钢筋砼范文10篇

时间:2023-03-28 04:04:21

钢筋砼

钢筋砼范文篇1

一.目前我国墙外保温技术常见问题

外墙保温技术优点众多,可避免外墙受冷时结露、可延长建筑结构的整体使用寿命、可避免“热桥”现象的出现、可大幅度的减少温度应力、不会占据很多的使用面积等等;但它也有着自身突出的“硬伤”,其中比较突出的是:第一,火灾隐患,尽管现在广泛的应用自熄型乙烯板,但当发生火灾时保温层内的聚苯乙烯仍会被燃烧,导致火势蔓延;第二,在高层建筑中,高楼层尤其是背风面上所要承受的风力非常巨大,连带负压所产生的吸引力有时会造成保温板脱落的情况;第三,在室内湿度比较大的地区,容易由于水汽外渗导致墙体与保温层间产生“结露”现象。而钢筋砼墙体由于自身的特点,可以大大减小或避免这些外墙保温施工中常见的硬伤。

二,钢筋砼墙体外保温防火设计及施工要求

1.对于墙体外保温的防火设计要求对常规粘贴式聚苯板无防火设计的使用只可用于十层以下的建筑施工项目中;其次,10—19层的建筑施工项目所才用的墙外保温用聚苯板必须具备防火设计。对于墙外保温的防火设计通常会采用一些防火涂料是吸水性和不透水性比较适宜的涂料,这样可以使水蒸气顺利的进行排除。

2.所选材料要求对所选用做保温层的聚合物的要求,常规的钢筋砼墙体外保温施工中选用的聚合物材料有:第一种是粉末状的,这类聚合物在施工现场直接按相应的比例放入水,然后进行充分的搅拌便可以使用;第二种是由部分粉末和液态胶体组成的,使用时用水泥按比例的混合粉末以及液态胶体成分,再进行充分的搅拌就可以使用;第三种是由石英沙,水泥以及供应商提供的悬浊液组成,将这三者按比例进行融合搅拌即可。通常在钢筋砼墙体外保温施工中选用的网状编织物,是由防水聚合物和耐碱纤维编织混合而成的,它具有增强墙体外保温强度及增强其抗裂能力的作用。最后,锚固件的选择,在钢筋砼墙体外保温施工中,锚固件是用来固定保温板进行拼接的,常选用的有塑胶钉和有防腐蚀涂层的金属钉。

3.钢筋砼墙体外保温施工施工要求出于对钢筋砼墙体外保温施工后裂缝产生情况因素的考虑,施工操作进行时气温应满足大干或等于5~C;墙外风力小于或等于5级的前提。要避免施工作业墙表温度过高,切尽量避免雨季施工。进行钢筋砼墙体外保温施工前必须要保证建筑物的消防系统、各种管线、墙体中必须的的各种埋件、门/窗lZ:l均以施工完毕并经过检验。对钢筋砼墙体外保温施工的基墙要求,必须保证其表面光滑,无凸凹;保证其与找平层粘连牢固无“脱层”现象和“空鼓”现象的存在;同时基墙墙体湿度应达标,过干或过湿都会影响钢筋砼墙体外保温施工的进行。钢筋砼墙体外保温施_[中相关粘贴技术要求:在施工前要进行聚合物胶的调配工作,采用手动或电动搅拌器对配制好的聚合物胶进行充分搅拌,观察其粘稠程度用水进行找平处理,然后静放几分钟后,重复一次,其粘稠度以不流淌,黏度适中为宜。而聚合物胶的调配量,以3小时内可用完为标准。当采用条粘法时,需要用锯齿胶刀,在整块板面均匀涂满胶液形成胶条,此方法效果好,但对基墙的平整度要求比较高,视情况而用。

三.钢筋砼墙体外保温的具体施工方法

在完成钢筋砼骨架后在它的外侧覆盖一层保温板,然后再依次的进行常规的支模和浇注砼程序,这样的就可以使钢筋砼、保温板的符合结构在完成拆模工序时与外墙体融合为一,最后再对保温板进行常规的外墙装饰步骤。

1)根据具体的建筑施工要求设计并加Ⅲ[出外墙所需求的钢筋同时根据窗lZl的相关数据加工或拼接成各种所需求规格的保温板,有对接需求的地方必须加工成企iZl板,并对其进行细致的编号,方便施工过程的进行。将施工中所要涉及的部位进行基层清洁。

2)根据外墙墙体的模板进行保温板的安装所有的保温板对接处必须用胶粘进行密实处理,防止缝隙出现,其中当保温板进行拼按时要注意锚固;当进行锚固时,如出现锚筋伸出钢筋砼墙体外的情况时,一定要记得对外延部分补刷防锈涂层;其中当钢筋砼外砼浇筑到建筑顶层标高时,要在墙体外侧留出与楼板厚度相同的企IZl;其中在各规格模板安装的过程中要注意模板的校准工作,以保证模板拼接的坚固性和紧密性,在此过程中切忌保温板与模板的相珏压靠。

3)进行钢筋砼浇筑时要注意层次要做到分期,均匀,连续,每一层浇注时不可过薄或过厚,钢筋砼浇筑下料时要从两侧同时进行,并保证下料的高度在同一水

平线。当浇筑高度达到设计要求时将上表面进行平齐处理,浇筑完成后进行监测当砼强度达到标准时可进行拆模步骤,南外而内,要注意对边、角等部位的修整工作。如出现部分保温板材的掉落或缺失,则要及时的用相应的保温材料进行添补。

钢筋砼范文篇2

论文摘要:建筑结构产生裂缝是很普遍的现象,其中最常见的要数钢筋砼构件以及砖墙裂缝。本文分析了钢筋砼结构裂缝产生的八种原因,并给出了七种预防措施。

建筑结构产生裂缝是很普遍的现象,从理论上说,混凝土结构尤其是受弯构件总是带裂缝工作的,在使用荷载不大的情况下,没有裂缝隙或这类结构性裂缝隙非常细微,不易为肉眼所察觉。但在现实的建筑中,混凝土结构会出现各种各样的裂缝,其中最常见的要数钢筋砼构件以及砖墙裂缝。在这里主要讨论钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:

1钢筋砼常见裂缝原因分析

1.1材料质量

材料质量问题引起的裂缝较常见的原因是水泥、砂、石等质量不好,若工程上用了这等不合格的材料就会产生“豆腐渣工程”。所以说只有材料的质量关把好了,工程质量才会在根本上得到保证。

1.2施工工艺

施工工艺涉及的面很广,不可能一一叙述,一般常涉用到的有:

水分蒸发、水泥结石的砼干缩通常是导致砼裂缝的重要原因。砼是一种人造混合材料,其质量好坏的一个重要标志是成型后砼的均匀性和密实程度。因此砼的搅拌、运输、浇捣、振实各道工序中的任何缺陷和疏漏,都可能是裂缝产生的直接或间接原因。模板构造不当,漏水、漏浆、支撑刚度不足、支撑的地基下沉、过早拆模等都可能造成砼开裂。施工过程中,钢筋表面污染、砼保证层太小或太大,浇筑中碰撞钢筋使其移位等都可能引起裂缝,施工控制不严,超载堆荷,也可能导致出现裂缝。砼养护,非凡是早期养护质量与裂缝的关系密切,混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小,另外水泥在水化及硬化过程中,散发大量热量,使砼内外部产生温差,超过一定值时,因砼的收缩不一致而产生裂缝。避免在极端天气条件下施工,可以减少砼结构的开裂情况。

1.3地基变形

在钢筋砼结构中,造成开裂主要原因是不均匀沉降。裂缝的大小、外形、方向决定于地基变形的情况,由于地基变形造成的应力相对较大,使得裂缝一般是贯穿性的。

1.4温度变形

砼具有热胀冷缩的性质,其线膨胀系数一般为1×10-5/0C。当环境温度发生变化时,就会产生温度变形,由此产生附加应力,当这种应力超过砼的抗拉强度时,就会产生裂缝。在工程中,这类裂缝较多见,譬如现浇屋面板上的裂缝,大体积砼的裂缝等。

1.5湿度变形

砼在空气中结硬时,体积会逐渐减小,一般谓之干缩。收缩裂缝较普遍,常见于现浇墙板式结构、现浇框架结构等,通常是因为养护不良造成。砼的收缩值一般为0.2~0.4‰,其发展规律是早期快、后期缓慢。因此对于超长的建筑物或构筑物,通常是掺加微膨胀剂等,这样可基本解决砼的早期干缩问题。

1.6结构受荷

结构受荷后产生裂缝的因素很多,施工中和使用中都可能出现裂缝。例如早期受震、拆模过早或方法不当、构件堆放、运输、吊装时的垫块或吊点位置不当、施工超载、张拉预应力值过大等均可能产生裂缝。而最常见的是钢筋砼梁、板受弯构件,在使用荷载作用下往往会出现不同程度的裂缝,对那些宽度超过规范规定的裂缝,以及不答应出现裂缝则应认为有害,需加以认真分析,慎重处理。

1.7设计欠周全。如截面不够、梁的跨度过大、高度偏小,或者由于计算错误,受力钢筋截面偏小或板太薄、配筋位置不当、节点不合理、结构构件断面突变或因开洞、留槽引起应力集中,构造处理不当,现浇主梁在搁次梁处如没有设附加箍筋,或附加吊筋以及各种结构缝设置不当等因素均轻易导致砼开裂。

2预防措施

通过以上分析,在工程裂缝中有很大一部分是可以通过设计手段、施工手段来克服。

2.1材料选用

水泥:应选用水化热较低的水泥,严禁使用安定性不合格的水泥。

粗骨料:宜用表面粗糙、质地坚硬的石料、级配良好、空隙率小、无碱

性反应;有害物质及粘土含量不超过规定。

细骨料:宜用颗粒较粗、空隙较小、含泥量较低的中砂。

外掺加料:宜采用减水剂等外加剂,以改善砼工作性能,降低用水量,

减少收缩。

2.2配料

配合比设计:应采用低水灰比、低用水量,以减少水泥用量。禁止任意增加水泥用量。配制砼时计量应准确,要严格控制水灰比和水泥用量,搅拌均匀,离析的砼必须重新拌匀后,方可浇筑。2.3配筋

钢筋的配置应严格按施工图施工,尤应重视以下各点:

钢筋品种、规格、数量的改变、代用,必须考虑对构件抗裂性能的影响。钢筋的位置要正确,保护层过大或过小都可能导致砼开裂,钢筋间距过大,易引起钢筋之间的砼开裂。

2.4模板工程

钢筋砼结构裂缝的预防,在模板工程中应注重以下几点:

模板构造要合理,以防止模板各杆件间的变形不同而导致砼裂缝。模板和支架要有足够的刚度,防止施工荷载(非凡是动荷载)作用下,模板变形过大造成开裂。合理把握拆模时机,拆模时间过早,应保证早龄期砼不损坏或不开裂,但也不能太晚,尽可能不要错过砼水化热峰值,即不要错过最佳养护介入时机。

2.5砼浇筑

砼浇筑时应防止离析现象,振捣应均匀、适度。加强砼的早期养护,并适度延长养护时间,在气温高、湿度低或风速大的条件下,更应及早进行喷水养护,在浇水养护有因难时,或者不能保证其充分湿润时,可采用覆盖保湿材料等方法。

2.6设计构造

建筑平面选型时在满足使用功能要求的前提下,力求简单,平面复杂的建筑物,轻易产生扭曲等附加应力而造成墙体及楼板开裂。合理布置纵横墙,纵墙开洞应尽可能小。控制建筑物有长高比,长高比越小,整体刚度越大,调整不均匀沉降的能力越强。合理地调整各部分承重结构的受力情况,使荷载分布均匀,尽量防止受力过于集中。减少地基的不均匀沉降,除了前述的措施外,在基础设计中可以采取调整基础的埋深度,不同的地基计算强度和采用不同的垫层厚度等方法,来调整地基的不均匀变形。适当加强基础有刚度和强度。层层设置圈梁、构造柱,可以增加建筑物的整体性,提高砖石砌体的抗剪、抗拉强度,防止或减少裂缝,即使出现了裂缝,也能阻止其进一步发展。正确地设置沉降缝。沉降缝位置和缝宽的选定应合适,构造要合理,可以和其结构缝合并设置。限制伸缩缝间距。对体形复杂、地基不均匀沉降值大的建筑物更应严格控制,同样,也可以和其它结构缝合并使用。部分窗台砌体应加强。对宽大的窗台下部宜设置钢筋砼梁,以适应窗台的变形,防止窗台处产生竖直裂缝。

2.7施工技术

加强地基的检查与验收工作,基坑开挖后应及时通知勘察及设计单位到现场验收,对较复杂的地基,设计方在基坑开挖后应要求勘察补钻探,当探出有不利的地质情况时,必须先对其加固处理,并经验收合格后,方可进行下一步施工。开挖基槽时,要注重不扰动其原状结构。合理安排施工顺序。当相邻建(构)筑物间距较近时,一般应先施工较

钢筋砼范文篇3

关键词:建筑结构钢筋砼结构裂缝产生原因及预防措施

建筑结构产生裂缝是很普遍的现象,从理论上说,混凝土结构尤其是受弯构件总是带裂缝工作的,在使用荷载不大的情况下,没有裂缝隙或这类结构性裂缝隙非常细微,不易为肉眼所察觉。但在现实的建筑中,混凝土结构会出现各种各样的裂缝,其中最常见的要数钢筋砼构件以及砖墙裂缝。在这里主要讨论钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:

一.钢筋砼常见裂缝原因分析

1、材料质量

材料质量问题引起的裂缝较常见的原因是水泥、砂、石等质量不好,若工程上用了这等不合格的材料就会产生“豆腐渣工程”。所以说只有材料的质量关把好了,工程质量才会在根本上得到保证。

2、施工工艺

施工工艺涉及的面很广,不可能一一叙述,一般常涉用到的有:

(1)、水分蒸发、水泥结石的砼干缩通常是导致砼裂缝的重要原因。

(2)、砼是一种人造混合材料,其质量好坏的一个重要标志是成型后砼的均匀性和密实程度。因此砼的搅拌、运输、浇捣、振实各道工序中的任何缺陷和疏漏,都可能是裂缝产生的直接或间接原因。

(3)、模板构造不当,漏水、漏浆、支撑刚度不足、支撑的地基下沉、过早拆模等都可能造成砼开裂。施工过程中,钢筋表面污染、砼保证层太小或太大,浇筑中碰撞钢筋使其移位等都可能引起裂缝,施工控制不严,超载堆荷,也可能导致出现裂缝。

(4)、砼养护,特别是早期养护质量与裂缝的关系密切,混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小,另外水泥在水化及硬化过程中,散发大量热量,使砼内外部产生温差,超过一定值时,因砼的收缩不一致而产生裂缝。

(5)、避免在极端天气条件下施工,可以减少砼结构的开裂情况。

3、地基变形

在钢筋砼结构中,造成开裂主要原因是不均匀沉降。裂缝的大小、形状、方向决定于地基变形的情况,由于地基变形造成的应力相对较大,使得裂缝一般是贯穿性的。

4、温度变形

砼具有热胀冷缩的性质,其线膨胀系数一般为1×10-5/0C。当环境温度发生变化时,就会产生温度变形,由此产生附加应力,当这种应力超过砼的抗拉强度时,就会产生裂缝。在工程中,这类裂缝较多见,譬如现浇屋面板上的裂缝,大体积砼的裂缝等。

5、湿度变形

砼在空气中结硬时,体积会逐渐减小,一般谓之干缩。收缩裂缝较普遍,常见于现浇墙板式结构、现浇框架结构等,通常是因为养护不良造成。砼的收缩值一般为0.2~0.4‰,其发展规律是早期快、后期缓慢。因此对于超长的建筑物或构筑物,通常是掺加微膨胀剂等,这样可基本解决砼的早期干缩问题。

6、结构受荷

结构受荷后产生裂缝的因素很多,施工中和使用中都可能出现裂缝。例如早期受震、拆模过早或方法不当、构件堆放、运输、吊装时的垫块或吊点位置不当、施工超载、张拉预应力值过大等均可能产生裂缝。而最常见的是钢筋砼梁、板受弯构件,在使用荷载作用下往往会出现不同程度的裂缝。普通钢筋砼构件在承受了30~40%的设计荷载时,就可能出现裂缝,肉眼一般不易察觉,而构件的极限破坏荷载往往是在设计荷载的1.5倍以上,所以在一般情况下钢筋砼构件是允许带裂缝工作的。在使用过程中,改变原来使用功能,如将办公室改为仓库、屋面加层、使用不当、增大荷载等均可能会引起出现裂缝。在钢筋砼设计规范中,分别不同情况规定裂缝的最大宽度为0.2~0.3mm。对那些宽度超过规范规定的裂缝,以及不允许出现裂缝则应认为有害,需加以认真分析,慎重处理。

7、设计欠周全。如截面不够、梁的跨度过大、高度偏小,或者由于计算错误,受力钢筋截面偏小或板太薄、配筋位置不当、节点不合理、结构构件断面突变或因开洞、留槽引起应力集中,构造处理不当,现浇主梁在搁次梁处如没有设附加箍筋,或附加吊筋以及各种结构缝设置不当等因素均容易导致砼开裂。

8、徐变

砼徐变造成开裂或裂缝发展的例子工程中也和很常见。据文献记载受弯构件截面砼受压徐变,可以使构件变形增大2~3倍,预应力结构因徐变会产生较大的应力损失,降低了结构的抗裂性能。

二.预防措施

通过以上分析,在工程裂缝中有很大一部分是可以通过设计手段、施工手段来克服。

1、材料选用

(1)、水泥:应选用水化热较低的水泥,严禁使用安定性不合格的水泥。

(2)、粗骨料:宜用表面粗糙、质地坚硬的石料、级配良好、空隙率小、无碱

性反应;有害物质及粘土含量不超过规定。

(3)、细骨料:宜用颗粒较粗、空隙较小、含泥量较低的中砂。

(4)、外掺加料:宜采用减水剂等外加剂,以改善砼工作性能,降低用水量,

减少收缩。

2、配料

(1)、配合比设计:应采用低水灰比、低用水量,以减少水泥用量。

(2)、禁止任意增加水泥用量。

(3)、配制砼时计量应准确,要严格控制水灰比和水泥用量,搅拌均匀,离析的砼必须重新拌匀后,方可浇筑。

3、配筋

钢筋的配置应严格按施工图施工,尤应重视以下各点:

(1)、钢筋品种、规格、数量的改变、代用,必须考虑对构件抗裂性能的影响。

(2)、钢筋的位置要正确,保护层过大或过小都可能导致砼开裂,钢筋间距过大,易引起钢筋之间的砼开裂。

4、模板工程

钢筋砼结构裂缝的预防,在模板工程中应注意以下几点:

(1)、模板构造要合理,以防止模板各杆件间的变形不同而导致砼裂缝。

(2)、模板和支架要有足够的刚度,防止施工荷载(特别是动荷载)作用下,模板变形过大造成开裂。

(3)、合理掌握拆模时机,拆模时间过早,应保证早龄期砼不损坏或不开裂,但也不能太晚,尽可能不要错过砼水化热峰值,即不要错过最佳养护介入时机。

5、砼浇筑

(1)、砼浇筑时应防止离析现象,振捣应均匀、适度。

(2)、加强砼的早期养护,并适度延长养护时间,在气温高、湿度低或风速大的条件下,更应及早进行喷水养护,在浇水养护有因难时,或者不能保证其充分湿润时,可采用覆盖保湿材料等方法。

6、设计构造

(1)、建筑平面选型时在满足使用功能要求的前提下,力求简单,平面复杂的建筑物,容易产生扭曲等附加应力而造成墙体及楼板开裂。

(2)、合理布置纵横墙,纵墙开洞应尽可能小。

(3)、控制建筑物有长高比,长高比越小,整体刚度越大,调整不均匀沉降的能力越强。

(4)、合理地调整各部分承重结构的受力情况,使荷载分布均匀,尽量防止受力过于集中。

(5)、减少地基的不均匀沉降,除了前述的措施外,在基础设计中可以采取调整基础的埋深度,不同的地基计算强度和采用不同的垫层厚度等方法,来调整地基的不均匀变形。

(6)、适当加强基础有刚度和强度。

(7)、层层设置圈梁、构造柱,可以增加建筑物的整体性,提高砖石砌体的抗剪、抗拉强度,防止或减少裂缝,即使出现了裂缝,也能阻止其进一步发展。

(8)、正确地设置沉降缝。沉降缝位置和缝宽的选定应合适,构造要合理,可以和其结构缝合并设置。

(9)、限制伸缩缝间距。对体形复杂、地基不均匀沉降值大的建筑物更应严格控制,同样,也可以和其它结构缝合并使用。

(10)、部分窗台砌体应加强。对宽大的窗台下部宜设置钢筋砼梁,以适应窗台的变形,防止窗台处产生竖直裂缝。

7、施工技术

(1)、加强地基的检查与验收工作,基坑开挖后应及时通知勘察及设计单位到

现场验收,对较复杂的地基,设计方在基坑开挖后应要求勘察补钻探,当探出有不利的地质情况时,必须先对其加固处理,并经验收合格后,方可进行下一步施工。

(2)、开挖基槽时,要注意不扰动其原状结构。

(3)、合理安排施工顺序。当相邻建(构)筑物间距较近时,一般应先施工较

钢筋砼范文篇4

关键词:混凝土;后压浆施工;厂房

1工程概况

平鲁工业园区输煤系统的主要建构筑物包括:输煤系统主要由1号转载点、701栈桥转载点、2号转载点、筛分破碎车间、4号转载点、3号转载点(预留)及相关栈桥等组成。各转载点(除2号转载点)和电控楼主体为钢筋混凝土框架结构,筛分破碎车间和2号转载点主体为钢筋混凝土框架剪力墙结构。输送机栈桥:对竖向支承结构,当底板距地面高度H10.0m时,采用钢筋混凝土框架支承;当H>10.0m时,采用钢析架,钢支架,大跨度栈桥跨间结构采用钢析架。(当跨度≥42m时,钢析架设下拉杆)。本地区抗震设防烈度为7度,设计地震分组为第三组,设计基本地震加速度值为0.10g。地震动反应谱特征周期为0.45s。

2施工方案设计

2.1工程桩原设计概况。建筑物工程桩原设计为中700钢筋砼灌浇桩,桩长35m,桩顶标高为-5.65m,内设12面16主筋:Φ8@200-@100箍筋,Φ14@2000加强箍筋,C40砼。设计单桩竖向承载力特征值为3100kN,相应的单桩竖向极限承载力为6200kN。根据朔州市勘察测绘院2015年12月提交的《平鲁工业园区输煤系统岩土工程勘察报告》,场地地形平坦,最大高差0.34m,地貌单元层渭河北岸二级阶地。钻探揭露:建筑场地自上而下划分为第四系全新统人工填土层,第四系上更新统风积黄土,残积古土根,冲积中粗沙,冲积粉质粘土,冲积粗沙,冲积粉质黏土和冲积含砾粗沙等共九层。地下水层潜水类型、稳定水位埋深7.9~8.4m,场地为非自重湿陷性黄土场地,未见其他不良地质现象。2.2施工方案设计分析。经过公司组织设计、建设、施工、监理单位各有关技术人员十余天的大同、朔州、等地的实地考察,又组织认真学习中国建筑科学研究院企业标准Q/JYl4-1999《灌桩后压浆技术规程》,结合现场实际和地勘报告的技术参数,在木瓜界选煤厂内采用这种新工艺是可行的,于是按照JGJ106-2003《建筑基桩检测技术规范》等相关规范,大胆提出在这一项目采用钢筋砼灌注桩后压浆法施工工艺。经中煤西安设计院认可:在原设计的基础上选3根试桩,锚桩12根。并且重新设计为Φ600钢筋砼灌注桩,桩长为24m,桩顶标高仍然为-5.65m,内设12Φ14主筋,Φ8@200@100箍筋,C40砼,施工时在钢筋内布置Φ40全长2根焊管,钢筋外布置一根15m长Φ40焊管,以备后压浆用。三根试桩编号:As1、Bs1、Bs2,6月20日开始施工,施工工艺采用正循环水冲泥浆护壁桩,孔成后测孔直径、垂直度及沉渣厚度均在规范范围内,安放绑扎成型的钢筋笼,经验收钢筋标高符合要求,严格按照C40砼配合比,控制坍落度在(18±2)cm内浇注砼,桩上收平。砼灌注桩施工5d后开始对桩进行约15袋P032.5R水泥浆进行加压,压浆泵控制额定压力为6~12MPa,流量为30~100L/min泥浆泵.压浆泵的压力表量程为额定泵压的1.5~2倍。浆液搅拌器容量与额定压浆流量相匹配,施工完成后,关紧原预埋钢筋笼内外焊管的闸阀,待28d后砼及水泥浆达到设计强度后再进行试桩检测。检测前先按规范要求进行低应变检测,检测桩身的完整性,经过陕西省建设工程人工地基工程质量第九检测站2016年8月1~4日进行现场检测,低应变检测符合要求,桩身完整,无断桩和缩径现象,后进行单桩竖向承载力检测,在原设计极限承载力6200kN基础加至荷载为7000kN。

3试验结果分析

本项目各项试验结果数据真实、齐全。根据静载试验结果,经过压浆处理后桩长24m,Φ600直径时,建议单桩竖向抗压极限承载力标准值按6300kN取用。对静载试验中产生沉降较大的试桩,应采取一定的处理措施。试桩和锚桩静载试验后,桩身完整。建议工程桩在后压浆施工时,注浆压力与注浆量可适当高于试桩控制指标。山西省人工地基工程质量第九检测站出具试桩检测报告后,锚桩全部可做为工程桩正常使用。试桩经设计院重新计算,除Bs1外,另外的As1、Bs2试桩将桩身砸下基础垫层下500深不予采用,另外重新布置新桩位正常施工工程桩。工程桩施工完后,按单桩竖向极限承载力6200kN进行工程桩检测,各项技术参数指标符合设计、施工等规范要求进行基础梁板地下室施工。该工程现主体已全部封顶。

4结论

经过这次钢筋灌注桩后压浆法施工259根,在原设计基础上将桩长35m改为24m,直径变小为Φ600。该项目整个桩基工程为业主节约资金300余万元,赢得了业主的高度赞扬。该施工方案具有比较好的市场前景,可以进行推广应用。

参考文献

[1]赵春华.钻孔灌注桩抽浆法清孔工艺研究[J].西部交通科技,2014(3):67-70.

[2]张涛.软土地基正循环钻孔灌注桩二次清孔工艺选择及其最佳清孔时间研究[J].隧道建设,2011(5):555-558.

钢筋砼范文篇5

关键词:砖砌体构造柱组合墙

1组合砖墙轴心受压承载力

1.1试验与有限元分析结果

砖砌体和钢筋砼构造柱组合墙,在竖向荷载作用下,由于砼柱、砌体的刚度不同和内力重分布的结果,砼柱分担墙体上的荷载。不仅如此,砼柱和圈梁形成一种“弱框架”,其约束作用使墙体横向变形减小,同时该框内的砌体处于双向受压状态。此外,砼柱对提高墙体的受压稳定性也是有利的。

有限元分析结果表明[1],在荷载q作用下,墙体内竖向压应力明显向构造柱扩散;两柱之间的砌体,竖向压应力在中间大,两端小,其应力峰值随构造柱间距的减小而减小;当层高由2.8m增加到3.6m时,构造柱内应力的增加和砌体内应力的减小幅度均在5%以内。因而可知,影响这种墙体受压性能的主要因素是构造柱的间距,房屋屋高的影响甚微。此外,从多层墙体与单层墙体的受力状态来比较,上层墙体对下层墙体的整体工作有利。因此选取单层墙进行试验,将得到构造柱对墙体承载力提高的最小值,以此作为设计依据是偏于安全的。

墙体有限元非线性全过程分析的墙体裂缝的出现、分布和发展与试验结果基本相符;对开裂荷载,有限元分析的计算值与试验值很接近;对极限荷载,试验值较计算值平均高20.4%(见表1)。

表1试验值与有限元分析的计算值

试件编号

№.1

№.2

№.3

№.4

№.5

柱间距(mm)

900

1000

1250

1600

中间1根柱两端无柱

砖强度(MPa)

7.35

6.55

7.35

7.35

7.35

砂浆强度(MPa)

2.79

5.96

2.79

2.95

2.49

砼立方体强度(Mpa)

19.76

20.30

19.76

22.16

19.93

钢筋屈服强度(Mpa)

290

290

290

290

290

开裂荷载

(N/mm2)

试验值

2.30

2.83

2.11

1.92

1.55

计算值

2.45

2.65

2.13

1.96

1.64

极限荷载

(N/mm2)

试验值

3.75

3.90

3.20

2.88

1.99

计算值

3.11

3.15

2.62

2.28

1.79

1.2设计方法

根据有限元非线性分析结果,组合墙与无筋墙体的轴心受压承载力之比,即强度提高系数可按下式确定:

γi=1+2e-0.65s(1)

式中s为沿墙长方向砼构造柱的间距。

按式(1)的计算值与试验值(γ0i)的比较见表2,γi/γ0I的平均比值为0.844,在试验数据有限的情况下,这样取值是稳妥的。

表2γi与γ0i比较

柱间距(m)

γ0I

γI

γi/γ0I

1.8

1.982

1.679

0.847

2.0

1.918

1.602

0.835

2.5

1.705

1.446

0.848

3.2

1.530

1.293

0.845

对于砖砌体和钢筋砼构造柱组合墙的受压承载力,新规范采用了与组合砖砌体受压构件承载力相同的计算模式,但引入强度系数η来反映其差别。按式(2)和式(3)推算的强度提高系数γic与式(1)γi的比较见表3。

表3γic与γi比较

柱间距(m)

γic

γI

γic/γi

1.0

3.139

2.098

1.496

1.5

1.998

1.813

1.102

2.0

1.632

1.602

1.019

2.5

1.453

1.446

1.005

3.0

1.349

1.331

1.104

3.5

1.281

1.245

1.029

4.0

1.234

1.181

1.045

由表3可知,除柱间距为1.0m的情况外,γic与γi的值十分接近。

在有限元非线性分析中,当砼柱间距小于1m后,其计算得到的极限荷载与按组合砖砌体构件公式得到的极限荷载很接近。因而按式(3)计算当s/b<4时取s/b=4。这样式(2)具有与规范中组合砌体受压构件承载力的计算公式的衔接的特点。

在影响这种组合墙受压承载力的诸多因素中,柱间距的影响最为显著。对于中间柱,它对柱每侧砌体的影响长度约为1.2m;对于边柱,其影响长度约为1m。构造柱间距为2m左右时,柱的作用得到充分发挥。构造柱间距大于4m时,它对墙体受压承载力的影响很小。

2组合砖墙的截面抗震承载力

2.1对文献[5]方法的讨论

对于砖砌体和钢筋砼构造柱组合墙,截面抗震承载力的计算公式有多种,但计算结果的差别较大,,主要原因是这些方法所考虑的影响因素不同,且有的方法在概念上不尽合理。

《设置钢筋混凝土构造柱多层砖房抗震技术规程》(JGJ/T13-94)中规定,当隔开间或每开间设置,且墙段中有2根及2根以上构造柱时,可考虑构造柱对截面抗震承载力的有利影响。分析表明,本方法存在以下问题

(1)随着砌体弹性模量的提高,组合墙的截面抗震承载力反而下降;

(2)构造柱砼承担的剪力偏大

(3)构造柱参与墙体的工作系数的取值未考虑构造柱所处位置的影响;

(4)设置构造柱后,组合墙的截面抗震承载力的提高幅度过大。

2.2新规范建议的方法

新规范采用的计算方法较之现有的计算方法作了较大的改进,除考虑砌体受构造柱的约束和作用于墙体上的垂直压应力的影响外,还考虑了构造柱砼和纵向钢筋参与受力,并针对端部构造柱和中部构造柱,引入不同的构造柱砼参与抗剪的工作系数,较为全面,且公式形式合理、概念上也较清楚。

钢筋砼范文篇6

⑴模板要求

①模板要保证工程结构和构件各部分形状尺寸和相互位置准确。

②施工前应做好模板设计,要具有足够的承载能力、刚度和稳定性,能可靠的承受住新浇筑混凝土的自重和侧压力以及在施工过程中所产生的各种荷载。

⑵施工要求

①模板与砼的接触面应涂隔离剂,并严禁隔离剂粘污钢筋与砼接槎处。

②模板在其支架的安装过程中,必须设置防倾覆的临时支撑。

③模板安装过程中,其拼缝不应漏浆且不应大于2.5mm,相邻两模板表面高低差不应大于2mm。

④对于跨度不小于4m的现浇钢筋砼梁板,其模板应按设计要求起拱,当设计无具体要求时,起拱高度应为跨度的1/1000-3/1000。

⑤固定在模板上的预埋件,预留孔洞不得遗漏且要保证安装准确牢固。

⑥在浇筑砼之前,模板应先浇水湿润,但模板内不应有积水,模板内的杂物要清除干净。

⑦模板拆除时侧模不得损坏砼构件的棱角,底模应在砼达到要求强度后方可拆除。

二、钢筋工程

⑴材料要求

①钢筋进场时,应有出厂质量证明书或试验报告单,钢筋表面或每捆(盘)均有标志。进场时应按炉罐批号及直径分批检验,检验内容包括查对标志、外观质量,并按现行国家有关规定,抽取试样作力学性能试验,试验合格后方可使用。

②施工中所用的钢筋级别、种类和直径应按设计要求采用,当需要代换时,应征得设计单位同意。

⑵钢筋加工要求

①钢筋加工的形状、尺寸必须符合设计要求。

②钢筋表面应洁净,无损伤无油渍。

③Ⅰ级钢筋末端需作180钢筋直径d的3倍。

④箍筋应作135°弯钩,平直部分不应小于箍筋直径d的10倍。

⑶钢筋的连接

钢筋的接头宜设置在受力较小处,同一纵向受力钢筋不宜设置两个或两个以上接头。

②钢筋焊接前必须根据施工条件进行试焊,焊工必须具有焊工上岗证,并在规定的范围内操作。

当受力钢筋采用机械连接接头或焊接接头时,设置在同一构件内的接头宜互相错开,其接头连接区段的长度为35d(d为纵向受力钢筋的较大直径)且不小于500毫米,否则属同一连接区。

焊接接头距钢筋弯折处不应小于钢筋直径的10倍,且不宜位于钢筋的最大弯折处,且不宜设置在梁端,柱端的箍筋加密区范围内。

⑷钢筋绑扎与安装

钢筋的交叉点应采用铁丝扎牢。

②钢筋搭接处,应在中心和两端用铁丝扎牢。

③板和墙的钢筋网,除靠近两行钢筋的相交点全部扎牢外,中间部分交叉点可间隔交错绑扎,但必须保证受力钢筋不宜位移,双向受力的钢筋,必须全部扎牢。

④梁和柱的箍筋,除设计有特殊要求外,应与受力钢筋垂直设置。

⑤钢筋焊接应按有关规定要求进行取样试验,并及时出具试验报告。

三、砼工程材料要求

①水泥出厂应有合格证,且不得超过三个月,进场后需进行取样进行物理性能试验,及时出具试验报告,合格后方可用于施工,水泥出厂超过三个月应对水泥进行物理性能检验合格方可用于施工。

②砼应严格按照试验室出具的配比通知单进行拌制并要严格控制水灰比,严格对砼所用材料计量。

③砼应按有关规定充分搅拌。

④砼浇筑前应清除模板上的杂物。

⑤砼浇筑过程中应正确留置施工缝,施工缝的位置应在砼浇筑前确定并留置在结构受力较小且便于施工的部位,柱宜留在基础的顶面,梁或吊车梁的腿下面、吊车梁的上面。单向板留置在平行于板的短边的任何位置,有主次梁的楼板宜顺着次梁方向浇筑,施工缝应留在次梁跨中1/3范围内。

⑥在施工缝处继续浇筑砼时,应清除已硬化砼表面上的水泥薄膜和松动的石子以及软弱砼层,并加以充分湿润且不得有积水,在砼浇筑前,宜先在施工缝处铺一层与砼内成分相同的水泥砂浆,砼柱浇筑前应先在底部填5~10厘米与砼内成分相同的水泥浆。

⑦梁板要整体浇筑,浇砼时要保证砼保护层厚度;砼浇筑完毕后,12小时内即开始浇水养护,梁板浇水养护时间不得小于7天,柱可缠塑料膜保持内部水分。

四、砌体工程(填充墙)

⑴材料要求

①砌块应有出厂合格证,砌块品种强度等级及规格应符合设计要求。

②砌块进场应按要求进行取样试验,并出具试验报告,合格后方可使用。

③砌筑砂浆应在砌筑前按设计要求申请配合比,施工中要严格按砂浆配合比通知单对材料进行计量、并充分搅拌。

④施工现场砌块应堆放平整,堆放高度不宜超过2m,有防雨要求的要防止雨淋,并做好排水,砌块保持干净

(2)施工要求

①砌筑砂浆搅拌后的稠度以5~7厘米为宜。

砌筑砂浆应按要求随机取样,留置试块送试验室做试验。现场砌筑砂浆应随拌随用,水泥砂浆和水泥混合砂浆必须分别在拌成后3h和4h内使用完毕,当施工期间最高气温超过30℃时,必须分别在拌成后2h和3h内使用完毕。

③砂浆拌成后和使用时均应盛入贮灰器中,如砂浆出现沁水现象应在砌筑前再次拌合。

④填充墙砌筑用的空心砖轻骨料砼小型空心砌块应提前1~2d浇水湿润,加气砼砌块砌筑前,应向砌筑面适量浇水。

⑤用轻骨料砼小型空心砌块或蒸压加气砼砌块砌筑墙体时,墙底部应砌烧结普通砖或多孔砖或砼小型空心砌块,或现浇砼坎台等,其高度不宜小于200毫米。

⑥墙体砌筑前应先在现场进行试排块,排块的原则是上下错缝,砌块搭接长度不宜小于砌块长度的1/3,若砌块长度小于等于300毫米,其搭接长度不小于块长的1/2,搭接长度不足时,应在灰缝中放置拉结钢筋。

⑦砌筑前设立皮数杆皮数杆应立于房屋四角及内外墙交接处,间距以10~15米为宜,砌块应按皮数杆拉线砌筑。

钢筋砼范文篇7

关键词:配筋砌体注芯砼

1.导引

砌体是最古老的结构形式之一,过去许多纪念性砌体结构已经证明其良好的耐久性和独一无二的美学价值,可以确信当今砌体结构的魅力,在未来也会毫不逊色。这些历史性砌体建筑物的基本设计利用重力荷载保证结构的墙、拱、壁柱和其它构件的稳定,由于这些笨重构件的重力荷载也提供了结构的横向稳定性。

当今的砌体构件比过去要薄得多和轻得多。

2.配筋砌体

配筋砌体始建于1933年加里福尼亚大地震的长滩(LongBeach)。这里和其它地区的震害表明,无筋砌体为抵抗大地震而不倒塌需要附加的横向强度、延性和阻尼特性。

现在由于有了注芯砼和钢筋,已经证明现代配筋承重砌体,是设计者可以采用的最好的横向抗侧力体系之一。它具有很高的抗拉和抗压强度,良好的延性和抗震需要的阻尼特性,尤其是其优良的抗剪强度,能有效地抵抗由地震、风、土压和大荷载产生的横向荷载。同时,配筋砌体能满足多样化建筑结构造型的需要。

3.配筋砌体组成

配筋砌体由钢筋、块体、砂浆和将它们粘结在一起而成为整体结构体系的注芯砼组成。

4.配筋砌体优点

1)减少墙厚;2)增大跨度;3)使墙建得更高、载力更大;4)提高隔声能力,墙中注芯砼可降低墙体传声的强度;5)提高耐火能力,不注芯200mm厚空心砼砌块墙的防火限值为1小时,而注芯150mm和200mm厚墙的防火限值可达4小时;6)改善传热性能,砌体是一种天然的贮(散)热体,它可以贮备热能,注芯砌体增加了质量从而改善了热效能。

5.什么是注芯砼

注芯砼既不是砂浆,也不是砼,它是配筋砌体专用、最好的胶凝材料。它可由搅拌车供货,或在现场搅拌。

砂、普通水泥、豆石和水是注芯砼的基本成份,将这些搅拌成一种可塑的、液态稠度的粥状物。为获得需要的强度,可选择各成分的比例,或根据规范要求的其它物理性能,也可采用试验室或现场经验的配合比。

砌体施工中有两种注芯砼,即细注芯砼和粗注芯砼。

5.1细注芯砼

采用细注芯砼时钢筋与块体间的间隙应≥35mm。当无其它要求另外规定配合比时,细注芯砼的体积比为:1份普通水泥,2.25~3份砂,相应塌落度200~250mm时需要的水。

5.2粗注芯砼

采用粗注芯砼时,钢筋与块体间的间隙应≥12.7mm。当无其它要求另外规定配合比时,粗注芯砼的体积比为:1份普通水泥,2.25~3份砂,1~2份豆石,相应塌落度200~250mm时需要的水。

5.3含水量

调整用水量以提供流动性(塌落度),并使在不同工作条件下的注芯砼很好地浇注成为可能。流动性(塌落度)允许注芯砼流进孔洞和环绕钢筋。流态的注芯砼中过多的水被砌块吸收,结果显著地降低了水灰比。潮湿的砌体对普通水泥注芯砼的养护起了重要作用,并有助于强度的提高。

5.4细注芯砼用途

细注芯砼用于墙中浇注间隙小、窄或钢筋太集中的场合。UBC规范给出了根据注芯砼的最大浇注高度、多叶墙浇注空间的宽度和注芯空心砌块孔洞尺寸的限值。

5.5粗注芯砼用途

砖砌体的浇注水平间隙>38mm和砌块孔洞的尺寸≥38mmX76mm时可采用粗注芯砼。

虽然认可的注芯砼的骨料(砂和豆石)最大粒径为9.5mm,如果浇注空间较宽(叶墙间距≥200mm),可采用骨料19mm的粗注芯砼。这样较大的骨料占据更大的体积,减少了收缩和在相同强度时的水泥用

量。由于容易浇注也可使塌落度降至180~200mm。然而浇注19mm骨料的粗注芯砼,一般需要砼泵。

6.外加剂

根据试验室或现场经验,也可选用其它认可的加有外加剂的注芯砼的配合比,以获得理想的强度和物理性能。当需要采用外加剂时,应特别慎重,有些外加剂是有益的,可改善注芯砼和块体间的粘结力。

随着初始水量的损失和普通水泥的水化作用,注芯砼固化而产生收缩,常常采用一种使注芯砼膨胀的外加剂,以补偿这种收缩。

寒冷天气施工,添加早强外加剂会减少墙体必须防冻保护的时间。早强剂减少了注芯砼的硬化时间,加速强度增长,增加水化热防止注芯砼结冻。

绝对不应采用含有氯化物的外加剂,因为氯盐会引起注芯砼中钢筋的腐蚀。

7.注芯砼塌落度

注芯砼的流动性用塌落度截锥试验,粗、细注芯砼必须含有足够的水以提供200~250mm的塌落度,这取决于浇注空间的大小、每次浇注的高度和浇注的总高度、块体的吸水率和天气条件。

8.浇注程序

在砌筑时,应小心操作,防止砂浆过分地突出在浇注空间和在浇注空间底部的积灰(砂浆漏)。要清除突出在块体上的砂浆,不得铲下掉到内部,否则会影响与先前浇注的注芯砼的粘结。

为防止砌双叶墙砂浆挤出,应使灰缝砂浆从浇注砌块的边缘稍微退缩,或从浇注空间向后向上倾斜,这样当砌顶上的块体时,灰缝的砂浆被压平,完全充满了灰缝。在砖的边缘可能出现空隙,但浇注注芯砼时会完全填满这些空隙。

9.拉结件

当多叶墙一次的浇注高度大于300mm时,需设拉结件。当灰缝砂浆达到强度时,这些拉结件能保证各叶墙共同抵抗注芯砼产生的横向压力,防止叶墙起鼓或胀开。

塌落度200~250mm的注芯砼对砌体的等效横向流体压力约为19.22KN/m2,因此,1.52m高的双叶墙墙体每米墙将受到一个总计为22.3KN的冲击力。

拉结可为灰缝钢筋或矩形、Z形钢筋,拉结件的长度为墙厚减50mm。拉结件不应有滴口和弯曲。每0.185m2墙面至少应有一个直径5mm的金属拉结件,最大水平间距为600mm。对顺砌(错缝)施工,拉结件的水平和竖向中距分别为600mm和400mm。

当浇注多叶墙的高度大于1.5m时,建议适当推迟浇注时间,允许灰缝砂浆获得强度,确保水平拉结件将两叶墙拉结在一起。

10.固定件

固定件就是由钢筋制成的小装置,包括拉结件,用于设置和保持砌体墙内的钢筋定位。水平筋随砌随放,竖向筋也可随砌随放,也可待墙体砌好后放置。将竖向钢筋穿过固定件以保证其适合的位置。

在砌体中设置钢筋应满足允许偏差的要求。竖向钢筋应在≤200d(d为钢筋直径)的间隔内设置就位固定件。

有些仅用于竖向钢筋的就位,有些仅用于水平筋的就位,有些则用于竖向和水平筋的就位。为满足特殊需要可制作特别形状的固定件。

应在竖向钢筋离基础顶面1200mm处设置第一个固定件。在首皮设置固定件时,因与基础伸出的钢筋搭接,会有一定的困难。

在设置了第一个固定件后,其它的固定件可任意设置在不同的皮中,只要保证竖向对齐,竖向间距不大于200d即可。

11.隔断

当浇注多叶墙的空腔时,采用竖向隔断以限制注芯砼水平流动的距离。这可防止注芯砼较长的流动和引起可能的材料离析,和控制一次浇注使用的注芯砼的数量。

在浇注空间应设置竖向隔断,以限制注芯砼的横向流动,最大间距不大于9m。这些隔断可在砌筑墙的全部浇注空间范围内,由砌块形成。

对空心砌块结构,可采用砂浆隔断,限制注芯砼的水平流动,并在一天内浇注完一个墙段。有些部位的墙,如非注芯墙,为防风造成的损失,可能需要临时支撑。

12.全部注芯墙

砌体墙在设置竖向和水平钢筋后可全部灌实。所有孔洞、浇注空间全部用注芯砼灌满。

13.部分注芯墙

空心砌块墙可仅限于在有水平或竖向钢筋的砌块孔洞中注芯。在水平钢筋的下面,有时是在上面的水平灰缝中设置膨胀金属网。用膨胀金属网或其它隔网材料将注芯砼限制在仅有钢筋墙体部分的块体孔洞中。横肋也要铺砂浆,防止注芯砼从缝隙间流入非注芯孔洞。

部分注芯可减轻自重和节省注芯砼用量。

14.注芯砌体墙的施工方法

有几种导致强度高、整体性好、令人满意的施工和注芯砌体墙的方法,方法的选择取决于砌体种类、墙的面积和长度、可行的设备和施工单位的经验。

14.1注芯砼浇注的总高度和一次连续浇注的高度

在另行砌筑前注芯砼的浇注高度叫总浇注高度(CroutPour),注芯砼应分段浇注,在振捣前一次连续浇注的高度叫作一个浇注段(Groutlift)。

注芯砼浇注总高度由若干个浇注段组成,浇注段不应超过1.5~1.8m。如一墙砌到5.5m高,总浇注高度为5.5m,每个浇注段可为1.8m。浇注总高度可达7.3m。

14.2低位和高位浇注

尽管低位和高位浇注的说法已被UBC规定取消,但在谈到浇注方法时,这两个术语还常常应用。

一般来说,当不设清扫孔时,可采用低位浇注(高度≤1.5m);当高度大于1.5m时,可用高位浇注,但需设清扫孔。

14.3注芯砌体的施工程序

它取决于砌体类别,浇注总高度和每段的浇注高度。

14.3.1双叶砖墙

(1)低位浇注步骤

A、浇注高度≤300mm

当双叶墙施工和浇注总高度≤300mm时,可用25X50木方捣实注芯砼。这对较小的工程是很理想的,砌工砌到一定高度则可振捣。下面是UBC1982年版规定的低位浇注的主要步骤:

l)在完工的砼基础上用砂浆砌第一皮砖,砼表面必须干净、粗糙和潮湿。

在一侧先砌一皮(浇注空间无砂浆),或叫外叶,离砌工远处的叶墙。

2)浇至1/2块高并用木棒捣实,确保注芯砼与砼基础的粘结,并消除注芯砼中的孔隙。

3)砌外叶墙达450mm高。

4)随砌随灌每一皮的注芯砼,总高度不超过6倍的浇注空间,最大200mm,使注芯砼低于块体顶部25mm,也允许大于一皮,到300mm高,然后浇注、振捣。但必须小心,因砂浆未达到强度,在浇注和振捣时不引起块体移位。

5)在墙砌完时,注芯砼与砌块顶面齐平,浇注后振捣所有注芯砼。

B.浇注高度大于300mm和高至1.5m

双叶墙无清扫孔的砌筑高度可达1.5m,然后按总高度为1.5m进行浇注。

但必须用连拉结件将双叶墙连接在一起,以防止叶墙起鼓或胀开。此外必须采用机械振捣。

1)用端头挤浆砌筑,水平灰缝砂浆饱满。

2)浇注空间宽度≥19mm,或足以设置竖向和水平钢筋,并留有适当的余量。

3)双叶墙必须用拉结件砌合成整体,当用矩形拉结件时,其直径不小于5mm,长度100mm,宽为墙厚减50mm。当用Z形拉结件时,直径不小于5mm。也可用灰缝钢筋将叶墙连接在一起,竖向间距不大于400mm,每0.185m2的墙面应有一个矩形、Z形拉结件或灰缝钢筋的一根横向钢筋。

4)浇注前,水平、竖向钢筋、锚栓和其它埋设件应就位。

5)允许足够的时间用于砂浆凝固,约为12~18小时,达到强度,并能承受水平压力达1.5m高注芯砼的压力。

6)浇注墙中的注芯砼,并使整个浇注高度的注芯砼分布均匀,用振捣器振捣浇注的注芯砼。在大约3~5分钟后注芯砼中过多的水被块体吸收,再振捣。

7)继续砌筑块体、设置拉结件,浇注和用机械振捣。

8)所有叶墙应在相同高度留出水平施工缝。注芯砼应比砌体顶部低38mm,形成下次浇注的键。当位于系梁部位,浇注面至少应高出水平钢筋13mm,确保水平钢筋的保护层,并提供剪力键。

9)在墙砌完时,将注芯砼浇至与墙体等高并振捣。

(2)高位浇注步骤

将墙砌至全高然后浇注,系施工配筋砌体的经济方法。它允许砌工连续砌筑而不等待浇注。当墙和浇注高度大于1.5m时,采用高位浇注。

对高位浇注施工,必须设置清扫孔,注芯砼必须用机械振捣。

l)所有块体均采用端头挤浆砌筑,水平缝应饱满。

2)2.4m高墙的浇注空间宽度至少38mm(细注芯砼)和50mm(粗注芯砼),但对粗注芯砼的最小浇注宽度必须满足设置竖向和水平钢筋和适当的公差要求。对墙高大于2.4m和高达7.3m时,注芯砼的浇注空间应更宽。

3)双叶墙必须用拉结件连接,矩形拉结件的直径不小于5mm,长50mm,宽为墙厚减50mm,用单肢Z形拉结件时,直径应不小于5mm。

可用灰缝钢筋连接叶墙,竖向间距不大于400mm,每0.185m2的墙面应有一个矩形、Z形拉结件,或灰缝钢筋的一根横向钢筋。

4)对每个总浇注高度,应在墙底部隔砖设置清扫孔。

5)必须清除浇注空间内的所有掉落的砂浆和其它外来材料,检查后浇注前封闭清扫孔。

6)在浇注前砌体墙应进行养护,养护时间在温暖天气不小于3天,冷天不少于5天,以获得强度。这种拖延要比低位浇注长得多,因为浇注的高度可达7.3m,对叶墙施加了一个极大的横向压力。应用拉结件保证墙体避免起鼓或胀开。

7)在整个墙高浇注空间的横向必须设置竖向隔断或阻断坝,以控制注芯砼的水平流动。间断的间距不应大于9m。

8)注芯砼必须充分搅拌,并应具有足够的流动性,适合泵送。注芯砼应在初凝前和加水搅料后1.5小时内浇灌完毕。

9)每次连续浇注的高度不大于1.8m,约在3~10分钟,块体将多余的水分吸收后,必须用机械振捣。

应在每次浇注的时间间隔不大于1小时的情况下,在一天内完成任何有控制隔断区间全部高度的浇注。

14.3.2空心粘上砖和空心砼砌块墙

(1)低位浇注步骤(总浇注高度≤1.5m)

1)砌空心配筋砌体墙高不大于1.5m。竖缝应用不小于块体纵面厚度的砂浆填实。

2)要浇注的竖孔必须上下对齐,保持干净,竖向贯通。

3)浇注直至块体顶部以下和水平钢筋之上,以保证钢筋完全处于注芯砼中。

4)对仅在有竖向和水平钢筋的位置注芯的墙,可在块体的顶面铺设膨胀金属网或其它不影响粘结的材料,使系梁和水平钢筋处于注芯砼中。为使注芯砼仅在有钢筋的孔洞中,应在不注芯的孔洞上设置金属网或其它屏蔽材料。在系梁下和竖向钢筋孔洞之间用金属网,在要注芯的孔的横肋上座砂浆,防止注芯砼泄漏。

5)对灌实的墙,将注芯砼浇至块体顶部以下38mm,或水平钢筋以上至少13mm。

6)用振捣器振捣。

7)当浇注间隔的时间≥1小时,应在被浇注的最上边块体的顶面以下38mm处留水平施工缝。

(2)高位浇注步骤

1)配筋空心砌块砌体最大可砌至7.3m,但必须确保要注芯孔洞的竖向贯通。墙和构成浇注孔的横肋应满座浆,以防止局部注芯墙注芯砼的泄漏,竖缝应用不小于块体纵面厚度的砂浆填实。

2)要浇注的竖孔必须保持干净,竖向贯通。

3)当每个竖向钢筋的孔的浇注高度大于1.5m时,要留清扫孔。应清除孔内任何突出的砂浆,其它障碍物、碎片等。清扫孔需经检查、封闭后方可浇注。

4)竖向钢筋应在底部、顶部和在中部间距不大于200d处就位固定。

5)对局部注芯的墙,所有设置钢筋的孔洞必须浇灌注芯砼。对所有孔洞全灌实的墙必须全部注芯。每段(次)浇注的最大高度为1.8m。浇注后应用机械振捣,当过多的水被块体吸收后,应进行再振捣,但必须在注芯砼失去塑性之前,常常是在浇注后3~5分钟,过多的水分被块体吸收后进行振捣。

6)当浇注间隔≥1小时,应在要浇注的最上的砌块顶部以下至少38mm处作成水平施工缝。水平钢筋应全部埋于未被扰动的注芯砼中。

15.清扫孔

清扫孔设置在墙的下部,用于清除掉落的砂浆和其它杂物。清扫孔可用抽出一个砌块,取下面壳或在面壳上割孔形成。

对全部灌实的墙体,需在每个有竖向钢筋的底部留清扫孔,其间距不大于800mm。当需要时,对全部灌实的砌体,应在每个竖向钢筋的底部留清扫孔,其中距不应大于800mm。如墙局部注芯,应仅在有钢筋的位置留清扫孔,但中距不大于1200mm,这是在地震区的最大间距。在墙的底部,浇注空间可用松散的砂层覆盖,以防止落下的砂浆粘在基础上。

当砌完后,用钢棒或25X50的木方将所有突出的灰缝砂浆敲掉,并将这些碎片从浇注孔中用风吹出、用水冲出或用手清理干净。所说的“干净”并不是外科要求的“干净”,但仅仅是无松散有害的东西留在要注芯的部位。清扫孔可用一个砌块,一片面壳、一块模板封闭,并加支撑以承受注芯砼的压力,如采用认可的措施使浇注空间保持干净,可不留清扫孔。

16.低位浇注的优点

(1)不需留清扫孔

(2)检查人员可用肉眼检查孔洞底部是否清洁,有无过多突出的砂浆,检验钢筋的位置和浇注前所有的墙体,因为浇注高度才1.5m以内。低位浇注后的墙体,随着砌筑和浇注而获得强度。

17.高位浇注的优点

在高位浇注中,墙的检查快、容易和完全,检查孔洞、钢筋和浇注可一次完成。

用高位浇注法浇注使墙受到的横向压力可能比设计荷载大得多。如墙的砌筑质量不好,可能发生胀开或起鼓,在这方面砌体墙的注芯变为自检。

18.浇注方法

当钢筋已就位和砂浆未过多的突出在浇注空间,则该墙具备浇注条件。通常施工单位根据浇注的位置和数量,选择浇注的方法。

对少量的注芯砼常用提桶,特别是浇注局部注芯墙的水平系梁更是如此。大的吊桶、料斗或砼泵可直接为墙的顶部供应大量的注芯砼。注芯砼完全包围钢筋,并将其与砌体块体粘结成一起,形成一个很牢固的整体结构体系。

19.振捣

像砼一样注芯砼必须振捣。振捣消除孔隙,使注芯砼围绕钢筋、砂浆和块体的突出部位流动。

每次浇注高度不大于300mm时可用夯实棒振捣,每次浇注高度大于300mm时,必须采用机械振捣。因为在浇注空间只有很小体积的注芯砼要振捣,在每处的机械振捣时间只需几秒钟,重要的是不要过长时间的振捣,以避免胀开块体面壳或挤出块体。

在浇注后约3~5分钟,过多的水被砌体块体吸收。随着注芯砼的失水,会产生微小的孔隙。此时,应对注芯砼进行复振,以消除孔隙,使注芯砼密实。

规范叙述的方法,要求注芯砼浇注后要振捣和过多的水被块体吸收后和注芯砼失去塑性前要复振。必须用机械振捣。

在注芯砼和砌体块体间的界面,可能由于注芯砼的失水存在一个很薄的水膜。如不振捣在注芯砼和块体间将会存在轻微的分离。适当的振捣堵塞了这种间隙,确保注芯砼与砌体块体的粘结而形成整体。

可在上次浇注的顶部马上进行下一次的浇注、振捣和复振。如两次浇注的间隔过长,应在块体顶部以下停止浇注,形成剪力键。

正常条件下,注芯砌体墙无需特殊的养护。注芯砼中大部分的水由砌体块体吸收。水的存在有助于普通水泥的养护(水化和强度增长)。

20.热天和冷天施工

当天气非常热而干,可能需要在浇注前在墙的外部洒水润湿,冷却墙体,防止水泥的突然硬化。当在冷天砌筑时,可能需要封闭或遮盖保护以防止冻结。应参照有关出版物和可用的规范关于在不利条件下的施工操作要点和程序。

21.注芯砼强度的检验

为确定注芯砼的抗压强度,要制作反映注芯砼在墙体中硬化条件的试件。试件的模子建议由施工砌筑时相同湿度条件的块体组成。这些块体砌成一个约为75mmXl50mm或100mmX200mm,高度为宽度两倍的空间。该空间周边衬以吸水纸或多孔隔层,防止注芯砼与块体的粘结,但仍然允许吸收过多的水分。

将有代表性的注芯砼样品浇入模内、振捣,在48小时内保持湿度和不被扰动,然后将试件送入试验室的湿养护室直至试验。

注芯砼的最小抗压强度必须大于14MPa。这个抗压强度保证注芯砼与钢筋的粘结和力传递的适当强度。

21.1其它方法

一些试验室和检查员用在粘土或砼块体孔中浇注制备注芯砼试件,待注芯砼结硬数天后,将块体外壳打破取出试件,供下列试验使用之:

1)直接进行试验,并对高度和面积进行调整。

2)锯成95X95X190(mm)的棱柱体并试验。

3)用钻取出直径75~100mm的注芯砼圆柱体,然后试验。

22.高强砌体

钢筋砼范文篇8

小湾水电站初期导流采用土石围堰挡水、隧洞泄流的全年导流方式,初期导流标准按30年一遇洪水重现期设计,相应流量10300m3/s,导流时段为2004年11月~2009年5月。两条导流洞均平行布置于左岸,中轴线间距48m,进口底板高程988m,出口底板高程984.984m,导流洞建筑物级别为Ⅲ级。两条导流洞均由30米进口渐变段,60米的堵头段和标准断面组成,长度分别为861.592m与980.922m,底坡分别为0.3627%、0.3172%,在偏上游的部位有转弯半径为300m的转弯段。

导流隧洞为城门洞型:两端为全断面衬砌段,中部为顶拱不衬砌段。综合分析全衬段及半衬段各占约隧洞总长度的一半。

全断面衬砌段过水断面为16m×19m(宽×高),顶拱不衬砌段过水断面为16m×19.5m(宽×高),视不同围岩类别衬砌厚度不同,主要有0.55m,1.5m,1m,2.0m四种。

导流隧洞具有运行条件复杂、使用期长、施工期上游河床大量积渣的特点。导流洞底板采用抗冲耐磨性能好、技术经济指标较优的C30微纤维砼(外掺聚丙烯纤维0.9Kg/m3)衬砌,其余边顶拱部位采用普通C30(粉煤灰掺量15%)混凝土衬砌。导流隧洞衬砌主要工程量情况:钢筋制安6437t,现浇砼10.86万m3。

图1

2钢模台车及钢筋台车方案

1#、2#导流洞洞身采用先底板后边顶(边墙)的顺序进行施工。为满足施工进度安排及导流洞本身的特点,各配置一部钢筋台车和一部边顶拱钢模台车进行两条导流洞砼衬砌施工。

两台钢筋台车及钢模台车均在进口渐变段处进行组装,先进行进口全衬段施工,再进行出口全衬段的施工,最后进行中间顶拱不衬段边墙的施工;钢筋台车后期用于灌浆施工;洞身混凝土衬砌结束后,钢模台车在预留堵头段进行拆除。

渐变段边顶拱及堵头段边墙采用组合钢模与标准段同步施工,不占用直线工期。

2.1钢模台车方案

导流隧洞边顶拱及边墙砼衬砌每块标准段长15m,模板型式采用车架式钢模台车,标准结构尺寸16×19×14.9m(宽×高×长)。钢模台车主要由模板组、行走机构、台车架、承重梁、液压系统、撑杆系统、电器系统及一些辅助平台构成;钢模台车轨距7.5m,面板厚度8mm。

导流隧洞直段施工时在标准钢模台车段端部拼装长0.35m,厚8mm的柔性搭接段,直线段一次浇筑长15m。

弯段施工时拆除端部柔性搭接段,加装上弯段模板(西瓜皮模板),弯段模板小端长29.2cm,大端长113cm;弯段标准段每块浇筑长度为15.706m(中心线长度),整个转弯段由若干折线段平顺过渡代替弧形转弯。钢模台车上装有电动行走装置及配置液压升降支撑系统。钢模台车每套重量计360t。钢模台车分别在钢模顶拱和边墙上进行开孔。腰线孔主要作为边墙浇筑进人振捣用,顶拱孔主要用于边墙及顶拱的进料。

在底板砼施工完成并达到混凝土设计强度的75%后,铺设边顶拱钢模台车行走轨道。边顶拱钢模台车是通过铺设于底板砼上的轨道行走实现钢摸台车的移动,台车移至待浇筑段后,调节液压操纵系统使模板就位,并且用撑杆支撑牢固。

钢模台车方案见图2-1:

浇筑顶拱不衬段时仍采用上述钢模台车,但钢模台车边墙部位需进行加高改造。

2.2钢筋台车方案

钢筋台车结构尺寸16×19×7.5m(宽×高×长),重量计60t;钢筋台车上装有电动行走装置、钢筋提升装置及千斤顶升降支撑系统。钢模台车与钢筋台车共用同一对重型轨道,轨道直接铺设在底板砼面上,采用膨胀螺栓固定;钢筋台车超前钢模台车至少15m。

钢筋台车方案见下图2-2:

图2-2

3施工程序及分块

3.1浇筑顺序

1)两条导流隧洞自进口往出口不同衬砌特征断面的组成顺序均为:

进口渐变段→全衬直线段→全衬转弯段→半衬转弯段→半衬直线段→E’段→半衬直线段→全衬直线段

2)两条导流隧洞的浇筑顺序均为

底板砼分半浇筑/与边顶砼平行施工→钢筋台车在进口渐变段组装→进口直线段边顶砼浇筑→加装弯段模板→进口转弯段边顶砼浇筑→卸除弯段模板→钢模台车移至下游→出口段边顶砼浇筑→钢模台车移至E’段加高并进行E’段边顶砼浇筑→E’往下游段边墙砼浇筑(直线段)→弯段末端至E’段边墙砼浇筑(直线段)→加装转弯段模板→转弯段段边墙砼自上游向下游浇筑→钢模台车移至堵头段拆除

3.2砼施工分层、分块

1)分层

导流隧洞洞身横断面分垫层、底板、边顶拱(边墙)施工,其中垫层砼采用与底板同标好砼浇至设计建基面高程。考虑施工交通需要,底板实际施工时均采用半幅浇筑;边顶(边墙)砼一次浇筑成型。砼浇筑分层见图3-1:

图3-1

2)分块原则

导流隧洞洞身变化处设置结构沉陷缝,砼分块结合结构沉陷缝进行。边顶(边墙)在直线段浇筑时,根据钢模台车的设计尺寸按15m为一标准单元进行浇筑,转弯段按15.706m(转弯段中心线)为一标准单元进行浇筑;在施工支洞等位置为了减少堵头模板封堵困难以及衬砌断面变化部位,分块长度可做适当调整。施工缝按设计钢筋不过缝、缝面不凿毛。导流洞衬砌施工分块长度一般按设计要求12~18m进行,特殊部位分块长度以最小不小于5m为原则。

3)边顶实际纵向分块情况:

1#导流洞:渐变段2块,全衬段29块,半衬段26,堵头段3块,E’段2块。

2#导流洞:渐变段2块,全衬段36块,半衬段27,堵头段3块,E’段2块。

4边顶拱(边墙)砼快速施工关键技术

4.1施工工艺流程

1)全衬段单块砼施工工艺流程

钢筋绑扎→钢模台车行走至浇筑位置→涂刷脱模挤(或脱模油)→缝面处理及测量放线→顶模就位→边模就位→封边墙堵头模及底脚模→安装灌浆管→清仓→仓面验收→浇筑边墙及立顶拱堵头模→浇筑顶拱→等强24小时→脱模→顶拱喷养护剂→边墙洒水养护28天

2)顶拱不衬段(半衬段)单块砼施工工艺流程

钢筋绑扎→钢模台车行走至浇筑位置→涂刷脱模挤(或脱模油)→缝面处理及测量放线→顶模就位→边模就位→封边墙堵头模及底脚模→清仓→仓面验收→浇筑边墙砼→等强20小时→脱模→洒水养护28天

•图4-1

4.2钢筋绑扎

1)首仓钢筋的绑扎需在两端头放点控制,其余块段均只要在下游端放点控制即可。测量用全站仪先在底板上放出砼分块桩号,钢筋台车按分块桩号运行。钢筋台车长7.5m,而砼分块长度为15m,所以钢筋台车要移动两次才能完成一仓钢筋的绑扎。

2)边墙钢筋绑扎采用在钢筋台车上用1.5寸钢管按结构钢筋绑扎尺寸做成钢管架,在钢管上由技术员按钢筋间距作出标志,利用钢筋台车前端的吊钩将结构钢筋逐层运至钢筋台车各平台上,人工按标志线依次将结构主筋绑扎牢固,再在主筋上作出分布筋标志,再由人工从下向上依次将分布筋绑扎在主筋上,结构钢筋网绑扎成形,测量检查验收合格后,利用系统锚杆将钢筋网片按结构位置固定牢固。

全衬段在完成边墙钢筋的绑扎后,进行顶拱钢筋的绑扎,顶拱钢筋绑扎时先将顶拱托架校正到钢筋设计位置,通常是校正钢筋台车最上面托架控制钢筋保护层的4根钢管位置,校正后即可进行顶拱钢筋的绑扎,主筋连接采用正反丝牙及丝套连接;顶拱钢筋成网后用短钢筋与顶拱锚杆焊固在一起,最后将托架及两边钢管收回,往前移动,即完成一段钢筋的绑扎。进行两次循环后,完成一块钢筋的绑扎。

3)砼钢筋保护层采用在钢筋与模板之间设置强度不低于结构设计强度的砼垫块。垫块预埋直径大于φ16mm的钢筋脚与洞身结构钢筋点焊固定。垫块应互相错开,分散布置。保护层偏差不得大于+2cm、-1cm。

4.3钢模台车就位及堵头模板施工

1)钢模台车清理

钢摸台车就位之前必须进行模板的清理和刷油。为使模板清理及刷油操作方便,绑扎钢筋时在分缝部位留出1.0m不绑扎,主筋先固定在已绑扎的钢筋上,待模板就位后恢复。脱模后,台车先往前移动1m,施工人员沿所留1m空间下游侧钢筋上按间距2m环向而站,进行钢模板的清理,同时将脱模剂装入小胶皮桶中,人工手持毛刷将脱模剂均匀涂刷在钢模台车面板上。清刷完1m后台车再往前移动1m,如此周而复始清理和刷油,直致钢模全部清理干净、刷完脱模油,钢模才能就位。

2)钢模台车就位及脱模

台车沿轨道通过自行设备移动至待浇仓位,调节横送油缸使模板与隧洞中心对齐,然后起升顶模油缸,顶模到位后把侧模用油缸调整到位,并把手动螺旋千斤顶及撑杆安装、上紧。施工前需测量放点,作为台车起升、张开控制点。钢模台车校正时,先将顶拱部分的柔性搭接与上一仓砼搭接严密锁定,再进行下游模板的校正。下游模板采用全站仪及垂线法进行校正。安装好钢模后,检查钢模台车周边与已浇筑砼的搭结处是否吻合,并用木楔将模板撑紧,使钢模台车周边与已浇筑砼的搭接严密,避免漏浆和错台。

钢模台车直段设计浇筑长度为15m,模板面由14.85m的硬边和25cm的柔边组成。正常浇筑段包括14.85m的硬边和15cm的柔边,设计搭接长度为10cm。

侧模底脚20cm缝隙用与缝隙较为匹配的方木(实际用12×12方木加厚)封堵,内衬层板以使砼表面光滑。铺钉层板时,必须从一边向另一边推进,层板间不允许有搭接台阶出现,只允许对接或拼接,如果拼接时层板相互重叠,则应将上面的一层切除。拼接后,及时用钉子将层板与方木严密钉实。为避免拆模时砼表面被拉毛,层板表面应涂一层脱模剂或脱模油。底脚模板的固定采用丝杆撑在钢轨上,丝杆间距1m。并在两侧各均匀布置11个底脚螺旋千斤顶做垂直支撑,防止浇筑时侧模下塌。

脱模拆去手动螺旋千斤顶及撑杆,侧模下段先用撑杆脱开,后换用手拉葫芦回收,再用侧模油缸脱模,并将底脚千斤顶升起,然后降下顶模油缸,完成脱模。

3)校模、堵头模安装及补缝

钢模台车按测量点就位后,通知测量队进行校、验模板,模板合格以后才能进行堵头模封堵。由于侧模两边均由3个油缸控制,中间油缸与上下游油缸运行速度和伸出长度不一致,也会致使模板中部发生变形,为此在钢模台车纵向拉线,上、下吊线来控制模板平整度。每边边模吊3根线,中部和上、下游各一根。纵向拉3根线,起拱处下1.5m开始,间距5m,即在边模油缸正对位置附近。这样就可以避免中间部位由于全站仪无法检测、难以控制的弊病。

封堵头模前先将仓面冲洗干净,采用3cm木板,10×10cm方木作为背枋及背档。在钢模台车模板端部焊制钢筋套环,将10×10cm背枋穿入钢筋套环固定在钢模台车上,另一端用拉筋固定,使整个堵头模板稳固。堵头模板采用ф12拉筋固定,拉筋沿周圈布置两排,排距约50cm,间距不大于60cm;拉筋应焊在牢固锚杆或钢筋上,若焊在钢筋上时,此钢筋要求和周围的结构钢筋在上下游方向至少各有5个焊点,以形成稳固的钢筋网。拉筋不够长时可以焊接一端带弯钩的φ12钢筋作为连接筋,连接筋一端与拉筋焊接,焊缝长度不小于12cm,另一端与锚杆底部或结构钢筋焊接。

为防止漏浆产生质量问题,堵头模应拼接严密,靠岩石侧的缝隙需堵塞严密,靠模板边的缝隙采用环向衬一圈10cm宽3层板处理。堵头模先封边墙部分,然后可以开始浇筑,在浇筑边墙的过程中,将顶拱堵头模封堵完毕。

钢模台车模板间绞接部位一般存在缝隙,对此缝隙采用107胶兑水泥抹灰处理。

4.4砼浇筑

1)仓位准备及验收

a)施工通道及下料口

钢模台车底板以上7米及14米的两侧模上各开有三个窗口,用于进人、观察及振捣。

边墙下料口设置于拱顶上靠近拱脚的地方,两边中部各开一个孔。

拱顶中心线两侧1.5米处各开三个孔,相互错列布置,用于顶拱下料。

全衬段另在堵头模板顶拱最高处开一个宽60cm,高度不小于40cm的通道孔。通道孔主要作为浇筑用材料设备和人员等进出仓面的施工通道,在浇筑到顶拱封仓后,再封堵。顶拱不衬段仅封边墙堵头模,顶拱作为进人通道。

b)拖泵及泵管布设

边顶砼浇筑应配置两台拖泵,每边一台,钢模台车上的竖向泵管预先架设,相对固定,用圆钢牢牢焊接固定在台车架上;在台车上部平台处设置泵管弯头,以备连接边墙泵管及顶拱泵管。

边墙下料采用两拱脚的开口,泵管进仓后用每节1.5m的连接软管进行下料,软管用铅丝加固,人工两边拖动,软管随砼的上升而逐节拆除。下料口距砼面高度不超过1.5米。

全衬段的顶拱浇筑,对于0.55m衬砌厚度的断面,如顶拱超挖较小,采用冲天管法入仓;对于1.5m、2m厚衬砌断面及0.55m厚衬砌断面中顶部超挖较大者,采取从堵头部位入仓,退管法浇筑。仓面内导管由于要经常拆装,要采用1m~2m的短导管。

导管架设要尽量缩短泵送距离,靠近泵车的导管要尽量用新管,减少爆管和堵管的可能。

c)清仓冲洗、设备就位

浇筑前将仓面内的木屑等垃圾清理干净。并将浇筑设备准备到位。

振捣设备为手提式振捣棒,在开仓前每边墙放置3台振捣棒,并准备好2台备用,配电盘在钢模台车上设置。仓内照明必须采用36V低压,220V、380V动力电源必须装配漏电保护器。仓外照明可用220V电压,堵头处及泵管沿线、砼泵车、支撑处等必须有照明。对砼浇筑时仓面与泵车送料联系用电铃等进行。

全衬段顶拱部位主要考虑插入式振捣器振捣。

以上准备工作完成后,通知调度室安排砼泵车就位,将导管和泵车出料管连接,在泵车接料口后搭设上料平台。

2)混凝土浇筑

a)配合比控制

砼配料单由试验室根据设计标号及骨料、砂、水泥情况开具和易性好的二级配泵送砼,入仓时坍落度不大于12cm。

为缓解仓面的泌水状况及尽量减少干缩裂缝的产生,首先要对砼坍落度进行控制:边墙部位的仓面坍落度按10~12cm控制,并尽可能控制偏于下限使用;全衬段顶拱部位考虑到浇筑方便,仓面坍落度按12~14cm控制。

b)下料及平仓

砼浇筑时必须先铺一层2~3cm的同标号水泥砂浆或不小于10cm厚的同标号一级配砼,浇筑速度控制在1m/h以下,两边墙砼上升应均衡,浇筑高差小于80cm。

边墙砼衬砌下料采用橡胶软管接泵管,每节橡胶软管长度为1.5m,为避免下料点集中,人工用绳子拴住橡胶软管,拖动橡胶软管向左右方向调整,随着浇筑高度,将橡胶软管逐段拆除,为便于排水,每层砼亦可由中部向两边分坡或一边向另一边放坡,仓内砼高差以不大于1m为原则。

全衬段顶拱砼衬砌下料分两种形式:a、厚度在0.55m的利用台车顶模上设置的6个相互错列布置的下料口,由已浇段向待浇段方向依次下料、封孔,砼振捣采用固定在台车顶模上的附着式振捣器。b、顶拱衬砌厚度在1m及以上的混凝土下料是砼泵管从顶拱水平进入仓内用90°弯管向两边分叉,砼泵管布置于外层钢筋上。泵管用1.5寸钢管搭设三角架支撑泵管体,仓内的泵管应采用1米左右的短管,以便于拆、接。采用退管法下料浇筑施工,封拱时砼应尽量填满顶拱空间。振捣设备为手提式振捣棒,辅以附着式振捣器进行振捣。在开仓前每边墙放置3台振捣棒,并准备好2台备用,配电盘在钢模台车上设置。

衬砌厚度在0.55m(含0.55m)以内的顶拱混凝土采用冲天管法入仓,待砼初凝后,拔出泵管用同标号砼填塞。

c)振捣

混凝土振捣一定要由经过培训的砼工操作。根据砼浇筑振捣试验结果,砼振捣时间选用50s为宜,砼浇筑层厚40cm~60cm,砼浇筑时两边墙和上下游之间上升速度要均匀,边墙砼上升高差不超过一层浇筑厚度,每小时上升速度不超过1m/h;人工拖动软管均匀下料,砼层布料应均匀,避免用振捣器平仓,防止过振。仓内砼应安排专人边浇边平仓,不得堆积。仓内若有骨料堆积时,应均匀散布于砂浆较多处,但不得用砂浆覆盖,以免造成内部蜂窝,人工平仓距离不应大于1.5m,采用三角耙或钉耙进行。下料口距离砼面高差不大于1.5m,在下料口5m范围的钢模表面挂一块5m长、1.5宽彩条布,防止下料时水泥浆溅到模板上,引起拉毛现象。浇筑过程中如有骨料堆积用人工均匀散料。

3)单块砼循环时间分析

a)一块边顶拱砼施工工艺流程时间共计约为96小时,具体分配如下:

脱模、清理、刷油18h→钢模台车就位、校模10h→立堵头模、补缝12h→验收4h→浇筑28h→钢模台车等强24h→下一循环

b)一块顶拱不衬段砼施工工艺流程时间共计约为60小时,具体分配如下:

脱模、清理、刷油10h→钢模台车就位、校模8h→立堵头模、补缝6h→验收2h→浇筑14h→钢模台车等强20h→下一循环

5结束语

1)钢模台车是水工隧洞衬砌常用的浇筑工具,具有一次投入大,运行简单,混凝土成型好,快速、高效等特点;小湾电站导流隧洞中投入的钢模台车由中国水利水电第十四工程局制造,重达360吨,浇筑断面16m×19m(宽×高),最大浇筑长度15m;其规模居全国前列;其中钢模台车前端25cm的柔性搭接环彻底解决了常规钢模台车容易错台的问题。

2)导流隧洞第一块底板砼衬砌于2003年7月26日开始,预计2004年9月15日全部结束,历时一年零两个月,两台钢筋台车及两台钢模台车的投入有效保障了“提前一年截流目标的实现。

钢筋砼范文篇9

关键词:质量防治措施

一、砼麻面

现象:砼表面局部缺浆粗糙,或有许多小凹坑,但无钢筋和碎石外露。

原因分析:

1、模板表面粗糙或清理不干净,粘有干硬水泥砂浆等杂物,拆模时砼表面被粘损。

2、钢模板脱模剂涂刷不均匀,拆模时砼表面粘结模板。

3、模板接缝拼装不严密,灌注砼时缝隙漏浆。

4、砼振捣不密实,砼中的气泡未排出,一部分气泡停留在模板表面。

预防措施:模板面清理干净,不得粘有干硬水泥砂浆等杂物。木模板灌注砼前,用清水充分湿润,清洗干净,不留积水,使模板缝隙拼接严密,如有缝隙,填严,防止漏浆。钢模板涂模剂要涂刷均匀,不得漏刷。砼必须按操作规程分层均匀振捣密实,严防漏捣,每层砼均匀振捣至气泡排除为止。

处理方法:麻面主要影响砼外观,对于面积较大的部位修补。即将麻面部位用清水刷洗,充分湿润后用潮湿的水泥抹平。

二、蜂窝

现象:砼局部酥松,砂浆少碎石多,碎石之间出现空隙,形成蜂窝状的孔洞。

原因分析:

1、砼配合比不合理,碎石、水泥材料计量错误,或加水量不准,造成砂浆少碎石多。

2、砼搅拌时间短,没有拌合均匀,砼和易性差,振捣不密实。

3、未按操作规程浇注砼,下料不当,使碎石集中,造成砼离析。

4、砼一次下料过多,没有分段、分层灌注,振捣不实或下料与振捣配合不好,未允分振捣又下料。

5、模板孔隙未堵好,或模板稳定性不足,振捣砼时模板移位,造成严重漏浆。

预防措施:砼配料时严格控制配合比,经常检查,保证材料计量准确(可采用电子自动计量)。砼拌合均匀,颜色一致,其搅拌最短时间符合规范规定。砼自由倾落高度不得超过2m,如超过,要采取串筒、溜槽等措施下料。砼的振捣分层捣固,浇注层的厚度不得超过振动器作用部分长度的1.25倍。捣实砼拌合物时,插入式振捣器移动间距不大于其作用半径的1.5倍;对细骨料砼拌合物,则不大于其作用半径的1倍。振捣器至模板的距离不大于振捣器有效作用半径的1/2。为保证上下层砼结合良好,振捣棒插入下层砼5cm,砼振捣时,必须掌握好每点的振捣时间。合适的振捣现象为:砼不再显著下沉,不再出现气泡。浇注砼时,经常观察模板,发现有模板走动,立即停止浇注,并在砼初凝前修整完好。

治理方法:砼有小蜂窝,可先用水冲洗干净,然后用1∶2或1∶2.5水泥砂浆修补,如果是大蜂窝,则先将松动的碎石和突出颗粒剔除,尽量形成喇叭口,外口大些,然后用清水冲洗干净湿润,再用高一级的细石砼捣实,加强养护。

三、孔洞

现象:砼结构内有空隙,局部没有砼。

原因分析:

1、在钢筋密集处或预埋件处,砼浇注不畅通,不能充满模板间隙。

2、未按顺序振捣砼,产生漏振。

3、砼离析,或严重跑浆。

4、砼工程的施工组织不好,未按施工顺序和施工工艺认真操作。

5、砼中有硬块和杂物掺入,或木块等大件料具掉入砼中。

6、不按规定下料,一次下料过多,下部因振捣器振动作用半径达不到,形成松散状态。

预防措施:

1、在钢筋密集处,可采用细石砼浇注,使砼充满模板间隙,并认真振捣密实。机械振捣有困难时,可采用人工捣固配合。

2、预留孔洞处在两侧同时下料。下部往往灌注不满,振捣不实,采取在侧面开口灌注的措施,振捣密实后再封好模板,然后往上灌注。

3、采用正确的振捣方法,严防漏振。a.插入式振捣器采用垂直振捣方法,即振捣棒与砼表面垂直或斜向振捣,即振捣棒与砼表面成一定角度,约40°~45°。b.振捣器插点均匀排列,可采用行列式或交错式顺序移动,不混用,以免漏振。每次移动距离不大于振捣棒作用半径的1.5倍。振捣器操作时快插慢拔。

4、控制好下料。要保证砼灌注时不产生离析,砼自由倾落高度不超过2m,大于2m时要用溜槽、串筒等下料。

5、防止砂、石中混有粘土块或冰块等杂物,发现砼中有杂物,及时清除干净。

6、加强施工技术管理和质量检查工作。

对砼孔洞的处理,要经有关单位共同研究,制定补强方案,经批准后方可处理

四、露筋

现象:钢筋砼结构内的钢筋露在砼表面。

原因分析:

1、砼浇注振捣时,钢筋垫块移位或垫块太少甚至漏放,钢筋紧贴模板。

2、钢筋砼结构断面较小,钢筋过密,如遇粒径大碎石卡在钢筋上,砼水泥浆不能充满钢筋周围。

3、因配合比不当砼产生离析,或模板严重漏浆。

4、砼振捣时,振捣棒撞击钢筋,使钢筋移位。

5、砼保护层振捣不密实,或木模板湿润不够,砼表面失水过多,或拆模过早等,拆模时砼缺棱掉角。

预防措施:

1、灌注砼前,检查钢筋位置和保护层厚度是否准确。

2、为保证砼保护层的厚度,要注意固定好垫块。一般每隔1m左右在钢筋上绑一个水泥砂浆垫块。

3、钢筋较密集时,选配适当粒径的碎石。碎石最大粒径不得超过结构截面最小尺寸的1/4,同时不得大于钢筋净距的3/4。结构截面较小,钢筋较密时,可用细石砼浇注。

4、为防止钢筋移位,严禁振捣棒撞击钢筋。

5、砼自由顺落高度超过2m时,要用串筒或溜槽等进行下料。

6、拆模时间要根据试块试验结果确定,防止过早拆模。

7、操作时不得踩踏钢筋,如钢筋有踩弯或脱扣者,及时调直,补扣绑好。

治理方法:将外露钢筋上的砼残渣和铁锈清理干净,用水冲洗湿润,再用1∶2或1∶2.5水泥砂浆抹压平整,如露筋较深,将薄弱砼剔除,冲刷干净湿润,用高一级的细石砼捣实,认真养护。

五、缺棱掉角

现象:砼局部掉落,不规整,棱角有缺陷。

原因分析:

1、木模板在浇注砼前未湿润或湿润不够,灌注后砼养护不好,棱角处砼的水分被模板大量吸收,致使砼水化不好,强度降低。

2、施工时,过早拆除承重模板。

3、拆模时受外力作用或重物撞击,或保护不好,棱角被碰掉。

4、冬季施工时,砼局部受冻。

预防措施:木模板在灌注砼前充分湿润,砼浇注后认真浇水养护。拆除钢筋砼结构承重模板时,砼具有足够的强度,表面及棱角才不会受到损坏。拆模时不能用力过猛过急,注意保护棱角,吊运时,严禁模板撞击棱角。加强成品保护,对于处在人多、运料等通道处的砼阳角,拆模后可用槽钢等将阳角保护好,以免碰损。冬季砼浇注完毕,做好覆盖保温工作,加强测温,及时采取措施,防止受冻。

治理方法:缺棱掉角较小时,,清水冲洗可将该处用钢丝刷刷净充分湿润后,用1∶2或1∶2.5的水泥砂浆抹补齐正。可将不实的砼和突出的骨料颗粒凿除,用水冲刷干净湿润,然后用比原砼高一级的细石砼补好,认真养护。

六、施工缝夹层

现象:施工缝处砼结合不好,有缝隙或夹有杂物,造成结构整体性不良。

原因分析:

1、在灌注砼前没有认真处理施工缝表面,浇注前,捣实不够。

2、灌注大体积砼结构时,往往分层分段施工。在施工停歇期间常有木块、锯末等杂物积存在砼表面,未认真检查清理,再次灌注砼时混入砼内,在施工缝处造成杂物夹层

预防措施:

1、在施工缝处继续灌注砼时,如间歇时间超过规定,则按施工缝处理,在砼抗压强度不小于1.2Mpa时,才允许继续灌注。

2、在已硬化的砼表面上继续灌注砼前,除掉表面水泥薄膜和松动碎石或软弱砼层,并充分湿润和冲洗干净,残留在砼表面的水予清除。

钢筋砼范文篇10

关键词:钢骨砼梁正截面承载力裂缝宽度节点构造

一、前言

由砼包裹型钢做成的结构被称为钢骨砼结构(也称劲性砼结构),在日本应用最为广泛,研究和试验也最多。这种结构被简称为SRC结构,现在已和钢结构、木结构、砌体结构以及钢筋砼结构并列为五大结构之一。其中实腹式钢骨砼构件具有较好的抗震性能、节约钢材、提高砼利用系数、施工方便等优点,在工程建设中得到广泛应用。本文将主要介绍钢骨砼梁的设计方法及构造要求,通过工程设计实例,具体说明其计算和使用,供类似工程设计时参考。

二、结构特点及计算方法

钢骨砼梁是钢梁和钢筋砼梁二者的组合结构,实腹式钢骨通常采用工字形、口字形,截面材料的选用主要是依据现行国家标准“钢结构设计规范(GBJ17-88)”和“高层民用建筑钢结构技术规程(JGJ99-98)”,保证构件具有足够的塑性变形能力,其屈服强度不宜过大,伸长率应大于20%;钢筋砼按照“砼结构设计规范(GBJ10-89)”要求实施。

钢骨砼梁的正截面强度各国的计算方法很不相同。前苏联“劲性钢筋砼结构设计指南CN3-78”假定型钢和砼成为一个整体,能够一致变形,几乎完全套用钢筋砼结构的计算方法。日本“钢筋砼结构计算标准”把钢筋砼梁的抗弯能力和型钢的抗弯能力叠加得到钢骨砼梁的抗弯能力,两种方法不同之处在于型钢梁能否与钢筋砼形成一个整体。现行“钢骨砼结构设计规程YB9082-97”在实腹式钢骨砼梁的计算方法上主要参考了日本计算标准,结合试验研究成果,对称配置钢骨砼梁正截面受弯承载力,计算结果偏于保守。

M≤Mssby+Mrcbu

M为弯矩设计值,Mssby为梁中钢骨部分的受弯承载力,Mrcbu为梁中钢筋砼部分的受弯承载力。

当受拉翼缘大于受压翼缘的非对称钢骨截面,则可将受拉翼缘大于受压翼缘的面积作为受拉钢筋考虑,考虑粘结滑移对截面承载力的影响,砼抗压设计强度以fc代替fcm。由力矩平衡公式ΣM=0,力平衡公式ΣX=0可得:

fcAc=fyAs+Nss,Mu≤fcAc(hos+hoc)-Nss(hos-hoss)+Mss

Ac:受压区砼的面积,hoc、hoss、hos分别为受压区砼的合力点、钢骨中心以及受拉钢筋合力点至截面受压边缘的距离。

对于钢骨偏置在受拉区的非对称截面,按钢与砼组合梁的设计方法计算处理,为保证砼与钢骨整体作用,在钢骨上翼缘设置剪力连接件。在设计中值得注意的是,在钢骨部分受弯承载力的计算中可不考虑局部压屈,基于受力构件达到受弯承载力极限状态时,比弹性极限受弯承载力有所提高采用截面塑性发展系数γs,实际应用中,根据构件重要性可偏于安全取γs=1.0。

钢骨砼梁受剪承载力按照承载力极限状态理论

V≤Vssy+Vrcbu。

V为梁的剪力设计值,Vssy为梁中钢骨部分的受剪承载力,Vrcbu为梁中钢筋砼部分受剪承载力,无地震作用组合时

V≤0.4fcbbhbo,Vrcbu≤0.25fcbbhbo。

钢骨砼梁裂缝宽度和抗弯刚度,钢骨砼结构设计规程给出了计算公式,不对称钢骨砼截面抗弯刚度可按下式计算。

B=EsAshbo2/[1.15Ψ+0.9+6αEρ/(1+3.5γ′f)]+EssIss

三、工程实例

华天贵宾楼工程,地下二层,地上二十八层,标准层层高3.3米,总高99.35米,总建筑面积48000平方米。南北向沿高度作内外7.08°~7.91°倾斜,顶部最大外公倾平面尺寸达14米,外倾面积7700平方米,其倾斜部分采用斜向钢骨砼柱与水平钢骨砼梁拉结,受层高和各专业安管道安装空间的限制,为满足建筑净空使用要求,轴线跨度为11.955米,横向次梁梁高只能做成600毫米,高跨比接近1/20,且位于外挑部位,梁身刚度很难保证,经方案比较,确定采用钢骨砼宽扁梁。

此建筑主楼结构整体采用“SATWE”进行分析计算。其顶层内力最大,最大正弯矩设计值M=829.0kN·m,最大剪力设计值V=331.6kN,轴向力设计值N=17.2kN,短期效用组合下弯矩标准值Mk=637.7kN·m。结合框架柱梁分析结果,假定梁截面尺寸700×600(h),钢骨采用Q235等级C的热扎H型钢HM450×300(440×300×11×18mm),截面特征见表1

表1

Ess

Iss

Wss

fss

fssy

fssv

2.06×105MPa

56100×104mm4

2550×103mm3

215MPa

235MPa

125MPa

混凝土强度等级C30,fc=15MPa,纵向钢筋fy=310MPa,fsv=210MPa。

(1)正截面抗弯、斜截面抗剪承载力计算

表2

名称

公式

计算结果

钢骨受弯承载力

Mssby=rswssfss

575.7kN·m

钢筋砼受弯承载力

Mrcb=M-Mssby

253.3kN·m

钢筋砼受弯配筋

As=Mrcb/fsyγhco

1504mm2

钢骨受剪承载力

Vssy=twhwfssv

555.5kN

钢筋砼剪弯承载力

Vrcb=V-Vssy

<0

(表中a=35mm,hbo=hb-a=600-35=565mm)

①选8Φ16,As=1608mm2,As>ρminbh

②选13Ф18,As=3315mm,

箍筋按构造,ρvmin=0.02fc/fyv=0.14%,选φ8@150(四肢箍)

0.4fcbbhbo=2373kN>V=331.6kN

0.25fcbbhbo=1483kN>Vrcb=0满足要求

(3)裂缝宽度验算

表3

名称

公式

计算结果

受拉钢筋配筋率

ρ=AS/bhbo

0.004066

0.008382

受压翼缘增强系数

γ′f=(b′f-b)h′f/bhbo

0.8

0.8

砼截面开裂弯矩

MC=0.235bh2ftk

118.4kN·m

118.4kN·m

短期荷载效应组合下钢筋砼部分所承担的弯矩

Mrck=EsAShbo/{EsAShbo+ESSISS/hos[0.2+6αEρ/(1+3.5γ′f)]}×MK

421kN·m

492kN·m

钢筋应变不均匀系数

Ψ=1.1(1-MC/Mrck)

0.79

0.8352

折算直径

dc=4(As+Asf)/s

29.9mm

25.43

受拉钢筋和钢骨受拉翼缘配筋率

ρte=(As+Asf)/0.5bh

0.03337

0.0415

短期荷载效应组合下受拉钢筋的应力

δsk=Mrck/0.87Ashbo

532.6Mpa

>310MPa

301.9Mpa

<310MP

(表中Es=2.0×105MPaEc=3.0×104MpaXe=ES/EC=6.67h′f=0.2hbo=113mm)

梁最大裂缝宽度

Wmax=2.1Ψ(δsk)/(Es)×(2.70+0.1de/ρte)γ

=2.1×0.8352×301.87/(2.0×105)×(2.7×25+0.1×25.43/0.0415)×0.7

=0.24mm<0.3mm

平均裂缝宽度Wm=Wmax(1.66×1.5)=0.096mm

(4)挠度变形计算

近似取钢骨砼梁荷载为均匀分布。

表4

名称

公式

计算结果

短期荷载效应组合下截面抗弯刚度

B=EsAshbo2/[1.15Ψ+0.2+6αEρ/(1+3.5γ′f)]+EssIss

2.851×1014N·mm2

长期荷载效应组合下钢筋砼部分所承担的弯矩

Mrclk=(Mlk/Mk)Mrck

446.0kN·m

长期荷载效应组合下梁的抗弯刚度

Bl=Mrck/(Mrck+0.6Mrclk)×EsAshbo2/[1.15Ψ+0.2+6γEρ/(1+3.5γ′f)]+EssIss

2.254×1014N·mm2

(表中砼保护层厚度c=25mm,钢筋表面形状系数γ=0.7)

Δs=5/48×Mlkl2/Bl=5/48×(578.2×106)/(2.254×1014)×119552=38.2mm

Δs/l=38.2/11955=0.0032=3.2‰,理论上满足要求。

设计中,分析外挑结构在荷载及地震作用下推力或拉力对梁不利影响,计算过程中梁端假定为简支,为平衡钢骨产生的拉力,需加配钢骨梁受力负筋;另受梁高限制,钢骨砼保护层厚度小于临界厚度ccr=0.25bft1/2=0.25x300x2.01/2=106.1mm,设置锚固连接件(通常采用圆柱头焊钉,按钢-砼组合梁要求验算,以增强型钢与砼连接面上的粘接强度,限篇幅,从略)。

梁端节点因按“钢骨规程”对钢骨梁与钢骨梁暂无明确规定,遵循钢骨腹板部分设置钢筋贯穿孔时,截面缺损率不应超过腹板面积的20%,主筋不得与钢骨直接焊接的要求。

此工程于二OOO年十月开工,二OO一年八月封顶、并主体验收,二OO二年五月投入使用,建筑从建设至今,经观测,钢骨梁柱无裂缝,挠度也不大,效果良好。

四、结束语

通过此次工程结构设计,有如下体会: