水电站设计论文十篇

时间:2023-04-08 23:23:53

水电站设计论文

水电站设计论文篇1

1中小河流水能规划设计定额

1.1编制说明

为了使中小河流水能开发规划满足国家和地方对开发、利用水能资源以及国土治理的要求,统一规定编制规划的原则、工作内容和技术要求,由水利部水电及农村电气化司主持,以水利部农村电气化研究所为主编单位制定了《中小河流水能开发规划导则》(SL221—98)。本导则分为10章,分别为总则、基本资料收集与分析、水能蕴藏量计算、地区社会经济发展预测、水能开发、多目标开发、环境影响评价、流域管理、经济评价与综合分析、规划实施意见等。本导则为中小河流水能开发规划报告提供了编制依据,同时也成为中小河流水能开发规划设计定额的制定依据和规划设计质量的检验标准。

1.2定额标准

中小河流水能规划设计定额内容见表1-2-1。

表1-2-1中小河流水能规划设计定额

章节

名称

工作内容

比例

备注

1

前言

流域概况、编制条件、编制依据、开发方案、工程特性表

5%

2

基本资料收集与分析

气象水文、地形、地质、资源、电力系统现状、社会经济发展现状、其它等7个方面

7%

其中气象水文3%、地质2%

3

水能蕴藏量计算

理论蕴藏量和可开发量

8%

附河长-高程、流量、出力、电能图

4

地区社会经济发展预测

国民经济现状与发展、电力系统现状与发展、水利现状与发展、电网规划及投资估算

9%

其中电网规划6%

5

水能开发

开发原则、开发方案与方案比较、控制性工程概况、非控制性工程概况

35%

附开发方案图。开发原则、开发方案与方案比较15%、工程概况20%

6

多目标开发

防洪、灌溉、供水、航运、其它等

5%

7

环境影响评价

社会环境、自然环境、水质水量、移民和淹没损失、跨流域引水、其它

7%

其中水质水量即水资源论证2%

8

流域管理

管理原则、管理模式、管理设施、管理制度

2%

9

经济评价与综合分析

工程估算、效益计算、经济评价、综合评价

12%

含单项工程估算和经济评价

10

规划实施意见

近期开发项目、前期工作安排、其它

2%

宜由项目经理(总工)完成

文字修改与校对(每遍2%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(2%),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员完成

1.3定额说明

(1)比例系指每章节工作内容(应得工资)所占整个规划设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)规划设计质量按《中小河流水能开发规划导则》(SL221-98)和其它相关标准执行。

(3)文字排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)各章节可根据工程实际进行增减、合并,其工作量作适当调整。

2小型水电站初步设计定额

2.1编制说明

为了统一小型水电站初步设计报告的编制标准,提高编制质量,由水利部水电及农村电气化司主持,以福建省水利水电勘测设计研究院为主编单位制定了《小型水电站初步设计报告编制规程》(SL/T179—96),要求小型水电站初步设计报告分为15章,分别为综合说明、水文、工程地质、工程任务和规模、工程布置及建筑物、水力机械、电气工程、金属结构、消防、施工组织设计、水库淹没处理及工程永久占地、环境保护设计、工程管理、概算、经济评价等。本规程为小型水电站初步设计报告提供了编制依据,同时也成为小型水电站初步设计定额的制定依据和初步设计质量的检验标准。

2.2定额标准

小型水电站根据其调节性能,可分为径流式水电站和蓄水式水电站。其设计内容的区别主要在于取水枢纽设计的繁简。为此,将小型水电站初步设计定额分为径流式和蓄水式两大类别,其定额内容分别见表2-2-1、2-2-2。

表2-2-1小型水电站初步设计定额(径流式)

章节

名称

工作内容

比例

备注

1

综合说明

文字13节、附图2类、附表3类

2%

根据各章节内容编写

2

水文

文字7节、附图8类、附表7类

5%

3

工程地质

文字10节

1%

根据《勘察报告》编写

4

工程任务和规模

文字11节、附图11类、附表按需要附列

5%

5.1~5.3

设计依据;工程选址;坝型、坝线及工程总布置

文字3节、附图4类、附表按需要附列

3%

宜由项目经理(总工)编写

5.4~5.5

取水枢纽

文字2节、附图8类、附表按需要附列

11%

包括挡水建筑物、泄水建筑物等

5.6

引水建筑物

文字1节、附图2类、附表按需要附列

18%

其中:压力管道12%

5.7

厂房及升压站

文字1节、附图4类、附表按需要附列

12%

5.8

综合利用及其它

文字1节、附图1类、附表按需要附列

1%

6

水力机械

文字4节、附图4类、附表2类

4%

7

电气工程

文字11节、附图12类、附表4类

8%

8

金属结构

文字6节、附图3类、附表2类

2%

9

消防

文字2节、附图3类、附表2类

1%

10

施工组织设计

文字8节、附图2类、附表2类

6%

11

工程永久占地

文字1节、附图3类、附表2类

1%

12

环境保护设计

文字4节、附图2类、附表按需要附列

2%

13

工程管理、劳动安全与工业卫生

文字3节、附图2类、附表按需要附列

2%

14

概算

文字5节、附表33类

6%

含概算书

15

经济评价

文字5节、附表8类

文字修改与校对(每遍1.5%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(每遍1.5%,宜2遍以上),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员进行

表2-2-2小型水电站初步设计定额(蓄水式)

章节

名称

工作内容

比例

备注

1

综合说明

文字13节、附图2类、附表3类

2%

根据各章节内容编写

2

水文

文字7节、附图8类、附表7类

5%

3

工程地质

文字10节

1%

根据《勘察报告》编写

4

工程任务和规模

文字11节、附图11类、附表按需要附列

5%

5.1~5.3

设计依据;工程选址;坝型、坝线及工程总布置

文字3节、附图4类、附表按需要附列

3%

宜由项目经理(总工)编写

5.4

挡水建筑物

文字1节、附图5类、附表按需要附列

24%

3个比较方案各7%,推荐方案加3%(提供5种坝高的工程量)

5.5

泄水建筑物

文字1节、附图3类、附表按需要附列

6%

5.6

引水建筑物

文字1节、附图2类、附表按需要附列

10%

含压力管道

5.7

厂房及升压站

文字1节、附图4类、附表按需要附列

6%

5.8

工程观测、综合利用及其它

文字1节、附图1类、附表按需要附列

1%

6

水力机械

文字4节、附图4类、附表2类

3%

7

电气工程

文字11节、附图12类、附表4类

6%

8

金属结构

文字6节、附图3类、附表2类

1%

9

消防

文字2节、附图3类、附表2类

1%

10

施工组织设计

文字8节、附图2类、附表2类

5%

11

水库淹没处理及工程永久占地

文字1节、附图3类、附表2类

3%

12

环境保护设计

文字4节、附图2类、附表按需要附列

1%

含水保方案概述

13

工程管理、劳动安全与工业卫生

文字3节、附图2类、附表按需要附列

1%

14

概算

文字5节、附表33类

6%

含概算书

15

经济评价

文字5节、附表8类

文字修改与校对(每遍1.5%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(每遍1.5%,宜2遍以上),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员进行

2.3定额说明

(1)比例系指每章节工作内容(应得工资)所占整个设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)设计质量按《小型水电站初步设计报告编制规程》(SL/T179-96)、《小型水力发电站设计规范》(GB50071-2002)和其它相关标准执行。

设计过程中须进行多方案技术经济比较,力争推荐方案科学、安全、经济、实用。

(3)文字排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)各章节可根据工程实际进行增减、合并,其工作量作适当调整。

(6)本定额中厂房及升压站按卧式机组厂房考虑,立式机组厂房和贯流式机组厂房所占比例可根据实际情况在本定额基础上调增50-100%。

(7)小型水电站可行性研究报告编制可参照本定额执行。

3小型水电站施工图设计定额

3.1编制说明

小型水电站施工图设计主要根据初步设计审查意见和相关规范进行。施工图设计内容繁琐,本定额仅作参考,有待于进一步研究。

3.2定额标准

根据径流式水电站和蓄水式水电站各部分设计的繁简,将小型水电站施工图设计定额分为径流式和蓄水式两大类别,其定额内容分别见表3-2-1、3-2-2。

表3-2-1小型水电站施工图设计定额(径流式)

部分

单位工程名称

工作内容

比例

备注

建筑工程

1

取水枢纽

1.设计、制图、交底、服务2.校核、审查

18%

包括挡水建筑物、泄水建筑物、导流建筑物等

2

引水工程

1.设计、制图、交底、服务2.校核、审查

22%

含压力管道12%

3

发电厂工程

1.设计、制图、交底、服务2.校核、审查

18%

4

升压变电站工程

1.设计、制图、交底、服务2.校核、审查

2%

5

其它工程

1.设计、制图、交底、服务2.校核、审查

10%

机电设备

1

水力机械

1.设计、制图、交底、服务2.校核、审查

5%

2

电气工程

1.设计、制图、交底、服务2.校核、审查

10%

金属结构

1.设计、制图、交底、服务2.校核、审查

5%

工程预算

预算及标底

5%

表3-2-2小型水电站施工图设计定额(蓄水式)

部分

单位工程名称

工作内容

比例

备注

建筑工程

1

挡水建筑物

1.设计、制图、交底、服务2.校核、审查

25%

包括导流建筑物等

2

泄水建筑物

1.设计、制图、交底、服务2.校核、审查

14%

3

引水工程

1.设计、制图、交底、服务2.校核、审查

8%

仅含压力管道,增加有压隧洞和调压室为18%

4

发电厂工程

1.设计、制图、交底、服务2.校核、审查

15%

5

升压变电站工程

1.设计、制图、交底、服务2.校核、审查

1%

6

其它工程

1.设计、制图、交底、服务2.校核、审查

10%

机电设备

1

水力机械

1.设计、制图、交底、服务2.校核、审查

3%

2

电气工程

1.设计、制图、交底、服务2.校核、审查

6%

金属结构

1.设计、制图、交底、服务2.校核、审查

5%

工程预算

预算、标底

3%

3.3定额说明

(1)比例系指部分工作内容(应得工资)所占整个设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)设计质量按《小型水力发电站设计规范》(GB50071-2002)和其它相关标准执行。设计过程中须进一步进行技术经济比较,力争设计成果安全、实用、经济、美观。

(3)各部分设计应附详细的计算说明书,存档备查。排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)本定额中厂房及升压站按卧式机组厂房考虑,立式机组厂房和贯流式机组厂房所占比例可根据实际情况在本定额基础上调增50-100%。

(6)校核、审查工作占单项工作的20%。

(7)各部分可根据工程实际,其工作量作适当调整。

水电站设计论文篇2

1.1引水发电系统

1.1.1取水口拦污栅及启闭设备

1)优化选型布置设计。发电引水隧洞喇叭口底槛678.50mm处设置1孔拦污栅,单孔孔口尺寸为7.5m×10.0m,检修平台高程717.00m,设计水头4.0m,最大引用流量为42.58m3/s,平均过栅流速为0.811m/s,拦污栅重量为26.0t,栅槽埋件重17.0t,型式为平面滑动式拦污栅。选用1台QPG2×250kN-38m高扬程卷扬式启闭机,安装高程726.20m,操作运行条件为静水启闭。2)蓄水安全复核计算。拦污栅主支承是增强四氟NL150CHI型滑块,最大线荷载为25kN/cm,反向支承是钢滑块。栅条间距50mm,栅体主材为Q235B,内力分析计算[2]成果为:主梁最大压应力为105.35N/mm2,发生在跨中处;最大剪力为21.01N/mm2,发生在支座处;最大挠度为9.5mm,发生在跨中处;栅条弯应力为53.1N/mm2,发生在跨中处。拦污栅重量为247kN,提栅清污时考虑污物重量为100kN,拦污栅启闭力为450.1kN,启闭机容量为2×250kN。

1.1.2取水口事故闸门及启闭设备

1)优化选型布置设计。在拦污栅的下游设置1扇事故闸门,孔口尺寸为4.5m×4.8m,底槛高程680.00m,检修平台高程717.00m,设计水头37.0m,闸门型式为平面定轮钢闸门。选用1台安装高程为726.20m上的QPG2×800kN-38m高扬程卷扬机控制闸门,操作运行条件为动闭静启。2)蓄水安全复核计算。闸门由门叶结构、水封装置、4个简支轮主支承(同时兼做反向支承)、4个侧向限位装置和充水阀装置等组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体材料为Q235B,内力分析计算结果为:闸门承受的静水压力为7713.7kN,动水压力为8485.1kN;面板折算应力为157.03N/mm2;主梁最大压应力为128.1N/mm2,位于跨中处。最大剪力为49.2,位于支座处。最大挠度为2.71mm,位于跨中处;主轮与轨道的接触应力为844.06N/mm2;主轨颈部局部承压应力为173.36N/mm2;闸门闭门力为-659.1kN,启门力为479.6kN,持住力为1394.4kN;启闭机容量为2×800kN。

1.2泄水系统闸门及启闭设备

1.2.1溢洪道弧形工作闸门

1)优化选型布置设计。该闸门设置在溢洪道上,底槛设置在堰顶下游侧704.80m处,堰顶高程为717.00m,共设置3孔闸门,启闭机安装高程为719.50m。闸门运行方式为动水启闭,主要承担水库的泄洪任务。闸门的孔口尺寸为12.0m×8.5m(宽×高),设计水头为8.2m。型式为露顶式弧形闸门,其面板曲率半径为10.0m,支铰高度为5.5m,其结构布置见图1。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、支臂、支铰和侧轮等所组成,支承为斜支臂。受力计算采用假设平面体系,并按照实际可能发生的最不利荷载组合情况,对闸门的设计条件和校核条件进行强度、刚度和稳定性验算。闸门在动水操作条件下各部件尚需承受的不同程度的动力荷载,故将设计水头作用在闸门部件上的静水压力乘以动力系数,考虑为最不利的荷载组合,动力系数取1.1。门体材料为Q235B,内力分析计算结果表明:闸门承受的静水压力为4218.0kN,动水压力为4639.8kN;面板折算应力为181.8N/mm2;主梁最大压应力为106.3N/mm2,位于跨中处。最大剪力为69.2,位于支座处。最大挠度为4.36mm,位于跨中处;支臂平面内应力为76.2N/mm2;主支臂平面外应力为66.3N/mm2;闸门启门力为441.7kN,闭门力为246.3kN;启闭机容量为2×250kN。

1.2.2放空底孔进口事故闸门

1)优化选型布置设计。在放空底孔进口设置一道事故闸门,孔口尺寸为2.5m×2.6m(宽×高),设计水头52.0m。底槛高程为665.00m,检修平台高程为717.00m,启闭机安装平台高程为723.50m。闸门运行方式为动闭静启,由1套QPG800kN-53m高扬程卷扬机控制。当水库需要放空时小开度提门充水平压,待前后水压差小于4m时,再开启事故闸门。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、4个悬臂轮主支承(同时兼做反向支承)、4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果表明:闸门承受的静水压力为3491.5kN,淤沙压力为619.6kN,总压力为4111.1kN;面板折算应力为187.9N/mm2;主梁最大压应力为101.27N/mm2,位于跨中处。最大剪力为65.4,位于支座处。最大挠度为0.76mm,位于跨中处;主轮与轨道的接触应力为663.1N/mm2;闸门启门力为769.1kN,闭门力为-22.0kN,持住力为206.3kN;启闭机容量为800kN。

1.2.3放空底孔出口弧形工作闸门

1)优化选型布置设计。在放空底孔出口设置一道弧形工作闸门,孔口尺寸为2.5m×2.2m(宽×高),承压水头为52.0m,型式为潜孔式弧形钢闸门,底槛高程为665.00m,检修平台高程为668.70m,启闭机安装平台高程为674.60m。闸门运行方式为动水启闭,选用1套QH-SY-500/150kN-4.0m弧门潜孔液压启闭机控制闸门,闸门长期处于闭门挡水状态。当水库需要放空时,动水开启该闸门锁定于检修平台上,待放空完毕,放下工作闸门封闭孔口蓄水。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、2个支铰支承和4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在实际操作中会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为3329.7kN,动水压力为3662.7kN;面板折算应力为183.9N/mm2;主梁最大压应力为33.2N/mm2,位于跨中处。最大剪力为24.4,位于支座处。最大挠度为0.12mm,位于跨中处;支臂平面内应力为98.4N/mm2;闸门启门力为248.8kN,闭门力为122.7kN;启闭机容量为500/150kN。

1.2.4导流隧洞封堵闸门

1)优化选型布置设计。导流隧洞进口设置封堵工作闸门一扇,孔口尺寸为5.0m×6.5m(宽×高),承压水头为44.3m,闭门水头:20m,型式为潜孔式平面钢闸门,底槛高程为647.70m,检修平台高程为659.00m,启闭机安装平台高程为667.50m。闸门运行方式为动水启闭,选用1套QPQ630kN-13m卷扬式启闭机控制闸门,闸门仅用于导流隧洞封堵时使用,导流隧洞在枯水季节封堵下闸门。因受启闭机平台高程的限制(启闭机平台高程为667.50m),闭门时最不利水头工况为启闭高程,即水头为20m,因此整个闸门启闭按最不利的情况下水头20m计算。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、12个主滑块和8个反向滑块装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为13501.9kN,发生在设计水头44.3m处;材料容许应力(抗拉、抗压和抗弯)为142.5kN,容许应力(抗剪)为85.5kN;面板折算应力为138N/mm2;主梁最大压应力为84.6N/mm2,位于跨中处。最大剪力为71.92,位于支座处。最大挠度为3.78mm,位于跨中处;闸门闭门力为145kN;水柱压力为898.60kN;启闭机容量为630kN。

2结语

水电站设计论文篇3

地下厂房按2级建筑物设计,厂区地震基本烈度为6度,按规范规定,建筑物不进行地震设防。

1地下厂房位置选择

在选择地下厂房位置时,考虑了下面几个因素。

(1)厂房上游侧靠近水库处有F1断层,与厂房轴线基本平行。厂房应尽量远离F1,以确保厂房围岩稳定和减少渗水量。

(2)厂房靠山体侧的F3断层沿冲沟发育,F3影响范围内的不透水层埋藏很深,透水量较大。因此厂房应尽可能远离F3影响带。

(3)通过厂房的F7、F28、F29断层,与厂房轴线有较大的夹角,对厂房围岩稳定影响不大。而F12、F2断层与厂房轴线基本平行,F2断层靠河床侧正与厂房顶拱相切,对厂房围岩稳定不利,厂房应尽可能地避开。

综合以上因素,同时考虑主变室、尾水调压室及输水系统的布置,确定了主厂房位置。根据实际开挖揭露的地质情况来看,地下厂房位置选择是合理的。

2厂房纵轴线方向确定

2.1确定原则

(1)厂房纵轴线应尽可能垂直于岩体主要节理裂隙的走向或与其成较大的夹角,避免上下游边墙承受较大的侧向压力,以利于围岩稳定。

(2)轴线尽可能平行于初始地应力的最大主应力方向或与其成较小夹角。

2.2轴线方向确定

根据厂区节理玫瑰图及实测的三维地应力成果,在满足洞室稳定和输水发电系统总布置要求的前提下,厂房轴线方向确定为N40°E。理由如下。

(1)根据厂区节理玫瑰图分析,主要节理组方向为N15~30°W,次要节理组方向为N70~85°E。厂房纵轴线与主要节理组方向夹角为55~70°,与次要节理组方向夹角为30~45°。

(2)从实测的三维地应力成果看,最大主应力方向为N68.9°E,与厂房纵轴线方向夹角为28.9°,虽然夹角稍偏大,但其应力值为6.80MPa,属中低应力区,对厂房纵轴线方向选择影响不大。

3地下洞室群布置

除了开关站出线场和控制楼布置于地面外,主厂房、主变室、尾水调压室及其他洞室均布置于地下,形成了一个错综复杂的地下洞室群。

厂区枢纽布置采用主厂房、主变室、尾水调压室三大洞室平行布置的形式,因此,三大洞室的纵轴线方向与主要节理的夹角方向均较大,对顶拱和边墙稳定有利。主厂房与主变室间净距22m(1倍大洞室跨度),主变室与尾水调压室间净距19.6m。主变室靠近主厂房布置,母线长度较短,可降低造价,提高运行的可靠性。

主厂房与主变室间布置有4条母线洞,每台机组母线通过各自的母线洞至主变室。主变室中布置有电缆电梯竖井,与高程180m的地面开关站和控制楼相连接,由于主变室与主厂房安装场高程相同,故布置了一条进厂交通洞,担负主厂房和主变室的交通运输。在主厂房和主变室四周设上下两层排水廊道,排水廊道内设D76@3m排水孔形成排水帷幕,组成厂区排水系统,以减少主厂房和主变室的渗水量。

地下厂房安全通道除靠山体侧的进厂交通洞和电缆电梯竖井直接与地面相通外,靠河床侧还利用下层排水廊道经过2号排风竖井和调压室运输洞与左岸厂坝公路相接。

4厂房内部布置

主厂房洞室开挖尺寸为129.50m×21.90m×52.08m(长×宽×高),布置有4台单机容量150MW的竖轴水轮发电机组,机组间距21m。水轮机安装高程为65.60m。廊道层、水轮机层、发电机层及厂房洞顶高程分别为59.00、69.80、76.60、100.58m,尾水管底板高程50.00m。廊道层布置有盘形阀、滤水设备等;水轮机层上游侧布置调速器、油压装置等水力机械设备及管路,下游侧布置母线出线、电缆等电器设备。发电机层下游侧布置有励磁盘、机旁盘等设备。每一个机组段设楼梯一部,作为连接发电机层和廊道层的垂直交通道。安装场布置在靠山体一侧,长39m,按1台机组大修时主要部件堆放的实际需要,同时考虑施工期的安装及卸车等要求确定。检修集水井和渗漏集水井布置于主厂房靠河床侧,为避免机组检修时下游水位倒灌,检修集水井顶部高程为76.60m,与发电机层高程相同。由于山体内渗透水量难以准确计算,为保证厂房安全运行,厂房内渗漏集水井仅考虑厂房围岩及机组渗漏水量;排水廊道内的山体渗水量流入排水廊道单独设置的集水井内。在主厂房两端各布置1个空调机室。

主厂房吊车梁采用岩壁吊车梁,省去了钢筋混凝土吊车柱,缩小了厂房跨度,同时厂房桥机可以提前安装运行,方便施工。主厂房顶部采用轻钢屋架,上设轻质防水屋面,下设轻质吊顶,中间布置通风管道等。

为了改善地下厂房的运行条件,副厂房采用分散布置方式,将中控室和电气辅助生产用房及办公用房布置于主变室顶部高程180m的地面控制楼内,其余房间分别布置于主厂房和主变室内。

主变室开挖尺寸为97.35m×16.00m×14.80m(长×宽×高),内设两台220kV三相360MV·A双卷主变压器,底高程76.60m,与发电机层相同,主变压器可经进厂交通洞入安装场进行检修。主变室下部为高压电缆道和事故油池。主变室靠近进厂交通洞布置,电缆电梯竖井通向高程180m地面开关站和控制楼。在主变室两端各布置1个空调机室。

母线洞与主厂房纵轴线相垂直,开挖断面为8.00m×8.40m(宽×高),底板高程69.80m,与主厂房水轮机层高程相同。母线洞内布置有电压互感器柜、发电机断路器、励磁变压器、电气制动柜等设备。地下厂房横剖面见图1。

5地下厂房支护设计

5.1支护设计原则

(1)根据厂房部位的地质条件,主厂房、主变室、母线洞、尾水调压室和进厂交通洞等均采用喷锚支护作为永久支护形式,对尾水管、输水隧洞及局部洞室交岔口采用钢筋混凝土衬砌作为永久支护。

(2)喷锚支护设计按招标设计阶段地勘报告提供的岩体参数进行,即按维持Ⅱ类围岩稳定所需的支护强度设计。

(3)喷锚支护设计按照新奥法原理,采用“设计施工监测修正设计”的方法,在施工中加强监测和观察,根据实际情况随时调整支护参数。

5.2系统喷锚支护设计

初期喷锚支护参数的选择主要采用围岩分类法、工程类比法、理论验算法,并辅以有限单元法计算成果进行验证。

围岩分类法采用N·Barton,Q系统分类法、Bieniawski地质力学分类法(RMR)、《GBJ86-85锚杆喷射混凝土支护技术规范》和《SD335-89水电站厂房设计规范》等;工程类比法采用国内外已建地下厂房的实例进行类比;理论验算法采用喷、锚、网联合支护的设计方法验算支护效果;有限单元法采用平面有限元和三维有限元法对地下洞室群的围岩稳定性、初选支护参数的合理性、地质参数的敏感性等进行分析、论证,选择了较为合理的支护参数。

6主厂房结构设计

主厂房主要结构有尾水管、蜗壳、机墩、风罩、发电机层楼板和岩壁吊车梁等。

6.1尾水管

尾水管为单孔钢筋混凝土结构,出口为8m×8m的方形断面,轴线与机组纵轴线垂直。尾水管结构由锥管段、弯管段和扩散段三部分组成。由于锥管段和弯管上段四周为大体积混凝土,并设有钢衬,所以设计中只对弯管下段和扩散段进行了结构计算,锥管段及弯管上段参照已建电站经验配置构造钢筋。

弯管下段结构计算中,在垂直水流方向切取一代表性剖面,按弹性地基上的箱形结构进行内力计算,由于尾水管杆件截面尺寸较大,跨高比小,故计算中考虑剪切变形和刚性节点影响。扩散段结构计算中,在垂直水流方向切取两个代表性剖面,按钢筋混凝土衬砌结构采用边值法进行结构分析、配筋,按有限元法进行校核。

6.2蜗壳

蜗壳采用金属蜗壳,进口直径为5.40m,顶板最小厚度1.50m。蜗壳上半部与钢筋混凝土之间铺设弹性垫层隔开,使蜗壳混凝土不承受内水压力作用。弹性垫层材料采用聚苯乙烯泡沫板,厚度为3cm。蜗壳钢筋混凝土结构为一空间整体结构,计算中简化为平面问题考虑,即沿蜗壳中心线0°、90°、180°径向切取3个计算断面,形成一变截面Γ形框架,不考虑各Γ形框架之间的约束作用。采用结构力学和平面有限元方法进行内力分析。考虑到弹性垫层材料具有一定的弹模,正常运行时蜗壳内水压力有可能部分传至混凝土结构,为安全计,结构计算中对上述情况进行了校核。

6.3机墩、风罩

机墩是水轮发电机组的支承结构,承受着巨大的动荷载和静荷载。本电站机墩形式为圆筒式,内径5.93m,下部最大壁厚4.035m,高3.145m,它具有刚度大、抗扭和抗振性能好的特点。机墩结构计算包括动力计算和静力计算两部分。动力计算中忽略机墩自重,用一个作用于圆筒顶的集中质量代替原有圆筒的质量,使在此集中质量作用下的单自由度体系的振动频率与原来的多自由度体系的最小频率接近;机墩的振动作为单自由度体系计算,在计算动力系数及自振频率中不计阻尼影响;机墩的振动为弹性限幅内的微幅振动,力和变位之间的关系服从虎克定律;结构振动时的弹性曲线与在静质量荷载作用下的弹性曲线形式相似,从而可用“动静法”进行动力计算。在静力计算中假定荷载沿圆周均匀分布,正应力取单宽直条按矩形截面偏心受压构件计算;扭矩产生的剪应力假定按两端自由的圆筒受扭公式计算;有人孔部位的扭矩剪应力假定按开口圆筒受扭公式计算;孔边应力集中(正应力)按圆筒展开后的无限大平板开孔公式计算。计算结果除进人孔部位因主拉应力超过混凝土允许拉应力需按计算配筋外,其余部位按构造配筋。

发电机风罩为一钢筋混凝土薄壁圆筒结构,内径13m,壁厚0.50m,高3.655m,其底部固结于机墩上,顶部与发电机层楼板整体连接。风罩内力按薄壁圆筒公式进行计算,计算时考虑温度应力的影响,外壁温度取20℃(冬天)、30℃(夏天);内壁温度取40℃;混凝土浇筑温度根据当地的气温资料取12℃。计算结果表明,混凝土浇筑温度对风罩内力影响很大,因此在施工中要求严格控制混凝土的浇筑温度。

6.4楼板

发电机层楼板采用薄板、次梁、主梁和柱组成的常规板、梁、柱结构系统。设计活荷载发电机层为50kN/m2,安装场为160kN/m2。

6.5岩壁吊车梁

岩壁吊车梁是通过长锚杆将钢筋混凝土吊车梁固定在岩壁上的结构,吊车的全部荷载通过锚杆和钢筋混凝土吊车梁与岩石接触面上的摩擦力传到岩体上。岩壁吊车梁计算取纵向单米宽度,按刚体极限平衡计算,不考虑吊车梁纵向的影响。桥机设计最大轮压450kN,计算中对岩壁吊车梁的断面尺寸、岩壁壁座角和上排锚杆倾角进行了多种组合,最终确定的岩壁吊车梁岩壁壁座角α=20°,上排受拉锚杆(A、B锚杆)倾角分别为βA=25°、βB=20°,锚杆直径和间距均为φ36@0.75m,锚杆计算安全系数K=2.24(设计),K′=2.11(校核)。

受拉锚杆锚入岩石的深度,一方面是为了吊车梁受力的需要,另一方面是加强岩壁支护和控制围岩变形,根据挪威专家推荐的经验公式L=0.15H+2(H为厂房边墙高度m)进行计算,受拉锚杆锚入岩石的深度为8m。受压锚杆主要起加固围岩和保证吊车梁混凝土与岩壁良好粘结的作用,其直径、间距及锚入岩石的深度,参照已建工程的经验选用φ32@0.75m,L=6m。设计中要求锚杆靠岩壁表面2m范围涂上沥青,将拉力传至岩体深部以减小锚杆的初始应力(但由于种种原因施工中未被采用)。

水电站设计论文篇4

关键词:小水电,技术,改造,措施

 

随着社会主义建设事业的发展,小水电建设发展很快,已经成为地方经济的支柱产业。但是,早期的小水电站由于资料不足,设计不合理,设备选型不当,弃水多,闲置容量多。通过技术挖潜增加效益的可能性很大。本文就小水电站现状进行分析,提出挖潜增效的技改措施。

一、小水电建设现状

新疆境内的阿尔泰山、天山、昆仑山脉中分布着许多条小河流,拥有极其丰富的水力资源。自治区水能理论蕴藏量为3355万kW。兵团的水力资源主要分布在各师(局)所属垦区的独立河流区域内,有的师与地方处在一个水系内。小水电蕴藏量约为234万kW,可开发量78万kW,已开发16.5万kW,占21%。兵团的小水电事业是从无到有逐步发展起来的。十一届三中全会以后,各农业师及农牧团场大办农田水利事业,水电事业有了较大的发展。从巴里坤草原到伊犁河谷,从阿尔泰山到昆仑山,兵团13个农业师有小水电的师就有10个,以小水电供电为主的师有5个,水电对各农牧团场生产的发展起到了促进作用,经济、社会效益十分显著。新疆的小水电在政府扶助下通过艰苦奋斗逐步发展起来的,对加速小水电建设步伐起到巨大作用。但也造成了重建轻管的思想,存在的问题没有引起足够重视,以至安全隐患逐步增加,机组出力不足,效益下降,水力资源浪费严重。

二、小水电存在问题

初期建造的电站,装机大多在200kW以下,水库电站一般都是2×40kW,主要是解决附近村庄的照明用电,据目前水能分析计算,装机可成倍增加。水头没有充分合理利用,电站选址位置不合理,如早期隧洞开凿困难,就近在坝址附近建站,没有利用河床坡度;水库涵管后采用明渠引水,没有利用大坝高度的势能,尤其是低水头电站更加明显。部分梯级开发电站上下级发电流量不配套,下一级电站由于位置优越提前开发,且按原设计标准年利用小时都在3000h以上,在上游电站逐步开发后,发现上游发电流量大,下级电站流量偏小,弃水增加,甚至有的电站发电量不增反降。早期机组性能差,效率低,出力不足,设备老化、效率低,运行不稳定,易发生气蚀,有些机组已淘汰,目前零配件购置困难,个别电站仍在使用高能耗变压器等等,这些电站安全问题突出,必须实行技改,对设备进行更新。个别电站管理落后,设备长期在超负荷或低负荷下运行,承包者追求短平快,业主监督不力,无维修保养制度,机组损坏严重,长期带病运行,积劳成疾。

三、小电站技改的举措

随着可开发资源的逐渐减少及老电站安全问题的日益突出,逐步对老电站进行了技改,通过几年的探索,取得了较好的经济效益和社会效益,符合社会经济发展规律。

1、增容改造

当前,对有能量潜力和运行时间较长的电站,均可进行机组增容和更新改造,这是一种投资少、见效快,既利国又利民的好途径。在目前水电建设资金紧缺的形势下,这要比开发新电源点具有明显的优势。需要改造的电站都是早期兴建,水力条件较好,开发简单、设备简陋的电站。对无调节性能的电站原则上不列项,不再新建。但挖潜改造要有合理的规划,对小水电站进行普查,把需要改造的电站,摸底排队,根据当地经济发展,制定科学的切实可行的改造计划。对花钱少、效益好的改造项目应优先考虑,要查出问题的所在,确定改造内容,分析改造的可行性,防止盲目改造和改造不改效的情况发生。

2、技术更新

对部分机组通过更换转轮和导水机构,可使出力提高一档,从而大大节约技改投资。免费论文。首先是技术进步。早期电力工程,电网建设相对简单,运行中出现的问题似乎更多。随着科学技术的进步,近年来,新技术,新设备的积极的运用于建设中。免费论文。利用虹吸取水方案,利于冰、沙的排除,运行,使用分层分布式计算机综合自动化设备; 35kV模式化变电所模式一直在兵团推广,博尔塔拉、阿克苏垦区、小海子、五家渠、伊犁、额敏、北屯、石河子垦区已建成35kV以上变电所30多座;这些先进的技术和设备,提高电气化水平。

3、进行优化设计

中小型水电站改造,应针对每个水电站的具体情况,因地制宜,优化设计。免费论文。要选择最好的,先进的,成熟的技术和配套性能先进的发电机和辅助设备,紧密结合、妥善处理水电站的不可更改的限制条一个有限的投资尽可能在增加发电量,提高水电站的经济效益;充分考虑才能更好地实现先进,合理和经济。委托有资质的单位进行技术咨询并做到优化设计,一个好的设计,可以出水平、效益。

4 、跨流域引水

跨流域调水系统是一项涉及面广、影响因素多、工程结构复杂、规模庞大的复杂系统工程,跨流域调水工程的决策本质上是一类不完全信息下的非结构化冲突性大系统多目标群决策问题,需要从战略高度上,对工程的社会、经济、工程技术和生态环境等方面进行统一规划、综合评价和科学管理,才能取得工程本身所含有的巨大经济、社会和生态环境效益,促进水利文化的进步。为了提高跨流域调水规划管理决策研究的有效性,使工程实现社会、经济、生态环境效益最大、不利影响最小的目标,需要根据跨流域调水对工程水量调出区、调入区和通过区可能存在的不同影响,进行问题的决策研究。

5、提高人员技术素质

确保电站的效率,安全,可靠运行。任何工作的好坏,是与人的素质密切相关。为了提高发电站的经济效率,历来高度重视农村电站工作的业务培训,每年举办1至2次小水电培训班,努力提高技术和业务素质。他们可以提高运行的操作,及时发现问题和解决问题的技能,以确保电厂能高效,可靠运行。小水电采用网络运营,和供电部门举办供电部门“进网电工操作证”培训班,要求持“双证”上岗。

我们要提高认识,克服畏难情绪,采取更加有力的措施,以饱满的工作精神状态,依法将水电站改造到位,消除安全隐患,确保水能资源开发利用和水电建设科学、有序、可持续发展。

参考文献

1 周益,刘顺,钱有锐,赵子伦;小水电站机组制动用气量的计算方法[J];水力发电;1980年05期

2 叶志强;岩溶地区水电站通流表面碳酸钙结垢的特点及成因[J];水力发电;1981年08期

3 陈崇仁;提高已建小水电站经济效果的若干措施[J];水力发电;1981年12期

4 张法思;国外小水电的经济效益分析方法[J];中国农村水利水电;1981年06期

5 胡斌武;;提高小水电站经济效益的一些措施[J];中国农村水利水电;1981年04期

6 陈崇仁;;国内外小水电站建设经验的述评[J];水利水电科技进展;1981年04期

7 陈柏垣;;广东垦区建成小水电站二百四十座[J];中国农垦;1981年05期

8 骆文光;提高小水电站防洪能力的措施[J];水利水电技术;1982年06期

9 罗清浩;严寒地区引水式小水电站冬季安全运行的措施[J];水力发电;1982年01期

10 张继骞;小水电站的可行性设计[J];水力发电;1982年11期

水电站设计论文篇5

关键词:排涝泵站;电气设计;继电保护

1 泵站概况

新建安栏排涝泵站,位于城市郊区地带,为新建雨洪利用工程的取水泵站,泵站设计主要以3台泵站电气设计为主,总装机容量为8200kW,单台电动机的额定功率为2600kW,厂房一共2层,分为主、副两个厂房,采用L型布置。本文主要就该泵站电气设计相关要点进行了论述。

2 泵站设计要点分析

2.1 主接线设计

当地的供电来源于泵站周围的220kV和110kV两座变电站,并与泵站保持一定的距离,220kV变电站与泵站相距32km,而110kV变电站与泵站相距20km。

为了提高泵站供电的稳定性,采用双电源的供电方式,分别从220kV变电站和110kV 变电站引入1回35kV线路,两个电源的导线截面型号都选用LGJ-185。

在进行电气主接线设计时,应结合项目建设规模及系统现状等条件对接线方案进行确定;同时,在电气主接线方案设计中应注意以下几点:一是提升电力系统的稳定性;二是合理选择泵站水泵的运行方式,三是要确保接线的简单化、供电的可靠性和检修的方便性,三是满足经济适用的要求。

(1)电气主接线方案

泵站主接线35kV侧和6kV侧的接线都采用单母线接线方式。另外,为了达到泵站分期建设的目标,除了在电机侧采用单母线接线,而且要设置电机额定电压为6kV。

(2)站用电电源的引接

为了提高供电的可靠性,泵站用电电压采用400V系统,其接线采用单母线接线方式,并分段进行连线,同时设置2台630kVA站用变压器。1台站用变压器接在电机母线侧(SC10-630/6kV,6±2×2.5%/0.4kV);另一台变压器接在35kV母线侧(SC10-630/35kV,35±2×2.5%/0.4kV)。

2.2 电机起动方式

本泵站结合用水量和运行情况对泵组扬水流量进行调节,同时为了提高供水流量的稳定性和可靠性,以及离心泵组能够达到0~50%流量调节要求,泵站决定采用高压变频器起动方式。

另外,在进行泵站设备配置时,需要增加2台水泵和1台高压变频器,在确保水泵正常运行的情况下,水泵可以采用“一拖一”起动方式;然而,在起动水泵时,由于每台水泵不能直接起动,因此在检修高压变频器故障时,将会影响到全站泵组运行的稳定性,甚至会出现停止运行。

根据泵站前两期的建设现状分析,其供水率达到了97%,所以为了确保全站泵组的正常起动,应增加2台高压变频器,在进行电机起动接线时,要设置起动母线。在泵站一期运行中,采用2台泵组运行,一用一备;在泵站二期运行中,采用同一容量1台泵组,不需要增加高压变频器。同时,在选用泵站供电主接线时,采用电机起动分段母线,以达到设备互用的目的。

由于本泵站供电来源于城市电网负荷中心,为此,电网对用户电气设备的谐波干扰提出了更高的要求。在谐波干扰处理过程中,由于高压变频器DSP控制系统可以合理调制谐波的波形,因此在运行中减少消谐装置的配置,进而可以降低消谐装置的投资成本。

2.3 继电保护

(1)设计原则

在本泵站继电保护过程中,主要微机型继电保护装置,如主变设备、电动机等。同时,在进行设备组柜时,应坚持独立、方便维护的原则;而对于35kV线路来说,应采用综合测控保护模块,并将其安装在开关柜内,以达到集成的目的。

(2)电机保护

在泵站电机保护过程中,对#1、#2泵组电机进行合并,并设置1面发电机保护屏。

(3)变压器保护

在变压器保护过程中,对#1、#2泵组变压器进行合并。另外,将65kV线路微机和35kV线路微机安装在开关柜内。

(4)电能量计费系统

电能量计费装系统作为泵站电能量计费系统的重要环节,主要以2回35kV线路为计量对象,并在继保间布置电度表计柜。

2.4 厂房布置

本泵站厂房分为两层,由主、副厂房组成。主厂房总长43.450m、宽15.700m,副厂房总长47.230m、宽14.620m。

在进行厂房布置时,采用分层布置方式,布置形状为L型。副厂房布置在主厂房左侧。在厂房内部布置时,主要分为3层,即控制层、设备层和电缆层。控制层与安装间同高程。副厂房控制层的布置内容如下:中央控制室、通信室、6kV 和35kV 高压开关室、高压变频器室、低压开关室等。

由于本工程位于沿海地区,经常会出现雷电天气,因此在户外设备布置时,要充分考虑到环境影响。在布置方案选择时,选用高压开关户内布置方式,这种方式相对于户外敞开式来说,具有安装时间短、占地面积少等优势,同时也方便于运行维护,确保设备安全稳定运行,且户内布置方式还具有技术及经济方面的优势,因此,在进行35kV 和6kV的配电设备择时,应采用户内手车式开关柜。此外,为满足泵站分期建设要求,选用两台 8000kVA油浸式主变压器,(S10-8000/35kV8000kVA,35±5%/6kV,连接组别Yd11Ud%=7.5)。

2.5 照明设计

近年来,随着人们用电量的增多,泵站对供电可靠性提出了更高的要求,泵站照明主要分为两种,一种是工作照明,另一种是事故照明。工作照明采用 380/220V三相五线制的交流供电,而事故照明采用直流供电。

电源供应的可靠性是确保整个泵站照明正常运行的前提。因此,在泵站照明设计时,要确保电源接入的合理性,正确的做法是从厂内用电的两段母线接入,在设置工作照明时,应分为自然采光和无自然采光。泵站主要供电范围包括厂房的控制层、设备层、中控室等,同时要确保这些场所用电的独立性,减少相互之间的干扰。另外,结合泵站的负荷情况,直接从厂用配电屏引出,如果中间出现一些故障,也不会对其他照明供电造成影响。而在照明回路设计中,为了方便对场内照明灯具进行控制,需要设置独立的配电箱,以避免线路发生故障。

2.6 防雷接地

在进行泵站防雷接地工作时,在35kV线路进线段架设避雷线以及在开关柜内设置柜装避雷器,以起到直击雷的保护作用。在厂房直击雷保护时,在屋顶上设置-50×5扁铁接地网。泵站的接地系统为厂房接地网散流接地区和进、出水池水下接地体。泵站接地电阻要求R4。

3 结论

综上所述,通过对本泵站投入运行上看,其设计不断改善了流域内排水系统,有效防止了城市的内涝,在避免强降雨引发的涝灾对当地人们造成的生命和财产损失方面,发挥了重大的作用。通过本工程的实践,得出以下几个方面的结论:

(1)本泵站采用单母线接线方式,不仅可以提高接线的可靠性,而且还可以降低项目的投资成本;

(2)对泵站采用电压降损措施,使电机的转速起到调节流量的作用,满足了泵站的运行要求;

(3)在进行厂房布置时,应分两层进行布置,主要采用L型布置方式,这样能够避免对电气设备造成影响;

(4)在户外设备布置时,采用高压开关户内布置方式,此方式具有安装方便、占用空间少、方便维修等优势,从而确保电气设备的稳定运行。

参考文献

水电站设计论文篇6

[关键词]水电站;水库;优化调度

对水电站水库进行优化调度有助于促进水电站以及电力系统的管理水平的实现,不需要外力作用的加入就可以获得一定的经济利益,挖掘水电站的潜力的方式中,水库优化调度是十分有效地。水库优化调度其实是在常见的系统工程调度中实现的,能够处理好各个用水部门之间的关系,促进水资源的高效合理利用,实现良好的经济效益,因此加强水电站水库的优化调度是十分必要的。

一、水电站水库优化调度的影响因素

水电站水库的优化调度会受到机组振动、冲击输电线路和站内电气设备、水泵性能差异以及水锤和负压导致引水钢管安全隐患、正常停机情况下水力振动与关阀水锤等因素的影响[1]。

机组振动:将水泵安装在梁板上,泵壳是在外面的,且比较自由,在运行时,会出现振动,进而使梁板也出现振动。如果停泵,水力的冲击也逐渐加大,水泵的振动会更加严重,对泵组的运行产生影响,造成泵组出现移位的现象,会出现一定的安全隐患。冲击输电线路和站内电气设备:日常工作中机组的开以及停的比较频繁的负荷变化会对电网以及站内电气设备的安全造成严重的影响。水泵性能差异:水泵运行时,相应的参数会存在一定的差异,当水库的水位比较低时,水泵的运行流量比较小,叶片上会出现失速、回流、空化等现象,造成水力的噪声比较大,压力出现高频的脉动,使水泵的振动增加,当水库的水位比较高时,水泵的运行流量比较大,叶片的正面会出现脱硫和空化的现象[2]。水锤和负压导致引水钢管安全隐患:机组的开、停工作会使得水锤、负压的产生,发生事故时,会对引水钢管的安全产生影响。正常停机情况下水力振动与关阀水锤:机组停下时,转轮的出口位置会出现比较大的振动现象,阀门调整到小的开度是,振动会更加剧烈。

二、水电站水库优化调度的特性

1、一般的优化调度方法

一般的水电站水库优化调度方法是国际上广泛应用的方法,是利用历史上的水文统计资料,选择比较典型的来水作为代表年,然后进行水能的调节计算,利用包络线绘制的水库调度图对水电站的运行进行指导。这种优化调度方法比较简单,能够将水库运行的相关因素直接明确的进行处理,但是这种调度方法的灵活性不够,存在比较大的盲目性,并没有得到理想的效果。

2、新编的优化调度图

新编的水库优化调度图是利用现代化的控制论、系统工程以及决策理论等,在数学规划论基础上的动态规划、随机规划法,进行优秀的计算,从而编制出的水库优化调度图。这种调度图能够实现三维坐标的调度线,使水电站水库的调度决策的灵活性更好,也更加实用。这种新编的优化调度图综合考虑了水电站各种来水以及水位的情况,并利用计算机对各种方案进行选择从而决定的,这种新编的优化调度图中有效解决了一般优化调度法中存在的缺点,经济效益要更高。

3、水电站水库优化调度的计算方法

动态规划理论的求解方法对于水库的运行的优化是比较是适合的,动态规划理论就是将一步多维转变为多步一维进行计算,按照阶段、状态以及策略对调节周期进行划分,保证状态的最优转移。要根据水电站水库的水位,以及时段径流的条件、水库的来水情况等,依据新编水库调度图以及优化的运行方式进行水电站的发电出力,使调度更加到位,更加充分的对水库的潜力进行挖掘,促进水电站水库的安全、可靠运行,促进经济效益的实现。

三、水电站水库优化调度的分布状况

1、单一的水电站水库优化调度

单一的水电站水库优化调度是利用优化理论进行编制的,对全年各时段的运行方式进行明确,并以此对库群进行优化调度。优化准则的目标是以水电站的电能价值最大或一年内发电量最多。将两个相邻时段的径流作为依赖关系,利用马尔科夫链对入库的径流进行分析,利用随机的模型进行规划求解,以年为周期,以旬、月作为计算的时段,根据相关的文件明确水库的水位、流量以及发电情况,利用动态规划的方法进行调节计算,根据具体的实际情况对水库的变量进行等级划分,根据相关的部门的规定确定决策的变量,保证水电站水库调度的优化进行。

2、梯级水电站群优化调度

梯级水电站的优化调度运行方式是在满足电力系统的总负荷的前提,在其他条件的约束下进行的。需要对各级梯级水电站的水头、流量进行密切联系,对上下级电站区间的径流情况进行计入,并且对两个相邻梯级电站之间的水头衔接情况,下一级对上一级电站水头变化的影响进行细致的分析,优化准则的目标是以水电站的电能价值最大或一年内发电量最多。利用好各种水文以及天气预报,将性能好、库容量大的水电站作为补偿水库,并作为优化计算的目标,并将同一电网、河流以及梯级水电站作为纯水电系统,利用合并水头或者将目标简化进行处理,利用随机、增量、多目标的动态规划方法对利用径流时间、空间关系所建立的调度数学模型进行求解[3],从而计算出各时段梯级电站的优化运行形式。梯级水电站群优化调度是在库群联调的基础上进行,发电量会得到增加。

3、跨流域水库群联合优化调度

对水电站群在全年各时段的运行情况进行明确,明确各水电站间的水力与电力联系,补偿调节库容和电力主要是利用各水库调节性能的差异以及水文的不同步性进行,实现库群最大效益的发挥。优化目标是以电站群体多年运行的总效益最大化,实现电网对水电站群的经济以及可靠运行。使电力系统中的日负荷图上的电力、电量达到平衡,使电站的工作容量得到充分利用。可以利用随机优化多维时空相关理论和余留效益统计迭代模型与算法对水库中个数比较多的大规模的库群进行调度优化。绘制多个水电站群的优化调度图,实现发电效益的实现。

结束语

水电站水库优化调度已经在水库群的优化调度中得到了广泛的应用,随着当前科学技术的快速发展,水电站水库优化调度的方法逐渐增加多,水电站的系统以及电网系统管理中,水电站水库的优化调度是十分重要的组成部分,调度的效果将直接影响到水利工程以及设备的作用发挥,因此应做好水电站水库的优化调度工作。

参考文献

[1]刘铁宏.水电站水库优化调度研究现状与发展趋势[J].吉林水利,2010.3(10):34-35.

[2]席秋义,李成家,畅建霞.水电站水库优化调度几种求解方法的比较研究[J].陕西电力,2010.7(4):74-75.

[3]赵佰顺.班组电量考核制度下桥巩水电站水库优化调度研究[J].科技视界,2014.26(16):267-268.

水电站设计论文篇7

关键词:核电站 循环冷却水 地连墙 防波堤 中隔堤 护岸

1 工程特点及组成

岭澳核电站毗邻已建的大亚湾核电站东侧约1 km的岭澳村,共分两期,总规划容量为4×1000 mw?。一期工程为2台1000 mw压水堆核电机组,排水量95 m3/s。两期完成后4台机组排水量共220 m3/s(其中考虑厂区洪水量30 m3/s),加上大亚湾核电站,系统总排水量为315 m3/s 。大亚湾核电站建造时没有考虑后续工程,且大亚湾核电站的循环冷却水和低放射性排水流经岭澳核电站的取水前沿海域。而大亚湾海域属于弱潮流海区,两厂址附近海域为潮流辐聚辐散处。因此岭澳核电站的循环冷却水取排系统设计具有下面的特点和要求: ①设计须同时考虑两期工程的取排水需求; ②由于厂址区域潮流特点,岭澳增加的220 m3/s流量不能影响大亚湾的取水条件,以确保大亚湾核电站的安全、经济、满功率发电的运行要求; ③大亚湾核电站的温排水通过岭澳核电站取水口前沿时,岭澳核电站的取水水温、流速、水面波动均要满足设计要求。岭澳核电站的取排水设计要考虑防渗隔热要求。取排水系统主要由防波堤、中隔堤、取排水交叉渡槽、护岸等构筑物形成的取水渠道和排水渠道组成。

2 设计标准

(1)核岛重要生水(用于核反应堆设备的循环冷却水)的设计水位(根据核电厂安全导则确定):设计高水位(10%超越天文潮高潮位+可能最大风暴潮增水)等于+6.35 m 珠江口海平面标高(prd);设计低水位(10%超越天文潮低潮位+可能最大风暴潮减水+安全裕度)等于-3.50 mprd。

(2)常规岛循环冷却水设计水位:设计高潮位(百年一遇高潮位)等于2.89 mprd;设计低水位(百年一遇低潮位)等于-2.18 mprd。

(3)核岛循环冷却水设计水温:设计基准水温30.8 ℃?;设计最高水温34.5 ℃;设计最低水温11.0 ℃?。

(4)常规岛循环冷却水设计水温:设计基准水温23.0 ℃;设计最高水温33.0 ℃。

(5)其它要求:①满足泵房前池水面波动不大于0.3 m的要求,以保证有一个很好的流态; ②为防止漂浮物及鱼类进入渠道,取水头部处流速接近海流流速,理论断面处(相应百年一遇低水位条件下,取水头部入口处的过水断面)渠道平均流速不大于0.2 m/s。

3 循环冷却水取排系统的平面布置原则

滨海核电站的循环冷却水取排系统属于大型海域工程,结合岭澳核电站工地的现场情况,在循环冷却水取排系统的设计上主要遵循下列原则:

(1)平面布置应以核电站总体规划为基础,结合当地的风、浪、流、泥沙(风和浪影响各构筑物结构的安全设计标准,海流影响取水头部与排水口的平面布置,泥沙含量影响循环冷却水取排系统的设计流速)等自然条件,远近结合,统筹兼顾,与陆域设计协调,充分体现技术先进、安全可靠的设计指导思想。

(2)布置方案的重点应放在如何减少两座核电站的温排水对取水温升的影响问题上。取排水口、取排水渠道的位置、型式、朝向应以循环冷却水模型试验、局部整体模型试验和泥沙淤积分析为根据,合理布局,满足取排水工艺要求,有利于安全使用。

(3)进水渠的长周期波动对循环水联合泵站的安全不能造成影响。

(4)因为核电站排洪沟的水直接排入循环冷却水的排水渠中,为了不影响已经投产的大亚湾核电站的安全运行,所以设计时需保证在百年一遇高潮位+2.89 mprd 和百年一遇洪水相叠加时,排水渠涌高不超过大亚湾核电站的排水虹吸井的自由流水位+3.15 mprd。

(5)因交叉渡槽位于大亚湾核电站的排水口位置,所以无论采用陆上施工还是水上施工,交叉渡槽的施工应对大亚湾核电站的排水影响最小。

按照以上的原则,岭澳核电站的取排水系统选取了西取东排的方式,即岭澳的取水放在厂区海域西侧,而排水将岭澳和大亚湾合二为一,经过岭澳取水口向东排放,取排水系统的平面布置见图1。

4 试验分析工作

4.1 循环冷却水取排系统方案试验研究

4.1.1 研究目的

图1 取排水系统平面布置

分析大亚湾核电站的温排水对岭澳核电站进水的影响,选择排水方案。在取排水总体布局确定后,通过优化试验确定排水渠的长度、排水方向、排水渠断面、流速以及4 ℃温升线分布图,提出最终方案,为工程设计及编写安全分析报告、环境影响报告提供依据。

4.1.2 研究手段

二维数值模拟计算,全潮整体物理模型试验,近区物理模型试验。

4.1.3 结论

推荐采用明渠西取、两核电站排水合并后向东排放的取排水布置方案。试验表明该方案两核电站的温排水对它们的取水口头部水温都不产生干扰,能有效利用潮流运动特性,将温排水扩散到较远的区域,取水温度低,对环境也有利。

4.2 取水头部与进水明渠波浪模型试验

4.2.1 试验目的

验证取水布置方案泵房前池的波浪扰动及取水流速是否满足要求,推荐取水口的合理布置方案。并通过取水头部进水明渠最终布置方案的长周期水面波动的试验研究,确定取水口防波堤和北导堤的最终长度,验证长周期波对厂区安全的影响。

4.2.2 主要结论

(1)无论在小风区南风向,还是东南风向百年一遇大浪作用下,泵房前池水面波动均小于0.3 m。

(2)取水头部底宽150 m时,4台机组同时运行,在百年一遇低潮位时,进水口的平均流速小于0.2 m/s。

(3)由于大亚湾防波堤绕射波的影响,在东南风向浪作用下,泵房前池水面存在明显的长周期波动,平均升降幅度为1.06 m。因此,在7 m高程的厂区护岸上需加筑1.2 m高的挡墙。

(4)取水口采用双堤是必要的。

5 排水渠设计方案优化

核电站的循环冷却水排水受到温度与低放射污染。这种温排水有可能通过排水渠两岸渗入或者将温度传入取水渠道和取水头部的附近海域,对循环冷却水的取水造成温度与低放射污染。所以排水系统的防渗隔热的问题是设计的重点,而解决此问题的关键在于排水建筑方案的选择。在初步设计阶段,综合考虑各种因素选用了箱涵方案。后经多次设计优化,最终采用了地连墙明渠方案,现分别对两种方案的优缺点给予介绍。

5.1 箱涵方案

箱涵方案的最大优点是防渗性能好,可以防止大亚湾的低放热水进入岭澳的取水明渠。如果低放热水进入取水明渠,会给核岛重要生水水泵及其它设备和相关系统带来低放污染,而且使核岛重要生水取水温度超过设计温度,将直接危及核反应堆及整个电厂的安全。但是,箱涵方案也存在下列问题:

(1)在设计高水位(+2.89 mprd,百年一遇高潮位)时,不能满足大亚湾核电站排水口虹吸井的自由出流,须对其进行改造。

(2)从施工角度看,箱涵方案须有特大吨位的半潜驳预制。箱涵安装也须在水下进行,工期长,接头止水难度大,施工质量难以保证。

(3)箱涵须设计检修闸门和人孔,运行管理复杂。

5.2 地连墙明渠方案

地连墙明渠方案是一种设计创新,它打破常规的设计理论,在防波堤上设置了柔性地连墙。该方案的优点是增加了过水断面,降低了水位壅高,使最高设计水位不再对大亚湾核电站的排水虹吸井自由出流影响,在运行和检修方面也有很大的优越性。另外,由于柔性地连墙的防渗隔热效果较好,排水口又远离取水头部,所以排水口不需要做特殊的处理,可采用自由排放。这种方案也为干施工方案提供了可能性。地连墙明渠方案的技术难点:

(1)防波堤的波浪稳定性:在防波堤的设计理论上,堤心要求有较大的透水性,以减少波浪反射对坡面稳定的不利影响。而此方案在防波堤上设计了柔性地连墙,与防波堤设计原理是相反的。

(2)柔性地连墙的抗震强度与稳定性:防波堤抗震设计标准为ⅱ类抗震物项设计,ⅰ类抗震物项校核。柔性地连墙的作用是防渗,在地震工况下,其强度及稳定性是重点关注的问题。

(3)施工的可行性:防波堤上设置地连墙是首创,在含有大块石且空隙率很大的防波堤上挖槽、成孔、漏浆情况也无先例可以借鉴。

6 各构筑物的设计

6.1 防波堤

防波堤作为两座核电站的热水和低放废水的排水渠导流堤,防止热水和低放废水直接沿流程渗入大海;同时也用于保护中隔堤、厂区护岸、取排水交叉渡槽及联合泵房的安全,并保证联合泵房取水不受波浪影响。

防波堤采用柔性地连墙防渗,地连墙底标高?-15.0 mprd?左右,顶标高4.7 mprd,厚0.8m,位于防波堤内侧中部。根据陆上施工方案渗流及稳定模型试验论证,在施工期渗流量为0.020 1~?0.131 4? m3/(d·m)。而根据干施工基坑抽干水后现场检查,柔性地连墙没有发现明显的渗水情况。在正常使用期间,由于排水渠内外水头差很小,所以渗流量会更小。

6.2 中隔堤

中隔堤位于防波堤和厂区护岸之间,与厂区护岸和防波堤一起共同组成取排水明渠,防止冷热水短路。并作为防浪墙的第二屏障,保证联合泵房取水不受波浪影响。

中隔堤整体设计要求在设计水位及校核水位下,各部位均稳定;在dbf水位(6.35 mprd ,设计基准洪水位)下。中隔堤堤面允许有一定位移,但不丧失防浪隔热的基本功能。中隔堤及地连墙均为干式施工。

中隔堤的渗漏采用钢筋混凝土地连墙防渗,地连墙底标高-13.0 mprd左右,顶标高为3 mprd,厚0.6 m,设在中隔堤中部。地连墙根据地质条件打入粘土、粉质粘土或泥质粉砂岩中3 ~5 m,渗透系数很小,且排水渠内外水头差很小,故渗流量很小。

6.3 取排水交叉口渡槽设计

取排水交叉口渡槽采用支墩式渡槽结构,下层为岭澳核电站的取水渠道,上层为大亚湾核电站的温排水通道。渡槽总长为155.262 m,为双槽式,上层温排水通道的断面尺寸为21.8 m×8.5 m。

6.4 护岸设计

护岸是岭澳核电站的取水渠道的内边界,也是防浪的第三道屏障保护厂坪的安全。护岸的设计采用典型的块石斜坡堤,护面采用浆砌石,下设大块石棱体护脚,顶部设浆砌块石覆盖层。在堤心石内坡面设计反滤层,以避免因细颗粒的移动而造成厂区地坪的沉降。采用汽车在陆域向水域中推进的施工方式。

水电站设计论文篇8

系统的建立

本站测验设施、建筑设施繁多且分散,左右岸各有1个测流缆道主索支架(钢结构高9m)、1个副索支架(钢结构高6m)、1个浮标投放器支架(铁柱高7m),主钢索跨度250m。未建独立通讯塔,电台天线就安装在测流缆道右岸主索支架上,站房进户线还有220V照明电线、中国网通电话线、有线电视信号传输线。水文站院内还有电台馈线、降水量数据传输线。因此接引雷电和感应二次雷的概率高,防雷工程难度大。防雷作为一项系统工程来考虑,包括三方面内容:防直击雷、防感应雷、接地系统。东明水文站需防雷范围有:站房、电源系统、跨河测流缆索、通信设备、天馈线系统以及水文站内电子设备。

靠安装在两岸4座钢架上的避雷针把雷电引泻入大地,避免本站建筑物、设备、人员遭受直击雷的侵害。通过屏蔽、等电位联接等技术,避免感应雷在本站仪器、设备上产生过压、过流而导致的危害。电台天线顶端距地面14m,避雷针顶端距地面18m,电台天线和避雷针都安装在右岸水文站院内的测流缆道钢架上。通信天馈线在避雷针保护范围内,馈线进入站房后与电台连接处安装天馈避雷器,天馈避雷器的接地端子采用截面积25mm2的多股铜线接在站房内的汇流排上。

电源进户采用中光高科电源浪涌保护装置。分三级,第一级电源防雷是在变压器低压输出端安装电源避雷器作为一级保护,设计通流容量容量大于120KA:第二级电源防雷,是在进入站房二级配电输入端安装并联电源避雷器作为二级保护,设计通流容量80KA:第三级电源防雷,是在各设备端加装串联避雷器作为设备的三级保护,设计通流容量20/KA。防雷工程设计中无论是防直击雷还是防感应雷,接地系统都是最重要的部分。对接地电阻的要求从理论上讲愈小愈好。但是各设备进行等电位联接可以大大降低对接地电阻的要求。

水电站设计论文篇9

关键词:变电站;选址;平面布置;建筑设计

中图分类号:TU271.1 文献标识码:A 文章编号:1000-8136(2012)14-0096-02

变电站是我国电力工程建设中的重要组成部分,变电站工程建设质量涉及到国家工业经济发展并与人民的日常生活息息相关,因此在国民经济中具有举足轻重的地位。从笔者多年来从事变电站土建设计的工作实践来看,变电站土建设计是一项常规性工作,但也是一项“只有更好,没有最好”的研究工作。对于任何一个变电站的土建设计,我们设计人员和管理者都必须具有高度负责的工作态度,重视设计质量,精心设计每一项工程。笔者结合自身实践经验,就这一问题作一探讨与分析:

1 变电站土建设计的阶段及内容

1.1 选址阶段

在进行变电站地址选择时,应首先明确电站负荷中心的位置;这需要系统人员依据潮流分析以及电网的规划确定负荷中心位置,此外还需设计接入系统方案、无功补偿规模、出现、主变等。依据提供的资料,土建设计人员先初步确定几个电站选址方案,这些选址地点应尽量与负荷中心较近,以便能够降低网损。

变电站线路的选择应与地址的选择相协调,在选址过程中要注重与线路人员之间的配合,明确变电站输电线路的具体方案。因线路的总体造价要远大于变电站的建设造价,因而科学、合理的线路方案,有助于保证变电站建设的经济性,而且对于方案顺利通过前期的审查有着重要的作用。

1.2 可行性研究阶段

可行性研究阶段土建专业的工作主要是根据项目选址阶段的工作成果和审查批复的意见,重点论述批复站址的建设方案。应就批复站址的建设方案进行详细论述,相较于选址阶段,应充分论证占地面积、站用水源、站用电源、交通运输、土地用途、地质条件等多种因素,重点解决批复站址的可行性问题。

1.3 初步设计阶段

在取得可行性研究批复意见后,就进入了变电站的初步设计阶段。该阶段土建专业需要做的工作主要是落实土地的征用,变电站的土建总平面的布置,该阶段应就土建总平面布置、地基处理、给排水方案的具体设计方案提出2~3个方案以进行比较,以便从中挑选出最优方案。

1.4 施工图设计阶段

通过初步设计审查后,就土建专业来说,对土建总平面布置、建筑面积、结构选型、地基处理方案、基础选型等都有了明确的审查意见。施工图设计阶段就是依据初步设计审查意见,要按照现行的规程以及规范或者国家标准,先从局部后从整体进行设计,设计的原则是不超过初步设计审查确定的范围。在对所有的厂家资料、电气提资、尺寸进行判断,并且确认无误后,按要求进行设计。

2 变电站土建设计优化的对策分析

2.1 变电站的主要建构方案设计与优化

建构方案设计:一般包括建筑平面、立面方案设计、暖通风及水工方案、地基处理方案设计、结构及基础方案设计。变电站建筑常采用联合布置形式进行设计,目的是节约用地。在结构方案设计上,变电站的主要建筑物几乎都采用钢筋混凝土框架结构,其构架及支架采用钢结构,不过其设计还要考虑变电站的重要程度及站址的抗震设防烈度。平面设计方案,一般要做到两点:一是保证各功能房间有足够的空间;二是建筑立面能产生美观的效果。建筑基础形式需根据地质情况选择,当地质好时,用天然地基处理技术即可;当填土较厚时,采用的处理技术是强夯;当地质是较厚的淤泥时,处理技术是灌注桩管桩或水泥土搅拌桩以及预压法。暖通风方案设计,其设计一般能达到设备运行及消防的需要即可。

2.2 站区排水及消防系统方案设计与优化

设计前,要从水源条件角度分析设计方案。由于变电站生活用水量及消防补水量都较少,若条件允许供水方案设计时,可优先考虑能否通过市政来供给。给水系统主要包括消防给水和生活给水这两个系统,但两者宜分开而独立设置。排水系统中各排水系统应采用分流排放。值得注意的是在消防方案的设计过程中,要认真考虑建筑物与建筑物间、设备与设备间、设备与建筑物间的距离;考察其间距是否达到消防规定的间距标准,如果达不到就应采取防火窗或防火墙等措施进行替代处理。

2.3 站址方案的比较及选择

根据上述情况,对可供选择的多个方案进行经济比较,然后,由专家对此次方案的可行性进行初步评定,在评定过程中要重视审查的意见及建议,从中筛选出最优方案。那么对于方案的评定需要确立科学、合理的评价指标,结合工程实践,提出方案的首选与备选方案,以备施工组织需要。同时,对最优方案要进一步完善,确定最后的设计方案。

水电站设计论文篇10

关键词:水电站;能量指标;复核;

Abstract: China is rich in hydropower resources, since 1949, the construction of large and medium-sized hydropower station has a certain scale, and has the experience of the operation management of hydropower station rich. Based on the analysis of energy index of hydropower station based on the factors that influence, through changes in the conditions established output adjustment model of hydropower station, energy index was used to check.

Key words: hydropower station; energy index; review

中图分类号:[TM622]文献标识码:A文章编号:

1、前言

文章从水文、运行调度等方面对影响电站能量指标各因素进行了分析研究, 得出导致电站电量损失的主要因素是水库低水位运行引起的发电耗水率增大、机组低负荷运行引起的机组效率降低以及尾水渠的淤积引起的发电水头减少等;笔者考虑梯级电站运行的相关关系,通过实际入库径流的改变,对二道沟水电站的能量指标进行了复核。本研究以某水电站为例,在分析各因素对水电站能量指标的影响时, 首先采用水电站设计资料进行能量指标的计算。在变化条件下建立等出力计算模型,对水电站的保证出力、发电量进行复核,并且针对由于水电站运行年限的延长而导致的能量指标的变化。

2、能量指标复核与能量指标的区别

2.1水电站的能量指标主要是发电量,保证出力在水电站运行以后,意义已不很大,能量指标的复核则是对水电站建成运行后对发电量的后评估。水电站的发电量是有关部门制订水电年度生产计划的依据,传统上,求得的发电量仅是个近似值。

(1)因为有些电厂未做机组效率试验,用电厂运行记录反推的出力系数不确切 ,做了试验的,又没有用效率试验资料对耗水率曲线进行修改,使发电流量值精度不够。

(2)径流调节时段长,特别是汛期有弃水时,计算的发电量偏大。

(3)没有考虑水电站的调峰运行特点,按调度图操作求得的发电量比按调度图结合调峰操作的也偏大较多,原因是水电站调峰是要损失电量的。

2.2水电站能力指标主要是针对其自身的发电量来讲的,其作用在于保证水电站运行以后的出力系数,当前意义已不明显。而水电站能力指标复核则是在水电站建成运行之后对发电量进行后评估。水电站自身的发电量是相关部门年度生产计划制定的依据,而传统的发电量通常是一种估算形式,是一个近似值。原因是:

(1)一些水电厂不实施机组效率试验,通过运行记录所反推得出的出力系数不够确切,做了机组效率试验的火电厂又不存在对耗水率曲线实施修改的效率试验资料。

(2)一般情况下,径流的调节时段较长,尤其是在汛期,发电量的计算值与真实值相比往往偏大。

(3)对水电站调峰运行的特点没有足够的重视,由于点电站调峰的过程伴有电量的损失,所以,单纯按照调度图进行的操作,得出的发电量也往往要偏大。

3、模型建立与策略

选择复核计算的方法时,考虑了水电站的调节性能、综合利用的要求、水电站的工作方式、水电站群之间的联系等条件。根据等出力调节原理建立水能复核计算模型,模型的约束条件包括库容约束和出力约束。

其中库容约束为:Vmin(j)≤V(i,j) ≤Vmax(j)(1)

式中: Vmin(j)、 Vmax(j)-水库第i年第j时段的下限和上限库容。

出力约束为:Nmin(j)≤N(i,j)≤Nmax(j) (2)

式中: Nmin(j)、Nmax(j)-水库第i年第j时段的最小和最大出力,一般最小值为水库保证出力,最大值为水库的装机容量。模型计算步骤见图1。

图1模型计算步骤

4、水电站能量指标符合内容分析

4.1出力系数分析

水电站能量指标符合中出力系数是采用火电站自身运行记录中的月平均发电量、平均出力及平均毛水头等数据通过出力公式反推得出的,随后取其平均值作为水电站能量指标符合的最终依据。在实际中,净水头的出力系数同水电站能量指标符合的出力系数并不大,这是因为水电厂的耗水率曲线同其设计阶段使用的出力系数都是依据机组效率曲线来进行换算的。源头一样,结果的差异自然很小。由此可以得出,依据运行记录反推得出的结果并不确切。出力系数的得出是水头、出力、流量三个因素的结果,前两个要素的精度得以保障,其问题出在发电流量这一因素上。因此,机组效率试验不可或缺。

4.2水电站调峰和调节时段分析

径流调节时段愈短, 求得的发电量愈接近实际,这已为大家所共识。以往规划设计阶段径流调节时段除日调节电站外,一般均取月径流,主要因为计算工具落后,工作量太大。这次复核改用旬,比以前有所改进,也是复核电量偏小的原因之一。但是汛期采用旬流量,时段仍太长,求得的发电量还是偏大(见表1)。因而, 随着计算工具的不断发展,建议凡是有弃水,不论是什么调节性能的水电站应改用日流量进行径流调节。水电站在电力系统中除发电外,主要任务是调峰及其他, 但在计算发电量时不论是常规还是优化均按调度图进行操作, 这与水电站在电力系统中的运行情况不符。在规划设计阶段,对水电站建成后的运行情况只是一个大概的了解,因此,按调度图操作求多年平均发电量是可以理解的;但电站建成后,其在系统中的运行情况已基本明确,就应该按水电站的运行特点来计算发电量。按调度图操作和按调度图结合调峰操作,求得的发电量完全不一样,我们曾以某电站结合扩容论证做了初步研究, 其结果如

表1 所列。

表 1 按调度图与结合调峰计算的能量指标比较

注: 计算是以全部装机用以调峰作为对比的

由表1可见,水电站调峰是要损失电量的,当调峰容量为12万kW时,日均调峰6h,以旬为调节时段,损失电量可达615%;以日为调节时段,损失电量为411% 。主要是由于调峰放水集中,下游水位抬高导致水头降低所致。电量损失旬比日大, 是因为均化水电站输出的能量前者比后者严重。由于调节时段不同,当装机为 8 万kW时,旬调节比日调节电量偏大117%;装机12万kW时,偏大016%。这是容量大,相对弃水要少的原故。以往对调节时段长,均化了入库流量(输入能量) 使弃水减少导致计算电量偏大这一点比较清楚,而对不考虑调峰均化了电站输出能量导致计算电量偏大认识不足,而只强调水电站调峰给系统带来的效益,却很少提到水电站调峰的负效益。

5、几点建议

(1)要确切求得水电站的发电量并不十分简单,就本文所提出的几个问题, 说明过去无论常规或优化求得的各电站的发电量,仅仅是一个近似值,有些问题还待同行共同探讨,并需要设计单位与生产单位密切配合,首先建议电厂应进行必要的机组效率试验,主管部门也宜将其列为管理中的一项工作。

(2)鉴于水电站调峰对电量影响较大,因此今后无论是复核能量指标还是进行优化调度研究都应考虑水电站调峰计算发电量,电厂也应当提出这一要求,以便作为向电网售电定价时的参考。最近复核镜泊湖、乌溪江等水电站时曾建议考虑这一问题,但未被接受,那么枫树坝可以肯定所复核的电量也只是近似值。

(3)为配合全国技术创新大会,建议水力发电工程学会水能专委会和情报网选一个适当时间,召开一次水能设计技术讨论会。

(4)建议水电水利规划设计总院对以往的有关规程规范做一次补充修改,以适应新世纪水能设计工作的需要。