半导体材料论文十篇

时间:2023-03-14 04:34:14

半导体材料论文

半导体材料论文篇1

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W。特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W。在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料

硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶

材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体

微结构材料的建议

(1)超晶格、量子阱材料

从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料论文篇2

关键词:半导体材料;器件;教学;改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)04-0169-02

一、引言

当代半导体产业已成为关系到国民经济和国家信息安全的重要战略性产业。与日本、美国等发达国家相比,在电子信息领域,我国与其尚存在一定的差距。在过去的几十年中,半导体科学和其他相关学科的快速发展,半导体器件在多个领域的广泛应用,对我国今后半导体材料及器件的基础教育提出了更高的要求。《半导体材料及器件》是能源与电子材料方向本科生的一门专业课,在半导体物理学知识的基础上,将光电子器件和微电子器件结合起来,全面系统地讲述了半导体物理的基础知识以及典型的半导体器件的工作原理及工作性能。《半导体材料及器件》课程涉及一部分的物理知识,需要学生有一定程度的物理基础;并且,面对各种器件复杂的工作原理,在教学时学生常会感到枯燥乏味,抽象难懂,从《半导体材料及器件》的课堂教学及学生的整体反映来看,学生对本课程的热情低,课堂效果差。因此,为了提高教学质量,培养出满足产业发展和市场需求,具备自主创新能力的人才,对《半导体材料及器件》课程进行教学改革。

二、课程开设的目的和意义

材料的发展在前沿新技术、新科技的研发中起到了重要作用。其中,照明、通信、电子领域产业的发展很大程度上依赖于半导体材料的发展与应用。《半导体材料及器件》课程将理论与应用联系了起来,《半导体材料及器件》课程的开设不仅有利于学生更好的学习理论知识,而且可以根据理论理解相应器件的工作原理,从而更准确、更清晰的了解、使用光电子器件和微电子器件。相对光电子技术而言,发展较成熟的微电子技术已经应用到各个领域。微电子技术与其他学科结合诞生的新学科也成为重要的发展方向。因此,要求半导体材料及器件方向培养的学生能适应这种跨学科、多学科结合发展的需求。

三、教学改革的措施

1.教学内容的建设。传统的直接对教学内容进行讲解,很难调动学生的兴趣,容易使学生感到内容枯燥,引起学生的反感情绪,不利于教学质量的提高。因此,在绪论部分对半导体材料的发展历史以及半导体材料及器件在生活生产中的广泛应用进行系统介绍,消除学生对半导体材料及器件的陌生感,提高学生对半导体材料的认识,引发学习兴趣。并且,传统的教学方式偏重于对理论知识和原理的学习,对新知识如何在实际的研究和生产工作中加以应用则涉及的较少,增加应用型知识的教授是我校《半导体材料及器件》教学改革重点实施的方面。基于此,考虑到实验课程是本科生动手实践很好的机会,但过程中难免会遇到问题,在授课时对授课内容对应部分的实验问题进行详细讲解,不仅可以激发学生的探索能力,而且在实践的基础上学生能更充分的理解知识。我校《半导体材料及器件》课程结合了半导体材料和半导体器件两方面,半导体器件方面又分为光电子器件和微电子器件两部分。现有的教材或侧重讲半导体材料,或侧重讲半导体器件,且所讲内容深浅程度不一,我校师生根据多年的教学实践情况,编写了一本难度适中、适合我校本科生学习的教材,本科生使用此教材学习半导体材料和光电子器件的知识,而微电子器件部分则采用标准教材。

2.教师队伍的配置。高水平的、稳定的教学队伍是提高教学质量的人才保障。针对材料科学与工程专业的发展现状,教学队伍实行“以老带新、新进”的发展方式。为青年教师配备经验丰富的教授,对青年教师进行指导,负责教学经验传授和教学质量监控,通过资深教授的帮助和带领作用,提高青年教师的专业水平和教学能力。近几年,学院专业先后吸收了几位年轻的博士,为课堂教学和科研工作注入了新鲜血液。青年教师与本科生更具有共同语言,更容易相处和获得学生的认可,所讲授的知识更容易被学生理解,课堂教学质量有明显提高。经过近几年的改革发展,我院积极开拓引进人才的途径,每个月都会邀请相关学科的学者来我院讲学,开拓学生的视野,扩充学生的知识,同时,教师积极与各兄弟院校本专业教师交流学习,通过不断地“走出去”与“走进来”,形成了一支综合实力强的教学队伍。

3.教学方法改革。课堂教学要求教师在有限的时间内讲完规定的知识,因此,常常会产生“满堂灌”、“填鸭式”的教学模式。在这种模式下,学生接受理解的知识非常有限,甚至会慢慢对本门学科失去学习兴趣,使学生被迫学习。在教学实践中,要改变这种错误的教学模式,需要教师对本学科有一个明确地把握。《半导体材料及器件》是一个涉及知识广泛且理论与实践并重的交叉学科,要求教师在授课时做到“有粗有细”,对工业生产中常用到的知识做到精讲、细讲,对难以理解的深奥理论可以略讲,减小学生的听课负担。面对抽象的理论原理,器件原理制作成动画,利用多媒体设备进行讲解能提高听课质量。《半导体材料及器件》学科的理论知识抽象难懂,在有一定半导体材料及器件知识的基础上进行实践参观,走出课堂,走向企业,通过参观学习和教师在参观现场的讲解,不仅可以帮助学生加深理解课堂上学习的内容,而且有利于理论知识与实际生产情况的统一,激发学生的学习兴趣。教师可在参观后提出相关问题,留给学生分组讨论,然后由学生做成PPT在课堂上讲解,由其他组的同学进行提问,调动全体同学,使学生成为课堂的主体,培养学生的分析能力和团结合作精神。学期考核时,提高平时成绩占总成绩的比例并提前告知学生,激发学生平时课堂和实践学习的积极性,使教学取得更好的效果。

四、改革特色

改革降低了课程的学习难度,减轻了学生的学业负担,但更注重应用型知识的教学、学生自主学习能力和分析问题能力的培养。“授人以鱼不如授人以渔”,面对半导体材料及器件方面知识快速的更新,掌握学习方法才能在这个领域有更好的发展。将半岛体光电子器件和半导体微电子器件单独来讲,便于进行器件原理和应用的对比和联系,对二者进行有机的结合。通过对授课内容进行调整和丰富,对教学方法进行创新性的改革,实现本科生理论知识程度与实际应用能力的共同提高,培养具备实践能力、分析能力和创新能力的跨学科综合性人才。

五、结语

结合《半导体材料及器件》课程的教学实践和半导体产业的发展现状,从实际情况出发,本文对《半导体材料及器件》课程的授课内容、教师队伍配备和教学方法进行了改革和创新,希望能够增强学生的学习兴趣,提高课堂教学质量,提升学生的分析能力,培养出与时俱进,具有自主学习能力和科研、实践能力的综合型人才,满足科学研究和社会生产的需求。

参考文献:

[1]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].第七版.北京:电子工业出版社,2011:67-68.

[2]汪慧兰.微电子技术课程设置与改革初探[J].内蒙古电大学刊,2008,(11):100-101.

[3]徐振邦.《半导体器件物理》课程改革探索与实践[J].教育教学论坛,2014,(04):222-224.

The Teaching Reform and Practice for "Semiconductor Materials" and Devices Course

DUAN Li,ZHANG Ya-hui,FAN Ji-bin,YU Xiao-chen,ZHANG Yan,CHENG Xiao-jiao,HE Feng-ni

(School of Materials Science and Engineering,Chang'an University,Xi'an,Shaanxi 710064,China)

半导体材料论文篇3

关键词:氧化锌,稀磁半导体,铁磁性

 

0.引言

当代和未来信息技术都占据着重要的地位,因此随着社会的不断发展,对信息的处理、传输和存储将要求更大的规模和速度。半导体材料在信息处理和传输中有着重要的作用,半导体技术应用了电子的电荷属性;磁性材料在信息存储有着重要的应用,磁性技术利用了电子的自旋属性。但是半导体材料都不具有磁性,磁性材料及其化合物都不具有半导体的性质,因此人们想到了通过掺入磁性离子来获得磁性的方法,即在GaAs、GaN、ZnO等半导体中掺杂引入过渡金属(或稀土金属)等磁性离子,这种通过掺杂而产生的磁性与本征磁性有一定的区别,人们称其为稀磁性。在化合物半导体中,由磁性离子部分地代替非磁性离子所形成的一类新型半导体材料,称之为稀磁半导体。

1. 发展现状

1.1 掺杂具有室温铁磁性的Fe、Co、Ni等过渡磁性金属离子

在ZnO中掺杂引入磁性离子可以使样品产生磁性,因此人们在ZnO中掺入了具有室温铁磁性的Fe、Co、Ni等过渡磁性金属离子,结果发现样品的室温铁磁性对制备技术、生长条件等都有很大的依赖关系。侯登录等人[1]采用磁控溅射法在Si基底上制备Fe掺杂的样品,发现铁磁性是其本征性质。。Liu等人用化学气相沉积法制备了Co掺杂的样品,分析发现掺杂Co的ZnO样品铁磁性与Co的不纯相ZnCo2O 4无关。Akdogan等人用射频磁控溅射法制备了掺杂不同Co离子浓度的的样品,分析得出氧原子的自旋极化对样品长程铁磁序的形成有重要作用,且Co原子的掺杂引起了ZnO的本征铁磁性。Parra-Palomino等人研究发现样品的铁磁性与ZnO中的缺陷有关。

1.2 掺杂具有低温铁磁性的Mn、Cr等过渡磁性金属离子

在ZnO中掺杂引入磁性离子可以使样品产生磁性,因此人们在ZnO中掺入了具有低温铁磁性的Mn、Cr等过渡磁性金属离子,于宙等人[2]用化学方法制备了Mn掺杂的ZnO基稀磁半导体材料,分析发现该材料的铁磁性是由Mn离子对ZnO中Zn离子的替代作用引起的。Robert等用射频磁控溅射法制备了掺杂Cr的ZnO样品。分析发现H原子占据了O的位置并产生了一个深的施主缺陷从而增强了自由载流子数和铁磁的超交换作用,进而导致了样品的铁磁性。

1.3 掺入不具有室温铁磁性的Al、Cu等金属离子

研究发现在ZnO样品中掺入不具有室温铁磁性的Al、Cu等离子样品也可以显示出室温铁磁性。刘惠莲等[3]用柠檬酸盐法合成了一系列掺Cu样品,研究发现铁磁性是其本征性质。Ma等人用脉冲激光沉积法制备了掺杂Al的ZnO样品,发现样品铁磁性与Al原子和Zn之间的电荷传输有关。

1.4 多元素掺杂ZnO基稀磁半导体

邱东江等人[4]用电子束反应蒸发法生长了Mn和N共掺杂的薄膜,发现样品的室温铁磁性很可能源于束缚磁极化子的形成。Gu等人用射频磁控溅射法制备了掺杂Mn和N的ZnO样品。分析发现样品为室温铁磁性,这可能与N原子的掺入使空穴的浓度增加有关。Shim等人用标准固态反应法制备了掺杂Fe、Cu的ZnO样品,发现掺杂Fe、Cu的ZnO的铁磁性起源于第二相。且Fe原子进入ZnO并取代Zn原子是产生铁磁性的主要原因。宋海岸等人[5]在Si(100)衬底上制备了Ni掺杂和(Ni、Li)共掺ZnO薄膜样品。研究发现铁磁性的起源可以用电子调制的机制来解释,Ni-ZnO中的施主电子形成了束缚磁极化子,束缚磁极化子能级的交叠形成自旋-自旋杂质能带,通过这些施主电子耦合即Ni2+原子之间的远程交换相互作用导致了铁磁性。

由于掺杂ZnO是一个新兴的研究方向,因此人们对其研究结果不尽相同有的甚至相反,例如对于Fe掺杂的ZnO基稀磁半导体,Parra-Palomino等人发现掺杂Fe的样品的铁磁性可以用载流子交换机制来解释,侯登录等人[1]发现掺杂Fe的样品的铁磁性可以用局域磁偶极子作用机制来解释。又如对于掺杂样品的铁磁性是样品的本征性质还是非本征性质方面人们的观点也不尽相同,Shim等人发现铁磁性是掺杂Ni的ZnO样品的非本征性质。Akdogan等人发现Co原子的掺杂引起了样品的本征铁磁性。对于掺杂所引起的样品磁性方面,Liu等人研究发现掺杂Co的ZnO样品具有铁磁性,而Tortosa等人发现掺杂Co的ZnO样品是顺磁性的。研究发现样品的铁磁性与制备方法、生长的气体环境、气体压强、生长时间、退火温度、退火时间、掺杂剂量、掺杂元素的种类以及相对含量均有很大的关系。

2. 结论

目前, 对于ZnO基稀磁半导体材料的研究主要集中在两个方面:(1)优化生长参数,获得高质量的薄膜。。(2)选择不同掺杂元素与掺杂量,通过单掺杂或共掺杂,提高薄膜的居里温度,奠定其应用基础。

通过对单掺杂金属的ZnO样品及共掺杂的样品的结构分析、以及电学、磁学、导电性等性质的分析,发现对于相同的掺杂,样品铁磁性的强弱不同,有的结论甚至相反。这与样品的制备技术不同、以及不同的生长环境有关。通过各种制备方法及不同制备工艺得到的ZnO薄膜的性能存在较大的差异,而且可重复率比较低。铁磁性来源和机理分析还需要进一步的系统性研究。。对样品的铁磁性起源理论众多。目前关于稀磁半导体材料铁磁性根源的解释有多种,有载流子交换机制(可以解释具有室温铁磁性的Fe、Co、Ni、V、Cr、Cu、Al等元素掺杂的情况)。载流子导致的铁磁性与反铁磁性竞争机制(可以解释Mn、Cr、Co等元素掺杂的情况)。局域磁偶极子之间相互作用机制(可以解释V、Ni等元素掺杂的情况)。

在实验和理论的统一方面还存在有许多的矛盾之处,而且每种理论都只得到了部分实验证实.因此对ZnO基稀磁半导体的磁性机理的认识还需进一步的提高。可以在以下几个方面开展进一步的更深入的研究。一是改善样品的制备工艺,许多试验重复率很低说明样品的制备过程中有许多影响因素,有待于对其发现并掌握。二是改变掺杂的金属元素,传统的掺杂只对过渡金属进行了大量研究对于非过渡金属的相关研究很少。而且由单掺杂向共掺杂转变是一条很好的思路。

参考文献

[1]侯登录,赵瑞斌.氧空位对Fe掺杂ZnO的铁磁性的影响.商丘学报.2008,24(12):1-6.

[2]于宙,李祥,龙雪等.Mn掺杂ZnO稀磁半导体材料的制备和磁性,物理学报.2008,57,7(4539-4544):1-6

[3]刘惠莲, 杨景海,张永军,等.Cu掺杂ZnO纳米结构的室温铁磁性研究[J].半导体学报,2008, 29(11): 2257-2260.

[4]邱东江,王俊,丁扣宝.退火对Mn和N共掺杂的Zn0.88Mn0.12O :N薄膜特性的影响.物理学报,2008,57(8):5249-5255.

[5]宋海岸,叶小娟,钟伟等.(Ni、Li)掺杂ZnO薄膜的制备及其性能.纳米材料与界构.2008,45(12):698-702.

半导体材料论文篇4

【关键词】量子化学;电致发光材料;合成

0 引言

有机及配合物电致发光(EL)和非线性光学材料在高新技术中的广泛应用,受到人们的关注并得到积极的研究[1-3]。近30年来,随着量子化学计算方法和分子模拟技术、以及计算机技术的飞速发展,对材料科学的发展产生了深刻影响。利用量子化学计算方法方法研究EL材料的电子结构和光谱性质,以全自由度优化几何结构为基础,计算化合物的电子光谱。对研究此类材料的性质及合成有指导性意义计算结果是实验结果基本吻合。本文主要介绍量子化学在EL材料研究中的应用及进展。

1 量子化学研究EL材料的方法及原理

就量子化学的几种计算方法来看,从头算法虽然有严谨的理论支持,能得到较好的计算结果,但是当遇到诸如酶、聚合物、蛋白质等大分子体系时,计算很耗时,其计算代价无法承受[4]。为了在计算时间和计算精度上找到一个平衡点。采用量子化学半经验方法AMI进行了理论计算包括构型优化、振动分析电子光谱计算。科学家们以从头算法为基础,忽略一些计算量极大,但是对结果影响极小的积分,或者引用一些来自实验的参数,从而近似求解薛定谔方程,就诞生了半经验算法。如:AM1,PM3,MNDO,CNDO,ZDO 等[5,6]。目前,对多类EL材料的研究大部分都是基于量子化学的半经验方法。

2 光谱性能的量子化学半经验计算

EL材料的发光颜色与材料的荧光光谱有密切的关系,荧光即是电子由第一激发单重态跃迁回基态所产生的降级辐射。目前对光谱性能的量子化学计算多半基于量子化学半经验方法PM3和AM1,先对化合物的几何构型进行了全参数优化, 得到其稳定构型,再进行振动分析,在此基础上利用单激发态组态相互作用方法(CIS)计算它们的电子光谱。

比如苏宇,廖显威[7]等人采用量子化学半经验方法PM3对三种黄酮类化合物的荧光光谱进行了理论研究。对各化合物优化后的构型作了振动分析,均未出现虚频率。在此基础上,采用单激发组态相互作用方法(CIS) 计算荧光光谱,所有计算结果与实验值基本吻合。廖显威,李来才[8]采用单激发组态相互作用(CIS)方法,分别计算了4 种稠环芳烃的电子光谱,选了801个组态进行计算,所得结果与实验值基本吻合。他们还对几种含氮芳烃化合物有机EL材料,对FL-4、 FL-7、FL-10 和FL-12的光谱进行研究,计算结果与实验值基本相符合。薛照明,张宣军[9]等用PM3/SCI方法计算了三个分子的电子吸收光谱,测定了三个分子的电子吸收光谱和荧光光谱(DMF溶液)。结果表明理论计算值与实验值相当吻合。高洪泽,石绍庆等利用量子化学半经验AM1及INDO/SCI方法研究了B与8-羟基喹啉的螯合(LiBq4)的电子结构和光谱性质,计算得到基态到各激发态的垂直跃迁能和振子强度,获得电子光谱。分析出由于配体中苯酚环、吡啶环对不同前线轨道的贡献不一样,所以在吡啶环和苯酚环上引入取代基会对光谱发生影响,为分子设计提供理论指导。

3 量子化学对EL材料结构的分析

结构与性能的关系一直是量子化学的主要研究领域,它涉及的范围非常广泛,从无机小分子、有机分子到高聚物和生物大分子,从人为设计的理想模型分子到实用的药物分子和材料分子等[10]。通过结构与性能的研究,人们可以逐类地对一些化学现象进行统一的解释,得出一般性的规律,进而预言一新的化学事实,指导设计新的实验。目前国际上关心的课题主要有:重要新型无机分子、有机分子和原子簇化合物的化学键本质的研究;重金属、稀土元素化合物的成键规律;(半)导体材料、磁性材料、光电材料等。

高洪泽,石绍庆[11]等通过量子化学半经验方法研究了蓝色有机薄膜电致发光材料LiBq4 电子结构,国外研究人员在这方面已做了不少努力,合成了很多类型的蓝色发光材料并且制备了相关器件[12-15],但多数都没有获得突出的结果。由于LiBq4体系相对分子质量较大,迄今未见有对其进行理论研究的报道.他们通过计算结果表明,各个喹啉环基本保持各自的面共轭结构。计算得到的稳定几何结构和的主要键长。为探讨其发光机理及B和Li 元素在其中所起的作用及M ―N键的共价性、离子性对发光的影响,为进一步探索合成与设计具有优良性能的蓝色发光材料提供理论依据和指导。

4 振动分析

判断分子是否处于稳定构型的一个重要方法是看它的振动光谱是否出现虚频率[16]。刘芳玲,张红梅[17]等对萘及其卤代化合物在B3LYP /6-31G水平下优化了4种化合物的几何构型, 在振动分析中,其振动光谱均未出现虚频率, 说明构型优化基本合理性。

5 前景与展望

近些年来虽然量子化学在研究和分析EL材料方面,解释了一些实验现象,揭示了不少前期未被理解的机理,甚至预期了一些结构性能关系。但量子化学的应用远不止这些。随着量子化学理论不断发展和应用领域的逐渐拓宽,研究方法的不断创新,今后将对电致发光材料的合成和选择提供更好的理论依据和指导。将量子化学与EL材料的性质分析结合起来,才能更好的选择EL材料的构成,合成性能更好的EL材料。

【参考文献】

[1]D.B.Mitzi.Synthesis, structure and properties of organic-inorganic perovskites and related materials[J].Prog.I norg.Chem.,1999,48:123.

[2]O.M.Yag hi, H.Li, C.Davis, D.Richardson, T.L.Groy. Synthetic structure, patterns and emerging properties in the chemistry of modular porous solids[J].Acc.Chem.Res.,1998,31:474.

[3]W.Su, M.C.Hong, J.B.Weng, R.Cao, S.F.Lu.A semiconducting lamella polymer[Ag(C5H4NS)ln] with a graphite-likeanay of silver(Ⅰ)ions and its analogue with a layered structure[J].Angew. Chem. Int. Ed., 2000,39:2911.

[4]张勇.生物活性分子的结构和相互作用的理论研究[D].郑州大学,2005.

[5]笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用[J].淮南师范学院学报,07,9(3):101.

[6]Dewar M. J. S,The semipirical Approach to Chemistry[J]. Int J Quantum Chem,1992,44:427.

[7]苏宇,廖显威,刘珊,邓嘉莉.光谱学与光谱分析[J].2006,26(6).

[8]廖显威,李来才.几种稠环芳烃EL材料的量子化学研究[J].1999,12(6).

[9]薛照明,张宣军,田玉鹏,吩噻嗪衍生物EL材料的结构、光谱研究及量子化学计算[J].2002,19(3).

[10]徐昕,王南钦,吕鑫,张乾.二量子化学的研究现状发展趋势与展望[J].1996,8(1).

[11]高洪泽,石绍庆,阚玉和.蓝色有机薄膜电致发光材料LiBq4电子结构与电子光谱的量子化学研究[J].2005,37(3).

[12]Adachi C, Tsutsui T, Sai to S. Blue lith t-emit ting organic elect roluminescent devices[J].Appl Phys Lett, 1990,56(9):293-296.

[13]张晓宏,吴世康,高志强,等.几种吡啉衍生物的光致发光和电致发光特性研究[J].化学学报,1999,58(3):293-296.

[14]Tao X T, Suzuki H, Wada T ,et al.Highly effi cient blue electroluminescence lithium tetra -(2 -methyl-8 -hyd roxy -quinolinat o) boron[J].J Am Chem Soc, 1999,121(40):9447-9448.

[15]Gao Z Q , Lee C S , Lee S T , et al.Brigh t-blue elect roluminescence from a silyl -subst itut ed t er -(phenylene[Z].

半导体材料论文篇5

为了分析半导体制冷器工艺设计方法与制冷效率的关系,探讨其工作寿命的影响因素,文章通过改进半导体制冷器基板材料,采用新型胶黏剂,并通过实验来对比分析半导体电偶间不同的铜片排布方式对制冷器制冷性能、寿命的影响。实验结果表明,连接铜片排布回路形式对制冷性能影响不大,但对产品的使用寿命有一定的影响。铜线排列走向简单,电阻变化率低,使用寿命相对较长。

关键词:

半导体制冷器;制冷性能;基板;铜片回路

半导体制冷技术因其具有的独特优点而在各行各业得到了广泛的应用[1-3]。为提高其性能、增强机械强度和稳定性,国内外有关科技人员进行了很多研究工作。宣向春等[4]提出可在普通半导体电臂对的P型和N型电偶臂之间淀积一层厚度适当的银膜,提高电偶对的制冷性能。李茂德[5]和任欣[6]等认为,提高制冷系统热端的散热强度可以改善半导体制冷器的制冷性能,但制冷性能并不能随散热强度的提高无限提高。

YANLANASHIM[7]优化了制冷系统设计方法。此外,GAOMin[8]等指出电偶臂的长度在很大程度上影响半导体的热电性能。YUJianlin[9]等详细研究了制冷单元的个数和电偶臂的长度对制冷性能的影响程度。本文主要对半导体制冷器的制造工艺进行了分析,讨论了不同的半导体铜片连接回路以及半导体电偶对与基板的黏结性能对半导体制冷器制冷效果及其寿命的影响,并通过实验进行了性能测试,实验结果可以为提高半导体制冷器的制冷性能及产品寿命提供较好的依据,具有一定的实际指导意义。

1半导体制冷器设计工艺

半导体制冷器的性能主要包括制冷效率和使用寿命,取决于组成半导体制冷器主体的制冷电偶对的设计制造工艺,半导体材料的热电优值系数及半导体制冷器系统的结构等[10]。本文仅讨论半导体制冷器基板材料以及不同的半导体铜片连接回路对半导体制冷器制冷效果及其寿命的影响。

1.1基板设计工艺半导体制冷器的导热绝缘层由陶瓷基板构成,由1个放热面和1个吸热面组成一组,2个面之间由铜片连接不同型的、相互错开的半导体颗粒,形成回路,如图1所示。陶瓷基板材料及基板厚度对半导体制冷器制冷效率有显著的影响。设计采用了质量分数为96%氧化铝(Al2O3)的陶瓷基板。同时,为提高半导体制冷效率,通过减薄陶瓷基板厚度(由目前的1.00mm,减薄到0.50~0.13mm),降低热阻,提高了传热性能,制冷效率COP值得到提高,但成本相应增加;另外,也可以将基板换成氮化铝(AlN),氮化铝热导率为180W•m-1•K-1左右(20℃环境温度下测试),而氧化铝为22W•m-1•K-1左右(20℃环境温度下测试),热导率提高了约7倍,同样也可以提高COP值,但是基板成本会更高,约为原来的10倍。

1.2铜片回路连接工艺将半导体电偶对、基板和接线端子用铜片焊接起来,形成通电回路。实验设计了2种不同回路走线方式A型和B型(CP/127/060/A和CP/127/060/B),如图2~3所示,图中粗线为回路走线路径。由于基板与半导体颗粒间焊接了铜片,半导体颗粒与基板形成刚性连接,在温度变化的时候材料的内应力很大。因此生产工艺中将半导体颗粒与瓷片用胶黏剂粘接,用于卸去大部分应力,提高产品的寿命。但由于胶黏剂的导热性较差,制冷性能会受到一定影响。本文采用了自主研发的一种胶黏剂,粘接层很薄,热导率相对比较高,使得产品具有一定的市场竞争优势。

2半导体制冷器性能实验分析

2.1铜片排布方式对性能的影响实验现场如图4所示,实验原理如图5所示。实验材料:A型产品和B型产品各5个。实验时,将整个装置放置于真空中,测试仪器中设置好控制温度Th=50℃,先测试最大温度差ΔTmax值。在每个产品的基板上分别选择4个测试点,依次递增施加不同的测试电压(16~20V),得到测试数据ΔT值,拟合曲线,找出极值点。极值点对应的ΔT值就是ΔTmax,其对应的电流就是Imax。然后给产品施加Imax的电流,通过加热片控制冷热面的温度差ΔT=0℃,测定此时的制冷量Qc值即为Qcmax,即加热片的功率。实验数据如表1~2所示。由表1~2可知,2种不同铜片排布形式,其温度差ΔT,制冷量Qc的数据差异均在实验仪器误差范围内,针对ΔT,Qc这两项来说,铜片回路形式对半导体制冷器制冷效率影响不大。

2.2铜片排布方式对产品寿命的影响对2种回路的制冷器分别进行制冷—制热循环实验。实验条件:1个循环为1min(40s制冷,制冷温度降到0.0℃,电流4.0A;20s制热,制热温度升到100.0℃,电流4.5A);压力280±20N,2.4万次循环实验结束。每0.15万次循环测1次电阻,若2.4万次循环之内,电阻变化率超过10%表示产品失效,实验结束。实验样品选择CP/127/060/A和CP/127/060/B各2组,实验结果如图6所示。由图6可知,在2.4万次循环结束时,A型产品2组实验样品的电阻变化率分别为1.35%和1.45%,而B型产品2组实验样品的电阻变化率均在2.04%左右。实验数据表明,A型基板的电阻变化率相对较低,寿命趋势相对较长。

3结论

通过理论分析和实验研究,得到以下结论:1)陶瓷基板材料及基板厚度对半导体制冷器制冷效率有显著的影响:氮化铝(AlN)基板因热导率高于氧化铝(Al2O3),可以提高COP值,但其成本会提高;通过减薄陶瓷基板厚度降低热阻,可提高传热性能,提高制冷效率COP值。2)半导体颗粒与瓷片用胶黏剂粘接,可卸去大部分应力,提高产品的寿命。但由于胶黏剂的导热性较差,制冷性能会受到一定影响。可采用自主研发的胶黏剂,粘接层很薄,热导率相对比较高,保证产品在市场竞争上具有一定的优势。3)通过实验数据对比分析,温差ΔT和制冷量Qc的数据差异均在实验仪器误差范围内,针对ΔT和Qc来说,回路形式对半导体制冷器制冷效率影响不大。4)在寿命方面,在2.4万次循环结束时,A型成品电阻变化率分变为1.35%和1.45%,而B型均在2.04%左右。直观的数据对比显示A型基板的电阻变化率相对较低,寿命趋势相对更长。

参考文献:

[1]卢菡涵,刘志奇,徐昌贵,等.半导体制冷技术及应用[J].机械工程与自动化,2013(4):219-221.

[2]王千贵,杨永跃.半导体车载冰箱的智能温控系统设计[J].电子设计工程,2012,20(17):132-134.

[3]梁斯麒.半导体制冷技术在小型恒温箱的应用研究[D].广州:华南理工大学,2011:1-7.

[4]宣向春,王维杨.半导体制冷器“无限级联”温差电偶对工作参数的理论分析[J].半导体学报,1999,20(7):606-611.

[5]李茂德,卢希红.热电制冷过程中散热强度对制冷参数的影响分析[J].同济大学学报(自然科学版),2002,30(7):811-813.

[6]任欣,张麟.有限散热强度下半导体制冷器性能的实验研究[J].低温工程,2003(4):57-62.

[7]YAMANASHIM.Anewapproachtooptimumdesigninthermoelectriccoolingsystem[J].AppliedPhysicsA:MaterialsScience&Processing,1980(9):5494-5502.

[8]GAOMin,ROWEDM,KONTOSTAVLAKISK.Thermoelectricfigure-of-meritunderlargetemperaturedifferences[J].JournalofPhysicsDAppliedPhysics,2004,37(8):1301-1304.

[9]YUJianlin,ZHAOHua,XIEKangshan.Analysisofoptimumconfigurationoftwo-stagethermoelectricmodules[J].InstituteofRefrigerationandCryogenicsEngnieering,2007,47(2):89-93.

半导体材料论文篇6

论文关键词:高效太阳能电池,机理,工艺结构

1.前言

地球能源与环境问题日益突出,人类充分、高效、绿色地使用太阳能迫在眉睫。高效绿色太阳能电池的开发,是人类大量且充分地使用太阳能的关键环节。近年来新型太阳能电池不断出现,硅基太阳能电池效率与工艺也有所提高,但有关太阳能电池的普遍机制,以及使用什么样的材料与结构,才是人类比较理想的长期大量使用太阳能的工艺路径,等等核心问题,都没有真正取得共识与解决。本文以作者长期的实践探索积累为基础,对太阳能电池的本质逻辑,以及适应于人类长期持久的、循环经济的、无毒无害的、太阳能电池工艺路线和提高电池光电转换效率的方法等核心问题,作相对简明的理论回答(表述)。

2.太阳能电池的普遍机理

2.1 环境保护约束条件下的电池材料与光电转换效率的选择

广义上讲,太阳能是地球万物能量的源泉。经过千百万年进化,大自然广泛利用太阳能的方法,如光合作用、大气环流的热蒸发效应等,是真正绿色自然循环的方式,值得人类借鉴。太阳光强度如用太阳常数描述约为1367W/M2 ,单位面积能量密度相对于现代人类的能耗需求来讲比较小,要广泛的、方便的使用太阳能,就必须大面积的、甚至像树枝树叶一样立体化的建造太阳能光电池叶片或电池薄膜。这里有两个关键环节问题需要把握与解决:

一是生产太阳电池所需材料问题,即必须使用无毒、无害、在大自然环境中大量存在并参与生态自循环的低成本材料作为制作可以广泛推广使用的、大市场的太阳能电池的原材料,否则,会出现新的材料短缺与新的更严重的环境污染问题,从这个意义讲,硅基太阳能薄片或薄膜电池,是极好的选择:硅是地球第二大丰度物质,是土地的主要组成部分,大量的太阳能硅基电池,不论是使用中还是报废,都没有给大自然生态环境增添新的成份,可以成为绿色的循环。绿色植物主要组成成份为有机碳水化合物,作为太阳能电池原材料当然更为绿色自然,但因寿命与效率限制,绿色有机物太阳能电池,不会成为主流太阳能电站的首选电池材料,但可以是多元化的太阳能电池产品中的非常环保的、低成本的、方便使用的重要组成成员。

二是太阳能电池的光电转换效率问题,要广泛地推广使用太阳能发电,使用太阳能电池的经济性、适用性,必须均为地球上大部分地区的普通公民与企业所接受,这实际上是绿色太阳能电池的光电转换效率问题,也就是普通居民与企业使用效果好坏问题。当前最好的硅基单晶电池产品的实际光电转换效率不超过19%—20%,绝大多数使用产品的车间光电转换效率在16%—19%(薄膜电池产品效率低得多),实际使用中单位平方米功率仅100—150W/ M2 ,天气稍有阴雨发电功率即近为零。这样低的太阳能电池使用价值,决定了其不可能为广大社会民众所接受,也不可能有辉煌、美好的未来。炎热夏季即使是阴雨天,空气温度也在30—40o C ,可利用的太阳能是巨大的,如果能将现有绿色太阳能硅基电池的效率大幅提升20%—30%以上,并将其光电转换吸收谱线宽度拓展至近中红外区域,地球人类自觉、积极推广使用太阳能的时代就会来临,太阳能电池产业也将真正进入黄金时代。

2.2 太阳能电池普遍原理

2.2.1 光照下的物体组成原子的电子的集体跃迁

微观世界由光电主宰,电磁作用处于支配地位,光与电场磁场是宏观与微观联系的基础路径。电子能级跃迁发射或吸收光子,一个电子吸收一个光子,即进入更高能级状态,是一种激发态,当然处于激发态的电子也可能再吸收一个光子,进入更高的激发态,这要满足泡利不相容原理与电子量子跃迁选择定则。

广义上讲,大量电子同时吸收大量光子,产生(宏观可测的)有序移动态势,即形成空间电位梯度,这种光生电势差,即光电池(积累电能);宏观物质(包括气体)被光照,只有在某些特定的条件下,才能产生(宏观可测的)有序移动态势,绝大部分光照能量被材料物体的原子电子吸收产生宏观无序热运动(或称“热激发”);实际上宏观物质的微观结构原子离子电子,吸收光子光能,产生的宏观物理状态,是宏观有序移动态势与无序热运动之和(叠加),大量微观粒子(较)纯集体有序运动,是一种宏观量子效应。假设一个宏观物体被光照射,入射光功率为W(J/s),物体对外辐射的光热功率为Q(J/s),物体由此产生的内能变化E(J/s),E包含宏观有序移动态势Φ(J/s)(即积累势能,对电荷粒子来讲即为电能)与宏观无序热运动能R(J/s),则在不考虑其它宏观条件下,有:

E =W —Q (1)

E =Φ+R (2)

Φ=W —Q —R (3)

η=Φ/W (4)

β=Φ/E (5)

其中,η、β分别为物体(光电池)吸收光能变为有序能(电能)的转换效率、物体吸收光能的宏观量子效应大小(或称相对强弱)。物体在外界作用下的表现出纯宏观量子效应时β等于1(即100%)。

以上论述并没有对光电池的材料结构组成等作具体限制,不只是适用于固体、液体形态的光电池,是普适的关系。

2.2.2 下面讨论物体微观电子在外界功(光)作用下能实现宏观自发有序运动的条件

普通太阳光照下,由于气体物质分子原子中吸收光子激发跃迁的电子密度低、脱离原子束缚的空间“自由电子”极少,以下吸收太阳能物体只考虑固体、液体等凝聚态情形。

凝聚态物质,微观分子原子离子等单元结构有一定清晰度的空间边界,但电子或单元整体的电磁作用边界已经不清晰,或者说,结构单元之间的电磁相互作用已经很强,不同原子的外层电子已经存在不同程度的相互关联度,结构单元之间Å或10 Å级的空间距离,已经可能实现一个原子的电子的逃逸与在原子之间接力移动,这是原子间电子产生协同有序状态的前提。

吸光物体在稳定的光功率W(J/s)照射下达到平衡状态时,物理状态量随时间变化的宏观量子统计平均值为零,宏观物理状态量的时空关系可以简单地化为微观粒子的空间量子结构的统计平均关系。大量电子吸收光子产生激发跃迁处在统计平衡状态,假设单位时间处在高能级(激发态)的平均电子数为Ne ,吸收的光子的平均能量为Δε=ħω

,(其中,ħ为普朗克常数,ω

为光子平均角频率。),E为均衡状态下相对于无光照时的内能变化,则E = NeΔε= Neħω

=ħΣω(6)

跃迁到激发态的电子,因为物体微观结构单元(原子)的电磁边界重叠,相互之间形成比较强的电磁作用,如果存在一个稳定的作用力场(或),则全体激发态电子即会形成集体有序运动来对冲内部空间内的作用力场,(因此也可以称这些激发态电子为光生载流子),直至这些电子形成的内部电场完全对冲作用力场。作用力场可以是外加作用场,也可以是物体内部结构内生场,同时也可以是光照与物体结构共同作用而产生宏观有序作用。假设电子电荷为e库仑,光生载流子(电子)的平均有序做功移动路径为d,单位时间处在激发态的平均电子数为Ne,则有序移动态势能Φ(电能)为:

Φ= Ne∫d ·d = Ne∫d e·d = e NeV (7)

其中,V为电子受作用进行有序运动后形成平均空间电位势,(即开路电压)。

一般来讲,光生载流子的在稳定作用力场作用下形成的电能Φ,是可以通过外接电路可逆地释放出来的(除去部分热功),这就是光电池放电过程,太阳光持续照射,光电池可以持续发电做功。利用(5)、(6)、(7)等式,可得:

V =Φ/ e Ne =ħω

Φ/ eE =ħω

β/ e (8)

如果E =Φ,则有V =ħω

/ e 。也就是说,如果物体内部吸收光能所引起的电子量子跃迁产生的高位激发内能变化E(J/s),全部转化为宏观有序移动态势能Φ(电能),而没有宏观无序热运动能R损失,被吸收光能全部转换为电能,呈现100%的宏观量子效应,以500nm波长绿(近青)光计算,完全出现宏观量子效应的开路电压V可达2.5伏特。但要提高电池光能变为有序能(电能)的转换效率η,不仅要尽可能的实现宏观量子效应的最大化,而且要尽可能的减少反射透射(包括热辐射)的照射光能损失。对于完全理想化的宏观量子超精细结构光电池,其光电转换效率η是没有止境的。

以上论述与结论同样是普遍适用的。

如果作用力场是外加作用场如偏压(电场),光能的实际利用价值无几。以下重点分析物体内部结构内生场,及光照与物体结构共同作用而产生宏观有序作用场的情形。

2.2.2.1 物体内部结构内生载流子作用场

任何导电材料如果内部微观结构,某些物理性能,如密度、电导率、折射率等,存在宏观有序的梯度分布,或者不同性能材料无隔离接触,均会在内部或者接触界面附近,产生

有序电场与电位势,良导体材料由于内部存在自由电子,这种电位梯度则存在于表面或接触面。图一、图二、图三分别是同一导电材料(包括半导体)存在某些物理性能在某一方向的梯度分布、至少一种是导电材料的两种不同物质材料无间隔接触界面、属于图二的特殊情形的半导体PN结表面接触结构。

以上情形可以是固液接触面,接触面可以是多样化的空间结构。两种金属固体接触面,产生内场的实际效果是自由电子可以“自由”从M1到M2或从M2到M1,类似单一金属内部电场为零的等电位形态,用近似的费米面解释即被费米面抹平(相等),但是界面两边不同的自由电子束缚能(逸出功或自由电子公共能级)µ1、µ2 ,使电子从M1到M2或从M2到M1,呈现逆内生电场移动吸能或顺内生电场移动放能的过程。假设µ=µ1—µ2 ,µ实为两种金属接触界面附近的电位差V,电子吸能或放能为℮V 。一般情况下,由于大量的金属表面附近的自由电子对光子的吸收与反射,造成金属不透光性,MM接触面的有序势不可能导致光能转为电能。但是特殊情况下,这是一个非常具有使用价值的表面有序作用势,这在下面内容中再论述。

下面讨论一下以上结构形式的内生有序势与光电池效率等的数学关系。

同质物体存在内生电势梯度的情形。假设物体微观结构在空间上存在载流子密度、或光电性能等物质标量(M(r)表示)的梯度分布M(r),(为空间微分),这种光电性能的有序性梯度分布,肯定产生一种均衡扩散作用力。比如载流子浓度有序性梯度分布,即是玻尔茨曼扩散方程关系中的扩散力。

假设物体微观结构空间的电位势为U(r),则电场强度为: =—U 。拥有这种梯度特性的半导体材料,虽说内部存在有一定宏观方向性的电位势梯度,常态下如果内部并没有可以在微观结构单元之间移动的电荷存在,并不能产生持续的电流;但在阳光持续照射作用下,半导体材料组成原子的低浅能级电子吸收自然光光子跃迁激发到原子间共有的高能级区域(电磁作用重叠区域,能带理论中的空导带),在作用下大量原子激发电子形成宏观有序移动势,如短路则形成积累电势能Φ。假设接入外导线的位置在r1、r2点,U(r2 )> U(r1),稳定光照下的电导率为σ( r),则作为光电池的开路电压、闭路电流ISC分别为: VOC ≤(U(r2 )— U(r1)), ISC =∫S σ( r)·d (9)

两种不同材料(或同质材料不同性能的两块材料)无隔离接触面附近存在内生有序电位势的情形。典型的为半导体PN结结构或金属—绝缘体—半导体MIS器件结构。接触表面附近的形成定向电场区PN结,或形成超薄的一个准二维面高势垒。光生载流子由PN结电场作用形成定向流动趋势,或由量子动力扩散作用形成界面两边光生载流子动态差异电势积累,即产生电能积累,引导线形成闭路则产生放电电流,持续光照即形成持续光电流输出。

如果将同质物体存在内生电势梯度的情形,近似为许多同质但不同“密度”或“性能大小”的材料“薄片”的叠加组合而成,薄片之间的分界面相当于分割不同材料的界面,则“同质物体存在内生电势梯度的情形”,实为“两种不同材料性能无隔离接触面附近存在内生有序电位势的情形”的一种特例。这样,就统一了物体内部结构内生载流子作用场(势)的形式。PN结内生电位势差V及光电池的开路电压VOC 、闭路电流ISC ,基本上符合玻尔兹曼扩散方程,可以近似导出。这里用更简单的逻辑给出近似关系。

只考虑最简单的同质半导体P、N型掺杂形成的PN结情形。PN结形成的内生电场两端电位势差V ,即为开路电压VOC ,其与P、N型载流子密度np 、ne 及对应的扩散长度成正比。假设半导体本征原子电子平均吸收光子能量为Δε= hν(即为能带理论中的能隙Eg ),产生激发跃迁,PN结电场区宽度为d,PN结区内电场可近似为平板结构,V = d *E = d *σ/ε0 ε,其中E 、σ、ε0 ε分别为PN结区电场平均强度、等价单位面积电荷密度、半导体材料的介电常数。

开路时内生电场对光生载流子做功即为积累电能(单位面积电势能):

Φ=σV= d *σσ/ε0 ε(10)

单位面积光照功率W(J/s),单位面积PN结半导体内能变化E(J/s)近似为N个电子吸收光子的所增加的高位激发能,即:

E =∑hν= N Eg +R (11)

(11)式中R为产生跃迁激发的N个电子吸收光能所贡献的无序热运动能(J/s),Eg 为平均跃迁能级宽度(即价带与导带间的能隙宽度)。利用公式(4)、(5)则

η=Φ/W =σV /W = d *σσ/ε0 εW (12)

β=Φ/E =σV /(N Eg +R)= d *σσ/ε0 ε(N Eg +R)(13)

如果吸收光能产生量子跃强的电子所贡献的无序热运动能R忽略不计,则(13)变为:

β=Φ/E =σV / N Eg = d *σσ/ε0 εN Eg (14)

凝聚态物体原子中电子吸收光子跃迁,总是有热能产生的,量子效率总是小于100%的;除非是理想晶格结构、又是单色光,才有可能光能全部变为量子能级内能,(又可以以激光的形式释放出来)。

2.2.2.2 光照与物体结构共同作用而产生的载流子有序作用场

①两种不同材料性能无隔离接触面,如果形成超薄(0.5—2nm左右)准二维面高势垒,如果光子能量、势垒、两种材料电子吸光跃迁能级及能级差匹配,如图四示意,存在界面附近一种材料(如M1)的结构单元电子吸收一个光子(hν)直接越过势垒量子跃迁到另一种材料(如M2)的更高能级(导带),形成界面附近的有序量子效应,产生积累有序势能(电能)的效果,这种由超薄稳定薄膜(一般为绝缘带体)形成的准二维面高势垒(M1-I-M2结构),可以称为“量子电子泵”,在光照作用下,起到“泵抽电子”、光致发电的作用。光电池电压V = E22—E12 。这也适用于光照面为半导体(M1)、背光面为金属(M2)的MIS情形。

PN结是一种空间结构更宽的“量子电子泵”。

②超薄金属薄膜(或薄片)、半导体或其它导电薄膜准二维结构,在光线垂直照射下,薄膜两边形成电位势,用导线接通回路即产生光电流,如图五所示。

以金属薄膜为例,光子动量=h ,垂直于薄膜平面,能量Δε= hν= pc ,对于微纳米级薄膜结构,反射光极弱,光子动量与能量,几乎被薄膜电子与晶格吸收或透射,一个电子吸收一个动量=h光子,则获得沿光线方向的动量=h,产生沿背光面方向移动的有序势,大量电子同时吸收同方向光子得到沿光线方向动量即产生宏观有序电位势能。准二维超薄薄膜受平行光垂直照射,是人工通过器件几何结构实现宏观量子效应的经典方法。下面用简单的方法,分析光电流电压与薄膜材料及光功率的关系。

ΔW为单位时间单位面积内光照能(J/sm2),对应于ΔW/c 动量流(薄膜表面光压)(N/m2),当系统达到稳定均衡时,可以进行统计平均运算。假设导电薄膜(片)的载流子(这里只考虑电子)密度为ne ,薄膜厚度为d ,则单位面积光压(或动量流)ΔW/c相对与每个电子受力F为ΔW/c ne d ,即 F =ΔW/c ne d (15)

连续均匀光照下,薄膜中自由电子相当于受到一个沿光线方向均匀电场强度E的作用, E = F/e =ΔW/c ne de (16)

则光照下电子有序移动形成薄膜两边的电位势差V(即开路电压)为:

V = Ed =ΔW/ ne ce (17)

V的这个统计近似,与薄膜厚度d无关,可以理解为光子对载流子的冲压有作用尺度(深度)限制。分别取ΔW ~1000W/ m2、e为1.6 * 10-19 库仑、c为3*108m/s ,则V ~2*1013/ ne 伏特,对厚膜来讲(厚度500—1000纳米以上)尤其是金属材料膜片,太阳光光照引起的光电压很小。

但在30nm>d>0.1nm 超精细薄膜区间,直线光照的量子效应凸显,(15)(16)(17)等近似式不再适用,一维平行光子P与准二维晶格结构中的电子e的时空作用点(交集)更为明确,海森堡测不准原理表明电子在平行与光子Î方向上有更大的动量,V 可以达到伏特数级。超薄薄膜的电子吸光有序移动,可以表现出量子跃迁的效应,即一个电子可以吸收能量为hv =V的光子,实现从薄膜前面到背光面的直接“量子跃迁”(能级差由光辐射作用产生)。对半导体材料,薄膜在100—500nm厚度尺度,V 也可以达到伏特数级。这是由可见光量子能级所决定的。这也是半导体体晶格结构中,超薄的分割二维界面(薄层),起到“量子泵”作用机理的另一种论述,实际上也是下文中所述的薄膜电池叠层超高效耦合连接的微观机理论述。

同样,可以估算闭路电路ISC 。设垂直穿过薄膜单位面积的电流密度为JSC ,单位面积光照动量(光压)ΔW/c ,全部转化为自由电子沿光线方向的有序动量,则JSC 为:

JSC = e nep/me = e ne/me *ΔWd nr/c2 ned = eΔW nr/c2 me (18)

ΔW ~1000W/ m2、e为1.6 * 10-19 库仑、c为3*108m/s 、电子质量me 为9.1*10-31kg 、nr为导电材料的折射率,则JSC 约为1.95*10-3nr安培,简单近似公式是合理的。由于这种结构金属材料光热效应明显,光电流与定向热扩散同效。

2.2.2.3 超级晶格超级跃迁结构

大量电子吸收光子产生宏观有序移动,是宏观量子效应表现。从能量转换效率来讲,宏观有序量子效应与宏观无序热效应,是两种完全不同的物质能量状态。一般来讲,宏观有序量子效应,是可逆过程,只有物质宏观有序势,才可以变为有用能。对光电池来讲,电池材料吸光电子的宏观量子效应程度,决定电池的光照发电效率。这正是前面公式(1)、(4)、(5)等所含的主要意义之一。

不同均匀晶格材料原子电子的能级差异很大,两种材料(半导体或金属等)之间均匀无间隙界面(可以是准二维或准一维结构),实际上形成一个能级或电位差异V的宏观有序结构,即可能形成低电位材料界面附近电子同时吸收能量hν≥V光子,产生集体宏观定向跃迁的情形,即2.2.2.2 节①所论述的、图四所示意的情形。如果这种宏观量子界面在纳米尺度上连续存在,如图五、图六所示,即为本节所论述的超晶格结构。

图五所示的,为(准)二维界面超晶格结构,由不同薄膜材料以均匀晶格结构、层层无间隙叠加而成。每种材料薄层厚度在0.1nm—100nm(有些材料单层薄膜可以更厚一些,更多材料不宜太厚)之间,保持均匀晶格结构;薄层之间界面清晰平顺。图五所示的,包含更多的有序结构内容,如材料每层厚度沿所示光线方向梯度增加,材料可以是两种材料A和B的ABABAB连续叠加结构,也可以是一种材料由超薄稳定隔离膜(厚度0.1—2nm)I准二维膜隔离的AIAIAIA连续叠加超晶格结构。当然也可以是三种以上合适晶格材料的均匀叠加结构。这种时空结构,形成一个可能促使原子电子连续有序跃迁的超级量子电子泵。

图六所示的,一个宽禁带半导体均匀晶格材料内部镶嵌另一种准一维半导体导电材料(直径d小于500nm甚至小于100nm,100nm≥d≥1nm)的超晶格结构。当然也可以是一种相对窄禁带半导体均匀晶格材料内部镶嵌另一种准一维良导体(如活性金属)纳米线超晶格结构。准一维纳米线材料在体形半导体材料内无间隙密实镶嵌,并保持自身准一维均匀晶格结构,准一维纳米线可以是平滑弯曲的,纳米线间距离是d的10—100倍以上。染料敏化太阳能电池与钙钛矿结构太阳能电池的核心结构实际上是这种结构,这里(包括后面的论述)事实上给出了染料敏化太阳能电池与钙钛矿结构太阳能电池的本质机理或理论基础。

无论是准二维平面附近还是准一维纳米线附近的晶格原子电子,均对(垂直)入射光子产生强烈吸收作用,这是四维时空作用矢量同向有序选择作用的必然结果,是产生宏观量子效应的时空结构。低电位电子吸收能量hν≥V光子,从一种材料时空边界,“量子化”跃迁到另一种高电位材料时空边界。

对图五所示的超晶格结构形态,在持续光照情况下,如果界面两边的电位差Vij小于可见光光子能量hν(1.55—4.12eV),则各界面之间存在电子协同接力吸收光子跃迁的可能,相当于一个电子从正面连续不断移动跃迁到背面产生光电流,形成完全有序的宏观量子效应,使超晶格薄膜结构入射光面与背面的电位势产生最大电位势差Vmax =ΣVij ≤ hνmax/e ≈4.1V 。只要有足够的光生载流子密度,则这种超晶格甚至有可能使所有光子能量全部变为电子宏观有序能,光电转换热能损失很小,作为光电池其转换效率可以非常大。

对于图六所示的超晶格结构形态,体半导体与纳米线(所有纳米线可以像图六所示互相连接作为电源的一个电极)形成确定的电位势差V,大量电子参与有序跃迁移动,也可以形成很大的宏观量子效应电流,光电转换效率也很高。如果纳米线密度够大,合适的V日光(垂直)照射,可能使纳米线镶嵌的超晶格结构光电流密度达到100mA甚至更高。低位电子吸收能量hν≥V的光子,产生空间有序跃迁移动,形成体半导体与纳米线并联结构的统一电位势差V。

2.2.3 能带结构机理描述

本小节就传统的能带理论对光电池的理论机理解释,与本文的光电池理论机理的关系等,进行简单地论述。

能量理论是薛定谔方程在固体晶体应用中,解集的一种描述,是波矢空间(时空对应的倒易空间)方程解的几何描述分析。能级是波矢的函数(偶次方关系),晶格结构的空间周期性,造成电子能级的密集叠加成间断的连续能带结构。能带之间的间隔为禁带或带隙,电子按泡利不相容原理与费米统计法则由低位向高位排列分布,满带为价带,最高能级的价带以上的不满带或空带为导带。材料晶格结构中,存在不满导带的,为金属材料,所有能带为满带或空带的,为半导体或绝缘体。费米面是T=0时被电子填充(占满)能带与无电子占据能带间的界面,对金属自由电子来讲费米能级EF是T=0是电子占据的最高能级。

费米统计分布公式: f(E)= 1/(e(E-EF)/kT+ 1)(19)

其中,f(E)为E能级被一个电子占据的几率。当E=EF 时,f(E)= 1/2 。

导电中的电子能量E是可以连续变化的,对应位移空间即是可以“在晶格之间自由运动的”,价带中的低能电子吸收光子能量跃过禁带宽度Eg达到导带成为光生载流子。光生载流子的有序移动(即产生电位势,成为光电池发电)需要有类似PN结的内生电场存在。

对于图五和图六所示的连续叠层或内镶纳米线超晶格结构,从能带理论近似的角度来讲,位移空间一维或二维的有序分割,相对于波矢空间导带、禁带、价带宽度的有序变窄及波态加密,原宽禁带(或导带)中间产生新的能级(或窄禁带),电子吸收光子产生空间有序跃迁的几率大增,因此这类超晶格成为高量子效应的高光电转换效率的光电池(结构)。这种能带理论近似解释,完全与本文前述的光电池理论机理一致、相符。

2.2.4 光电池材料吸收光谱的均衡匹配

阳光是全谱线光线的集合,其中红外光能几乎占到总光辐照能的50%。而不同材料与结构的吸收光谱不同,要达到对太阳光能的充分吸收,并产生更多的宏观有序的量子效应,叠层材料的匹配是关键。

晶体硅的禁带宽度Eg约为1.12eV,非晶硅厚膜Eg约1.6—1.8 eV(3nmEg约2.0 eV,2nmEg约2.5 eV),微晶Eg约介于二者之间。其它常用材料,如Ge的Eg约0.67eV,GaAs的Eg约1.43eV,SiC的Eg约2.2—2.4eV,PbS的Eg约0.34—0.37eV,ZnO的Eg约3.2eV,TiO2的Eg约3.0eV ,PbSe的Eg约0.27eV ,CdTe的Eg约1.45eV,SiO2 约6-8eV ,Al2O3 约8eV,ITO约为 3.75-4.0eV,SnO2(透明导体)约(3.57-3.93)eV,Mg F2 约11 eV 等等。

对同质材料来讲,晶格结构确定时,纳米尺度是改变Eg的有效手段。2.2.2.3节中的超晶格结构,正是吸收光谱全谱线系列匹配的最优形式,只有这种超晶格结构,才可能产生电子全谱线吸收光子进行超级量子跃迁的宏观有序量子效应。

3.提高光电转换效率的关键工艺技术

3.1 时空结构

材料的结构决定材料的性质,诱导材料产生高效宏观量子效应的空间有序结构,可以称之为材料的“时空结构”。准一的纳米线、准二维的纳米薄膜,与来自“其它维空间”(垂直于纳米线、或垂直于纳米薄膜平面的)光子,组成超有序时空结构,这是常态下产生宏观量子效应的基本条件。(本文前面对此有过简单论述。)

分别以p、e、s 代表光子、电子、晶格声子的波矢,准二维平面纳米薄膜结构和准一维纳米线晶格结构的声子波矢与平行光呈垂直关系,即s⊥p,平行光与声子的作用完全被抑制,光反射也几乎为零,最大限度的增加了电子吸收光子产生p 方向有序运动的机会。这正是准二维平面纳米薄膜结构和准一维纳米线晶格结构光电效应超强的原因。

本文图五、图六中所示的超级晶格结构,尤其是图五所示的纳米薄膜叠层厚度(几何)梯度增加变化结构,意味着即使在光子p 方向上,也构造了能量梯度的空间协调关系,波矢在光子p 方向的传播,形成在不同厚度薄膜内的波长或能级呈梯度分布的时空结构,这进一步增强了这种材料结构的时空有序性及强关联性,电子吸收光子产生的宏观量子效应更强。图六所示的纳米线结构,如果纳米线本身的直径d呈光子p 方向的(几何)梯度分布,也会产生同样的时空效果。

在垂直于光子p 的方向,连续梯度分布均匀平面薄膜或纳米线,假设电子波矢e 为

e = e∥+ e⊥,则薄膜或纳米线上电子吸收光子e∥由0 变为 e∥= p (20)

大量电子全吸收光子产生同一p 方向的宏观有序能态,光子能量的热能损耗很少或无。也就是说,理想的超级晶格结构,可能达到100%的光电转换效率。

3.2 诱导更多光子电子有序运动结构机理与光子电子泵

诱导光子、电子产生有序运动与作用,减少反射或无规热运动损失,是提高光电效率的前提条件。准二维平面纳米薄膜结构和准一维纳米线晶格结构,是诱导光子、电子产生有序运动与作用的基本时空结构。在此结构基础上,进一步加强时空结构的有序性,会产生更强大的宏观量子效应,进一步增大电子吸收光子产生有序电位势的效率。

以如图五的纳米薄膜有序结构为基础,再增加不同薄膜层的折射率nr递增、带隙Eg 递减、(甚至再匹配电导率б递增)等材料性能空间有序排列结构,将更进一步地增加光子电子“前行”与电子吸收光子的几率,甚至可以达到诱导绝大部分光子电子有序运动、电子吸收绝大部分光子产生宏观有序电能的效果。

纳米薄膜厚度几何梯度递增与折射率梯度递增,是诱导光子前行减少表面反射损失的有效工艺手段,厚度匹配起全光谱耦合与增透作用,折射率几何梯度递增起到吸聚光作用(垂直光透射率最大),前端薄膜超精细叠层结构(超晶格层)又对后端薄膜界面的反射起到折返减反的作用(有全反射效应),这是典型的诱导光子透过的泵抽结构。下表为部分材料的折射率。

 

常用材料的折射率nr

序号

材料

折射率

备注

1

空气    

1.0003

 

2

1.333

 

3

MgF2

1.38

 

4

玻璃

1.45-1.7

 

5

聚乙烯

1.51

 

6

金刚石

1.76-1.77

 

7

Al2O3

1.76

 

8

NSi

1.80-2.5

 

9

SiO2

0.59-0.67μm薄膜

1.6 -1.7 

2.086-2.127

薄膜厚度改变nr

10

ITO 

1.68-1.80(薄膜2.05)

微米级厚膜

11

ZnO

2.004

 

12

钻石

2.417

 

13

TiO2

2.55-2.76

 

14

SiC

2.64-2.67

 

15

Si

3.41-3.44

 

16

Si3N4

半导体材料论文篇7

关键词:半导体,超晶格,集成电路,电子器件

 

1.半导体材料的概念与特性

当今,以半导体材料为芯片的各种产品普遍进入人们的生活,如电视机,电子计算机,电子表,半导体收音机等都已经成为我们日常所不可缺少的家用电器。半导体材料为什么在今天拥有如此巨大的作用,这需要我们从了解半导体材料的概念和特性开始。

半导体是导电能力介于导体和绝缘体之间的一类物质,在某些情形下具有导体的性质。半导体材料广泛的应用源于它们独特的性质。首先,一般的半导体材料的电导率随温度的升高迅速增大,各种热敏电阻的开发就是利用了这个特性;其次,杂质参入对半导体的性质起着决定性的作用,它们可使半导体的特性多样化,使得PN结形成,进而制作出各种二极管和三极管;再次,半导体的电学性质会因光照引起变化,光敏电阻随之诞生;一些半导体具有较强的温差效应,可以利用它制作半导体制冷器等;半导体基片可以实现元器件集中制作在一个芯片上,于是产生了各种规模的集成电路。这种种特性使得半导体获得各种各样的用途,在科技的发展和人们的生活中都起到十分重要的作用。

2.半导体材料的发展历程

半导体材料从发现到发展,从使用到创新,也拥有着一段长久的历史。在20世纪初期,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,使半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究得到重大突破。50年代末,薄膜生长技术的开发和集成电路的发明,使得微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体材料在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研究成功,使得半导体器件的设计与制造从“杂志工程”发展到“能带工程”,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化铟等半导体材料得成为焦点,用于制作高速、高频、大功率及发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出其超强优越性,被称为IT产业新的发动机。

3.各类半导体材料的介绍与应用

半导体材料多种多样,要对其进一步的学习,我们需要从不同的类别来认识和探究。通常半导体材料分为:元素半导体、化合物半导体、固溶体半导体、非晶半导体、有机半导体、超晶格半导体材料。不同的半导体材料拥有着独自的特点,在它们适用的领域都起到重要的作用。

3.1元素半导体材料

元素半导体材料是指由单一元素构成的具有半导体性质的材料,分布于元素周期表三至五族元素之中,以硅和锗为典型。硅在在地壳中的含量较为丰富,约占25%,仅次于氧气。硅在当前的应用相当广泛,它不仅是半导体集成电路、半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上元件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中于制作各种二极管,三极管等。而以锗制作的其他器件如探测器,也具备着许多的优点,广泛的应用于多个领域。

3.2化合物半导体材料

通常所说的化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上元素确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构的半导体性质。化合物半导体材料种类繁多,按元素在元素周期表族来分类,分为三五族(如砷化镓、磷化铟等),二六族(如硒化锌),四四族(如碳化硅)等。如今化合物半导体材料已经在太阳能电池、光电器件、超高速器件、微波等领域占据重要的位置,且不同种类具有不同的性质,也得到不同的应用。。

3.3固溶体半导体材料

固溶体半导体材料是某些元素半导体或者化合物半导体相互溶解而形成的一种具有半导体性质的固态溶液材料,又称为混晶体半导体或者合金半导体。随着每种成分在固溶体中所占百分比(X值)在一定范围内连续地改变,固溶体半导体材料的各种性质(尤其是禁带宽度)将会连续地改变,但这种变化不会引起原来半导体材料的晶格发生变化.利用固溶体半导体这种特性可以得到多种性能的材料。

3.4非晶半导体材料

非晶半导体材料是具有半导体特性的非晶体组成的材料,如α-硅、α-锗、α-砷化镓、α-硫化砷、α-硒等。。这类材料,原子排列短程有序,长程无序,又称无定形半导体,部分称作玻璃半导体。非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸发或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器、太阳能电池薄膜晶体管等非晶半导体器件。

3.5有机半导体材料

有机半导体是导电能力介于金属和绝缘体之间,具有热激活电导率且电导率在10-10~100S·cm的负一次方范围内的有机物,如萘蒽、聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物等.其中聚丙烯腈等有机高分子半导体又称塑料半导体。有机半导体可分为有机物、聚合物和给体-受体络合物三类。相比于硅电子产品,有机半导体芯片等产品的生产能力较差,但是拥有加工处理更方便、结实耐用、成本低廉的独特优点。目前,有机半导体材料及器件已广泛应用于手机,笔记本电脑,数码相机,有机太阳能电池等方面。

3.6超晶格微结构半导体材料

超晶格微结构半导体材料是指按所需特性设计的能带结构,用分子束外延或金属有机化学气相沉积等超薄层生产技术制造出来的具有各种特异性能的超薄膜多层结构材料。由于载流子在超晶格微结构半导体中的特殊运动,使得其出现许多新的物理特性并以此开发了新一代半导体技术。。当前,对超晶格微结构半导体材料的研究和应用依然在研究之中,它的发展将不断推动许多领域的提高和进步。

4.半导体材料的发展方向

随着信息技术的快速发展和各种电子器件、产品等要求不断的提高,半导体材料在未来的发展中依然起着重要的作用。在经过以Si、GaAs为代表的第一代、第二代半导体材料发展历程后,第三代半导体材料的成为了当前的研究热点。我们应当在兼顾第一代和第二代半导体发展的同时,加速发展第三代半导体材料。目前的半导体材料整体朝着高完整性、高均匀性、大尺寸、薄膜化、集成化、多功能化方向迈进。随着微电子时代向光电子时代逐渐过渡,我们需要进一步提高半导体技术和产业的研究,开创出半导体材料的新领域。相信不久的将来,通过各种半导体材料的不断探究和应用,我们的科技、产品、生活等方面定能得到巨大的提高和发展!

参考文献

[1]沈能珏,孙同年,余声明,张臣.现代电子材料技术.信息装备的基石[M].北京:国防工业出版社,2002.

[2]靳晓宇.半导体材料的应用与发展研究[J].大众商务,2009,(102).

[3]彭杰.浅析几种半导体材料的应用与发展[J].硅谷, 2008,(10).

[4]半导体技术天地.2ic.cn/html/bbs.html.

半导体材料论文篇8

关键词:光照;电阻率;半导体;光子能量

中图分类号:O611 文献标识码:A 文章编号:1009-2374(2012)26-0060-02

1 概述

电阻率是半导体材料的重要特性参数之一。微区薄层电阻的均匀性和电学特性受到越来越多的关注,因此这对材料电阻率测量的精度就有了更高的要求。我们通常使用四探针测试仪测量半导体材料的电阻率。造成测试仪测量产生误差的原因有很多方面,如测试环境的影响、探针的问题、测试设备的校准以及被测对象自身的影响等。本文主要分析光照对测量精度的影响。

2 光的吸收

半导体材料通常能强烈地吸收光能,具有数量级约为105cm-1的吸收系数。吸收系数的大小可以反映半导体材料吸收光能的能力,通常用α来表示。材料吸收光的能力常常与入射光子能量有关。若外界有稳定的一定波长的光照作用在被测硅片表面,半导体材料吸收光辐射能量,从而导致价带中的电子获得足够能量从价带跃迁到导带,在价带中留下空穴,这样在半导体中产生了电子-空穴对,这个过程也被称为本征吸收。要使半导体材料发生本征吸收,入射光子的能量需要满足hν≥Eg的条件,否则电子的跃迁则不能发生。被测硅片样品对不同能量的光子的吸收能力是不同的。图1所示的是硅材料的吸收系数α和入射光子能量hν之间的关系。

3 测试条件

测试所用样品的外延层和衬底之间要有pn结隔离,或者外延层的电阻率要比衬底的电阻率小得多。测试仪探针的导电性能要好,与被测材料的接触电势差要小,同时,探针的位置要固定,防止探针游移。

在测量过程中,电流源提供的电流的相对变化不能超过0.05%。工作电流的选择主要取决于被测样品的电阻率大小。如果选取的工作电流过小,则测量电压的难度将提升;选取较大的工作电流可以测得较高的电压值,这可以提高测量的精确性,但是工作电流过大会使得被测样品发热,样品的电阻率随之发生变化,这又降低了测量的精度。所以为了选取合适的工作电流,需要先获得被测样品的I-V特性关系,根据I-V关系将工作电流控制在线性较好的范围内,这样被测样品的电阻率就不会随着电流的变化有过大变化,测量的精度可以得到保证。

一般来说,对于具有较大电阻率的样品,工作电流要选得小一些,而电阻率较小的样品则工作电流可以选得大一些。而在确保电流和电压有足够测量精度的前提下,工作电流应当尽可能选得小一些。

5 光照对测试结果影响的分析

6 结语

总体而言,随着入射光子能量的增加,硅样品的吸收系数逐渐增大,即表示材料对光子能量较大或频率较大的光吸收能力较强。当入射的光子能量较大,被测硅样品越能吸收入射光的能量,这样则能产生越多的光生载流子,从而使被测样品的电导率升高,电阻率和方块电阻减小,这样就使得电阻率实际的测量值越偏离标称值。当入射光子能量较小或频率较小时,情况则正好相反。另外当入射光频率一定,光强越强产生的光生载流子也越多,也可以使被测样品的实测电阻值小于标称值。正因为在实际测量时,半导体样品不可避免地会处在一定光照条件下,测量过程中光照条件不一样就会使测量电阻率出现的测量误差有所差异。

参考文献

[1] 宗祥福,李川.电子材料实验[M].上海:复旦大学出版社,2004.

[2] 刘恩科,朱秉升,罗晋生,等.半导体物理学(第四版)[M].北京:国防工业出版社,1994.

[3] Donald A.Neamen,赵毅强,等.半导体物理与器件(第三版)[M].北京:电子工业出版社,2005.

半导体材料论文篇9

论文摘要:充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。这里主要介绍纳米材料在化工领域中的几种应用。

纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

一、纳米材料的特殊性质

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合frank-reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。

(二)磁学性质

当代计算机硬盘系统的磁记录密度超过1.55gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(simit)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

二、纳米材料在化工行业中的应用

(一)在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

(二)在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米sio2是一种抗紫外线辐射材料。在涂料中加入纳米sio2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

(三)在精细化工方面的应用

精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米al2o3,和sio2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

参考文献:

[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.

[2]严东生,冯端,材料新星?纳米材料科学,湖南科学技术出版社,1998年.

半导体材料论文篇10

1渐进均匀化理论及其离散形

均匀化方法是针对周期性分布的复合材料的,首先应假定在宏观上非均匀的复合材料在细观尺度上呈周期性变化,如图1所示。且细观单胞尺度Y相对于宏观结构尺度X是一个很小的量μ,即Y=X/μ(0<μ<1)。图中Ω表示宏观区域,结构体受到体积力f,结构体的边界Γt上受到表面力t,Γu为位移被固定的边界。为了方便对均匀化方法进行数值计算,我们将其从张量形式转化成离散形式。宏观有效弹性常数计算式(2)和χkli的求解式(3)经有限元离散后为中:上标e表示单胞的有限元单元;[D]e是单元材料弹性性能矩阵;[B]e是单元的几何矩阵;[χkl]e是相对应单元节点的位移矩阵。

2微结构拓扑优化模型

本文对微结构进行有限元离散后,采用各向同性惩罚(SIMP)材料插值模型,对每个单元设定一个表示单元密度的连续变量x,以x为设计变量,且x∈[0,1]。则单元弹性矩阵与设计变量的关系为对上式参考复合函数微分性质以及周期性函的性质,得到均匀化等效弹性模量的计算公式,具推导过程见文献[9,10]。

3数值算例

微结构的拓扑优化设计区域为一正方形,单胞的三种边界条件如图2所示。实体材料的弹性模量E0=1000,泊松比v=0.3;材料为正交各向异性设计类型选取为平面应变问题,选用正方形四节等参单元。1)过滤半径对优化结构的影响优化目标为maxD11时,即取w=[1,0,0],网格为20×20,材料体积约束取0.5,取不同的过滤半径进行灵敏度过滤的结果如图3所示。由图3可以看出材料呈水平纤维状,得到的结构水平方向的抗拉性能最优。由迭代收敛曲线及优化结果可以看出,选取过滤半径较小(f=1.4,微观单元边长为1)时,优化结果的棋盘格式有所改善但未完全消除;选取过滤半径f=2.0时,其优化结果最好且收敛速度快;选取过滤半径较大(f=5.0)时,优化构型出现模糊边界,且最优抗拉性能不及f=2.0时得到的最优解。通过引入灵敏度过滤技术棋盘格式得到了抑制,说明本文选用的敏度过滤法可以很好的消除网格依赖缺陷,优化构型。2)网格密度对优化结果的影响优化目标为maxD66,即取w=[0,0,1],材料体积约束取0.5,网格划分分别取20×20、30×30和40×40得到的优化结果如图4所示。由图4可看出材料沿45°分布,可充分发挥材料的抗剪切能力,即材料获得最大剪切模量。不同的网格密度所得到的优化构型与最大剪切模量基本相等,说明网格疏密对最终拓扑结构的影响不大。网格细化对于得到的最优性能稍微有所提高但影响也不是很大。所以采用20×20的网格就可得到理想的优化结果,且运算时间较短。本文得到的优化构型与文献[11]采用MMA算法计算优化模型所得构型相比,材料分布规律基本相同。)惩罚因子对优化结果的影响优化目标为maxD66,惩罚因子p分别为2、3、4、5和6时,优化迭代曲线如图5所示,分别迭代为44、23、24、22和24步。由图5可知,随着惩罚因子的增加,目标函数收敛加快,但是最优值也随之减小。通过比较分析,惩罚因子为3时,即可加快收敛速度,又能得到较理想的目标函数最优值。本文中目标函数随惩罚因子变化的趋势与文献[13]中最刚微结构优化设计中趋势相似。

4周期性冲孔板设计

冲孔板广泛应用于建筑、机械等领域,如消音设备、制冷设备、音箱、滤清设备等,因而其种类繁多、形状各异。本文将弹性性能作为优化目标对铝合金冲孔板孔型(材料分布)进行设计,使其在不同工况下具有能发挥材料最大潜力的结构。有2A11铝合金(E=0.7×105MPa,ν=0.33)冲孔板孔洞百分比为40%,优化得到冲孔板的双向抗拉性能成一定比例w(w1=max0.5D11+0.5D22,图6a));w2=max0.6D11+0.4D22,图6b)以及最大剪切模量G(图6c))的构型及其优化迭代次数收敛曲线。双向均衡拉伸模量相等时,材料平均分布;当水平方向的比重增加时,材料在水平方向分布量也之增多。通过本文设计的优化模型,在保证材料限定用量的情况下,得到了具有期望力学性能的构件。