏、10000伏(10500伏)三种电压等级。绝缘等级有A级、B级、F级三种。目前A级绝缘定子绕组已经淘汰,大量的应用B级和F级绝缘。由于各制造厂工艺习惯、工艺装备和绝缘材料来源不同,所以目前生产的B级绝缘高压定子绝缘结构,基本上分三种类型:复合式绝缘结构。直线部分采用5438B级胶粉云母带热压成型,端部采用黄玻璃漆布带(或沥青云母带、自粘性硅橡胶带等)连续半叠绕。原因是B级胶绝缘在固化后弹性较差,嵌线困难,而且端部易受机械损伤,所以端部采用其他绝缘材料,但是复合式绝缘结构的端部电气强度和防潮性能较差。目前国内大多数制造厂还采用复合式结构。全部粉云母端部软下线结构。整个线圈对地绝缘用B级胶粉云母带,直线部分热压成型,端部不固化,外包一层热缩性树脂带,软下线,下线后两端浸漆处理。全部粉云母整体浸漆绝缘结构。线圈直线部分和端部对地绝缘都用粉云母带,线圈不固化直接下线,下线后定子整体浸漆。目前国外(美国、德国、日本等)生产的高压交流电机全部为F级。

2.2高压交流电机匝间绝缘3千伏级:一般采用双玻璃丝包线和三玻璃丝包线,层间垫云母带一层,刷环氧酚醛漆热压成型。6千伏级:采用双玻璃丝包、双玻璃丝包高强度漆包线,外半叠绕一层云母带,并刷环氧酚醛漆热压成型。10千伏级:比6千伏级多包一层云母带。

2.3定子对地绝缘由于绝缘工艺、绝缘材料、电压等级不同,绝缘结构和绝缘处理方法也不同。

2.4同步机磁极绕组绝缘极身绝缘、匝间绝缘、绝缘垫圈几个部分的绝缘材料和处理方式,与直流电机主极绝缘完全相同。

3电机绝缘趋势

由于材料和工艺的进步,我国高压交流电机绝缘已经用环氧基浸渍漆平-B级胶粉云母带组成的热弹性绝缘(所谓热弹性绝缘是指:使绝缘结构的热膨胀系数和铜的热膨胀系数几乎相等,因而使绝缘是和铜一起膨胀和收缩,绝缘结构能始终附着在铜线表面没有相对位移,因而不会产生空隙)。全部代替了以往的沥青胶+黑云母带的A级绝缘结构,并向定子整体浸漆发展。这样不仅提高了绝缘等级和绝缘电气强度,而且缩小了电机体积,节约了大片云母材料,进一步提高了绝缘可靠性。

直流电机绝缘发展趋势是提高绝缘等级并使绝缘薄膜化,其措施是:首先采用芳香族和杂环族树脂纤维和薄膜(如聚酰胺、聚酰亚胺、聚酰胺亚胺等)来作为电机匝间绝缘和主绝缘。其次采用耐热浸渍漆(如二苯醚和改良硅有机漆)。这些芳香族和杂环族薄膜具有电气强度高、耐温高、强度好、抗腐蚀及耐辐射等优点,采用薄膜绝缘后,不仅绝缘等级可以提高到F级和H级(薄膜材料本身为H级绝缘,在制造大型直流电机中,考虑到浸渍漆,加热炉和其他配套材料易解决,所以一般做成F级),使绝缘厚度大大减小,电机体积缩小,因此电机的技术指标和性能,有很大改进。

许多工厂在采用H级薄膜代替原来B级绝缘方面,已经做了不少工作,效果显著,取得了一定的经验。国内各电机制造厂目前已经开始试制F级薄膜绝缘的大型电机。

参考文献:

[1]《大中型电机的安装与维修》.

[2]《电机绝缘结构维修》.

交流电机范文篇7

【关键字】驱动器;控制器;电池管理系统

一、设计背景

公铁两用车的电气控制部分主要组成如图1所示:电机驱动控制器:电机驱动控制器是整车的核心部件,控制器接收来自操纵台的的各种主令信号(主令信号主要包括加速、制动、启动、紧急制动等指令),以及各传感器传送的检测信号,通过CAN总线通讯向变频器发送转矩、转速指令控制电机。通过CAN总线把车速、电池电量等信息在显示器上显示。变频器:两用车配备的变频器用于控制牵引电机,对电机采取转矩控制。变频器具有丰富的保护功能,包括过流保护、过压保护和过热保护等,保证驱动系统的安全可靠运行。主要控制对象为驱动电机和油泵电机,也是整车最关键部分,下面分别介绍目前该车的电机主要参数。1.牵引电机。牵引电机选用意大利SME公司生产的MC225型交流电机,该交流电机额定电压48V,额定功率16kW,额定转矩150Nm,额定转速1500r/min,峰值功率可达到47.8kW,峰值转矩314Nm,最高转速4500r/min。牵引电机是鼠笼转子交流电机,寿命长,不需要维护;电机具有0速输出最大转矩的能力,从而获得最大起动转矩。由变频器控制主电机,对电机的控制方式有转矩控制和转速控制2种,可以根据指令切换;回馈制动功能将电机制动的能量给电池充电,提高了电能利用率,延长电池一次充电的工作时间;变频器具有丰富的保护功能,包括过流保护、过压保护和过热保护等,保证驱动系统安全可靠运行。2.油泵电机。除牵引电机外,系统中还有一个泵电机用来驱动油泵。泵电机采用意大利SME公司生产的MT719B2型,额定功率10kW,额定转速1500rpm,可以为导轮、助力转向器和刹车油泵提供动力。

二、设计思路

通过对被控制对象的分析,需要实现一套大扭矩的电动车。电气系统部分的核心在于驱动电机控制,需要实现转矩控制,调频调速,制动控制,能量回收等,驱动电机为交流异步电机。纵观市场,此类控制器也比较多,应用广泛,如叉车、牵引车、代步车、景区摆渡车等类电动车,技术比较成熟,通过系统集成方式完成一套控制系统设计。

三、方案设计

该两用车的电气系统[1],主要包括整车控制器VCU、电池管理系统BMS、驱动电机控制器、油泵电机控制器、操控系统、显示器和灯光组等,两用车电气控制系统框图如图2:3.高安全性和可靠性a.金属基座提供了极佳的散热性,提升了控制器的可靠性。b.自动防故障功率器件设计。c.硬件看门狗。d.电池电极反接保护。e.输出驱动的短路保护。f.过热保护,警告以及自动关机设置提供了对电机以及电控的保护。g.IP65防护标准,满足恶劣环境的使用要求。4.接口与控制谋型号的123x系列电机控制器使用非常方便,连接好主回路和控制IO就可以完成对电机控制,具体接线图如图3所示。图3123x控制器接线图图中详细给出了控制器的配线图,提供的接口完全满足系统的控制要求。另外该控制器提供了数据显示功能,可以作为选配。5.型号选择123x系列提供了多个型号选择,根据电机型号匹配,驱动电机控制器选择1238-56xx比较合适,最大输出功率可以达到41KW。泵电机控制器选择1236-53xx,最大输出功率可以达到16KW。

3.1电机控制器

通过对市场上蓄电池交流电机控制的比较,决定选择谋公司的123x系列控制器,下面具体介绍该款控制器的特性与应用。1.先进的设计和功能a.主要功能,操作和系统都要优于直流系统。b.0到300赫兹的频率范围,低噪音运行。c.24到80伏的电池电压系统,2分钟运行电流达到350到850安培。d.强大的操作系统,保证了车辆控制,电机控制和用户端程序同时运行。e.先进的脉宽调制技术,保证了电池被高效率利用,减少了电机能耗和扭矩转换的损失。f.科蒂斯的交流控制器可以适配任何型号的交流电机。g.内置了电池电量状态和计时器功能。h.现场调试编程,内置闪存可随时下载软件。2.优异的驱动控制a.使用矢量控制技术,结合科蒂斯的运算法则,保证了控制器能始终提供峰值扭矩和最佳效率。b.扭矩和速度的工作区域非常宽广,再生性能也非常完美。c.内部闭环控制的速度和扭矩模式保证了最优性能,而不需要任何其它的装置。d.通过编程参数设置,调节驱动和制动性能至最佳。e.扭矩控制模式提供独特的性能,保证了平稳转换,并在任何状态下都可以积极响应。f.独有的泵控模式,对液压变化反应敏捷。

3.2整车控制器

整车控制器主要完成和模拟的协调、控制、检测等功能,需要自带的通讯接口(CAN、RS485、RS422),IO接口、模拟输入输出等,主要用于完成各种指示灯、照明灯、报警灯、喇叭等的控制和系统故障的检测等,完成的任务有单一和连锁的,要具有仿制误操作的考虑。整车控制器可以选择在工业中大量使用的稳定可靠的PLC或者自研相应控制主板。最后根据控制逻辑编程实现相应功能。方案中选择经常使用的谋厂家CX5040型号。采用PLC优点就是系统搭建方便,方便整机部署调试。

3.3电源转化HV-LV

HV-LV高压转低压模块主要完成低压设备的供电[2],为了增加抗干扰,系统选择隔离DC-DC来实现。低压负载主要为图4.1中蓝色代表的模块,主要为模块中的电路板、喇叭、指示灯等,根据对负载的计算,选择功率为200W的DC/DC电源模块。此类模块市场比较多,选择是要充分考虑可靠性和冗余量,这里选择谋公司的300WLD300E-M电源,该模块工作可靠,可工作在-40℃~85℃之间,安装方便,利于散热,适合汽车电子使用。

3.4电池管理系统(BMS)

电池管理系统是连接车载动力电池和电动汽车的重要纽带[3],其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。传感器选择某公司的YX-S蓄电池智能参数传感器单体型,主控通过485接口连接各蓄电池传感器,可精确对蓄电池进行管理,保证蓄电池使用安全性可靠。

3.5安全控制

安全控制主要由电锁、急停开关、充电互锁开关组成,电锁和电动车的电锁功能一样;急停开关提供紧急情况下的断电,急停开关位于车前后左右四个位置;充电互锁开关主要解决行驶和充电不能同时进行,通过双向开关完成。

3.6蓄电池

蓄电池选择48V/125Ah电池,循环不小于1500次充放电,通过10块电池并联使用,可做到48V/1250Ah,保证最大功率和续航能够满足整车电器需求。

四、结束语

公铁两用牵引车系统设计通过对整车电气需求的分析,采用系统集成方式选择匹配的电控设备,完成一正套电气系统设计。设计充分考虑了运行指标,操控性,安全性,可靠性等。实际技术指标还需要配合公铁两用牵引车机械结构进行整机调试,优化电气和机械结构的配合,获取实际的测试参数。王文伟(1984-10),男,汉族,陕西黄陵,本科,工程师,主要从事自动化控制研究。

参考文献

[1]莱夫.汽车电气与电子[M].北京:北京理工大学出版社,2014:22.

[2]徐德鸿,马皓,汪槱生.电力电子技术[M].北京:科学出版社,2006:31.

交流电机范文篇8

直流电机电枢绝缘结构,是由绕组绝缘、换向器绝缘、支架绝缘、扎钢丝绝缘和层间绝缘等组成。由于采用的电枢绕组的型式,电压等级和绑扎材料不同,电枢绝缘结构某些地方有所变化。

1.1电枢绕组绝缘电枢绕组绝缘结构随绕组结构型式不同而有所区别。为了提高防潮性能,大型直流电机电枢绕组一般采用连续式绝缘。

1.1.1匝间绝缘作用是绝缘同一线圈中的相邻元件,只承受片间电压。大型直流电机匝间绝缘一般采用裸铜线外半叠包一层0.1毫米云母带,或直接采用高强度漆包双玻璃丝包线。中、小型电机一般采用双玻璃丝包线即可。在F级薄膜绝缘大型电机可采用0.05毫米薄膜半叠包一层并将薄膜“烧结”在导体上,或加包一层玻璃丝带。中、小型电机半叠包0.05毫米薄膜一层或将薄膜“烧结”在导体上。

1.1.2对地绝缘主绝缘,承受线圈对铁心间的全电压。1000伏级大型电机:0.14毫米醇酸云母带半叠绕三层。660伏级中型电机:0.14毫米醇酸云母带半叠绕二层(连续式绝缘)或0.2毫米云母箔卷包2层(套筒式绝缘)。F级薄膜大型电机:0.05毫米聚酰亚胺薄膜半叠绕四层。中、小型F级或H级电机:0.05毫米聚酰亚胺薄膜半叠绕2~3层。

1.1.3保护布带主要保护主绝缘免受机械损伤。一般B级绝缘电机采用0.1毫米玻璃丝带半叠绕或平绕一层。F级薄膜绝缘一般不用保护布带,有时为可靠起见,也用0.1毫米玻璃丝带半叠绕一层。

1.1.4电枢绕组端部绝缘绝缘方式和材料一般和直线部分相同,仅是对地绝缘比直线部分可少包1-2层。虽然端部对地和层间都存在全电压,但主要是因为有层间绝缘和支架绝缘的存在,同时也为了改善冷却条件,所以绕组端部绝缘制造时适当减少。

1.2线圈在槽内的保护绝缘

1.2.1槽绝缘防止槽内毛刺或槽口尖棱划伤线圈。B级绝缘:0.2毫米聚脂薄膜一黄玻璃漆布复合绝缘、0.2毫米聚脂薄膜一青壳纸复合绝缘,或用0.2毫米青壳纸代用。F级薄膜绝缘:0.15毫米聚酰亚胺一黄玻璃漆布或0.1毫米聚酰亚胺漆布。

1.2.2槽底垫条和层间垫条保护绕组在下线过程中免受机械损伤。B级绝缘采用0.5毫米醇酸柔软云母板。F级绝缘采用二苯醚玻璃布板或硅有机云母板。

1.3电枢线圈端部固定绝缘结构以端部中间带通风孔四层式蛙绕组为例来说明:

1.3.1支架绝缘大型电机B级绝缘,一般最内层用0.1毫米玻璃丝带半叠绕一层,外面包0.14毫米醇酸云母带半叠绕三层,其绕0.3毫米柔软云母板二层,外面半叠绕0.03毫米聚脂薄膜带和0.1毫米玻璃丝带各一层。F级绝缘一般用硅有机云母带和云母板来代替醇酸云母带。

1.3.2端部层间绝缘承受线圈层间全电压和保护线圈免受相互压伤。B级绝缘一般用0.5毫米衬垫云母板二层,并用0.1毫米玻璃丝布包边,以免运行中飞散。F级绝缘一般用硅有机云母板或F级薄膜。

1.3.3扎钢丝绝使钢丝和绕组绝缘起来,并保护绕组免受钢丝勒伤。靠近绕组先绕0.6毫米黄绝缘纸板一层,外面绕0.5毫米衬垫云母板二层(用玻璃丝布包边),最外面绕1毫米黄绝缘纸板一层,每层都用玻璃丝带扎紧。为防止爬电,扎钢丝绝缘比钢丝箍每边宽8-15毫米。为限制钢丝箍中涡流损耗,每10匝钢丝间应垫0.2毫米石棉纸一层,使之相互隔离。F级绝缘扎钢丝绝缘,则是采用二苯醚玻璃布板和硅有机云母板。如用无纬带绑扎端部,则不用垫任何绝缘。

1.3.4换向器绝缘结构换向器片间云母在换向器中起片间绝缘和增加换向器弹性的作用,要求含胶量小。一般用1.0毫米或1.1毫米换向器云母板5531。F级绝缘则用硅有机云母板。V型环在换向器中承受对地电压,并承受压圈对换向片的束紧力,一般是由5238虫胶云母板热压成型,厚度1000伏级为2毫米。F级绝缘为硅有机型云母板。为了防止尘埃进入换向器3°面,换向器进行了端面涂封,涂封材料为环氧酚醛漆,F级绝缘用1053硅有机树脂。为防止V型环外露部分在运行中飞散,在V型环上扎以玻璃丝绳,玻璃丝带或无纬玻璃丝带。

1.3.5电枢整体绝缘处理电枢在下线完后,浸三次1032或3404漆,以提高防潮性能,并在表面喷1321或8363灰瓷漆,以改善防灰、防油和防霉性能。

1.4直流电机主极绝缘结构极身绝缘:承受主极线圈对地电压。

1.4.1成型极身绝缘,由环氧酚醛玻璃布热压成成型极身绝缘,厚度4毫米。

1.4.2用0.1毫米玻璃丝布围绕2层,再在外面围绕0.2毫米醇酸云母箔5层,最外层围绕0.1毫米玻璃丝布2层。层间均刷环氧酚醛漆,每层均用电熨斗熨平。

1.4.3补偿绕组绝缘对地绝缘0.14毫米云母带半叠绕三层,0.1毫米玻璃丝带半叠绕一层(或用0.17*25B级胶粉云母带5438半叠绕四层,热压成型)。槽绝缘0.2毫米聚脂薄膜玻璃漆布复合绝缘1层,槽底垫条0.5毫米环氧酚醛玻璃布板一层。

1.4.4主极绕组绝缘单层式主极绕组,匝间垫0.1毫米环氧酚醛玻璃布四层,热压成型,首、末两匝加包0.14毫米云母带与0.1毫米玻璃丝带各一层。多层式主极绕组,匝间绝缘用高强度漆包双玻璃丝包线或双玻璃丝包线。外面半叠绕0.1毫米玻璃丝带一层作保护绝缘,并浸3404漆—次。串联绕组(均衡绕组)0.14毫米云母带半叠绕3层,0.1毫米玻璃丝带半叠绕一层,并浸3404漆(1千伏级)。绝缘垫圈,3240环氧酚醛玻璃布板,刷3404漆。厚度根据爬电距离而定。主极整体绝缘处理:浸3404漆一次,以增加导热性和防潮能力。

1.5换向极绝缘结构换向极绕组固定形式因电机容量、用途不同而有多种形式,其绝缘结构也略有区别。换向极绕组一般系包绕铜线绕组,无层间绝缘。极身绝缘和主极极身包绕方式完全相同。螺杆绝缘有两种:—种是用壁厚1.0~2.0毫米环氧酚醛玻璃布管作为螺杆绝缘,另一种在螺杆上包绕0.1毫米环氧酚醛玻璃布热压成型。绝缘垫块与三角垫块,均为3240环氧酚醛玻璃布板。线夹绝缘:线夹处换向极绕组用0.14毫米云母带半叠绕三层,0.1毫米玻璃丝带半叠绕一层,宽度各边大于线夹各边50毫米。固定夹绝缘:0.3毫米柔软云母板二层(在内),0.2毫米绝缘纸板二层<在外),宽度大于固定夹各边12.5毫米,并用直径Φl玻璃丝绳扎紧。

1.6直流电机其它部分绝缘

1.6.1电枢冲片绝缘B级绝缘刷1611硅钢片漆。H级绝缘刷1053硅有机漆。

1.6.2电枢、主极、换向极拉紧螺杆绝缘B级绝缘一般用5438B级胶粉云母带连续包绕并热压成型。F级用薄膜带连续包绕。

2高压交流电机定子绝缘

2.1高压交流电机定子绝缘结构:由于电压等级、绝缘材料和电机容量不同,对运行可靠性影响很大。定子的绝缘结构种类是繁多的。交流高压电机分3000伏、6000伏、10000伏(10500伏)三种电压等级。绝缘等级有A级、B级、F级三种。目前A级绝缘定子绕组已经淘汰,大量的应用B级和F级绝缘。由于各制造厂工艺习惯、工艺装备和绝缘材料来源不同,所以目前生产的B级绝缘高压定子绝缘结构,基本上分三种类型:复合式绝缘结构。直线部分采用5438B级胶粉云母带热压成型,端部采用黄玻璃漆布带(或沥青云母带、自粘性硅橡胶带等)连续半叠绕。原因是B级胶绝缘在固化后弹性较差,嵌线困难,而且端部易受机械损伤,所以端部采用其他绝缘材料,但是复合式绝缘结构的端部电气强度和防潮性能较差。目前国内大多数制造厂还采用复合式结构。全部粉云母端部软下线结构。整个线圈对地绝缘用B级胶粉云母带,直线部分热压成型,端部不固化,外包一层热缩性树脂带,软下线,下线后两端浸漆处理。全部粉云母整体浸漆绝缘结构。线圈直线部分和端部对地绝缘都用粉云母带,线圈不固化直接下线,下线后定子整体浸漆。目前国外(美国、德国、日本等)生产的高压交流电机全部为F级。

2.2高压交流电机匝间绝缘3千伏级:一般采用双玻璃丝包线和三玻璃丝包线,层间垫云母带一层,刷环氧酚醛漆热压成型。6千伏级:采用双玻璃丝包、双玻璃丝包高强度漆包线,外半叠绕一层云母带,并刷环氧酚醛漆热压成型。10千伏级:比6千伏级多包一层云母带。

2.3定子对地绝缘由于绝缘工艺、绝缘材料、电压等级不同,绝缘结构和绝缘处理方法也不同。

2.4同步机磁极绕组绝缘极身绝缘、匝间绝缘、绝缘垫圈几个部分的绝缘材料和处理方式,与直流电机主极绝缘完全相同。

3电机绝缘趋势

由于材料和工艺的进步,我国高压交流电机绝缘已经用环氧基浸渍漆平-B级胶粉云母带组成的热弹性绝缘(所谓热弹性绝缘是指:使绝缘结构的热膨胀系数和铜的热膨胀系数几乎相等,因而使绝缘是和铜一起膨胀和收缩,绝缘结构能始终附着在铜线表面没有相对位移,因而不会产生空隙)。全部代替了以往的沥青胶+黑云母带的A级绝缘结构,并向定子整体浸漆发展。这样不仅提高了绝缘等级和绝缘电气强度,而且缩小了电机体积,节约了大片云母材料,进一步提高了绝缘可靠性。

直流电机绝缘发展趋势是提高绝缘等级并使绝缘薄膜化,其措施是:首先采用芳香族和杂环族树脂纤维和薄膜(如聚酰胺、聚酰亚胺、聚酰胺亚胺等)来作为电机匝间绝缘和主绝缘。其次采用耐热浸渍漆(如二苯醚和改良硅有机漆)。这些芳香族和杂环族薄膜具有电气强度高、耐温高、强度好、抗腐蚀及耐辐射等优点,采用薄膜绝缘后,不仅绝缘等级可以提高到F级和H级(薄膜材料本身为H级绝缘,在制造大型直流电机中,考虑到浸渍漆,加热炉和其他配套材料易解决,所以一般做成F级),使绝缘厚度大大减小,电机体积缩小,因此电机的技术指标和性能,有很大改进。

许多工厂在采用H级薄膜代替原来B级绝缘方面,已经做了不少工作,效果显著,取得了一定的经验。国内各电机制造厂目前已经开始试制F级薄膜绝缘的大型电机。

摘要:简单介绍普通大中型高压交直流电机绝缘的基本结构,制造和修理的工艺过程,以求对工厂企业电机绝缘故障的分析以及维护电机的工作有所帮助。其中一些技术参数在电机的大中修过程中提供参考。

关键词:电机绝缘结构匝间绝缘对地绝缘复合式绝缘

参考文献:

交流电机范文篇9

关键词:逆变器开关函数实时仿真

在交通和某些工业领域中的电力驱动系统的研制过程中,直接使用实际电机系统对新的控制器进行测试,实现起来比较困难,而且费用较高。因此,需要介于离线仿真和实机试验之间的逆变器-交流电机实时仿真器,与实际控制器硬件相连,在闭环条件下对实际控制器进行实时测试。由于这种实时仿真系统回路中有实际控制器硬件介入,因此被称为硬件在回路仿真(Hardware-in-the-LoopSimulation)。

尽管在真实系统上进行试验是必不可少的,但是由于采用实机难以进行极限与失效测试,而采用实时仿真器可以自由地给定各种测试条件,测试被测控制器的性能,因此实时仿真器可作为快速控制原型(RapidControlPrototyping)的虚拟试验台,在电机、逆变器、电源和控制器需要同时工作的并行工程中必不可少。

图1电源-滤波-逆变器-交流电机系统

由于目前数字计算机处理速度的限制,不能实现亚微秒级物理模型实时仿真,需要对逆变器开关过程进行理想化处理,因此引入了离散事件系统。离散事件逆变器子系统与连续时间电机子系统耦合,使变流器-电机实时仿真器成为变因果和变结构系统。变因果是指离散开关事件发生前后,描述连续时间电机子系统的动态方程的输入变量与输出变量会变换位置;变结构是指在仿真进程中,离散开关事件引发状态转换,使连续系统结构发生变化。因而需要对动态方程不断地进行调整和初始化[1]。

框图建模工具Simulink是控制工程仿真的工业标准,但Simulink本质上是一种赋值运算,由其方框图描述的系统是因果的。为了能应用Simulink建模工具,应该使变流器-电机实时仿真系统解耦为两个独立子系统,以消除变因果、变结构问题。

作为功能性建模方法之一的开关函数,可用于确定变流器开关器件电压与电流波形计算,以便进行系统优化设计。它在变流器的离线仿真中已得到成功的应用[2~3]。本文应用文献[2]

的开关函数描述法,采用实际控制器输出的PWM开关逻辑信号定义正、负半桥开关函数,建立逆变器的Simulink模型。该模型既可实现实时仿真系统中逆变器与电机模型的解耦,又可以确定逆变器设置的开关死区时间,防止同一桥臂开关管直通。文中还将给出基于dSPACE实时环境的逆变器-异步电机开控制系统实时仿真的实现方法和结果。

图2逆变器系统Simulink框图

1逆变器Simulink模型

双电平三相电压源型逆变器由6个开关管和6个与开关管反向并接的续流二极管组成,见图1。采用实际控制器输出的6个PWM开关逻辑信号a+,b+,c+;a-,b-,c-定义逆变器a,b,c三相正半桥开关函数:

Sfap=1·×a+,SFbp=1×b+,SFcp=1×c+

和负半桥开关函数:

SFan=1×a-,SFbn=1×b-,SFcn=1×c-。

则全桥开关函数为:

SFa=Sfap-SFan,SFb=SFbp-SFbn,SFc=SFcp-SFcn。

逆变器输出端a,b,c与直流电流中点o之间的电压为:uao=0.5VDC×Sfab,ubo=0.5VDC×SFb,uco=0.5VDC×SFc,

其中,VDC为直流环路电压。由此得到线电压为:

uab=uao-ubo,ubc=ubo-uco,uca=uco-uao

相电压为:

uan=uao-uno,ubn=ubo-uno,ucn=uco-uno。

式中,uno=(1/3)(uao+ubo+uco)为电机三相绕组中点n与直流电流中点o之间的电压。

正半桥a,b,c相开关器件电流为:

is1=ia×Sfap,is3=ib×SFbp,is5=ic×SFcp

负半桥a,b,c相开关器件电流为:

is4=ia×SFan,is6=ib×SFbn,is2=ic×SFcn

三相电流为:

ia=is1+is4,ib=is3+is6,ic=is5+is2

另外开关电流为:

is1=is1_s-is1_D,iS4=is4_D-is4_s

直流电流为:

iDC=is1+is3+is5

其中,is1_s,is1_D,is4_s,is4_D分别为a相正、负半桥开关管和续流二极管电流。据此,可建立逆变器的Simulink框图模型。图2(a)~(d)分别是逆变器模型顶层和底层的Simulink框图。

2实时仿真系统实现

著名的机电控制系统开发平台较是基于MATLAB/Simulink/Real-TimeWorkshop[4~5]开发的dSPACE实时系统。本文的相关课题选用单板dSPACE系统DS1103。

图3宿主计算机/目标计算机结构

DS1103采用32位精简指令集处理器PowerPC604e进行浮点运算。精简指令集处理器采用小指令集、多寄存器结构,指令执行简单快速;统一用单周期指令,克服了复杂指令集处理器周期指令有长有短,造成运行中偶发不确定性,致使运行失常的弊端。

DS1103板插入PC机主板的ISA扩展槽中,由PC机提供电源,所有的实时计算都是由DS1103独立执行,而dSAPCE的试验工具软件则并行运行于PC主机上。宿主计算机/目标计算机结构如图3所示。

Real-TimeInterface(RTI)是dSPACE系统的实时实现软件,它对实时代码生成软件Real-TimeWorkshop进行扩展,集成了dSPACE系统I/O硬件实时模型,可实现从Simulink模型到dSPACE系统实时C代码的自动生成同,生成的实时代码包括实时内核和应用代码[6]。RTI还根据信号和参数产生一个变量文件,可以用dSPACE的试验工具软件ControlDesk进行访问[7]。

在功能强大的实时代码实现软件RTI与界面友好的试验软件ControlDesk支持下,可以很快地实现电力驱动系统快速控制原型与硬件在回路仿真测试。图4是采上述的逆变器模型与dSPACE系统I/O硬件模型组建的逆变器-交流电机系统Simulink框图。图中下部是逆变器-异步电机系统模型,作为实时任务T1,模型具有实际控制器的硬件接口,可输入6路实际的PWM开关信号,输出电流、电压等模拟信号;上部是PWM控制器模型,作为实时任务T2,模型由DSP控制器F240硬件产生实时PWM信号。T1与T2以异步采样模式工作,构成两定时器任务系统。为减少采样控制器输出引发的可变延时造成抖动的影响,设置T1的采样速率远高于T2的采样速率。

3实时仿真结果

系统仿真是针对某电动汽车电力驱动系统的,其中逆变器参数为:PWM开关频率fPWM=1kHz,开关死区时间=7μs;直流电源与滤波参数为:电池开路电压Ebo=288V,电源内阻Rb=0.03Ω,滤波电容C=10000μF;异步电机参数为:132V,182A,50Hz,45kW,2900rpm;负载转矩=50Nm;交流电源参数为:相电压幅值=100V,频率=50Hz。实时仿真采用Euler数值积分方法(ODE1),T1采样周期=11μs,T2采样周期=PWM周期=1ms。

图4逆变器-交流电机Simulink框图

图5是相电压uan、相电流ia、a相上半桥开关电流is1、S1开关管电流is1_s、S1续流二极管电流is1_D、直流环路电压VDC、直流环路电流iDC、任务总执行时间T1/tTT和T2/tTT的实时仿真波形。图中还显示出逆变器的输出电压空间矢量的矢端轨迹为正六边形,并内含从零电压矢量至六边形顶点的连线;而电机的转子磁链空间矢量的矢端轨为圆形。实时仿真系统经长时间连续运行,没有出现数值不稳定问题。

作为比较,对相同系统参数的逆变器-交流电机系统进行步长为100ns的离线仿真,并采用与实时仿真相同的Simulink模型(无硬件接口)和数值积分方法。结果是更小的步长并没有对仿真精度有明显的改进,这表明步长为11μs的实时仿真已经具有较高的仿真精度。

交流电机范文篇10

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1、整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

2、逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

3、变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

二、电力电子技术的应用

1、一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。

4、电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

5、家用电器

照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

6、其他