材料科学与工程专业十篇

时间:2023-04-05 17:02:31

材料科学与工程专业

材料科学与工程专业篇1

您好!

我是xx大学资源与环境学院材料科学与工程专业一名普通本科学生,明年7月我将顺利毕业并获取材料科学与工程学士学位。获知贵单位正在招聘人才,我自信我在大学四年的学习和参加的社会实践会有助于我来应聘贵单位的职位。

大学四年来,在老师的严格教导及个人的努力下,我具备了扎实的专业基础知识,系统地掌握了材料科学与工程专业有关知识,养成了为学严谨,实事求是的作风,在课余我还阅读了很多相关书籍来充实自己的专业知识;具备良好的英语交流和演讲能力;修读了电子商务第二专业,并用大部分课余时间研读了计算机编程、网页设计及计算机网络的知识,参加了许多相关活动的组织筹划,具备了较强的实践和应用能力。

此外,我积极地组织和参与各种社会实践活动,抓住每一个机会,锻炼自己。大学四年,我先后担任了班级团支书、院学生会纪检部长、院学生会常委、党员培训班班长等职务。在职期间,受到了老师和同学们一致好评,多次被评为校优秀学生干部、优秀团干部、社会实际活动先进个人。这些经历培养了我良好的交际能力,使我懂得了与人合作、和睦相处,也使我处事更务实有责任感、更富有团队精神。这一切都是我不懈努力的结果,也是我所具有的积极进取精神的体现。相信这将是我今后的工作的重要经验和宝贵财富。

我渴望成为贵单位的一员,同时我也一直坚持着这样的人生信条——热爱自己的选择,对工作负责就是对自己的尊重!

尊敬的领导,无论您是否选择我,都希望您能够接受我诚恳的谢意!

祝愿贵单位事业蒸蒸日上!

此致

敬礼!

材料科学与工程专业篇2

关键词:专业英语;材料科学与工程;教学改革

中图分类号:G642.0 文献标识码:A 文章编号:1672-3791(2015)04(a)-0000-00

1. 专业英语教学现状

专业英语是一门综合性较强的课程,即包括基础英语的基本知识又包含了特定专业的专业知识,因此其既具有语言教学的规律性又具有专业教学的规律性[1]。但目前,专业英语教学任务分散在各个学院,专业外语教师师资力量较薄弱,而且专业外语课时少,很难实现科技英语系统教学[2]。而学生从基础英语教学模式一下子转变为专业英语教学模式,面对大量复杂的专业词汇及长句、难句,同学们初学时不易掌握,不会进行长句结构分析,不会词性的转换及词序的灵活处理,因此翻译课文经常不能表达原意。而且,一般专业英语课程开设在第六学期,此时同学们刚刚接触本专业基础课程,对专业知识和技能的理解和掌握有限,因此对于教材中一些专业性很强的知识很难理解,学生掌握起来较吃力而使其失去学习兴趣,课堂中形成了老师为主的翻译模式[3,4]。由于缺少了对科技英语体系的系统学习部分,同学们对科技论文的结构及撰写格式不甚了解,在毕业设计环节,本科生撰写英文摘要等方面的表现很差。

为了提高材料科学与工程专业学生的专业英语水平,本文从教学内容及教学方法上进行了一系列探索,力求提高学生专业外语的自学能力及应用能力。

2. 教学内容改革

目前,材料科学与工程专业选择的专业英语教材主要内容包括水泥、玻璃、陶瓷及耐火材料等传统工程材料的制备原理及工艺,专业性很强,部分内容因为学生未接触本专业课程,缺乏专业背景而很难理解。因此。针对本专业学生的实际情况,在充分调研国外相关教材的基础上,将国外原版教材中过于水泥、玻璃、陶瓷及耐火材料的精华部分作为课堂教学的一部分,让同学们掌握科学、客观、较标准的英文表述习惯,而内容和难易程度则与专业知识结合紧密,以各种材料概述、制备工艺、性能及应用为主,不再涉及一些专业性太强的理论知识。课程中除了讲解专业知识外,在课程绪论部分给学生一个过渡,让学生了解专业英语与基础英语之间的区别以及专业英语句式结构的特点,使学生能够对专业英语的语法结构有一个大致的了解。同时,为了提高学生科技论文查阅及写作能力以及国际交流能力,教材中将设置有关专业论文结构与撰写的章节。

3. 教学方法改革

专业外语课时设置都较短,一般为32~48学时,在短短的32学时内,要求学生“听、说、读、写”全面发展几乎是不可能的。因此,课内教学主要仍以“能读会写”为主要教学目标。但教学方法将不再以教师为主角,改变原来“老师讲、学生听”这种填鸭式的教学方式,通过翻转课堂,让同学们走上讲台,完成课文的翻译及讲解过程。老师主要负责专业词汇的讲解及引伸,扩展同学们的专业词汇,通过讨论对同学们在翻译过程中产生的问题进行纠正及讲解,剖析复杂长句及难句的句式结构。结合目前同学们专业外语学习现状,将在课堂上引入大量的科技外文文献,使同学们掌握其主要结构及撰写要求,重点培养同学们掌握本专业论文英文摘要的撰写。

专业外语听说能力的培养同样至关重要,而且培养过程需要一个长期的过程,并非通过 一两次课堂教学就能一蹴而就,因此,这部分能力的培养主要是通过鼓励学生自主学习来完成,鼓励学生观看相关材料介绍的视听文件,在课堂翻译过程中要求同学首先对原文进行朗诵然后进行讲解,这就要求同学们在课前要做好充分的预习,提高他们的自学能力。此外,根据同学们撰写的专业论文英文摘要,要求学生在课堂上做一个presentation,逐步提高同学们专业英语表达的自信,最终目的是培养同学们国际交流及应用的能力。

4. 结语

随着时代的发展,在英语日益成为国际主要交流工具的今天,加强材料科学与工程专业外语教学水平,根据教学目标的正确定位来及时调整教学内容以及采用丰富有效的教学方法是培养学生学习兴趣以及提升英文阅读、写作及交流能力的重要方面。因此,积极进行专业英语有效教学方法改革的研究,对于提高学生专业外语的自学能力及应用能力有着重要的意义。

参考文献:

[1] 刘秀梅, 贺杰. 优化机械专业实践性教学方法的研究[J]. 科技创新导报. 2014(2):158.

[2] 陈静如, 田砾, 万小梅. 专业外语教学内容与方法改革[J]. 中国冶金教育. 2014(1):69-70.

材料科学与工程专业篇3

【关键词】材料科学与工程 MOI人才培养模式 复合创新型

【中图分类号】G647 【文献标识码】A 【文章编号】1006-9682(2011)07-0008-02

在现代科学技术中,材料、信息和能源被誉为国民经济发展的三大支柱。新材料是现代科学技术发展的物质基础和技术先导,材料学科的发展和进步对工业的发展和进步起着关键性的作用。材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。主要培养具备包括金属材料、无机非金属材料、高分子材料等材料学科领域的科学与工程方面扎实的基础理论知识和过硬的专业技能,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的具有创新意识的高层次、高素质全面发展的科学研究与工程技术复合型人才。

一、我校材料科学与工程专业的现状

江西理工大学(原名南方冶金学院)是我国有色金属工业和材料学科领域重要的人才培养和科技创新的重要基地之一,被誉为“有色冶金人才摇篮”,学校先后隶属于国家冶金工业部和中国有色金属工业总公司,具有鲜明的有色金属行业特色。1958年创办炼铁、炼钢、轧钢专业,1972年创办有色金属压力加工专业,之后又陆续创办了无机非金属材料工程、材料化学、材料物理和材料成型与控制工程等专业,在上述专业的建设发展基础上,形成目前的材料科学与工程专业学科,涵盖以下五个二级学科专业:金属材料工程、材料成型及控制工程、无机非金属材料工程、材料物理、材料化学,其中,金属材料工程是江西省“九五”、“十五”、“十一五”重点学科、省级品牌专业、省级示范硕士点。并建有国家铜冶炼和加工工程技术研究中心、国家钨与稀土产品质量监督检验中心、钨资源高效开发及应用技术教育部工程研究中心、江西省有色金属加工工程技术研究中心、江西省铜冶炼和加工工程技术研究中心等科研平台。

二、材料科学与工程专业人才培养规律的认识与思考

社会的不断发展对人才提出了更高的要求,这一客观要求也就使得学校必须创新人才培养模式,建立新的人才培养机制,采取更加科学、更为人性化的教育方法和手段,最大限度地开启挖掘人才的创新思想。[1]我校材料科学与工程专业历经53年的教学实践积淀,使我们对本学科、本领域的人才培养规律有了较深刻的认识,主要体现在以下几个方面:

1.对人才培养过程的认识与思考

人才培养过程是一个庞大的系统工程,它一般包括:“入口――培养环节――出口”三大阶段。入口与出口是人才培养的两个关键环节,二者相互制约又是相互促进的过程。出口畅,入口才能旺;入口强,出口才可能畅。而出口畅(就业好)的前提是以学生培养质量作为保证的。学生培养质量的高低关键在于培养环节,因此,培养环节是整个教学的重要环节,是教学工作的核心。这一环节,主要包括培养目标的定位;培养方案或教学计划的制定;教材建设以及教学环境、条件的改善等。这些方面都是教学改革的重要内容,也是实现人才培养目标的重要保证。

2.对人才培养目标定位的认识与思考

人才培养目标是人才培养模式的方向,对整个人才培养过程具有重要的指向作用。要实现人才培养目标,关键是“找准定位、发挥优势、办出特色”。关于人才培养目标的定位,在高等教育阶段大众化、普及化的当今,不同类型、不同规格、不同专业的人才有着不同的质量评价标准。例如:学术性、研究型的精英人才、通识教育的复合型人才、技术应用型人才和实用型人才等,社会对不同规格的人才在知识、能力、素质等方面的要求是不同的。人才培养模式受社会的政治、经济、文化等因素的制约,不同的社会及不同的时代有着不同的人才培养模式。通过总结我国几十年的教育教学经历及其人才培养规律,可归纳出如下三种具有鲜明时代特色的人才培养类型:

一元“专才型”人才:[2]该人才培养实行统一招生和固定学制,专业划分细,口径狭窄,其社会背景是高度统一的计划经济体制。一元型人才的特点是:学生重点掌握自己所学的专业,专业之外的知识相对薄弱。这种模式在我国生产力水平较落后,各行各业急需各种专业人才的计划经济时挥了积极作用;而随着我国社会主义市场经济的建立和国民经济的迅猛发展,传统的专才型人才培养模式已明显落后于时展的步伐,因而构建新的创新型人才培养模式势在必行。

二元“T型”人才:[3]所谓T型人才培养模式是以继续学习能力的培养为核心,以实践能力的培养为重点,使受教育者具有较强的创新精神与创新能力而构建的一种新型的人才培养模式。该人才培养模式既能适应市场经济发展的需要,又可激发个人学习的兴趣和主动性。T型人才虽然有了更多领域的知识,但学习过程仍是在规定课程、规定学习计划和培养目标下完成的,这种过于死板的“职业定向型人才培养”仍不能完全适应动态、变化和发展的社会需求。

多元复合型人才:[4]即“厚基础、宽口径、强能力”的人才类型。该人才培养的特点是基础知识丰富,专业知识扎实,具有针对性。同时,在其它相关领域又具有一定的选择性和弹性,能够根据学习或工作的需要及时掌握非专业知识,处理相关信息,从而使知识和能力呈现多元化的特点。显然,多元复合型人才更能适应当今社会和时代的需要。

3.对人才培养质量的认识与思考

材料科学与工程专业人才的培养应注意“三个避免”,[5]即避免过于理念化、避免专业过窄、避免过于实务性和操作性;提高人才培养质量,应注重“三个结合”,即理念与实践相结合、学校与企业教育相结合、国际先进做法与我国实际情况相结合。通过人才培养模式创新,传承和发扬本学科特色和品牌效应,在国内材料类专业人才培养方面占据一席之地。

4.对学生素质教育的认识与思考

现代化社会的关键是人的现代化,是人素质的现代化。而传统的教学模式束缚了人的素质提高。我们认为,素质教育是一种教育观,也是一种教育思想,并且素质与知识、能力往往是融为一体的,三者密不可分。因此,我们要树立“知识+能力+素质+人格”的人才质量关。大力推进素质教育:一要提升学生的素质,二要培养学生的能力,三要训练学生的思维方式。通过这些措施,促进素质教育水平的提高,使学生更好的全面发展。

三、MOI人才培养模式创建的必要性

材料科学与工程专业篇4

关键词 课程设置;材料科学与工程专业;实践教学

中图分类号:G642.3 文献标识码:B

文章编号:1671-489X(2013)33-0083-03

1 引言

作为人类文明和社会进步的重要标志,材料科学技术在经济和社会发展中扮演着越来越重要的角色,并与能源、信息技术构成现代科技的三大支柱。高等学校材料科学与工程专业教育在肩负着为国家和社会培养材料类高级专业科技人才的历史使命的同时,也面临着材料科学技术迅猛发展带来的一系列问题和挑战[1]。在材料科学与工程专业高等教育快速发展的今天,探索出符合材料科学与工程专业特色的课程设置体系和方案,是材料科学与工程高等教育的重要任务和目标。本文在分析和总结材料科学与工程专业发展历程及特点的基础之上,提出了符合材料科学与工程专业特色的课程设置方案,为材料科学与工程专业高等教育和改革提供有益的尝试。

众所周知,虽然材料的使用和研究已有非常悠久的历史,但真正将“材料科学与工程”作为一个独立的专业和学科进行人才培养和教育还仅始于20世纪60年代[2]。我国材料科学与工程专业教育经历了由借鉴苏联模式进行严格的专业教育到逐渐学习欧美系统的学科教育的发展历程[3]。从新中国成立到20世纪90年代后期,我国已有144所高校设有材料类专业,涵盖的专业有硅酸盐工程、无机非金属材料、建筑材料、电子材料及元器件、钢铁冶金、有色冶金、粉末冶金、金属材料及热处理、腐蚀与防护、水泥、玻璃、陶瓷、高分子材料、高分子化工、塑料工程、橡胶工程、化学纤维、复合材料、材料物理、材料化学等20余个[4]。严格按照材料的专业方向进行人才培养的缺点是:专业划分过细,基础知识相对薄弱,毕业生就业面窄,工作适应能力差[5]。

为了克服上述缺点,教育部于1998年在“重基础、宽口径”的指导思想下,对材料类本科专业目录进行了调整,将上述20余个专业合并为冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、材料物理、材料化学等6个专业,并同时在一级学科专业目录材料科学与工程下进行招生[6]。目前我国设有材料类专业的各高等学校均在此次专业目录调整基础之上更新培养方案和教学内容,并结合自身学科的优势和特色、国家及地区经济发展需求等,确立自身的优势学科方向。截止2009年7月,我国具有材料类二级学科的普通高校已有415所,绝大多数“211工程”大学都设置了材料类专业,可以说我国材料科学与工程专业高等教育正处于蓬勃发展的关键时期[7]。

2 国内外高校材料科学与工程专业课程设置情况对比

目前,我国各高校材料科学与工程专业大多按照教育部颁布的《普通高等学校本科专业目录》以及《普通高等学校本科专业设置规定》等文件的要求,构建了以公共基础课、专业基础课、专业课和选修课为主的模块化的课程设置体系[7]。其中,公共基础课(包括外语、数学、人文及社会科学、物理、化学等专业平台课程等)按材料科学与工程一级学科所必需的公共基础知识进行设置,约占全部课程的50%;专业基础课按材料科学与工程二级学科进行设置,占全部课程的20%~35%;专业课及选修课则按二级学科以及各高校设置的专业方向和办学特色进行设置,约占全部课程的15%~20%。

和上述我国材料科学与工程专业的课程设置方式相比,国外发达国家对材料专业的课程体系没有设置统一的规定,各高校可以根据自己的学科发展方向和特色等灵活地进行课程体系设置,并体现出特色鲜明、注重交叉学科人才的培养、课程设置涉及面广和突出实践能力培养等特点。

1)突出特色。国外各高校可以根据学科发展方向和特色有侧重地进行课程设置,如美国宾夕法尼亚大学材料科学与工程系在纳米材料和生物材料领域的研究工作相当出色,因此该校在本科生教学计划及课程设置中突出了纳米材料和生物材料等相关课程及最新研究进展。

2)注重交叉学科人才的培养。国外各知名高校大多设置了多层次的课程体系以满足不同学生对知识结构要求的差异,在培养计划中除设置材料学科的主要课程,还可以引导学生学习相关交叉学科的核心课程,如生物学、化学、经济学、管理学等,从而为将来打算从事生物、医药、经济、法律、工商管理等领域工作的学生打下基础。

3)课程设置涉及面广。国外各高校均对理工科学生要求有相当的人文知识背景以及交叉学科的相关知识,很多学校都安排了大量的选修课供学生选修,特别是材料科学与相关学科以及社会科学的交叉课程,如与生物、医药、环境、电子工程、化学工程、土木工程等理工技术学科的交叉课程,以及与经济、法律、艺术、财务、管理等人文社会学科的交叉课程。

4)注重实践教学环节的设计和安排。如英国牛津大学材料系的课程设置,从一年级开始到四年级,每个学年均安排了工矿企业的参观或实习,二年级时就要求有6~8周的工业实习。同时,实验教学时间也非常充足,一年级每周有5~6小时的实验教学安排,二年级则安排了15~18小时的实验教学。另外,国外很多大学均安排了四年级两个学期的时间进行毕业设计或毕业论文撰写[8-10]。

3 材料科学与工程专业的特点及对应的课程设置思路

作为一个蓬勃发展的专业,材料科学与工程专业已表现出如下特点,并对课程体系设置改革带来了重要启示。

专业涵盖面广与模块化的课程设置 如上所述,材料科学与工程专业涵盖了冶金工程、金属材料工程、无机非金属材料工程、高分子材料工程、材料物理和材料化学等6个二级学科,其中每一个二级学科又包含若干专业方向。学科涵盖范围广与专业教育的系统性要求材料科学与工程专业高等教育在贯彻教育部“重基础、宽口径”指导思想、强化基础理论知识学习的同时,也应考虑到各二级学科及专业方向的特色,使学生在拓宽知识面和就业口径的同时,也能完整、系统地掌握自身专业方向的理论体系和精髓,从而在苏联严格的专业教育模式和欧美系统的学科教育模式之间找到平衡点,解决目前材料科学与工程专业教育中存在的广度与深度之间的矛盾。

考虑到材料科学与工程专业教育中存在的上述矛盾,昆明理工大学从2004年开始对材料科学与工程专业培养方案进行改革和调整,不仅强化了公共基础课和学科基础课的基础地位,而且有针对性地提出了专业模块课的概念,即在夯实学科基础的同时,为满足各二级学科方向的特色、知识结构的系统性、完整性以及专业教育深度的要求,设置了金属材料工程、无机非金属材料工程等方向的模块课。通过模块课的设置,使学生能够系统掌握所学专业方向的知识结构和框架,深入地理解本专业方向的特点和精髓,从而在满足教育部提出的“重基础、宽口径”的指导思想的同时,也能够系统深入地掌握本专业的知识和技能,解决目前材料科学与工程专业教育中存在的学科涵盖范围广与专业特色教育系统性和深度之间的矛盾。

学科交叉性强与有针对性的选修课设置 材料科学与工程学科是一门涉及材料科学、物理学、化学、工程科学以及计算科学的综合叉学科,随着科学技术的进步和发展,各个学科之间相互渗透、交叉、复合的程度越来越深,分界线则越来越模糊,新的材料领域层出不穷并不断发展。材料科学与工程学科交叉性强的特点要求在进行课程设置时,应有针对性地在材料物理、材料化学、材料工程技术以及计算材料科学等领域开设相应课程,弥补由于学科交叉性强而带来的某些学科领域的空白,进而引导学生的兴趣,开阔学生的视野。

基于此,昆明理工大学材料科学与工程专业自2004年起就选择在相关教学和科研领域具有丰富实践经验的教师,有针对性地在材料科学与物理学、化学、计算科学、生物科学、能源科学技术等学科领域之间开设生物材料、能源材料、纳米材料、复合材料、计算材料学、材料物理、材料化学等选修课程,利用这些课程的开设填补材料科学与其他相关学科领域之间的空白,使学生掌握材料与其他学科交叉领域的知识,有目的地引导学生的学习兴趣,从而适应材料科学与工程学科交叉性强的特点。

实践性、应用性强及对应的培养方案改革 材料科学与工程专业同样是一门实践性、应用性很强的专业,只有材料科学的基础知识、基本理论在实践中得到灵活应用,才能体现出学科的真正价值,而且无论传统材料、新兴材料的生产、制备和整个使用过程,均和实际密切联系。因此,在本专业学生的整个培养过程中均应强调知识的灵活运用能力、动手能力、工程实践能力和创新能力的培养。

针对材料科学与工程学科实践性和应用性强并强调知识灵活运用的特点,昆明理工大学自2004年起即有针对性地对实践性教学环节进行了改革,降低了重复性、演示性实验教学环节的比例,提高了探索性、研究性实验教学环节的比例,充分调动学生的积极性、主动性,增强学生对专业的兴趣与学习热情,培养学生的科研方法及分析问题与解决问题的能力。在毕业设计论文改革环节中,积极引导学有余力的学生提前进入导师课题组,鼓励学生参与各类创新、创业大赛,并将其作为毕业设计成绩的一部分,从时间上、制度上保证了毕业设计的质量,使其成为学生灵活运用所学知识进行创新活动的重要环节。在学生实习环节,学院充分利用和挖掘一切资源,与一些科研院所、厂矿企业等合作,共同建立产学研实习基地,使其成为学生了解实际生产情况、综合运用所学知识的场所和日后顺利走向社会的桥梁与纽带。

4 课程设置方案实例

通过学习和借鉴国外大学在材料科学与工程专业课程设置方面的成功经验。与此同时,针对材料学科专业涵盖面广,交叉性、应用性和实践性强的特点,昆明理工大学自2004年起就结合上述学科特点,对材料科学与工程专业本科生培养方案进行了调整和改革,调整后的课程设置体系如表1所示。调整后的课程设置体系不仅符合教育部提出的“重基础、宽口径”的指导思想,而且通过专业模块课的设置较,好地体现了材料科学与工程学科各专业方向对专业教育系统性的要求,而有针对性的任选课的开设则很好地填补了材料学科与其他学科交叉领域的空白。除此之外,还对实践教学环节的形式进行了改革,在认识实习、生产实习和毕业设计环节中突出学生灵活运用知识解决实际问题的能力和创新能力的培养和提高。

5 课程设置方案改革效果

通过上述课程体系改革和实践,昆明理工大学材料科学与工程各专业方向本科毕业生综合素质显著改善,考取研究生比例和就业率均显著提高。根据近年来毕业生就业后的跟踪调查,用人单位普遍认为昆明理工大学材料科学与工程专业毕业生基础知识、专业技能扎实,适应能力、创新能力、分析解决问题的能力强。一批优秀毕业生已经成为国内高校、科研院所及企事业单位的业务骨干和中坚力量,受到了社会的高度评价。学生在参与各类科技创新竞赛中屡获佳绩,已获得获第六届中国青少年科技创新奖一项,第十一届全国大学生课外学术科技作品竞赛三等奖一项,云南省首届大学生“创业计划”大赛金奖一项。

在今后的教学改革和实践活动中,将继续密切结合材料科学与工程专业的特色,不断更新培养方案,为蓬勃发展的材料科学与工程专业高等教育做出新的贡献。

参考文献

[1]张联盟.材料科学与工程专业教学改革研究与实践[M].武汉:武汉理工大学出版社,2003:213-217.

[2]李强,陈文哲.美国和欧洲的材料科学与工程教育(二)[J].高等理科教育,2003(1):44-49.

[3]史耀武,孙灼,张秀英,等.面向21世纪的材料科学与工程本科教育[J].高等工程教育研究,2001(4):17-20.

[4]刘豫,管学茂,马小娥.英国材料学科的历史和现状[J].中外教育研究,2009,10(10):117-120.

[5]宁春花,曾小君,袁荣鑫.材料科学与工程专业教学改革思路[J].中国电力教育,2008(21):106-109.

[6]佘元冠,杜立辉,彭涛.对我国材料类专业课程设置及就业状况的调查与思考[J].北京科技大学学报:社会科学版,2009,25(3):140-143.

[7]张华,刘亚云.材料科学与工程专业课程体系的比较[J].理工高教研究,2006,25(4):52-54.

[8]张晓燕,梁益龙,李远会,等.材料科学与工程专业的实践教学改革与实践[J].实验室研究与探索,2008,27(11):98-100.

材料科学与工程专业篇5

【关键词】化工原理实验 实验教学 教学改革

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2016)04-0170-02

一、材料科学与工程专业化工原理实验教学目的与要求

1.化工原理实验教学目的

该实验课程主要讲述化工原理中单元操作所涉及的各种设备,以巩固学生加深对化工实际生产的理解,由实验数据和实验现象得出结论并提出自己的见解,增强创新意识,同时,对学生的科学研究能力、创新能力的培养也起着十分重要的作用[1-5]。

2.化工原理实验教学要求

通过实际操作使学生验证有关化工单元操作的理论,熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,培养学生从事实验研究的能力,其中包括:分析和观察实验现象的能力、正确选择和使用测量仪表的能力、利用实验的原始数据进行数据处理以获得实验结果的能力、运用文字表达技术报告的能力[4-5]。

二、化工原理实验中存在的不足

1.人数较多,仪器装置较少,学生动手能力受到限制,由于连年的扩招,每个班的学生人数基本都是35人以上,而实验仪器的台套数并没有增加, 7-8个学生用一台装置的现象非常普遍,个别学生根本没有机会动手操作仪器。

2.学生被动的做实验,完全按照实验书上的照搬照抄,“照单抓药”式的教学,学生花大量的时间写预习报告,来到实验室也不知道到底为什么做实验,怎么做实验。

3.学生工程实践性意识淡薄,不知道化工原理实验的重要性,只是为了学分被动的做实验,达不到理论联系实践的作用。

三、化工原理实验的教学改革与思考

1.化工原理实验教学模式的改革与思考

针对“僧多粥少”的问题的教学模式,材料科学与工程专业化工原理实验充分打破以往“大水漫灌”、“放羊”式的教学模式,分小班、小组教学,每一个小组为3-4人,每一位同学在实验中都有不同的分工, 比如过滤实验(恒压过滤),一个学生要负责压力阀、料浆阀、料液阀的畅通,一个学生负责记时,一个学生要看滤液量和记录,大家还要共同清洗滤布,倾倒滤渣,每组学生只有默契合作,才能将实验做完,这样就充分调动了学生的积极性、参与性和团队合作意识,老师再根据实验操作和小组合作进行现场打分,教学效果明显提高。

2.化工原理实验教学方式的改革和思考

每次课授课之前,给学时留20-30min的时间熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,正式讲课时,以分组提问的方式让学生自己讲解工艺流程和操作步骤,以引导的方式把理论课本上讲解的内容和实际操作中遇到的问题相结合,比如传热实验(强化管传热),改变原来只做实验、测数据的单一教学手段,通过强化管的强化方法,引申到化工中常见的传热设备的改进方法,讨论如何从材料的角度降低成本,从传热的角度提高传热速率等,学生积极参与发言,各抒己见,当实验中出现的现象和理论不符时,引导学生从实验的源头到实验过程中分析误差,充分解决“照单抓药”式的教学模式。

3.化工原理实验教学内容的改革与思考

充分联系课本理论知识,让学生感觉化工原理实验非常实用。比如传热实验,告诉学生热电偶温度计的测温原理,温度计冷端温度补偿的含义,用电脑记录数据的方法,通过数据处理,双对数作图、线性回归等方法,了解计算机技术在化工原理实验中的重要性,实验结束后,学生要对实验数据进行处理,还要总结和分析,分析实验数据误差产生的原因等,根据实验报告上的数据处理为依据,数据处理主要以电脑处理为主,可以锻炼学生应用Word、Excel、Origin等办公软件的能力。

以上教学内容和教学方法的改革充分调动了学生的实验积极性,增强了工程观念,充分做到了理论联系实际。

参考文献:

[1]焦纬洲,刘有智,袁志国,祁贵生,高Z.基于工程实践能力培养的化工原理实验教学模式的研究与探索[J].实验技术与管理,2014,31(3):166-168.

[2]戴益民,李浔,张跃飞.基于创新与实践能力培养的化工原理实验研究性教学模式的探索与实践[J]. 化工高等教育, 2012,6:31-34.

[3]胡秀英,郑纯智.开放式化工原理实验教学模式研究实验科学与技术[J].实验科学与技术,2011,2(9):111-113.

材料科学与工程专业篇6

关键词:材料科学与工程专业;流体力学教学;实验教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)48-0039-02

流体力学是一门研究流体的受力与运动规律的严密科学,是一门材料科学与工程专业中理论性和实践性都较强的专业基础课程。在流体力学的教学过程中,涉及到的数学公式很多,过程较为复杂。历年来,学生们普遍认为流体力学课程枯燥无味,难以学懂,兴趣不大,导致教学效果较差。分析材料科学与工程专业现状可知,目前,该课程体系教学中存在着较大弊端:一方面,太偏重于数学推导与公式的理解,忽视了课程理论的物理意义与工程应用的有效结合;另一方面,忽视了课程的基础作用,片面强调课程的专业性。为此,本文结合材料科学与工程专业的课程设置,对课程的教学环节进行了改革探索。课堂教学是提升学生认知的重要手段。笔者认为可以从以下几个方面来提高流体力学的教学质量。

一、优化教学内容

纵观材料科学与工程专业的流体力学课程体系,可将之分为基本理论知识、基本应用、实验部分、与其他学科的交叉内容、工程实际应用等方面。在教学过程中,笔者认为采用模块化教学方式能够达到较好的效果。所谓模块化教学是指根据学科或专业的不同需求选择学习内容,将每个内容或环节定义为模块。每个模块的目标明确,针对性强,而且学时数相对较少,容易提高学生的学习效率。当然,各个模块之间并不是孤立的,在教学实施过程中,模块是相对独立的,但从课程的整体架构上来说又是有机关联的,步步为营,内容丰富,难度螺旋式上升,使整个流体力学课程具有较强的系统性和完整性。目前,国内材料科学与工程专业的流体力学课程体系基本按照如下形式贯穿:流体静力学理想流体运动动力学实际流体运动:一元流体相似理论泵与风机。每部分的研究方法较为统一,所形成的体系由简到繁、由易到难,并且很容易实现模块化处理。例如在讲授流体运动学基础、动力学基础时,可以先从实际流体流动的基本方程入手,使学生在本门课程开始就接触到流体动力学的总的轮廓和最基本的理论方程,后面的理想流体动力学及一元流体动力学问题作为其特殊情况处理,将理想流体、一元流动的条件代入有关方程,即可得到理想流体、一元流动的动力学方程。建立的这种模块体系具有由一般到特殊的特点,条理清楚。这样一来,教师在讲完一般形式的方程组后再来讲具体一元流体动力学及理想流体动力学问题,就可略去大量的公式推导过程,节省了大量的课时,内容组织层次感较强,讲起来重点更突出,教学过程却相对简化。

二、更新教材结构

同时,考虑到材料科学与工程专业的特色与应用范畴,非常有必要对教材内容进行优化处理,根据材料科学与工程的课堂要求,淡化一些理论推导过程,以工程应用为根本。从学生的学习规律来看,一般学生刚学习课程的时候积极性和重视程度都比较高,在学习时花费时间较长,但随着课堂内容的推进,学生们的兴趣减弱,教学内容和教学方法的改革与优化势在必行。材料科学与工程专业的流体力学课程内容并不包括本领域的全部专业知识,主要讲授流体流动的基本原理与基本思路,并侧重于工程应用。因此,教材的选取要更具科学性,要根据专业特点和需要,结合学生兴趣与学习层次,有针对性地选取讲义,教材要更侧重于基本原理与基本公式的讲述与应用,做到简单易懂,实用性较强。

三、激发学习兴趣

在流体力学教学的开始,教师就应该紧紧抓住学生们的学习兴趣,在紧扣教学计划的基础上,以当前热点问题为引导,充分调动学生们的学习积极性。因此,在流体力学教学的过程中,如何将教学内容与工程实践相结合,与热点问题相结合,激发学生的学习兴趣是提升教学效果的重要措施之一。比如在给学生上绪论课的时候,可以通过一些生动的图片、视频、动画给学生形象地展示大自然与人类生活密切相关的流体力学现象,增强学生对流体力学的感性认识与兴趣,如汽车为什么要做成流线型的;高尔夫球为什么在表面有很多坑;火箭为什么能够上天;海岸为什么是弧形;战斗机为什么头部是尖的等。这些问题是日常生活中经常见到的,通过这些问题的设计与引导,可以让学生们知道本课程的主要学习目标是什么,能解决什么样的实际问题,让学生们带着疑问和兴趣去学习,效果将事半功倍。

四、改革教学手段

目前,流体力学教学过程中教学手段较为丰富,但仍以板书和多媒体教学两种方法为主。更多采用“多媒体为主,板书为辅”的方法。多媒体教学较为直观、形象,所传输的信息量巨大。同时,伴随着信息网络化大形势的进一步深化,网络电子资源更加丰富,这样大大缩短了教师们的备课时间。但这种方式也有不足之处,最主要表现在多媒体授课速度偏快,学生尚未形成知识结构体系就一带而过,课堂上考虑的时间不足,很难形成师生之间的互动。相对而言,板书备课时间较长,课堂上书写时间也较长,对于一些较难理解的内容,可以给学生们足够的思考空间,并在课堂上按照既定授课思路进行,这样能够涵盖较为琐碎的知识点,易于形成师生间的“一问一答”式的互动关系。因此,在流体力学授课过程中宜采用二者结合的方式,对于系统性较差的知识点来说采用多媒体方式,而对于重点、难点内容则主要采用板书的形式,真正做到对该知识点的侧重讲解,疏而不漏。只有这样才能使学生对课程既有充足的知识量,又有重点突出,进而提高学生的学习效率。

五、重视实验与工程教学

流体力学课是一门与工程实践结合紧密的学科。因此,在课程开展的过程中应该对实验课与工程教学进行重点关注。实验教学目前可以分为演示型和验证型,但教学方法单一,限制了学生分析问题、解决问题的能力;同时,由于长期以来实验教学从属于理论教学,实验教学与工程教学的课程建设与发展受到了严重制约。因此非常有必要对实验与工程教学进行改革来适应目前高校的培养模式。首先,实验与工程教学要注重同专业知识相结合。传统的实验教学较多适用于试验台环境下,是国家根据课程规划以及人才的知识结构需要设立的,这严重阻碍了学生们与工程实践的有效沟通,因此,可以针对学生所学专业逐步设立既符合本专业又具有工程背景的可操作性较强的实验项目,用以适应学生对专业领域知识的理解与创新需求。其次,有效利用高校科研优势,促进实验与工程教学的发展。以学科为依托,实现科研与教学互补,将科研成果引入实验教学,这样可以开阔学生视野,激发学生的创新思维。第三,实现基础实验与个性实验的互补。在基础实验训练的基础上,开展一些更具有研究性和综合性的实验,这样对理论知识的学习有一个较为有利的补充,同时也可以锻炼学生们实验设计、整体规划的能力,积极调动学生们的学习积极性。

参考文献:

[1]曾立云.流体力学课程教学方法研究[J].甘肃农业大学学报,2002,1(37):123-125.

材料科学与工程专业篇7

关键词:材料类专业;卓越工程师;本科;课程体系

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)16-0237-03

高等院校的主要任务是根据国家科技与产业发展需求,培养服务于社会的专业人才。工程技术作为国民经济发展的一个重要支点,为现代社会创造了大量的物质财富。大量优秀工程技术人才的培养,是我国成为科技与产业大国的重要前提。截止2010年,我国开设工科专业的本科高校1003所,占本科高校总数的90%;接受高等工程教育的本科在校生达到371万人,研究生47万人。但与此同时,长期以来我国许多高校一直是以高水平研究型人才培养为目标,忽视工程技术人才的培养,这与我国大学生教育早已走下神坛,逐渐成为大众化教育的现状相脱节。为此,2010年起,国家教育部提出卓越工程师教育培养计划,旨在培养一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才,为国家走新型工业化发展道路、建设创新型国家和人才强国战略服务。高校本科教育不再是为研究型人才培养服务,而要将为社会培养高水平、国际化、创新型工程技术人才培养作为己任,让学生学致以用、人尽其才[1,2]。同年,同济大学作为国内首批试点高校,开始实施“卓越人才”培养计划,积极致力于“卓越工程师”培养模式的实践与探索,并作为主要单位发起成立了“卓越人才培养合作高校”联盟。卓越工程师教育培养模式并不是否定研究型人才的培养,而是要求从适应国家发展需求出发,根据各高校自身特点和国家教育体系中所处位置确定合适的培养计划,分层次地培养包括研究型人才和工程技术人才在内的各种所需优秀人才。本科教学作为卓越工程师计划中的一个基座,肩负这两种人才培养的重任,这就要求我们从实际出发,根据学校自身特点和学生发展方向制定适合社会人才需求的专业课程体系,以满足优秀科技人才培养的需求。

一、材料类专业的沿革和课程体系现状

材料学科主要研究材料的组成、结构、工艺、性能及应用之间的相互作用规律,进而展开涵盖金属、无机非金属、高分子及复合材料等各类材料的科学级工程技术研究。材料科学研究是各种工程技术研究的基础和重要保证,在我国几乎所有的综合性大学中都开设了材料类的本科专业。1998年,教育部在本科专业引导性目录中提出了按材料科学与工程一级学科进行专业招生的思路,随后130余所高校针对教育部有关材料科学与工程专业人才的培养要求,相继开展了按材料科学与工程专业一级学科办学工作[3]。材料类专业涉及面很广,除了包含金属、无机非金属、高分子及复合材料等几个领域外,大量新材料的涌现和引用拓展,又为该专业带入了大量的知识面和研究方向。以一级学科开设本科专业,其优点在于可以拓宽学生的知识面和就业面,但也带来专业课程涉及面太多、学生对于每个专业领域无法深入等问题。因此,如何搞好材料类专业课程体系建设,让学生在对整个材料科学技术领域的基本理论知识有较好把握的同时,又能在某一领域学有专长,更好地适应国家科学与工程建设需要,就成为该专业教改建设中的一项重要任务[4,5]。从目前的各校材料类专业设置情况来看,大部分高校在坚持以材料科学与工程一级学科进行大专业方向进行专业教学的同时,也根据自身的特点开设了若干专业或专业方向,让学生选择某一专业方向领域进行深入学习。其专业方向设置较多的是以金属、无机非金属、高分子、复合材料等专业方向进行分类,也有以材料科学、材料工程、材料加工、功能材料、半导体材料、生态环境材料等多种形式进行分类。从其专业课程体系来看,一般都分为学科基础(平台)课程、专业课程和选修课程等几类,学科基础课程主要从材料科学的角度讲授材料科学的基础理论、材料组成―结构―性能关系、理化性能及其分析方法等;专业课程则包括深入介绍某一材料领域的科学理论和专业知识,而选修课程则可让学生有选择性地学习传统材料理论及工程技术、新材料领域专业理论及技术等几方面课程。表1列出了国内外部分高校材料类专业的专业课程分类和课程开设情况比较数据,从表中可以看出,根据高校的所处地位、培养目标和学生就业去向的差异,各校的专业课程体系设置有所不同。

对于一些“985工程”高校而言,其学生培养目标较注重材料科学研究领域,强调材料科学理论知识的传授,相关专业基础课程的学分占比较高,同时鼓励学生通过选修课程选择自己的侧重专业方向。就专业课程开设情况而言,首先是有关材料学科领域的专业基础或平台课程的数量占专业课程总数的三分之一左右,其次是与传统材料科学技术相关的课程,与新材料相关的专业课程占四分之一强左右。对于一些“211工程”院校而言,专业课程分类与前者相差并不大,专业基础或课程的占比稍大些;而在专业课程开设中,与传统材料相关的课程占比明显增多,新材料相关课程数量则有所减少。而对于一些普通高校来说,这种传统材料相关课程数高于新材料相关课程数的趋势尤为明显。这种课程设置的分布实际上与各类高校的学科定位以及毕业生未来主要服务方向相当,很大程度上满足了国家各层次人才培养的需求。与此同时,比较一些国外知名高校的材料类专业的课程设置情况,可以发现其介绍材料科学研究领域的专业基础类课程占据相当重的比例,明显高于国内高校;同时新材料相关课程的开设数也高于传统材料相关课程数,反映了欧美发达国家对新材料工业发展的偏重趋势。重专业基础教学有利于学生夯实专业基础,无论今后选择哪个主攻方向都容易上手。还有一个明显的特点是,国外高校的实验、实践类课程较多,有利于培养学生的动手、实践能力。

二、适应卓越工程师培养需求的专业课程体系建设

卓越工程师教育培养计划的提出,目的是面向工业界、面向未来培养一大批创新能力强、适应经济社会发展需要的高质量工程技术人才,其培养层次包括本科、硕士研究生、博士研究生培养等几个层次,而本科生的培养为整个培养体系的基础。同济大学作为一所国家“985”、“211工程”建设的著名工科高校,为国家培养了大批工程建设急需的各类人才,同时也培养了一批高水平科学研究型人才。其材料学专业作为国家重点学科,经过多年发展成为包含无机非金属材料、金属材料、高分子材料、复合材料、建筑结构与功能材料等5个专业方向的大材料学科模式,形成了自己的一定特色。因此,面向卓越工程师培养模式的课程体系建设,需要根据自身特点和毕业生去向,提出适应本科―硕士―博士研究生教育一体化培养要求的本科生专业课程体系,以满足各种层次人才培养的需求。同济大学材料科学与工程学院自成立以来,培养了一大批国家急需的各类专业人才,其毕业生服务于国民经济各行各业。因此,本科专业课程体系的建设,也需通过分析其毕业生去向,把握自己的定位,以适应人才培养的需求。相比较于国内普通高校材料专业的本科毕业生就业去向[6],同济大学作为“985”和“211工程”高校,其材料科学与工程专业的本科生毕业去向呈现明显的特点,一是出国深造和攻读硕士研究生的比例相当高,近三年,其数量占学生总量的50%~60%;二是服务于汽车、生物、电子信息及其他工业制造领域的学生数量相当多。即使在服务于传统材料相关领域的学生中,由于近年来90%以上的就业学生都选择留在上海等特大城市工作,而传统的硅酸盐等传统材料工业因城市规划等因素逐渐调整出这些特大城市,因此他们也主要服务于传统材料应用企业而非制造企业。表2列出了资料统计的国内9所高校材料类专业本科生近几年毕业去向[7]与同济大学材料科学与工程专业近三年本科生毕业去向的对比数据,从中可看出高校种类和地域的鲜明特色。而在后端的同济大学硕士研究生毕业去向中(表3),20%左右学生服务于传统材料相关企业,5%~10%左右学生选择继续深造,其余大部分就业于新材料相关等其他工业领域。如果综合考虑其本科―硕士―博士整个教育体系的就业情况,可以发现其90%以上的学生最终服务于工程技术领域,少部分学生最终从事教学与科学研究,这与卓越工程师计划的培养目标相一致。

材料类专业的本科教学建设应该结合上述毕业生去向特点,按照课程体系既能满足大批学生继续深造的要求,又要满足能直接服务于新材料和传统材料应用相关行业、材料制造等多种行业的需求,建设材料科学研究和工程技术教育有机衔接,传统材料与新材料课程教学相平衡,材料制造和应用教学相结合的本科课程体系。在整个本科课程体系中,学科基础课程应该是本科教学的一个重要内容,它可以向学生传授材料科学领域所需的基础知识,打破无机非金属材料与金属材料、高分子材料的传统界限,从大材料的角度让学生掌握材料科学与工程技术研究的必备知识,也适应现代科技应用中材料复合的大趋势。而在专业课程设置中,其课程体系的设置应能满足学生未来去向的要求,因此其必修、限修、选修课程模块应有不同的偏向。专业方向课程应该体现材料学科各专业方向的教学特点,深入介绍材料学及各专业方向的专业知识,包括金属、无机非金属、高分子与复合材料等方向的相关专业理论知识、制备技术、性能与应用等方面的课程介绍,让学生有选择性地选择某一专业方向深入学习。专业限选课程则主要针对学生的兴趣爱好,分别从科学与工程技术各领域分类介绍相关专业课程,以对接本科毕业生升学和就业的两大出口。在材料科学领域的课程设置中,可以面向希望继续研究生阶段教育的同学,更多地从科学角度进行专业教学,通过增加专业理论类课程的开设数提高学生对材料科学领域的把握和素养,有些工程类的课程可以在研究生阶段继续讲授。而在材料工程技术领域的课程设置中,则根据工程师培养的要求,着重介绍工程技术领域的课程;在具体课程设置中,应根据学生未来去向的特点,在掌握传统材料制备工艺技术必要知识的前提下,更多地从材料性能与应用出发,介绍现代无机材料在各行各业的应用技术,以满足学生在多种工程技术领域,从事材料应用相关技术工作的就业现状要求。与此同时,在专业方向课程模块中增加跨专业方向选修课程的开设,鼓励学生提高对材料学科其他专业方向的了解。选修课程的设置则更多地从学生兴趣出发,针对现代科学技术发展与学生就业兴趣,分别从现代材料制备新技术、新材料、纳米科技、生物技术、信息电子、汽车与交通产业、化工制造、现代科技管理等角度开设选修课程,适当增加新材料相关课程的比例。同时可以开设一门实践应用型课程,邀请一些科学研究领域或工程技术领域的专家、技术人员以讲座形式介绍材料科学与技术领域的最新发展,让学生把握材料科技发展的脉搏。

通过学科基础课程、专业方向课程、专业选修课程等的设置,不同类别课程之间相互支持,在扎实材料学科专业基础知识的前提下,通过分类限选科学研究类或工程技术类专业课程与学生未来发展方向相适应,通过专业选修课程及跨专业方向课程扩宽专业视野而各有所侧重,建立同时适应未来工程师或研究生培养的材料类专业本科课程体系,以满足不同类型、不同层次人才培养的需求。

三、结论

具有创新性、国际性视野的卓越工程师培养体系建立是使我国由教育大国向工程技术大国转变的一个关键,作为整个卓越工程师培养中的基础环节,材料类专业课程的设置必须在适应学校自身特点和学生就业去向的情况下制订特色鲜明的、本科―硕士―博士研究生课程设置有机统一的本科专业课程体系,以优秀工程型技术人才培养为主线,突出材料应用技术教育,同时兼顾材料科学研究类人才的培养需求,更好地为我国科学与工程技术发展输送各种优秀人才。

参考文献:

[1]扶慧娟,辛勇.推行“卓越工程师计划”培养实践型工程人才[J].实验技术与管理,2011,28(11):155-158.

[2]李继怀,王力军.工程教育的理性回归与卓越工程师培养[J].黑龙江高教研究,2011,(3):140-142.

[3]李燕.建筑类地方院校材料科学与工程专业课程体系的探讨[J].皖西学院学报,2009,25(2):106-108.

[4]林金辉,汪灵,邱克辉,等.材料科学与工程专业的课程体系和实验教学体系建设[J].高等教育研究,2007,24(2):54-56.

[5]曹新鑫,何小芳,管学茂,等.关于材料科学与工程专业特色课程群建设的思考[J].重庆科技学院学报(社会科学版),2010,(5):177-178.

[6]罗瑞锋.高等院校材料类专科学生就业思想探析[J].重庆科技学院学报(社会科学版),2011,(18):194-195,202.

材料科学与工程专业篇8

关键词:“工程材料学”;航空航天专业;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)04-0124-03

“工程材料学”是航空主机类专业(包括飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等专业)的学科基础课程。该课程虽然仅有48学时,但承担着为未来的航空工程师构建材料知识体系的重任,对学生今后的发展起着重要作用。本文结合近年的工作实践,对该课程在教学要求、教学内容和教学方法等方面的改革进行研讨。

一、高度重视航空和材料领域发展对“工程材料学”课程教学的影响

材料学既是基础科学,也是应用科学。材料科学与技术的发展,解决了很多工程领域的关键问题,有力地推进了相关科学和技术的进步,使得材料科学成为最活跃的科学领域,材料产业也成为国民经济发展的重要支柱产业。“工程材料学”以物理学、化学等理论为知识基础,系统介绍材料科学的基础理论和实验技能,着重培养学生把这些知识应用于解决工程实际中提出的对材料结构、性能等方面问题的能力。作为一门重要的学科基础课程,“工程材料学”具有较长的开设历史,在人才培养中发挥了重要的作用。航空航天领域的发展对工程技术人员的能力素质提出了更高的要求,特别是“卓越工程师”教育培养计划的实施,对工程类课程建设的需求更加迫切,有必要以新的形势为背景反思该课程的教学改革。航空以众多学科知识、先进研究成果为基础,已发展成为一个由多个分系统组成的大系统,需要工程技术人员采用系统工程的方法进行综合设计。现代航空技术一百多年的发展,使得人们可以在更大的范围内探索天空,也使得飞行器的工作条件更加恶劣,工作环境更加严苛。现代飞行器不仅要具有速度快、航程大、载重多等特点,还要满足节能低碳等要求。材料科学技术的发展,为解决航空航天领域的诸多难题提供了可能,“一代材料,一代飞机”已成为飞行器发展公认的规律。这对航空航天工程技术人员的材料知识提出了更高的要求。在飞行器及其主要部件的设计、制造和维护工作中,要全面认识材料的性质和特点,才能挖掘材料的潜能,充分利用材料的特性,满足工作需要。面对航空航天迅猛的发展形势,仅了解和掌握已有材料的知识是不够的。具有创新素质的工程技术人员,要了解材料科学与工程的发展方向和趋势,分析材料领域的发展对航空航天领域的影响,同时要认真研究具体工作对新材料、新工艺的要求,明确材料发展的需求。在新型飞行器的研发过程中,要综合考虑用户对飞行器总体性能的多种要求,对各项技术参数进行统一的优化。在落实对飞行器性能的要求时可以发现,很多要求是相互矛盾的,比如飞机的航程和机动性就存在着较大的矛盾。为了获得较好的综合性能,需要对飞机进行一体化设计,要及时掌握各种设计方案对飞机主要材料和工艺的要求,对飞机整体结构进行综合优化。在此过程中,各部门工程师都需要和材料系统密切配合,才能实现信息和资源共享,降低全系统的风险,提高系统的可靠性和综合性能。材料科学技术的迅速发展也对课程教学提出了新的要求。材料科学与技术是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是发展最快速的学科之一,在金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等主要方向上的发展日新月异,促使“工程材料学”课程内容的不断充实。

“工程材料学”课程要系统讲授材料科学与技术的基础理论和实验技能,使得学生掌握工程材料的合成、制备、结构、性能、应用等方面的知识。早期的航空工程结构以自然材料为主,如在美国莱特兄弟制造出第一架飞机上,木材占47%,普通钢占35%,布占18%。随后,以德国科学家发明具有时效强化功能的硬铝为代表,很多优质金属材料被开发出来,使得大量采用金属材料制造飞机结构成为可能,也使得研究者们投入了更多的精力于金属材料的探索。相应地,这一时期“工程材料学”课程内容也以金属材料为主。上世纪70年代以后,复合材料开始在航空领域应用。复合材料具有较高比强度和比刚度的优点使得工程技术人员对其抱有很大的希望。航空工程师首先采用复合材料制造舱门、整流罩、安定面等次承力结构,而现在复合材料已广泛应用于机翼、机身等部位,向主承力结构过渡。复合材料因其良好的制造性能被大量应用在复杂曲面构件上。复合材料构件共固化、整体成型工艺能够成型大型整体部件,减少零件、紧固件和模具的数量,降低成本,减少装配,减轻重量。复合材料的用量已成为先进飞行器的重要标志。相应地,复合材料必然要在“工程材料学”课程中占重要地位。钛合金的开发和应用使得飞行器具有更好的耐热能力,提高了发动机、蒙皮等结构的性能,有效解决了防热问题。“工程材料学”课程的教学内容应该及时反映材料科学在提高飞行器性能方面的新应用与新进展。与此同时,其他相关学科也取得了长足的发展,使得主机专业教学内容大幅度增加,“工程材料学”课程的教学内容和学时之间的矛盾愈加突出。

二、认真分析专业教学对“工程材料学”课程的不同要求

“工程材料学”课程是一门重要的学科基础课,是基础课与专业课间的桥梁和纽带,在航空航天主机类专业培养学生实践动手和创新创造能力,提高学生综合素质等方面具有重要作用。在多年的教学实践中,该课程对主机类各专业采用同一标准教学。虽然主机类各专业人才培养有其共性要求,但随着航空航天事业的发展,专业分工越来越细,差异化特征也越来越明显,因此“工程材料学”课程应该充分考虑不同专业的具体需求,结合各专业的课程体系安排教学。飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等主机类专业根据航空领域中的分工培养学生,毕业学生的工作要求有所不同,对知识结构的要求也不一样。就材料方面知识而言,不同专业学生也会有所区别,应按照专业特点纵向划分对“工程材料学”课程的要求。不同专业主要服务对象的材料特点是确定课程要求的主要依据。

飞行器设计与工程专业要全面统筹飞行器产品及各部件的设计和制造,主要从事飞行器总体设计、结构设计、飞机外形设计、飞机性能计算与分析、结构受力与分析、飞机故障诊断及维修等工作,要求了解材料科学与工程的发展对现代飞行器设计技术的影响,因此要较全面地掌握主要航空材料的性能、制造等方面的知识,了解轻质高强材料的发展动态和发展趋势。飞行器动力工程专业要求学生学习飞行器动力装置或飞行器动力装置控制系统等方面的知识,主要培养能从事飞行器动力装置及其他热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。飞行器动力的重要部件对抗氧化性能和抗热腐蚀性能要求较高,要求材料和结构具有在高温下长期工作的组织结构稳定性。因此,材料在高温下的行为、性能和分析、选择方法应该是该专业“工程材料学”课程的重点。飞行器制造工程和机械工程等专业要针对现代飞行器工作条件严酷、构造复杂的特点,采用先进制造技术,实现设计要求,并为飞行器维护提供便利。该专业要求学生理解飞行器各部件的选材要求,掌握材料的制造工艺。飞行器零部件形状复杂,所用材料品种繁多,加工方法多样,工艺要求精细。很多新材料首先在航空航天领域得到应用,其制造技术具有新颖性的特征,设计、材料与制造工艺互相融合、相互促进的特点非常明显,这就要求学生在“工程材料学”课程中把材料基础打好,适应工艺和材料不断发展的要求。虽然各专业对“工程材料学”课程的要求有所不同,但课程基础一致。

该课程名称为“工程材料学”,即明确其重点在于将材料科学与技术的成果运用于航空航天工程,把材料基本知识转化为生产力。“工程材料学”是相关专业材料学科的基本课程,学生要通过该课程了解金属材料、无机非金属材料、高分子材料等微观和宏观基础知识,学习材料研究、分析的基本方法,掌握材料结构与性能等基础理论,研究主要材料的制备、加工成型等技术,为更好地学习专业课程创造条件,为将来从事技术开发、工艺和设备设计等打下基础。由此可见,在明确了各专业对该课程的个性化要求的基础上,更要明确共性要求。“工程材料学”课程要培养学生材料方面的科学概念,提升材料方面的科学素质,扎实的材料科学与技术知识基础是学生学习专业课程、提高综合素质、培养创新能力的必备条件,是进一步发展的基础。因此,“工程材料学”课程采用“公共知识+方向知识”的模式比较合适,即把教学内容划分为每个专业均要求了解的材料领域知识和根据各个专业特色需要重点介绍的知识两部分,既满足了宽口径、厚基础的教学需要,又注重了后续专业课程学习和能力培养的要求,促进了基础理论和专业应用的融合渗透,较好地满足了材料、设计、制造、维护一体化发展的需要,增强了跨学科、跨专业认识问题、思考问题和研讨问题的能力。

三、多管齐下建设丰富的教学环境

作为一门学科基础课程,“工程材料学”课程要根据学校人才培养创新目标和相关专业的人才培养标准、方案,结合卓越工程师教育培养的要求,注重与专业课程体系的融合,注重与工程实践教育的结合,注重对学生创新意识、创业能力及综合运用知识能力的培养。在充分调研与分析专业人才培养对课程教学要求的基础上,要对课程的教学大纲和内容进行修订,与相关教学环节有效整合,拓展教学活动的空间,营造良好的学习环境和氛围,加强与后续课程及实践活动的联系,解决学科基础课的教学与专业人才培养需求的脱节或不衔接等问题。

“工程材料学”在第四学期开设,是一门承前启后的课程。在前期开设的课程中,“大学物理”和“航空航天概论”是两门直接相关的课程。“大学物理”提供了学习“工程材料学”的科学基础,认真分析“大学物理”知识点在“工程材料学”中的应用,有助于学生更好地理解相关概念。“航空航天概论”以航空航天领域的发展为主线,介绍飞行器的组成及工作原理。如果在“工程材料学”课程讲授之初让学生重新回到机库,从材料发展的角度再次审视航空航天的进步,结合材料学的概念研究飞行器的组成及工作原理,会使得学生对该课程有比较全面的认识。在相关专业的后续课程中,有好多课程与“工程材料学”密切相关,如“飞行器总体设计”、“发动机原理”、“先进制造技术”等,如果在“工程材料学”中对有关知识点作简单介绍,可以使学生更好地综合分析相关概念,加深理解。在主机类专业培养方案中,“工程训练”是集中式的工程能力培养环节,其教学内容与“工程材料学”密切相关。“工程训练”教学内容以机械制造工艺和方法为主,包括热处理、铸造、锻造、焊接、车削加工、铣削加工、刨削加工、磨削加工、钳工、数控加工、特种加工、塑性成型等,每一种制造工艺和方法都与工程材料密切相关。在以前的教学工作中,材料是加工对象,对材料的性能等的介绍很简单,学生的认识较浅。如果在“工程训练”教学过程中,针对不同的加工工艺和方法对材料作较深入的介绍,从应用的角度分析不同材料加工工艺和方法的适应性,可以促进学生把材料理论知识的学习和工程实际联系起来。通过让学生分析研究实际材料在加工过程中的表现来认识材料的性能,通过感性认识来体会材料变化的规律,把深奥的材料科学理论知识和生动形象的加工过程结合起来。这样不仅强化了工程训练效果,还能让学生把材料的知识学活,留下更深刻的影响,更好地发挥学生的潜力。

航空航天主机类专业的课程设计是重要的综合学习环节。课程设计任务一般是完成一项涉及本专业一门或多门主要课程内容的综合性、应用性的设计工作,通过一系列设计图纸、技术方案等文件体现工作成果。很多主机类专业的课程设计涉及材料的选用、处理等方面的问题。按照教学计划,“工程材料学”先行开设。因此,在相关课程设计中,有目的地提出材料问题,引导学生在更广的范围里选材,在更加深入的层面上分析材料性能,可以更好地调动学生自主探究材料科学的积极性,帮助学生把材料知识转化为初步的工作能力,克服课程知识的碎片化倾向。

四、结语

航空航天是现代科学技术的集大成者,该领域发展很大程度上取决于材料科学技术的进步。材料学是航空航天工程技术人员知识结构的重要组成部分。“工程材料学”要按照现代大工程观的要求组织教学,才能实现教学目标,提高培养质量。航空航天领域和材料科学技术发展,极大地丰富了“工程材料学”的教学内容。要根据学科领域的发展需要选择教学内容,按照理论实践结合、突出工程应用的要求构建知识体系。在教学工作中,应根据不同专业的培养要求,深入研究材料学的基本要求和各专业的发展方向,形成“公共知识+方向知识”的“工程材料学”课程结构,提高教学效率。统筹考虑专业教学与其他课程的联系,以及课程设计、工程训练、毕业设计等教学环节,以“工程材料学”课程为中心,注重课程的纵向推进和知识的横向联系,不断加深对材料学的理解和掌握,培养多角度研究分析、跨专业交流合作、多学科解决问题的能力。

参考文献:

[1]朱张校,姚可夫.工程材料[M].北京:清华大学出版社,2011.

[2]周风云.工程材料及应用[M].武汉:华中科技大学出版社,2002.

[3]王少刚,郑勇,汪涛.工程材料与成形技术基础[M].国防科技出版社,2016.

[4]闫康平.工程材料[M].化学工业出版社,2008.

[5]于永泗,齐民.机械工程材料[M].大连理工大学出版社,2010.

Discussion on Reform of "Engineering Materials" Course Teaching for Aeronautic Majors

WANG Tao,ZHOU Ke-yin

(College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,China)

材料科学与工程专业篇9

一、高校材料类本科专业人才培养现状

目前,我国本科教育,特别是地方高校教育普遍存在的问题是严重缺乏创新意识和创新能力,难以适应快速发展的人才市场需求。一方面,在实际教育过程中,学校注重理论教育,轻视实践操作技能培训,只满足在现有知识的记忆和再现,不能使用知识大胆创新探索。另一方面,学生毕业后进入社会,在面对不断变化的科学技术和先进的生产手段的实际工作中遇到的创新主题,从自己的知识储备的质量和能力方面,似乎严重不足。近年来,材料科学与工程教育改革在中国发展迅速,许多高等院校材料从人才培养模式、课程体系、教学内容、实验教学体系和教学方法等许多方面进行了大胆的改革和创新。材料科学与工程一级学科,在淡化专业个性教育模式的基础上,构建“大学科”主题共用知识,培养面宽,在高质量研究型人才培养方面取得了一些好的经验和成果。对于“985工程”和“211工程”院校可能很适合,但对于生源差和科研实力不高的地方高校而言,不能盲目地复制其他重点大学的改革模式。

二、地方性高校金属材料工程专业培养模式

1.地方性高校金属材料工程专业定位。金属材料工程是工业经济发展的重要支柱,在航空航天工业、能源化工领域、国防军工方面、冶金机电行业均发挥着相当重要的推动作用。如何依托地方,为地方工业经济发展培养具有金属材料工程专业背景知识的应用型创新人才,是目前国内高校金属材料工程专业建设面临的重大课题。地方本科院校金属材料工程专业人才培养应基于地域化目标定位,结合自身资源条件和区域工业经济发展对人才的需求状况,构建金属材料工程本科专业人才的培养体系,并通过突出地方特色培养金属材料工程专业人才的核心竞争力。根据江西省新材料产业和工程技术发展的实际需要,为江西省材料产业和工程技术发展储备工程技术人才;同时增进学校与政府、与金属材料表面技术行业、金属材料热处理行业以及相关企业之间的互动,联合培养应用型人才。此外,通过理论与实践教学相结合,以创新实验项目为载体,突出创新能力的培养;以企业工程项目为载体,培养工程应用意识,提升工程方面的素质和能力,出于这种原因,我校金属材料工程专业人才培养的主要目标定位是:具备金属材料工程领域的基础知识,了解材料科学与工程领域的相关专业知识,能在材料制备与质量检测分析、金属材料热处理、钢铁冶金与机械加工企业和相关行业工作,适应社会主义经济发展的高层次、高素质的应用型创新人才。

2.地方性高校金属材料工程培养模式。金属材料工程建设将学校的现实与当地区域经济发展相结合,坚持技术应用研究人才培养目标定位,从而有效地开展错位竞争、拓展生存和发展空间较大的专业。根据培养目标,积极探索切实可行的人才培养体系、机制和人才培养模式。人才培养模式改革是各种教学过程改革的重中之重,应该遵循高等教育的发展规律,仔细研究适应未来高等教育的科学发展趋势,根据培养高素质人才的总体要求,建立起能够充分激发在校大学生的学习主动积极性和创新创业精神,能使学生的个性得到充分发展,同时也能整体增长知识、能力和素质,具有新时代新特征的多样化应用型高层次工程人才培养模式。结合地方经济的工业发展,九江学院的金属材料工程专业在整个教学体系中,理论主干课程包括物理化学、电工电子学、材料科学基础、金属工艺学、热处理原理、热处理工艺及设备、金属材料学、材料研究方法、材料失效分析、材料力学性能、金属材料工程专业综合实验。与此同时,开设了两个专业方向,(1)金属材料塑性成型与模具方向:金属塑性成形原理、锻造工艺及模具设计、冲压工艺及模具设计、挤压工艺及模具设计、模具CAD/CAM软件应用、模具制造工艺学、Pro/E造型及模具设计、压铸工艺及模具设计。(2)金属材料热处理与测试方向:先进材料制备技术、粉末冶金原理、无损检测、材料的腐蚀与防护、冶金质量分析、材料物理性能检测、材料表面技术工程、先进复合材料。为了配合理论教学,大量安排实践性课程与之配套,让学生能够利用理论知识解决实际工程技术问题,实践性教学课程主要包括金工实习、金属材料专业实验、热处理工艺及设备课程设计、粉末冶金原理课程设计、材料表面技术课程设计、生产实习、毕业实习、毕业论文(设计)等。

三、地方性高校金属材料工程专业培养模式改革创新

1.培养模式进行改革探索。作为地方性高校的金属材料工程本科专业,应该充分认识到地方性区域工业经济未来发展对自己学校所设置的金属材料工程本科专业人才的确实需求,根据该本科专业的定位和特色,确定专业人才培养模式。金属材料工程专业的培养模式要从我校的实际出发,根据目前九江及周边区域工业经济与本专业相关单位的现状及发展,在原有培养模式的基础上,逐渐将原有的一味培养技术应用型人才过渡到应用技术研究创新型人才的培养目标和定位,这样才能有效地开展多层次培养,避免将学生培养成一个模子技能的技术人才,根据学生的特色,因材施教,拓展专业培养的发展空间,形成专业的办学特色,形成应用技术研究创新型多层次人才的培养新模式。

2.授课体系进行改革修订。为了能更好的对金属材料工程应用型本科人才培养计划和课程进行改革,我们在现有基础之上进行了以下准备性的工作:在相关大学进行调查研究,学习专业课程体系建设的成功经验,探索课程建设的内涵和专业内容集成优化,访问有关材料企业,了解社会对金属材料工程本科专业所需要的新知识、新能力和高素质要求,对九江学院近几年毕业的金属材料工程专业的学生进行系列性的跟踪调查,了解就业单位对我们学校该专业毕业生的满意程度,以及该专业毕业生对现有的人才培养模式、课程体系、专业教学知识点的意见及建议,邀请校内外知名教学专家,召开系列专家指导会,制定该本科专业课程体系和专业教学知识点方面改革的确实可行的方案,撰写新的人才培养方案,专业教学大纲内容将随之进行整合优化。专业主干基础课程建设得以加强,并根据区域经济发展的社会需求,设置相应并可行的必修课程,同时形成金属材料热处理与测试方向、金属材料塑性成型与模具方向两个具有一定地域工业特色的专业方向,使该专业的在校大学生形成比较完整的基础性知识及社会所需要的专业性知识。

3.配套平台进行改革探索。为配合模式及课程改革,必须对教学及研究平台进行更新建设,充分并有效地发挥本专业的专业实验室设备优势。近两年,本专业在原有实验设备的基础上,通过多渠道项目经费购置了200多万元的教学兼科研实验设备,满足了本专业各种专业理论课程的配套实践性教学需要。目前,九江学院金属材料工程的专业实验室有:表面技术实验室、粉末冶金材料及工艺实验室、材料化学制备实验室、材料物性检测实验室、材料热处理实验室、金相制样及分析实验室、铸造技术实验室、材料力学性能实验室和材料微纳结构分析实验室。通过这一系列实验平台的建设,金属材料工程专业的发展将得以支撑。根据本专业的特色,在九江和周边地区与九江新联传动机械有限公司、九江森源科技有限公司、九江博德新材料研究公司、九江奥盛钢缆科技有限公司等企业进行实质性地合作,建立产学研及学生实习见习基地,并聘请企业技术骨干和学校教师联合指导毕业论文(设计)工作,学生的实践操作能力和工程技术应用能力得以较好的培养。

四、结束语

材料科学与工程专业篇10

根据卓越工程师的培养目标,通过到企业调查走访、问卷调查、毕业生反馈等方式,收集了对课程体系设置的意见和建议,结合“卓越工程师”培养目标,对材料科学与工程卓越工程师课程体系进行了模块化设置。也就是将课程体系设置为由若干个完整的课程模块构成的课程体系形式。材料科学与工程卓越工程师课程体系由材料制备基础、材料加工技术、材料的性能、材料的检测等四个模块组成。每一个模块又由若干门课程组成,分为必修课和选修课两类。材料制备基础模块由材料物理化学、材料科学基础、金属塑性成型理论、材料科学导论(双语)等组成;材料加工技术模块由热处理原理及工艺、金属塑性成型工艺学、现代材料制备技术、金属焊接工艺等组成;材料的性能模块由材料力学性能、材料腐蚀与防护、材料物理性能等组成;材料的检测模块由材料分析技术、失效分析、计算机在材料科学与工程的应用等组成。这样的课程设置,能够突破学科专业领域的界限,灵活地设计和组织具有不同作用的课程模块,从而构建具有不同价值取向的课程体系,以满足学生的全面发展和个性发展需要。

2.科学合理地进行课程的整合和重组

根据教育部“卓越工程师”培养模式,结合材料科学与工程专业人才培养长期的实践经验,对课程进行了整合与重组;在制订材料科学与工程专业“卓越工程师”培养计划过程中,在原来的培养方案的基础上,对课程进行重新的整合和重组。在进行课程体系的整合重组过程中,打破了各学科领域的界限,增加金属凝固、塑性成型、焊接等内容,真正达到了“宽口径、厚基础”的目的。同时不受原有课程和体系结构的束缚,对课程进行了实质性的有机融合和重新组织。具体而言,改变了以往按人文科学、社会科学和自然科学分类或按照等级结构设置课程的做法,打破了原有专业、课程之间的壁垒,摆脱了学科知识系统的束缚;强调课程内容的综合性,以跨学科的方式选择课程内容、组织和整合课程体系。同学科知识的相互渗透、融合和新知识的吸收利用,保证知识结构的系统性和完整性;改变过于讲究学科自身结构而导致的课程设置过细、过多和缺乏整体性的状况;避免课程内容的脱节和交叉重复,精简课程门类,减少必修课比例。比如:将以往的《固态相变》和《热处理工艺学》整合为《热处理原理及工艺》,将《材料力学性能》和《材料物理性能分析》整合为《材料性能》,将《金属材料学》和《模具材料》整合为《金属材料学》,将《现代材料制备技术》和《热处理新技术》整合为《现代材料加工技术》等。并处理好理论与工程实践、必修课与选修课之间的关系,大力加强实践课程的体系改革。

3.结合企业需求,制订企业培养方案

企业学习阶段是材料科学与工程专业的工程教育不可或缺的阶段,是整个教学计划的重要组成部分,也是实施“卓越工程师培养计划”的重要环节,按照材料科学与工程卓越工程师培养计划,将严格按照“3+1”培养模式,其中1年企业实践培养,着重完成学生的基本操作技能、分析解决工程实际问题能力的培养。使学生通过企业学习阶段的学习和实践,基本掌握金属加工车间、热处理车间、锻造车间、表面处理车间、金属材料检测中心等部门的工作内容和基本生产操作技能,了解工程技术人员在热处理车间表面车间、检测中心等部门的作用及技术职责范围,培养具有较强创新意识和实践能力的材料科学与工程专业人才。同时具有灵活运用材料科学与工程专业知识与材料工程规范、团队协作、跨文化环境交流、竞争与合作的能力,以及较强的创新意识和进行热处理工艺设计、技术改造与创新的能力。所以企业培养方案包括:初步能力培养实训、专业基本能力培养实训、工程能力训练、行业领域实习、毕业设计等环节。整个教学环节将依托企业、工程中心、重点实验室开展,由校企共同参与培养过程,共同监控培养过程。

4.课程体系与能力培养的关系