建筑抗震设计论文十篇

时间:2023-04-02 15:45:19

建筑抗震设计论文

建筑抗震设计论文篇1

1.1合理的选址在建筑结构抗震水平设计中,合理的选址是最基本的先决条件。为了保证选址的正确、合理性,我国政府部门已经出台了《中华人民共和国减灾抗震法》等法律条文,其中明确规定“对于有可能发生的重大建设性工程以及次生灾害进行严格的地震安全指标评价,按照地震安全评价结果,明确相关建筑物的抗震设防要求,并对其进行分别设防”。建筑结构的设防标准根据其实际质量可分为四个标准,其中:甲类:地震时间或大型建筑工程可能发生的次生建筑类灾害;乙类:地震中不能中断使用功能,且必须要逐步恢复的建筑类型;丙类:除甲、乙两类建筑外的其他普通建筑类型;丁类:抗震级别相对较低的建筑。根据对相关法规的分析,在进行建筑物结构设计时,必须要选择对建筑有利的场地,避免在不利地段建设大型民用建筑,以防止地震破坏隐患的出现。对于一些软基地段,也必须要进行充分的处理,才能够进行合适的建筑设计。另外对于地震可能引起的次生灾害问题,也必须要予以正确的处理,进一步保证选址的正确性。

1.2科学的设计当地震发生时,不同的建筑结构所受到的地震影响是不同的,为了最大限度降低地震灾害的影响,建筑设计人员在抗震设计环节中,要根据当地地段的实际情况来进行建筑结构的选择。目前,我国常用的鹅建筑结构可以分为“钢筋混凝土结构”、“砌体结构”、“钢混结构”和“钢结构”四种类型。通过对四种结构的比较分析得出,钢筋混凝土结构的抗震能力相对较强,因为其自身具有较好的柔韧性,所以当建筑物因地震灾害而出现应力变形时,钢筋混凝土结构能够依靠自身良好的承载力对其进行一定程度的控制,这是其它三种结构所不具备的优势。近年来,高层建筑建设的增多,大大增大了其在地震灾害影响下的水平位移和抗侧移刚度,这在无形之中就加大了地震灾害的影响,为了避免地震灾害影响程度的增大,在设计和审核高层建筑抗震设计时,必须要考虑结构的侧移度。

1.3坚实的质量地震作为破坏性超强的自然灾害,想要最大限度降低其对建筑的破坏,保证建筑设计坚实的质量是最基本的防护措施。相比较而言,我国建筑设计水平发展较为缓慢,在地震设计方面也存在不够合理的情况,这使得很多建筑结构都出现了地震安全隐患,过大的自身重量也加大了地震危害。为了保证建筑结构抗震水平,必须要在建筑抗震设计环节中科学的运用抗震理论,根据相关设计原则,利用有效措施来提高建筑结构的可靠性与安全性。

2实现建筑结构抗震水平设计的措施

2.1基础性防震措施应用基础性防震措施根据建筑的结构的不同位置有着不同的措施:(1)地基隔震。地基隔震是在建筑地基与土层之间设置缓冲层,以便在地震发生时减小建筑与土层之间的震动碰撞,实现对震能的有效吸收和反射作用,减小地震对建筑物的破坏。目前,我国最常使用的地基隔层为沥青原料隔震层。(2)基础隔震。基础隔震是整个建筑结构抗震设计中的关键,想要降低地震对建筑物的破坏,就必须要做好基础隔震措施。在对建筑基础采取抗震措施时,为了减小地震对上部结构的破坏,需要在建筑物的上部结构和基础位置接触处设置隔震层,防止地震力由地基处向上部结构传播,降低地震对建筑上部结构的破坏。基础抗震装置一般采用混合隔震装置、基底滑移隔震装置和夹层橡胶隔震装置等。(3)间层隔震。间层隔震是为了吸收地震的冲击余力而设置的,间层隔震的有效设置能够对震力进行再次削减,以达到降低地震对建筑的破坏作用。间层隔震一般都安装在原始结构层上,其实我国最早使用的的抗震措施,具有施工操作简单的优势。(4)悬挂隔震。悬挂隔震是通过悬挂的方式,将建筑物全部或部分结构脱离地面,从而在地震出现时,降低地面震动与建筑物之间的震力作用。目前,此种抗震措施多用于大型钢结构建筑当中,收到了较为不错的抗震效果。

2.2机敏减震支撑体系机敏减震支撑体系是集成现代科技技术的防震系统,其利用活塞运动的原理,对建筑结构进行设计。在地震灾害发生时,保证建筑结构中的内、外钢能够通过不断的滑动来消减地震的破坏力,减轻震力破坏和消耗地震作用力的传导。目前,这项技术还在不断的研究和完善当中,相信其很快就能够实现有效的应用,为建筑抗震设计水平的提升做出贡献。

2.3效能减震技术应用效能减震是实现对地震所产生动能的消耗,来减轻地震能的传导大小,从而降低其对建筑物的破坏程度。目前,在此技术方面一般采用消能器和阻尼器,两种器械都能够实现地震能量的有效消耗和吸收,减小震力对建筑主体的破坏,以达到对建筑主体结构安全、稳性定的保护。目前,效能减震技术在我国建筑防震设计中得到了有效的应用,其在新建筑的防震设计和旧建筑的抗震加固方面,都起到了良好的效果。

3总结

建筑抗震设计论文篇2

基于性能的抗震设计首先需要根据地震水准确定性能目标,地震动水准可选用规范的多遇地震、设防地震和罕遇地震的地震作用影响最大值,比如当抗震设防烈度为7度,设计地震基本加速度为0.15g时,多遇地震、设防地震和罕遇地震影响系数最大值分别为0.12,0.34,0.72。性能目标依据地震时建筑允许破坏的程度,可不拘泥于计算数值,但不应低于抗震三水准。抗震性能水准根据高规分为5个水准,性能目标1承载力要求最高,延性最低,性能目标5承载力要求最低,延性要求最高。抗震性能通过承载力和变形双重控制,以抗震承载力为主,层间弹塑性变形为辅,可以采用层间位移变形来反应破坏程度,性能化设计寻求在承载力和变形能力中寻找合理平衡点。下面通过抗震性能化设计的实例讲述设计目标实现过程。

2抗震性能化设计的实例

2.1工程概况

本工程位于内蒙古乌海市乌达区经济开发区内,本单项为内蒙古东源科技有限公司年产72万吨/年电石项目3#配料站,建筑高度23.2m,该地区抗震设防烈度为8度,设计基本地震加速0.2g,建筑物安全等级为二级,建筑物设防类别为标准设防类别,结构抗震等级为二级,设计使用年限为50年,建筑物场地类别为Ⅱ类,基本风压为0.75kN/m2,地面粗糙度为B类。本工程特殊之处在于全厂物料运输枢纽,连接三条钢栈桥,其中一条栈桥在19.1m层楼面处,10.000m-16.200m为石灰和碳材料仓,共约840m3,料仓的跨高比小于2.5,本结构层具有较大质量,收进约30%的情况下仍是下层质量的1.2倍。

2.2本工程超限情况

本工程超限情况如下:

①扭转不规则,在规定水平力下考虑偶然偏心Y方向最大层间位移与平均层间位移的比值:1.32。

②竖向刚度不规则,局部收进水平尺寸大于相邻下一层的25%。综合判定属于特别不规则结构。

2.3抗震性能目标设定

由于本项目的超限情况和全厂的重要性,除按照规范的要求及目标进行计算和设计外,提出了基于性能的抗震设计。综合考虑抗震设防类别,场地条件和结构的特殊性,震后损失和修复的难易程度,确定结构的性能目标为D级。在多遇地震作用下结构能做到完好无损,不需修理即可继续使用(性能水准1级),在设防烈度地震作用下结构只有中等破坏,修复后可继续使用,(性能水准4),在预估的罕遇地震作用下,结构损坏比较严重,需排险大修,但不倒塌(性能水准5)。具体抗震性能目标。

2.4小震弹性计算结构及分析

小震弹性计算按照正常设计,采用整体建模,考虑偶然偏心,双向地震,扭转耦联,及施工模拟,在抗震规范规定的地震影响系数曲线下,多遇地震标准值作用下楼层最大水平位移与层高之比小于1/550。作用组合的效应设计值按照1.2(DL+0.8LL)+1.3SEhk组合下抗震承载力满足弹性。(本工程重力荷载代表值的可变荷载组合系数0.8)构件配筋无超筋现象,轴压比,梁混凝土的相对受压区高度均能符合我国规范要求。

2.5中震计算结构及分析

按照“中震可修”的原则:和本工程的特点。需要对中震作用下主要抗侧力构件的承载力进行复核,以便确定其能达到设定的性能指标。取其中一个关键构件验算内容及结果如下:由于结构已经进入弹塑性状态,采用pushover推覆分析法,验算在1.0D+0.8L+1.0SEhk工况下的受力情况,其中一个料仓下的框架柱验算正截面结果如表2,其中材料强度取标准值。根据结果显示承载力满足设计要求。在设防地震标准值作用下,楼层最大水平位移与层高之比最大为1/170,也在规范要求3~4倍的[Δue]区间内,地震破坏等级可满足要求。

2.6大震计算结果及分析

按照性能化设计,罕遇地震作用下,按照弹塑性分析和SATWE软件对等效弹性计算,取结果较大值,关键构件的抗震承载力不屈服,允许较多竖向构件(40%)进入屈服阶段,关键构件的验算方法与中震验算方法相同,结果宜满足设计要求。性能水准5允许部分框架梁发生严重破坏,钢筋混凝土竖向构件的受剪截面应符合式VGE+V*EK燮0.15fckbh0。取其中一个关键构件进行斜截面承载力验算结果,其中材料强度取标准值。在预估的罕遇地震标准值作用下,楼层最大水平位移与层高之比最大为1/63,规范要求小于[Δup],在此范围内,表面结构整体不会倒塌。

2.7工程结论

综上所述,本工程通过性能设计及弹塑性时程分析,计算结果表明本工程各项指标达到预定的抗震性能目标,所选结构体系合理、安全、可靠,能满足“小震不坏,中震可修,大震不倒”的设计要求。

3结语

建筑抗震设计论文篇3

由于地震的不可预知性,高层建筑结构在设计过程中很难准确地预测建筑物所遭遇的地震特性和基本参数,只靠计算很难使高层建筑结构具备良好的抗震性能,这就要求每个结构工程师必须重视建筑结构的抗震概念设计。因此,高层建筑结构在抗震设计中,应注意以下几点:

1)建筑结构的平面布置。建筑结构的平面布置是影响结构抗震的重要因素,合理的建筑平面布置对建筑结构设计是至关重要的。大量地震灾害表明,平面布置简单、对称规则、质量和刚度分布比较均匀并且具有明确传力途径的建筑结构在地震时不容易发生破坏。规则结构能较为准确地预估结构的作用效应和地震时的反应,较容易采取有效的抗震措施及相应的结构措施来加强其抗震性能。相反,平面布置复杂、不对称且不规则的结构,其地震作用效应很难估计的。因此,高层建筑结构中规范规定,宜采用规则结构,不应采用严重不规则的结构。

2)建筑结构的体系选择。高层建筑结构设计中,就优先采用具有多道防线的结构体系。例如:框架—剪力墙结构、剪力墙结构和筒体结构。这三种结构可以作为地震区高层建筑的首选体系。当建筑物高度不高且层数不多时,可采用框架结构。但当建筑物位于地震区,且高度均较高时,应避免采用框架结构、板柱剪力墙结构。因为,地震具有强破性且持续时间很长,往复次数较多,能够对建筑物造成累积破坏。单一的结构体系在遭遇地震时,一旦发生破坏,很容易造成房屋倒塌,危及人们的生命及财产的安全。当结构体系具有多道防线时,当遭遇地震时,第一道防线遭破坏后,后续的防线仍然能抵抗地震的冲击力,可以最低限度的防止建筑物的倒塌,给人们以充分的时间进行逃生,保证人民的生命安全。因此,高层建筑结构抗震设计中的多道防线是进行抗震设计时所必须设置的。

3)结构薄弱层。当建筑结构的侧向刚度分布不均匀、竖向抗侧力构件不连续和楼层承载力突变时,容易产生薄弱层。薄弱层在地震中是最先遭受破坏的部位。因此,对有明显薄弱层的结构,应采用相应的抗震构造措施来提高其抗震能力。结构构件的实际承载能力是判断薄弱层部位的基础,有意识、有目的地控制薄弱层部位,让它有足够的变形能力,而且不使薄弱层发生转移是提高结构抗震性能的重要手段。

2高层建筑抗震设计常见问题

1)高层建筑结构的地基问题。高层建筑结构在设计阶段,应有完善的岩土工程勘察报告,为结构工程提供基本的设计依据。建筑结构场地应选择在有较稳定的基岩、开阔、平坦、土层坚硬或较密实的有利地段,不应建造在容易发生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危险地段,有利地段的建造对建筑物的抗震是十分有利的。有时由于建设单位工期要求,在确定方案后设计人员就直接进入了施工图设计阶段,从而忽略了岩土工程勘察资料和场地的选择,从而给后续工作带来不必要的麻烦。

2)高层建筑结构平面布置问题。高层建筑为了追求外立面效果的美观而设计成平面不规则、不对称且有较大凹进或较大开洞的结构,这种结构对抗震十分不利。因此,在建筑方案正式确定前,结构工程师就应对建筑平面布置、体型方面的内容提出自己的见解,及时和建筑师进行沟通,尽量选用平面、竖向规则对称、质量和刚度、承载力均匀的平面布置,这对抗震十分有利。

3)高层建筑结构的高度问题。如今的高层建筑结构的高度越来越高,甚至出现了很多超高层的高层建筑,这就对结构工程师的专业知识提出了更高的要求。不同的高度对应不同的结构体系,规范上有明确规定。一旦结构超过了规范规定的限制高度,就应通过专门的审查、论证进行更严格的计算分析和研究。

4)高层建筑抗震设防等级的选取问题。抗震等级是结构抗震设计的重要依据,抗震等级选取不当将给建筑物的安全带来许多隐患,对工程造价也会带来不必要的浪费。抗震等级根据房屋的场地类别、抗震设防烈度、建筑高度、结构类型等因素综合评定。每个结构工程师应当熟练掌握结构的抗震概念设计和规范知识,做到该提高的应当提高其抗震等级,该降低则应适当降低。

5)计算软件的合理应用。高层建筑结构抗震设计时,应该应用正规的结构设计软件进行设计,软件中的各个参数指标能够正确反映建筑物的特征。结构工程师能正确分析结构软件所计算的结果,并做出正确的判断。但有时计算机设计会给结构工程师带来一种错觉,有的结构工程师往往过分依赖计算结果,而减少了结构的概念学习。一旦选择了错误的计算参数,就会导致结构设计出现问题,对结构的安全和经济方面造成影响。因此,结构工程师应加强自身的业务学习和抗震概念设计的理解,做到熟练掌握相关的结构概念设计,并且根据自身的专业知识配合计算结果选择最佳的结构设计方案。

3结语

建筑抗震设计论文篇4

关键词:高层建筑;抗震;结构设计;探讨

引言

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

1 高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

建筑抗震设计论文篇5

[关键词]建筑结构设计;抗震设计;研究

中图分类号:TU3 文献标识号:A 文章编号:2306-1499(2014)08-0227-02

根据建筑结构抗震设计的规范可知,建筑结构可以通过不同的变量来体现对地震的反应。而在具体的抗震设计过程中,对于设计变量的选择,则需要通过结构自身类型的研究、地震反应特性、地震破坏模式等综合因素而定。按照抗震设计变量的不同,抗震设计主要分为基于承载力的抗震设计法、基于位移的抗震设计方法、基于能量的抗震设计方法和基于损伤的抗震设计方法。目前,国内建筑行业的设计人员在进行抗震设计时,主要是根据以承载力为主,结合建筑性能分析的设计原则来进行。

1.承载力的结构抗震设计思想

1.1理论基础

承载力的结构抗震设计理论是以惯性力的形式反映地震作用,通过静力分析理论的研究,按照弹性方法计算结构地震作用效应的大小、进行结构弹性位移验算,并把结构构件的强度是否满足特定的极限状态作为结构失效的准则。基于承载力的结构抗震设计方法是现行规范中在考虑结构延性的基础上普遍采用一种抗震设计方法。

1.2结构构件抗震承载力

在建筑结构设计的抗震设计过程中,必须依托结构构件的抗震力验算数据来进行。为了确保抗震构件的抗震性能,需要设计地震作用力验算,即一种以单独的一项乘以荷载分项系数加入到结构构件的承载力验算的作用效应的验算方式。在使用"承载力准则"对建筑结构构件进行安全水准考察时,地震力被视作是一种有效“荷载”以相应地震作用分项系数的取值体现其对建筑构件可靠性水准的影响,而以地震作用效应和其他荷载效应的组合效应起确定结构构件屈服水准的作用则是综合权衡抗震结构的安全水准的"设计地震力-延性"联合准则,两者概念有别,必须区分。

1.3降低系数与抗震措施

在现代的建筑结构抗震设计理念中,为了让结构在较低的地震作用下保持弹性的工作状态,必须要降低地震多用参与组合进行结构的抗震承能力的设计。但是在较大的地震作用下,为了让结构可以通过非有弹性变形抵御部分的地震作用,必须根据设计原则,在抗震设计时,引导结构进行合理的屈服,以满足设防的要求。根据抗震设计的基本原则和经验总结可以得出:在特定的地震分区,对于建筑结构而言,如果以设计地震作用为基准,使结构适中保持弹性反应,取用的地震作用越低,建筑结构在相同水准地震作用下位移延性需求会随之增加,或者水平位移越大,反之,水平位移就越小。

2.基于能量的结构抗震设计

能量的结构抗震设计是从输入能量和耗散能量的角度,捕捉到结构在强烈地震作用下的非弹性变形历程,其设计理论考虑了地震强度、频谱、地震持续时间对结构破坏的综合因素的影响,从能量角度分析研究地震地面运行以及运动对建筑结构作用。但是基于能量的结构抗震设计理论较为复杂,原因在于能量的变化没有规律可循。所以,到目前为止,能量的计算方案还未完全建立,基于能量的结构抗震设计方法仍处于研究探索之中。能量概念和破坏模型一直对立存在,成为抗震研究的中并行讨论的课题,基于设计理念和思路,对抗震结构的性能分析,又出现新的要求。

2.1设计特点

基于能量的抗震设计方案原理相对简单,思路简洁清晰,主要是从能量的角度考察地震对结构的作用,以及结构损伤破坏的相互关系角度阐述地震输入能量在结构中的转化、耗散过程。在建筑结构的抗震设计中,以能量分析方法解释地震三要素(幅值、频谱特性和持时)对结构抗震性能影响;能量分析为了能够使塑性累计损伤对结构破坏的影响清晰的反映出来,通过动力时程分析方法求得结构地震反应的全过程,对控制结构损伤性能意义重大。

2.2潜在问题与发展趋势

以能量谱的形式确定地震作用方式得到了绝大多数人的理解和支持,但能量谱的相关理论还不健全,需要继续加强研究;能量反应分析因为采用动力时程分析法,此分析方法比较准确,因而被广泛认可。在建筑结构中,对结构总耗能在非弹性变形耗能与阻尼耗能中的分配以及结构内部非弹性形变的耗能分布规律并没有明确的研究结果,无法建立一个广泛认可的关系表达式解释结构破坏状态与能量控制参数;目前为止,基于能量分析的抗震设计的研究还有一定的局限性,为了尽早的实现能量分析与实际工程的结合,必须加强自由度体系地震能量反应与单自由度体系反应的关系的研究,建立相应的标准规范,以促进抗震设计的发展,保证建筑的质量。

3.基于损伤的结构抗震设计

通过各国学者的研究证实:地震是一种持续时间短的往复运动,地震的破坏力不仅与结构的低周疲劳效应所造成的累积损伤有关,还与结构的最大变形有关。只有非弹性性能能够全面反应结构的变形和累积损伤效应的损伤性能参数,所以,通过非弹性性能建立地震损伤模型,按照结构在未来地震作用下的损伤允许值进行抗震设计是一种比较科学合理的设计方法。

4.基于位移的结构抗震设计

基于位移的抗震设计理论思想是为了确保结构达到该水准地震作用下的性能要求,一定水准的地震作用下,以结构的位移响应为目标设计建筑结构和相关构件。其原理是控制结构在大震作用下的层间位移角限值和总移限值,也就是说,为了使结构的塑性变形能力满足在预期地震作用下的变形要求,需要按照位移要求进行定量分析计算,以获得相应的资料数据,这是一种相对简单、合理的方法。该类设计由于设计思想的差异被分为了延性系数设计方法、能力谱法、直接基于位移的设计方法三大类,其中能力谱法主要体现的是一种位移验算方法,而直接位移法和控制延性方法是依据位移目标进行结构设计,本质相同,途径有异。

5.结语

伴随着建筑行业的发展,国内相关人员根据多年的研究,逐渐形成了一套较为先进有效的抗震设计方案,并在不断的发展中进行完善。当然,其中还有尚待改善的方面,只有通过不断的理论更新和实践证明,才能逐步成熟。为了确保建筑的抗震性能,满足建筑能够适应任何等级的地震,需要继续完善相关设计理念并用实践进行检验证实,促进我国建筑工程的持续健康发展。

参考文献

[1]李田超.浅谈工民建结构设计中的抗震设计[J].江西建材,2013(6):29-30.

建筑抗震设计论文篇6

【关键词】抗震概念;设计;建筑结构;应用;研究

近些年来,自然灾害频频发生,尤其是地震灾害,汶川、玉树、日本等等地区都发生了强烈的地震。地震严重威胁了人们的生命和财产安全,由于地震具有不可预知性,我们只能够在增强自身危机意识基础之上,增强我们所使用建筑物的抗震能力。抗震概念设计是建筑提升其抗震能力的基础,因此,将抗震概念设计融入到建筑结构设计之中去是当前的一大趋势。但是,抗震概念设计在应用到建筑结构设计中时还存在着一些缺点和不足。本文中,笔者就先对抗震概念设计重要性以及抗震概念设计定义进行分析,从而探析抗震概念设计在建筑结构设计中的应用。

1 抗震概念设计重要性以及抗震概念设计定义

建筑物自身就是一个复杂而又庞大的系统,建筑物自身中的各种构件都以非常复杂的方式共同工作,建筑物各种构件并没有脱离建筑物整体结构体系而单独工作。近些年来,地震频频发生,这就在一定程度上提高了人们的安全防范意识。因此,人们对于建筑物的抗震性能也更加关注。由于地震本身具有复杂性、不确定性以及随机性,而建筑物结构模型的基本假定与其实际情况存在着很大的差异,在建筑物结构分析这一方面并不能对建筑物结构的材料时效、阻尼变化、非弹性性质以及空间作用进行充分的考虑,所以,我们很难准确的预测到建筑结构所要遭遇的地震参数和地震特性,因此,我们必须对建筑结构运用抗震概念设计。

在《抗震规范》这一条文中明确说明了结构抗震设计性能的决定因素就是良好的抗震概念设计。而所谓的抗震概念设计就是指根据建筑设计者的经验和知识,运用其判断能力和思维能力,对建筑结构的细部构造和整体方案进行决定,从而达到合理的抗震设计。抗震概念设计是结构抗震设计的一种,结构抗震设计主要包括抗震概念设计、抗震构造措施以及抗震计算设计。其中,抗震概念设计以及抗震计算设计这两者应该与抗震构造措施进行有效地结合。在日常生活中,造成建筑物遭受震害的原因应该是多方面的,抗震概念设计应该针对各个方面的震害原因,保证建筑物抗震设计的效果。抗震概念设计的主要内容包括:采用隔震消能技术、保证非结构构件安全、提高结构延性、采用合理抗震结构体系、合理选用建筑体型、合理选用建筑结构布置以及有利场地的选择等等,其中,对非结构构件安全进行保证的目的在于确保建筑结构的整体性。

2 抗震概念设计在建筑结构设计中的应用研究

2.1 建筑设计应重视建筑结构的规则性

建筑结构的设计应该重视其规则性,综合现代建筑在地震中的若干表现来看,建筑结构规则性一直都对抗震能力产生着极其重要的影响。在一九七二年二月二十三日,南美洲的马那瓜发生了地震,当时的马那瓜有两幢间隔并不远的高层建筑,一幢高层建筑是马那瓜的中央银行大厦,另外一幢高层建筑为十八层高的美洲银行大厦。当时的马那瓜地震强度被估计为八度,两幢高层建筑中,一幢在地震过程中遭到了严重的破坏,在地震后被拆除,而另一幢只有轻微的损坏,在地震以后稍微修理便可以继续使用。这两幢高层建筑在地震中的表现引起了人们的关注,经过研究发现,在地震中破坏较轻的建筑立、平、剖均比较对称和规则,其结构侧向刚度以及材料强度和质量分布都是连续、均匀的,而另一幢高层建筑则相反。所以,笔者认为,建筑设计应该重视建筑结构的规则性。

2.2 合理选择建筑的结构体系

抗震结构体系是抗震设计应考虑的关键问题,结构方案的选取是否合理,对安全性和经济性起决定性作用。

2.2.1 合理选择建筑的结构体系要求所选择的建筑结构体系不仅要有合理的地震作用传递途径以及明确的计算简图,还要求建筑结构体系的传力路线、传力合理以及受力明确,这些都应该与不间断的抗震分析相符合。

2.2.2 合理选择建筑结构体系还应该对由于部分构件或者部分结构的破坏而导致的整个建筑结构体系丧失对重力荷载或者对抗震能力的承载能力。其中,有内力重分配功能以及赘余度功能是抗震概念设计的一个重要原则。坚持这一重要原则的重要性在很多建筑物地震后的实际情况中都得到了很好的印证。

2.2.3 合理选择建筑结构体系还要求必须具备良好的变形能力、消耗地震能量能力以及一定的承载能力,在这里笔者想要强调的是,良好的变形能力是与充足的承载能力相互作用并且同时满足的。有些建筑结构体系拥有很高的承载能力,但是缺少强大的变形能力,例如没有约束的砌体结构,砌体结构就很容易因为脆性破坏而导致最终的倒塌。因此,良好的变形能力以及强大的承载能力相互结合会使建筑结构在强烈的地震作用下最终具有耗能能力。

2.3 提高结构构件的延性

结构的变形能力取决于组成结构的构件及其连接的延性水平。对各种建筑结构采取的抗震措施进行规范,从根本上对各类建筑结构的构件延性水平进行提高是抗震概念设计在建筑结构设计中应用的重要问题。而笔者这里所指的抗震措施例如:采用水平向(圈梁)和竖向(构造柱、芯柱)混凝土构件,加强对砌体结构的约束,或者进行配筋砌体的采用,从而使配筋砌体在地震中建筑物产生裂缝以后不会散落和倒塌,从根本上使建筑物在地震时不致丧失对重力荷载的承载能力。

3 结语:

本文中,笔者先对抗震概念设计的重要性以及抗震概念设计的定义进行了分析,接着笔者从建筑设计应重视建筑结构的规则性、合理选择建筑的结构体系以及提高结构构件的延性这三个方面对抗震概念设计在建筑结构设计中的应用进行了分析。

参考文献:

[1]曹会兰.李山有.张雷.李伟.ARX结构模态参数识别方法对比(Ⅰ)――基于理论地震反应时程的对比[J].地震工程与工程振动.2009.(01).

[2]黄宜胜.常晓林.李建林.切割式横缝碾压混凝土重力坝抗震安全性研究[A]. 第二届中国水利水电岩土力学与工程学术讨论会论文集(一)[C].2008.

[3]李碧雄.谢和平.邓建辉.何昌荣.王哲.汶川地震中房屋建筑震害特征及抗震设计思考[A].汶川大地震工程震害调查分析与研究[C].2009.

[4]刘俊.陈亚春.适用于高烈度区多层框架的两阶段抗震设计方法[A].防振减灾工程理论与实践新进展(纪念汶川地震一周年)――第四届全国防震减灾工程学术研讨会会议论文集[C].2009.

[5]张东海.张超.邓雪松.邹征敏.由汶川地震学校震害反思学校建筑安全[A]. 防振减灾工程理论与实践新进展(纪念汶川地震一周年)――第四届全国防震减灾工程学术研讨会会议论文集[C].2009.

建筑抗震设计论文篇7

关键词 :建筑结构 抗震 设计

1.引言

随着城市化进程的加快和人类生活水平的提高,在现代的结构设计中的重要环节就是对建筑的抗震结构的设计。对建筑物的抗震结构设计直接能影响到其抗震能力,也是在没办法预测地震的情况下保护建筑受到损害的有效方式。针对这种情况,下面主要对建筑物抗震的结构体系和结构参数进行讨论。

2.抗震概念设计

建筑工程的抗震概念设计,换种说法就是根据基本的建筑设计原则和思路对具体的建筑工程进行工程布局并对细节的构造进行确定的过程,其设计的原则和思路是在长期的工作经验中形成的。在对抗震设计时对抗震的计算是不可或缺的,抗震计算的基础是概念设计。概念设计之所以在与抗震计算的比较中起着更重要作用的原因有三个,首先就是地面和地震的运动具有极大的不确定性,其次就是我们还没有对地震时地面运动的复杂性有很确切的掌握,最后就是地震时的结构反应负责程度并没有在结构设计概念中充分的体现出来。所以,简简单单的靠着计算的结果就完成对建筑的抗震设计是不全面的,甚至是很危险的。抗震概念设计的基本原则是要注意抗震场地的科学选择,选择合适的结构抗震体系,选择合理的结构材料。

3.建筑结构抗震设计的措施

3.1 材料的选择

建筑结构抗震设计一般因地区而异,抗震建筑材料的选择一般要基于此地区的地震历史记录。由一个地区的地震历史记录可以得出科学的数据,这些数据可以反映此地区建筑的抗震要求。建筑结构受材料的刚度和塑性的影响,一般来说,满足了基本的设计思路之后,质地轻的材料,抗震性能比较低。在东北,为了使建筑物达到一定的抗震效果,钢筋混凝土则是选择比较多的材料。伸缩缝的设计达到了很好的抗震效果,它一般为大型建筑物的抗震措施,主要是提高基础的稳定性。

3.2 隔震措施

一般情况下是根据建筑物的地理环境和建筑尺寸来抗振,隔震措施也是一种有效的抗震设计。隔震措施一般包括地基隔震、基础隔震、间层隔震和悬挂隔震四种。隔震措施的设置减弱了地震对建筑物的冲击,它们一般设置在建筑物比较关键的位置。

第一,地基隔震措施:沥青原料的隔震层是我国现行比较常见的隔震层。地基隔震层是缓冲层,因其位于建筑物的基础底部与土层相接触的位置,所以它能在地震时很好地吸收和反射作用力,从而减少地震对建筑物的损害。科技在发展,相信隔震层的设计也会越来越完善。

第二,基础隔震措施:基础抗震一般包括混合隔震、基底滑移隔震和夹层橡胶隔震。基础隔震的作用机理主要是防止地震由地基处向上蔓延,所以多层建筑一般都会采用基础隔震措施。一个建筑物的建设最重要的就是基础结构设计,上层建筑取决于基础,所以要很重视基础结构的设计。

第三,间层隔震措施:间层隔震设计的实施简单易操作,所以在早期建筑里间层隔震是比较常见的。间层隔震可以吸收地震冲击余力,减弱地震力的作用。

第四,悬挂隔震措施:这是应用于大型钢结构建筑中的抗震措施,而且抗震效果很好。悬挂隔震的作用机理是通过建筑物的悬挂来达到隔震的效果。悬挂结构分为主体和子体,地震时,主体承受大部分的地震力来减少地震对子体的损害,需要介质传导的震力从而不能够传导,地震对上层建筑物的主体结构的损害就能有效的降低。悬挂隔震的隔震效果明显,也在逐步被投入使用中。在多次的实践和探索之后,悬挂隔震的设计思想将更加完善,建筑物的安全将得到有效的提高。

3.3 合理的建筑结构参数设计

(1)建筑结构靠的是延展性来抵抗地震作用对墙体的非弹性形变。所以在地震发生时,建筑结构的延性和建筑的结构有着同样的重要性。为了让钢筋混凝土结构能在地震发生时能够表现出良好的延性,就有必要在对其参数设计时将塑形变形重点集中在具有很好的延展能力的构件重,或者集中在容易保证良好延展性的构件中。建筑的参数设计是对地震作用下的房屋构件的响应计算,其中包含岁各墙柱梁板的承载力和变形等计算。

(2)在进行开市计算工作之前,要根据高层建筑的实际工况,确定合适的计算模型,特殊情况下能根据概念设计做相应的简化处理和计算。计算软件条件在输入时要严格的按照相关的规范和标准的规定进行,根据实际施工情况可以做特殊的处理。在对结构复杂的结构进行变形和内力分析时,要采取两种以上不同的力学模型,目前常用的理论有两种,分别是主拉应力和剪摩理论。主拉应力理论主要用于砖砌体,剪摩理论主要用在砌块结构上。

3.4 通过效能减震设计来抗震

效能减震一般是通过效能器和阻尼器来达到抗震的效果,且效果显著。消能器能够消耗地震的能量,阻尼器能够吸收地震的能量,从而使建筑主体结构的安全性得到保障。效能减震的应用范围广,在新旧建筑中都可以应用。

传统的抗震结构体系是通过改变结构的刚度来达到抗震的效果。但该体系也有不足之处。第一:这种设计的结果是建筑断裂,但并不倒塌,所以它不适合用于有纪念价值的建筑、造价比较高的建筑和核电发电站等。第二:建筑物的断裂是非弹性形变,非弹性形变是不可恢复性形变,经过地震的建筑物发生非弹性形变,震后建筑物的修复将成为一大难题,若建筑物形变比较严重将不可能被修复,只能摒弃原建筑用更多的资金建新的建筑。随着时代的进步,高层建筑物越来越多,建筑物的抗震要求也越来越高,传统的抗震结构体系的缺陷表现出来,不能使建筑物达到一定的抗震标准。新型的效能减震设计,能够使建筑物的抗震水平达到标准,其应用范围广,抗震效果显著。

3.5 通过防止共振的抗震设计

两个物体的自振周期接近时容易发生共振现象,地震时,建筑物和场地发生共振,建筑物将很容易倒塌。所以要提高建筑物的抗震性能就要防止共振的产生。建筑物的自振周期受结构的层数、结构类别和结构体系的影响,要避免建筑物和场地发生共振,就要使其的自振周期有所差异。所以要对这些影响因素做一些调整,来防止共振现象的出现。

参考文献:

[1]李军鹏,耿俊景.浅谈建筑结构抗震的概念设计.《城市建设理论研究(电子版) 》.2013年18期

建筑抗震设计论文篇8

关键词:建筑工程;抗震; 结构设计

1建筑抗震的理论分析

1.1 建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论。

①拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构设计的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小相当于结构的重量乘以一个比例常数。

②反应谱理论。反应谱理论是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加州理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

③动力理论。动力理论是20世纪70-80年代广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2 高层建筑结构中抗震设计特点

2.1控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。

2.2地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的增加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。

2.3要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔 ,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。

3 建筑结构中抗震设计的关键问题

3.1 场地选择。场地选择是建筑结构抗震设计中的关键问题之一,在建筑施工中,需要选择对建筑物抗震有利的场地,需要避开对建筑物抗震不利的场地,尤其是在危险地段,更不应该修筑建筑物。研究表明,地震对建筑物造成很大的破坏,除了地震释放的能量,引起的结构性破坏之外,还有一个非常重要的原因就是建筑物场地的选择。所以,为了提高建筑物的抗震性能,在修筑建筑物时,进行地段选择的时候,需要选择有利的地段,避开对建筑抗震不利的地段,比如软弱场地土,易液化土,状态不均匀地段。当然,在工程建设中,如果确实不能避开这些地段的时候,则需要采取相应的加固措施,以强化建筑物的抗震能力。

3.2 结构体系选择。

①结构体系需要避免对建筑整体抗震产生不利影响。在进行设计的时候,需要考虑不能因为部分结构的破坏而导致整个建筑结构抗震能力下降或者丧失。②结构体系需要有明确的计算简图和合理的地震作用传播途径。

③结构体系需要具备必要的承载能力,良好的变形能力和消耗地震能量的能力。由于钢筋混凝土结构具有上述良好的能力,所以在建筑结构设计中,需要使用钢筋混凝土结构。

④结构体系需要具有合理的刚度和强度。需要具有合理的刚度和强度分布,避免因局部的变形或者削弱而形成薄弱部位,产生过大的应力集中或者塑性变形集中。

3.3 结构的规则性。结构的规则性主要表现在建筑主体抗侧力结构上,尤其需要注意以下四个问题:

①建筑主体抗侧力结构需要注意两个主轴方向的刚度需要比较接近,其变形特性还需要比较的相似。

②建筑主体抗侧力结构构成变化比较均匀,不应当有突变的情况发生。

③从建筑主体抗侧力结构的平面布置来看,需要注意的是,应该注意同一主轴方向的各片抗侧力结构刚度尽量均匀,这样有利于建筑整体的抗震性能的发挥。

④建筑主体抗侧力结构的平面布置需要注意,中央核心和周边结构的刚度协调均匀,以避免产生过大的扭曲变形。重视建筑平面布置的规则性是相当重要的工作,在实践中需要高度重视。

4 提高建筑结构抗震能力的措施

为了提高建筑结构抗震能力,结合当前建筑行业的实际情况,笔者认为应该采取以下措施:

4.1 合理布局地震外力能量的传递吸收途径。这是提高建筑结构抗震能力的第一步,通过这样的合理布局,能够保证支柱、墙和梁的轴线处于同一平面,从而使得构件双向抗侧力体系形成。通过这样的布局,当地震发生的时候,支柱、墙和梁呈弯剪破坏,并且,塑性屈服尽量在墙的底部产生。此外,当地震发生的时候,连梁宜在梁端塑性屈服,还具有足够的变形能力。通过这种结构和布局,当地震发生的时候,在墙段充分发挥它的抗震作用前,按照强墙弱梁的原则加强墙肢的承载力,这样使得墙肢的剪切应力得以破坏,从而使得建筑结构的抗震能力得到了提高。

4.2 按照抗震等级对梁、柱以及墙的节点采取相应的抗震构造措施。这样做的目的是为了保证在地震发生的时候,梁、柱以及墙都能够达到抗震的标准。建筑物的主体常常使用的是钢筋结构,如果钢筋结构的延性和承载力较好的话,建筑物的抗震能力较强。所以,为了保证建筑钢筋结构的延性和承载力,在结构设计的时候需要按照强剪弱弯、强柱弱梁、强节点弱构件的原则进行,对柱截面的尺寸进行合理的控制,合理控制柱的轴压比,严格按照构造配件的要求,对节点的构造措施尤其需要加强,提高节点的牢固性和抗震能力。

4.3 设置多道抗震防线。提高建筑结构抗震能力,设置多道抗震防线是十分必要的。也就是在一个抗震结构体系中,当地震发生的时候,在地震作用下,一部分延性较好的构件首先达到屈服,能够担负起第一道抗震防线的作用。而其他的构件同样起着抗震防护的作用。

建筑抗震设计论文篇9

关键词:抗震设计规范 抗震理论 设计方法

1.抗震理论的发展

抗震理论的发展是一个长期的过程,聚集了各国人民的智慧和心血,几代人为之奉献与努力。抗震设计规范是在抗震理论的基础上发展起来的,抗震理论对抗震设计规范至关重要。

最初的抗震设计都是从简单的静力分析方法开始的,假定结构为完全刚性,这是静力理论阶段。随着地震观测站的建立,世界各国广泛采用反应谱理论。反应谱理论是我们研究的重点,也是当前各国抗震设计的基本理论,其中以加速度反应谱最为普遍。到20世纪70、80年代,动力理论广为应用,动力法比反应谱法有较高的精确性。

地震作用是一种随即脉冲动力作用,除与地震烈度的大小、震中距、场地条件及结构本身的动力特性(如自振周期、阻尼)有关外,还与时间历程有关系,因此是一个比较复杂的问题。

2.抗震设计基本思想和抗震设计方法

《建筑抗震设计规范》在总结国内外震害经验的基础上,结合近年来结构抗震性能试验研究、理论分析和工程实践等方面的研究成果,明确规定我国抗震规范实行三水准设防,即小震不坏、中震可修、大震不倒。

2.1抗震设计第一阶段的基本内容和分析方法[2]

根据不同结构的特点,使用不同的分析方法,水平地震作用分为底部剪力法、振型分解反应谱法和线性时程分析法。竖向地震作用分为总竖向地震作用法、地震作用系数法和静力法。a.底部剪力法的适用条件:建筑物高度H≤40m,以剪切变形为主,质量分布比较均匀,刚度沿高度分布比较均匀,以及近似于单质点体系的结构。振型分解反应谱法:除b项外的建筑结构。线性时程分析法:(1)特别不规则的结构;(2)甲类结构;(3)8度I、II类场地和7度高度大于100m;8度III、IV类场地高度大于80m;9度高度大于60m的高层建筑。

2.2抗震设计第二阶段分析的基本内容和方法[2]

3.小结

采用什么方法进行抗震设计,可根据不同的结构和不同的设计要求区别对待。在小地震作用下,结构的地震反应是弹性的,可按弹性分析方法进行计算;在大地震作用下,结构的地震反应时非弹性的,则要按非弹性方法进行计算。对于规则、简单的结构,可以采用简化方法进行抗震计算;对于不规则、复杂的结构,则应采用较精确的方法进行计算。对于次要结构,可按简化方法进行抗震计算;对于重要结构,则应采用精确方法进行抗震计算。

参考文献:

[1]GB50011—2010,建筑抗震设计规范题[S].北京:中国建筑工业出版社,2010.

建筑抗震设计论文篇10

关键词:性能;建筑结构;抗震设计

随着我国建筑行业的发展,建筑结构方面提出抗震的设计要求。我国传统的建筑结构,在抗震性能上有不同程度的缺陷,不利于建筑结构的可靠性及稳定性,为了提高建筑结构抗震的水平与性能,应该在性能的基础上,按照建筑结构抗震功能的需求,完善抗震结构的设计,保证抗震结构在建筑工程中的效果,以此来延长建筑结构的使用寿命。

一、基于性能的建筑结构抗震设计

1、结构抗震基于性能的建筑结构抗震,不论是结构体系还是非结构体系,都比较注重参数的设计,所以建筑结构性能抗震方面,将结构抗震作为核心的内容,细化建筑结构的构造,保证建筑结构的抗震性能,可以满足整体结构的安全目标,规避地震作用对建筑结构抗震性的干扰[1]。站在性能的角度上,探讨建筑结构的抗震构造。建筑构件或构造方面,抗震设计时要重点考虑变形与能量,基于性能的建筑构造抗震设计,此两项内容是具有特征的项目。结构抗震方面,首先设计过程中,要明确抗震计算的方式,充分考虑结构抗震性能目标的多样化,合理分配线性或者是非线性的计算方法,确保结构抗震性能的合理性,进而保证结构抗震达到性能的规范标准;然后是结构抗震的直观性与多变性,结构抗震的设计人员,采用直观性和多变性的方法,解决建筑结构抗震中的各项问题,尤其是目标参数的数值计算,促使各项参数数据,均能具备适用性;最后是结构抗震中的概念设计,全面完善结构抗震的概念设计,保障后期结构抗震设计工作的顺利进行。2、抗震设计建筑结构抗震设计中,以性能为基础的设计方法,需注重抗震安全的运用,全方位的评估建筑结构的抗震能力,明确抗震设计在建筑结构性能中的安全程度,有效分配好强度、刚度、最大变形、累积变形等内容,体现出建筑结构抗震设计的高效性[2]。不同的建筑结构性能体系,抗震设计的方法不同,按照性能方面的相关准则,在建筑结构抗震研究的现场,随机选择地震的发生点,明确地震的发生地点、震级以及相应的时间,考虑到各项因素不是固定不变的,就要研究抗震设计中的地震发生概率,利用概念提高抗震性能设计的可靠度。抗震设计先在要在理论上达到标准的适用性,才能应用到实际的建筑施工中。基于性能的抗震设计指标,在建筑结构中起到重要的作用,而且和地震随机性,存在密切的关联。抗震设计中,应该采用统一的执行标准,综合研究抗震设计的整体性能,由此才能保证建筑结构的抗震设计,达到最佳的施工状态。

二、基于性能的建筑结构抗震评价

1、安全评价安全评价是基于性能建筑结构抗震评价的指标,也是抗震设计中的重要评价方式。安全评价时,应该确定地震动性能指标,估计抗震性能中的刚度、强度等,促使抗震安全性能,可以最大程度的保护建筑结构。我国近几年的建筑结构抗震性能方面,经过评价得出结论,安全评价下的建筑结构抗震性能,适用于建筑工程,需要按照不同的结构体系,选择出建筑抗震结构,采用概率可靠度性能评价的方式,辅助对建筑结构抗震性能设计进行安全评价,同时还要对性能评价中的能量、变形等,实行标准性的控制。2、效益评价建筑结构抗震性能设计的效益评价,是指社会经济效益。社会、业主等,对建筑结构抗震的社会经济效益,均有最佳的评价方案,目的是站在社会效益、经济效益的指标基础上,对建筑结构的抗震性能设计,实行标准的效益评价,估计出地震后,建筑结构的损耗、相关费用等,进而实行科学的抗震设计,优化建筑结构抗震性能的设计过程,遵守效益评价的原则,降低地震对建筑结构的破坏力度。

三、基于性能的建筑结构抗震控制

首先基于性能的建筑结构抗震设计控制,遵循地震是随机性的原则,站在安全、保护的角度上,通过科学的结构抗震设计,完善建筑结构的性能及施工,站在专业的角度考虑,建筑结构抗震性能的控制方面,可以分配结构自控、设备控制的形式方法,在建筑结构性能的应用层上,控制好抗震结构的自适应能力,强调建筑结构的自控性能,促使建筑结构抗震性能,具有自我保护、自我控制的优势,避免增加建筑结构抗震性能的运行压力,加强建筑结构抗震性能的控制能力。然后是基于性能考虑中,建筑结构抗震设计的构件控制。例如:现代高层建筑的抗震结构性能方面,耗能装置上取消了剪力墙构件,将抗震设计的重点放在加固、修复的方面,此类的构件中,耗能装置如果有破损、损坏的情况,基本是来源于小型的建筑,中型或大型的建筑,抗震构件就会失去保护的性能,导致现场呈现无法修理的局面,我国高层建筑行业中,应该积极控制抗震性能设计中的构件,促使构件可以满足建筑结构的根本需求,以免干扰建筑结构抗震设计的效果。最后在抗震设计控制中,积极推进新型耗能结构的应用,常见的有钢梁-混凝土柱,充分发挥抗震控制结构的有效作用,体现出基于性能的建筑结构抗震控制的作用和运用价值。建筑结构抗震性能设计的未来发展中,将新型耗能结构作为一项重点,考虑到建筑行业的专业化、多元化发展,需要充分发挥新型耗能结构的价值,以免影响建筑抗震设计的效果,体现出新型耗能结构在抗震设计控制中的必要性。

结束语

建筑结构的抗震设计,要以实际的性能为主,根据建筑工程抗震设计的社会、经济等要求,规范好建筑结构抗震性能的设计过程,在性能的基础上,评价建筑结构的抗震性能,加强建筑结构抗震性能的控制力度,完善相关的设计内容,避免影响建筑结构抗震性能的稳定性及可靠性,进而确保建筑结构抗震性能的安全度,消除潜在的抗震风险。

参考文献

[1]汪梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,03:59-61.