模具设计论文十篇

时间:2023-03-25 14:01:55

模具设计论文

模具设计论文篇1

熔模铸造是一种优异的工艺技术,采用熔模铸造生产阀块的毛坯,可以有效保证毛坯的制造精度,并减少阀块的机械加工量。在Pro/E的模具设计模块中,根据阀块毛坯的结构特点采用装配法和分型面法相结合,进行阀块的熔模模具结构设计。

1.1蜡模相关数据的确定

该阀块毛坯表面粗糙度的最大值为3.2,考虑到中温蜡的铸件表面粗糙度可达到2.0左右,充分满足非加工表面粗糙度要求,故选用中温蜡作为蜡模原料。铸件的收缩率由合金收缩率、模料收缩率和型壳膨胀率综合决定,最终确定铸件的综合收缩率为1%。

1.2蜡模的模具CAD

在Pro/E的模具模块中进行模具设计,最关键的工作是设计合理的分型面。分型面的位置和结构的合理性,不仅对毛坯的制造效率和精度有影响,而且也关系到模具操作的方便性和模具零件的结构工艺性以及经济性。本文中阀块模具的分型面方案和结构设计过程是:首先复制阀块毛坯的上顶孔面并延伸到模具顶面形成第一个分型面,构造出模具的型芯;再利用双侧拉伸创建第二个分型面将模具整体一分为二,构造出模具的上下模型腔。分型面设计完成后,在Pro/E中进行开模检测,没有干涉。另外,为方便脱模和便于型腔的加工,下模设计了顶杆,并将型腔中加工难度大的部分设计了活块和型芯。从制造的工艺性和生产率的角度考虑,将下模型芯与顶料机构的顶杆设计为一体,使铸件能够完好的取出。

2上、下模型腔的CAM刀路设计及仿真

2.1文件格式转换

将Pro/E造型完成的上、下模实体另存为IGES格式。由于IGES文件是Pro/E和MasterCAM的通用文件,所以在MasterCAM中可以IGES格式的模具零件实体进行仿真加工。在加工中一些小的圆角加工效果不是很理想,所以将切削用量适当调整,并且对刀具参数、加工方式进行改进。加工困难的部位需要多次精铣,以保证加工精度。

2.2CAM编程及仿真

在MasterCAM里建立加工任务,选择以外形环状铣削加工方式,先选择Φ10的平铣刀粗铣内型腔,再换Φ5的球头铣刀精铣内型腔,调整切削参数开始加工仿真并生成数控代码。

3结论

1)本文的阀块零件在液压系统中需求量大,材料昂贵,毛坯制造精度要求高,采用熔模铸造其毛坯可有效保证其批量和精度的要求。采用Pro/E软件的三维造型功能快速准确地建立了阀块的毛坯数模,并在其模具模块中结合熔模铸造工艺设计了阀块毛坯的熔模铸造模具,经开模检测,模具结构合理。

2)在MaseterCAM软件中对模具的上、下模型腔进行数控加工刀路设计,经加工仿真显示刀路轨迹合理,导入到CIMCO软件,为传给数控机床进行实际加工做准备。

模具设计论文篇2

首先根据经验,在砂芯上布好射嘴及排气塞,然后进行射砂及固化的模拟,图1是首次射砂模拟的结果,从结果可见,部分位置存在紊流,中间隔板位置,砂流明显分开,砂芯射不满。由于模拟结果不理想,于是对射砂嘴和排气塞进行优化,增加部分排气塞,射砂嘴的直径调整,经过多次调整及模拟后得到了合格的结果,优化后的模拟结果如图2所示,图中长圆柱为射砂嘴位置,短圆柱为排气塞位置,模拟结果显示,中间隔板位置砂流交叉融合,填充完整,其它位置砂芯完整。

2芯盒模具设计及制造

芯盒模具的结构与射芯机有关[4],不同的企业都会根据其不同的射芯机建立相应的标准虚拟三维模架。本设计首先根据射砂模拟结果,布好射砂嘴、排气塞及顶芯杆等;然后设计分形面;最后调出标准三维模架[4],将砂芯根据要求装配入模架中,通过布尔运算得出三维的模具型腔,并详细设计出定位销、导向销、导向套、压板、回位导杆等各种零件。设计好的模具如图3所示。模具设计好后,根据图纸制订加工工艺,根据三维模型编NC程序,然后开始模具制造,制造完成的模具如图4所示。

3制芯效果

模具设计前没有经过MAGMA软件的射砂模拟,所试制出的砂芯经常出现不饱满,砂芯断裂等缺陷(图5所示)。通过MAGMA软件的射砂模拟,根据射砂模拟结果,布置好射砂嘴、排气塞及顶芯杆等。然后制造模具,开始制芯,把芯盒模具装到相应的射芯机上,调试好模具,开始射砂,第一轮试制就能射出合格的砂芯,图6是首轮试制出的砂芯,砂芯饱满紧实,质量很好,符合要求。

4结论

MAGMA软件射砂模块的模拟结果与实际相符,利用MAGMA软件射砂模块的模拟结果来辅助模具设计,可以明显提高模具设计的效率,且设计的模具结构更合理,减少模具调试时间,避免因为设计不合理而造成模具的多次整改,降低成本的同时也缩短了模具开发周期。

作者:谢武斌 罗超庆 黄耀光 汤宏群 单位:1.广西玉柴机器股份有限公司 2.广西大学材料学院 3.百色学院 4.广西生态型铝产业协同创新中心

参考文献:

[1]崔怡,吴浚郊,李文珍.芯盒结构对射砂过程的影响[J].特种铸造及有色合金,2000(3):4-6.

[2]迈格码(苏州)软件科技有限公司.2012年度用户大会光盘[EB/OL],2012.

模具设计论文篇3

关键词:项目驱动法;塑料模具设计;课程教学;实践能力

1概述

《塑料模具设计》是模具设计与制造专业的一门专业技术课,是机械制造类专业的重点课程,是一门综合性、实践性非常强的课程,是培养模具行业设计、生产、管理等职业岗位基础能力的核心课程。目前,绝大部分高校对该课程的教学方法仍然是理论教学与实践操作分开进行,导致学生没有真正理解教学内容,设计模具时无从下手,教学效果很不理想。教学过程中主要存在问题如下:1.1塑料模具设计课程中模具的外形结构和开合模动作原理都较为复杂,必须借助先进的教学演示手段,课堂中多采用多媒体和板书相结合的教学方法,能形象地表达模具的动作和结构。但模具属于精密复杂设备,而动画往往简化了模具结构,使得理论教学与实际不符,学生对模具的认识不全面。再者过多模具图、动画、文字信息的展示,容易造成满堂灌的教学现象,未能全面调动学生的学习主动性和积极性,容易让学生感觉模具设计原理枯燥,内容琐碎,复杂难记,教学效果欠佳。1.2塑料模具设计教学知识点多,包括塑料材料的选取、塑料件工艺结构设计、分型面设计,型腔数目的确定、模具成型零件设计、浇注系统设计、导向机构设计、推出机构设计、冷却机构设计等。学生难以看出知识点之间的关系,往往学了后面,忘记前面,不能温故而知新,最终接受的仅是一些零散的知识点,缺乏系统性。1.3教学考核方式是试卷与平时表现相结合的考察方式。试卷成绩占总评成绩的70%;平时成绩占30%,主要包括出勤、作业和课上提问,主要是基于课本内容的考察,加大了学生对书本的依赖性,难以检查出学生的动手能力、创新能力以及将所学知识运用于实践的能力,难以提高学生对模具岗位的适应能力,对今后的就业会造成一定的影响。面对未来社会对模具行业人才的要求,如何在传授知识的同时,提高学生的自学能力和综合素质的,是课程教学改革的一个重要方向。[1][2]

2项目驱动教学法简介

项目驱动法是指将传统学科体系中的知识内容转化为若干个教学项目,围绕着项目组织和展开教学,使学生直接参与项目完成教学过程的一种教学方法。项目驱动法的主要特点在于课程教学始终围绕着项目进行,重在培养学生的实践能力、创新能力、独立获取信息和自主建构知识的能力。具体说,项目驱动法就是师生为完成某一具体的任务而展开的教学行动。项目式教学强调以教案为重点过渡到以完成项目为重点,选取一个典型的项目作为总任务贯穿教学的始终,按知识点将总任务分解为若干个具体子任务,把课程教学的主要内容融入到总任务的各个阶段,使教材中各章节的零散知识有机地联系在一起,有利于帮助学生构建完整的知识体系。

3项目驱动教学法在塑料模具设计教学中的实施

3.1确定项目主题。要根据教学大纲、课程目标来确定学习领域的主题学习单元。课程项目的设计要贴近企业,要依据模具设计的典型工作流程,提高项目实践性和针对性,又要贴近学校的实际条件,具有可操作性。首先确定能够达到课程培养目标的综合性大项目,然后再逐步分解,分解成若干容易操作实施的小项目,小项目通常仅涉及一个单元的主要知识点,制定典型工作任务并实施。[3]本课程确定总项目为“冰箱调温旋钮注塑模具设计”,根据课程培养目标和各单元知识点将项目内容分解如表1。3.2项目活动的展开阶段。首先成立项目小组,组长负责编写小组项目计划书,分配工作任务。然后制定项目方案,小组成员通过阅读教材或参考书目自学项目所涉及的理论知识,每个人设计一个方案,以小组讨论的方式对每个方案进行评价,最终决策出一个科学、合理的实施方案。之后对实施方案进行任务分解,每个人按照承担的项目任务工作。项目任务完成后,学生自行检查,核对。3.3项目活动的展示与评价阶段。项目完成后,每组都要进行答辩,可以用PPT、CAD图纸、手绘图纸、自制模具等多种方式展示项目成果。项目教学的评价主要看项目工作的完成质量,包括教师评价、学习小组评价和自我评价。教师评价以鼓励为主,以增强学生的信心。学习小组评价内容侧重于学生参与项目活动的态度,学生在项目活动中的合作精神。自我评价以口述或写书面心得的方式,叙述参与项目过程中遇到的困难,获取成功的思路,采用的方法,收获的结论,目的是初步提高学生的科研能力和科技论文写作能力。其中教师评价占最大比重,以上三部分加权求和后作为本课程成绩的一部分。

4项目驱动教学法效果分析

首先,提高了学生获取知识的能力。学生在学习和考核过程中处于主动地位,教师仅仅是引导入门,要想解决项目问题,学生必须对课程的基本内容和知识点有比较全面的了解,所以学生对知识点的掌握更加牢固,很好地达到了教学目的和要求。其次,通过自行设计和现场操作,提高了学生分析问题、解决生产实际问题的能力。再者,学生以小组为单位共同寻求解决问题的方法,锻炼和提高了学生的团队合作能力、技术应用能力。总之,该教学方法的运用保证了教学质量,提升了学生的综合素质和专业技能,拓宽了学生的就业面。

作者:李 昕 王泽河 单位:河北农业大学机电工程学院

参考文献

[1]唐妍.“塑料模具设计”项目化教学改革与实践[J].科教文汇,2014,(294):90-91.

模具设计论文篇4

项目化教学法由教师与学生共同参与完成,在此过程中实现“教、学、做”的统一。教材中的内容及知识点即为选取教学项目的出发点,教师需依据模具设计的过程将本学科的主要知识点进行有机的优化重组,并按照由浅入深、由易到难的顺序设置各个教学项目。每个教学项目又包含若干个子项目,这样形成了项目化教学的整个总体框架,其涵盖了《冲压工艺与模具设计》课程的绝大部分知识点,在教学过程中逐步实现把过去的“教师为主体”变为“学生为主体”,从而达到对学生的预期要求。教学项目多选自源于企业的实际问题,或与工厂的实际工作有较高的贴近程度。每个教学项目既要考虑到知识点的覆盖程度,又要考虑到在生产中的实用程度。教学项目不易太难也不要太简单,应包含丰富且多样化的内容,这样既可使学生的综合能力得到提升,又能保证学生可以完成任务。根据《冲压工艺与模具设计》课程的教学目标,结合工厂工作实际情况,本着理论与实践相结合的思路,可将课程教学内容安排为冲裁模具设计、弯曲模具设计与拉伸模具设计三个模块。

2实施项目化教学

在对《冲压工艺与模具设计》课程实施项目化教学的过程中,教师主要起指导作用,由小组的学生自主安排、组织工作,工作中学生独立分析并解决遇到的问题与困难,这极大地调动了学生探索新知识的积极性,他们的学习兴趣有了提高,不但对书中的知识点有了更好的理解与深化,而且学生的沟通合作能力与创新思维同时得到了良好的发展,下面通过引入一个工作任务去说明本门课程实施项目化教学的步骤:

2.1引入教学案例

此零件结构简单且对称、无尖角,这对冲裁加工比较有利。零件中部有一异形孔,孔的最小尺寸为6mm,满足冲裁最小孔径的要求。另外,经计算异形孔距零件外形之间的最小孔边距为5.5mm,满足冲裁件最小孔边距的要求,因而此零件的结构满足冲裁要求。

2.2分析工作任务

任务的目标为设计落料冲孔复合模,要求运用AutoCAD软件绘制模具的零件图与装配图,并且编写出计算说明书。此工件材料为Q235钢,厚度是2mm,生产批量为大批量,工件上有4个尺寸标注了公差要求,从公差表查得其公差要求都属IT13,因而普通冲裁即可达到零件的精度要求,对于未注公差尺寸按IT14精度等级查补。

2.3任务相关知识

为使学生能够圆满地完成任务,他们应先了解与复合模有关的理论知识、落料冲孔复合模的结构设计规范等内容,在此阶段对于有难度的内容,应发挥教师的引导作用,达到学生掌握与任务有关的理论知识的目的,同时摒弃传统教学中按章节讲授的方法。

2.4实施工作任务

首先对工件确定冲裁工艺方案,文中零件为落料冲孔件,提出3种加工方案:①先落料,后冲孔,采用两套单工序模生产;②落料-冲孔复合冲压,采用复合模生产;③冲孔-落料连续冲压,采用级进模生产,通过对3种方案进行分析比较,确定采用方案②。其次进行零件工艺计算,例如刃口尺寸计算、排样计算、冲压力计算等等,最后进行模具零部件结构的确定,绘制模具装配图与模具零件图。此道工序需要学生的沟通与合作,既发展每个人的实践能力与创新能力,又使他们的团队协作精神得到加强。

2.5结果考核评价

“项目化教学法”的考核评价是一种对学生能力、素质综合且全方位的评估,也是对项目化教学实施效果的检验。它是一种过程评价,包含教师点评、小组间相互评价及组内自评三个方面,主要考虑学生在教学过程中所表现出的分析问题与解决问题的能力、专业知识应用能力及思维创新能力等几个方面,教师可通过预先公布评分的要求及注意事项,以期达到学生全身心投入到钻研项目之中的效果。

2.6拓展学生思维

在工作任务已经完成的情况下,教师要求学生进一步、更深层次地去思考与本次工作任务相关的一些问题,这样不仅使学生的思维得到了开发性的拓展,而且他们的工程意识也可得到加强。

3项目化教学效果

3.1提高了学生的学习兴趣

在传统的教法中,教师作为教学的中心控制着整个课堂,学生的学习行为消极被动,造成学生的潜在能力与学习主动性得不到充分发挥,教学效果不良。通过对《冲压工艺与模具设计》课程实施项目化教学,学生会发现一些问题,通过查阅有关资料、与同学共同商讨研究等手段使问题得到解决,他们的潜能与学习兴趣都得到了提高。

3.2提高了学生的综合素质

通过对《冲压工艺与模具设计》课程实施项目化教学,可使学生自我去探索新知识与新技能的能力得到提高,进一步达到理论与实践较好的结合,磨练了他们持之以恒的毅力与恒心。同时,在做项目的过程当中学生还学会了如何与他人沟通与协作,综合素质得到了全面提高。

3.3使学生体验到了成就感

学生在做项目的过程当中不辞辛苦直至最后完成设计,这有效地提高了他们分析问题、解决问题的能力,挖掘出他们的潜能,使学生不但体验到了成功的辛苦,而且也体验到了辛苦当中的乐趣,从而使他们对于取得成就的满足感有了较深的体会。

3.4使学生体会到工作岗位

通过对《冲压工艺与模具设计》课程实施项目化教学可以使学生将理论知识与工作技能更好地融为一体,培养了他们对于日后工作的责任心、细心以及耐心,使学生的工作态度与工程意识在校期间就得到了培训,为日后到工厂去工作打下基础。

4结语

模具设计论文篇5

1、成形工艺分析

十字轴是典型的枝杈类锻件,图 1 所示为十字轴零件图。由图可见,十字轴中心为球台,适合水平分模,球台均布 4 个轴颈,完全对称,适合采用双向等速复动成形技术。零件的材料为 40Cr,其抗拉强度与屈服强度比相应的碳素钢高 20%,在常温下零件成形比较困难,尤其是零件的边角部分不易完整成形,采用温挤压成形技术可降低成形阻力,有利于零件一次精密成形。

2、成形工艺方案

2.1毛坯制备

根据挤压过程体积不变的原理,由零件尺寸计算毛坯的体积,考虑制备毛坯过程中的下料误差尧后续镦粗和加热等因素,实际毛坯体积需增加约 3%,通过计算所得毛坯体积V =4223mm3。用剪切模切一段准10mm的实心棒料,由于剪断所得的坯料端面比较粗糙,端面与中心轴线不能保持垂直,有一定的斜度,因此坯料在剪切后,需用镦平模将坯料端面压平后再进行挤压,最终获得坯料规格为准11.6mm伊40mm。

2.2表面处理及

为了减小挤压时坯料与模壁的摩擦阻力,本文采用了水基石墨剂(成分院石墨尧二硫化鉬尧滑石粉尧纤维素和水),该剂特点是院在中高温下不分解,热稳定性好,有良好的性能,对模具有良好的隔热和冷却效果[4]。温挤压成形前将坯料作喷砂或抛丸等处理,清理锈迹尧污垢等。然后加热至200℃ 左右,出炉浸入水基石墨剂中,快速捣匀,取出沥干,当坯料表面均布一层黑炭色的薄膜时,待坯料晾干即可进行加热尧挤压成形加工[5]。

2.3坯料加热成形

温度是温挤压工艺能否顺利进行的关键因素。40Cr 的温塑性变形温度通常在 600~800℃ 之间,高于 800℃时金属的氧化变得十分剧烈,生成的氧化皮对于模具的磨损尧工件的尺寸精度和表面粗糙度值都有很大的影响,而低于 600℃时金属的抗拉强度显著增大,金属的流动性不佳,不利于塑性成形。本文将温挤压温度定在 750℃依30℃,在这温度范围内 40Cr 的变形抗力约为常温下的 18%,而氧化极微。毛坯加热采用连续式中频感应加热炉,该炉加热速度快尧氧化烧损少尧热效率高尧炉温可控,易于实现自动化。加热过程中为使炉内温度均匀,加速热量传递,炉内带有强制空气循环装置[6-7]。

3、挤压过程的数值模拟及分析

本文在分析十字轴结构特点的基础上,基于Deform-3D 有限元模拟软件,建立温挤压成形工艺过程的有限元模型,分析了成形过程中材料的形状变化尧挤压应力尧模具载荷等结果从而优化设计方案,并据此设计出合理的模具,以达到减少工艺试验次数,降低生产成本的目的。

3.1几何模型建立及数值模拟参数设置

利用三维造型软件 CATIA 实现汽车万向节十字轴的参数化建模及模具的三维造型,然后输出STL 格式文件并导入有限元软件中建立有限元模型[8]。坯料的四面体单元网格总数约为 50000 个,材料为AISI-5140(40Cr),多次模拟试验中,坯料的初始温度分别采用 720尧750尧780℃。凸模与凹模材料均设置为 4Cr5MoSiV1(AISI-H13),它是一种热作模具钢,具有良好的热稳定性,高的疲劳抗力和良好的韧性,广泛用作温热挤压的模具材料。坯料与模具间的摩擦类型选用剪切摩擦,由于是温挤压,摩擦系数设为0.25,热传导率设为 8N/(s窑mm窑℃)。本文采用的是双向等速复动成形技术,上下凸模挤压速度均为 10mm/s,增量步时间设为 0.002s,模拟步数为 725 步。

3.2温挤压成形过程与载荷行程分析

通过多次数值模拟试验,不断调整参数尧改进三维造型模具,最终得到了符合设计的数字化锻件,其模拟成形效果如图 2 所示,整个成形过程的挤压力变化如图 3 所示。十字轴的温挤压成形过程主要分为四个阶段,每个成形阶段的特点为院①镦粗变形阶段院坯料在模具中受两端冲头同时挤压发生镦粗变形,镦粗的坯料填满了与凹模筒壁的间隙,金属与凹模大面积的接触产生了较大的摩擦力。同时,坯料中段的金属发生径向流动。如图 4(a)所示,当圆柱体坯料侧面部分鼓成较为完整的球体时此阶段结束。如图 3 所示,这个阶段挤压力增长较快,但数值不大。②轴肩成形阶段院随着冲头继续挤压,坯料侧面的金属流入轴颈腔内,但该部分金属没有与凹模接触,阻力较小,金属流动均匀且稳定。如图 4(b)所示,当金属基本充满大轴颈型腔形成四个轴肩时此阶段结束。如图 3 所示,这个阶段挤压力增长缓慢。③ 轴颈充填阶段院轴肩成形后,凸模继续将金属向小轴颈型腔挤入,大量金属与凹模壁接触,产生巨大的摩擦阻力,且小轴颈型腔口较小,金属流动阻力增大。如图 4(c)所示,当小轴颈型腔基本充满时此阶段结束。如图 3 所示,这个阶段挤压力迅速增大。④充满余腔阶段院如图 4(d)所示,凸模行程即将结束,此时的坯料对模具的张模力达到最大,且金属与模具的摩擦力达到最大,边角成形比较困难。在此阶段挤压力急剧上升,最终达到最大值。

3.3结果分析与优化

通过对模拟实验所获得的结果分析,对成形工艺方案提出以下几点补充与改进院(1) 十字轴温挤压温度由 初定的 750℃ 改为780℃,挤压力由 392kN 降为 364kN,成形阻力降低,金属流动性更好,成形效果更佳。(2) 在模具升温后,根据计算,4Cr5MoSiV1 的强度无法满足40Cr钢在温挤压过程中凸模的受力情况,所以凸模材料采用高速钢 W9Mo3Cr4V。凹模尧顶杆与压力板等承受的载荷较小,均可采用4Cr5MoSiV1,而上下模板可采用强度尧硬度更小的40Cr。(3) 由图 3 可见,载荷在成形过程中不断增加,因此凹模应设计成组合式结构,使其受力合理分布。在凹模加工时,在轴肩与筒壁连接处设计R1的过渡圆角,降低金属的流动阻力,减小对凹模的磨损,提高凹模的使用寿命。(4) 凸模的轴向承载力即为十字轴的成形挤压力,由图 3 所示,最大挤压力约为 364kN,实验室提供的型号为 THP32-315F 的 3150kN 四柱液压机可作为成形加工设备。液压机只需承担挤压力,张模力由模具的锁模机构承担。

4、模具设计与工作过程

本文设计的模具如图 5 所示,采用浮动的上凹模与浮动的下凹模对合结构,用钩子锁模。上下凹模工作部分均采用了组合式,模具闭模高度为 340mm,模具外形尺寸满足所选设备装模尺寸。模具工作的简要过程为院将坯料放在下凹模与下冲头形成沉孔内,坯料靠孔腔壁自然定位。上模随压力机滑块下行,下模的导柱导入浮动上模板上的导套,上凹模与下凹模对合,形成封闭模腔,同时钩子在小弹簧作用下向内转一个角度,钩住垫块,将上尧下凹模锁住。上模继续下行,带动下凹模尧浮动下模板和钩子一起向下浮动,大弹簧被压缩,上冲头将沉孔内的坯料挤入型腔。当上模达到下死点时,变形金属充满型腔,挤压结束。上模抬起,在开始阶段钩子尚未打开,浮动下模板尧下凹模和钩子随上模上浮,当钩子尾部被挡板挡住时,随着浮动下模板继续上浮,钩子被打开,上尧下凹模分开,浮动上模板和浮动下模板上升至各自的极限位置。十字轴留在上凹模或下凹模中,由上顶杆或下顶杆顶出。需要注意的是院温挤压前,需对凸模和凹模工作部分采用喷灯进行预热,预热温度约 300℃,温挤压过程中,模具温度将达到 500~600℃,连续工作时硬度急剧下降,可能导致加工过程不能继续,在温挤压过程中需采用喷雾装置将冷却液喷向凸凹模工作部分进行冷却,使温度降低。

5、结论

模具设计论文篇6

手机翻盖通过转轴实现,转轴孔与模具的脱模方向垂直,其成型必须进行侧面抽芯,由于此处位置狭小,结构上受到种种限制,脱模较为困难。合理的侧抽芯机构设计应在使转轴孔可以顺利抽芯脱出并保证塑件成型生产效率的前提下,尽量简化模具结构,降低加工难度,便于日后的注射生产和模具维护脱模[4]。在总结同类产品模具设计经验的基础上,考虑采用斜导柱驱动的定模滑块内侧抽芯机构来成型转轴孔并完成脱模,由2个滑块分别成型相对的转轴孔,中间共用1个楔紧块,如图3所示。开模时,由于橡胶型面分型,楔紧块21由2个M6×12的沉头螺钉固定在面板上,而滑块6、滑块18和压条33、34随A板19往动模侧移动,开模力通过斜导柱4作用在滑块上,迫使滑块6、滑块18分别沿着楔紧块的2个斜面以及压条和模板形成的导滑槽往内往下运动,直到小拉杆23限位A板,从而完成转轴孔的侧抽芯过程。

2搭扣的侧抽芯设计

该手机外壳共有7个内扣,采用斜顶机构成型并脱模。斜顶也叫斜销、斜方,是利用顶针板顶出的垂直运动转换成水平运动以处理制品内部倒扣的机构,主要由斜顶本体和固定部分组成。斜顶角度、针板顶出行程和倒扣水平脱模距离之间的关系如图4所示。斜顶角度和顶针板顶出行程的确定应以保证倒扣水平脱模为依据。模具成型零部件结构如图5所示,其中内凹搭扣的斜顶1如图6所示。由于斜顶较小,斜顶单边开槽单边导滑。手机外壳共有外侧搭扣5个,加上外侧转轴孔均须滑块外侧抽芯机构成型。搭扣的侧抽芯排布如图7所示,共设有3个动模滑块机构。由于扣位尺寸较小,采用滑块镶针成型方便加工和维修,用螺钉将滑块镶针固定在滑块上。

3顶针和模仁设计

手机外壳底面筋位骨位窄细并纵横交错,适合用扁顶针。顶针和斜顶的分布集中于手机外壳边缘处,为了便于型芯模仁的加工、装配与维修,采用镶块式的组合式型芯模仁,如图8所示。这样既能简化加工过程,缩短加工时间,又有利于排气。

4模具整体设计

手机外壳模具整体成型零部件结构如图5所示,2D总装图如图3(a)所示。高温熔体注射入型腔后,经过保压冷却,模具首先在A分型面分模,取出浇注系统废料并完成2个内侧转轴孔定模滑块的侧抽芯,由图3(a)中小拉杆23限制分模距离。接着模具在B分型面分模,完成图5中滑块3、滑块4、滑块5动模滑块的侧抽芯,由图3(a)中固定在面板上的限位板32和限位螺钉31控制分型距离后,顶出机构顶针和斜顶开始动作,完成内扣的侧抽芯并将产品推离型芯完成脱模过程。合模时,顶出机构由复位杆10和弹簧复位。

5结语

模具设计论文篇7

1.1模具结构及工作原理

根据上述确定的工艺方案,设计了如图3所示的落料-冲孔-拉伸复合模。

模具工作过程为:坯料送人,上模下行,落料-拉伸凸凹模6、凹模4及冲孔凸模11、拉伸-冲孔凸凹模13分别与坯料接触完成落料和冲孔,压机滑块继续下行,落下的带孔圆形毛坯随即被落料一拉伸凸凹模6、拉伸-冲孔凸凹模13的相应拉伸工作部位拉成椭圆,随着拉伸完成,压机滑块上升,拉伸好的半成品椭圆盖分别被卸料块12、顶料板14推出各自拉伸工作零件型腔。

图4为设计的零件整形修边复合模结构。

模具置于压力机工作台面上,压机滑块上升,模具开启,上、下模脱离接触,卸料板6通过顶料杆7在压机弹性缓冲器的作用下上升至凹模4型腔中适当位置。此时,将椭圆盖半成品置于凹模4型腔中,完成零件的定位。

当压力机下移,整形凸模or首先进人拉伸好的椭圆盖半成品内腔,随着压机滑块的下行,整形凸模10与凹模4共同作用开始对半成品椭圆盖的外形进行整形,当卸料板6降至极限,椭圆盖外形整形完成,此时,斜楔1左右斜面首先与模具中左右布置的四把小切刀8上的斜面接触,在斜楔11的斜面作用下,小切刀8与凹模4共同作用,将零件端面的废边裁剪成两段,当剪切即将完成时,斜楔n前后斜面随着压机滑块的下行,开始与模具中前后布置的两把大切刀13上的斜面接触,在导向杆14的导向作用下,大切刀13开始沿模具前后方向滑移,与凹模4共同作用对椭圆盖的端面进行前后方向的剪切,直至椭圆盖前后端面需修边的废料被完全裁剪,与零件完全脱离。当压机滑块上升,斜楔11前后斜面首先与模具中前后布置的大切刀13上的斜面脱离接触,大切刀13在弹簧巧弹力作用下沿着导向杆14的导向轨迹得到回复,随着斜楔1左右斜面与模具中左右布置的四把小切刀8上的斜面脱离接触,小切刀8在弹簧9弹力作用下沿大切刀上开设的回复轨道也得到回复。当压机滑块继续上升,整形凸模10离开椭圆盖的内腔,完成切边的椭圆盖在顶料杆7的作用下被卸料板6推出凹模4的型腔。至此,零件的切边工序全部结束。压力机转人下一个工作循环。

1.2设计要点

(1)图3中的落料一拉伸凸凹模6、拉伸一冲孔凸凹模31具有拉伸、落料或冲孔的双重作用,件6外圈为落料凸模,内型腔为拉伸凹模型腔,件31中的外形为拉伸凸模,内孔为冲孔凹模,落料及冲孔部分尺寸分别保证与凹模4、凸模11的单面间隙为.009~0.12mm,拉伸部分保证两零件间的尺寸单面间隙为3.1~3.2mm。

(2)落料-冲孔-拉伸复合模工作时,须保证拉伸在落料及冲孔完成之后进行,以利于材料拉伸时的有序流动。考虑到装饰盖拉伸高度较大,模具中相应的工作零件也较厚,为减少模具材料成本,在其工作零件上设置采用Q253-A制造的垫块5及下垫块16来满足要求。

(3)图4所示模具中,切刀设计成两组,一组为小切刀8,另一组为大切刀13。整个零件切边分两步完成,即:斜楔11的左右两斜面首先单独与4块小切刀8接触,对零件长轴方向需裁剪部分进行修边,同时将废料切成两部分,随后,斜楔1与两组大切刀13的斜面接触,推动大切刀13沿零件前后方向滑动,由于小一切刀8分别安装在两组大切刀13左右的定位滑槽中,因此也同时、同步随同大切刀13共同移动,直至将零件椭圆短轴方向的废边切除。斜楔11、小切刀8及大切刀12斜面间的角度均取305,以保证相互间斜面对称一致。

(4)图4所示模具中,端面切边间隙由凹模4及整形凸模10的高度控制,切刀与凹模保证间隙.009-0.12mm,若间隙太大,易造成切口不平整,若间隙太小,则会造成切刀的卡滞。

(5)在整形修边复合模中,大切刀13的前后滑移通过与整形凸模01滑动联接的导向杆14进行定位、导向,小切刀8安装在大切刀13中,其滑移过程中的导向及回复均依靠大切刀13中开设的滑槽提供,大、小切刀滑移后回复的动力分别由各自弹簧9、巧压缩后储存的弹力提供。

2结束语

模具设计论文篇8

为确保模具设计与制造专业人才培养模式具有科学性和实用性,首先组织专业教师对相关模具企业的人才需求情况开展深入调研。通过现场走访、问卷调查,了解企业对模具设计与制造专业岗位能力的要求和对岗位职业技能的要求。在对调研信息进行合理梳理的基础上,形成企业调研报告,制作出模具设计与制造专业职业岗位能力调查分析表,进而制订出模具设计和制造专业人才培养方案。结合企业专家意见和建议,制定出“以学校培养为基础,以校企合作、工学结合为抓手”的教、学、做一体化的“n+0.5+0.5”工学结合人才培养模式。其中n是指学生根据学习层次不同在校通过2~3年时间完成职业核心能力课程、专业基本技能课程和专业核心技能课程的学习;第一个0.5是指第4或5学期,安排学生进行工学交替,在企业中提升专业知识和技能;第二个0.5是指最后一个学期在校外实习基地进行顶岗实习,强化职业技能训练,培养综合职业素质。

二、构建基于典型工作任务的一体化课程体系

通过多层次、多渠道的校企间交流研讨和调研,对模具行业的人才结构现状、行业发展趋势、人才需求状况、职业人才标准、职业能力要求等方面获得充分的认知。聘请企业技术专家参与课程建设,充分利用合作企业工程技术人员的技术优势,参与模具专业课程体系的开发,设置与企业实践相衔接的实训教学模块,构建基于典型工作任务的一体化课程体系,同企业共同制订完成模具设计与制造专业教学模块、教学计划和授课计划。通过清晰的理论教学和实践教学(职业技能训练)两个平行并列体系,我们制定了模具设计与制造专业教学标准,整个教学内容和教学环节的设置充分体现学生综合职业能力的培养。

三、完善一体化教室建设,实现场景教学和岗位教学

根据模具设计与制造专业一体化课程体系的教学要求,进行一体化实训教室的建设,实现各模块教学任务的一体化教学。一体化实训教室建设主要包括:一是建设模具设计及三维造型技术实训教室,保证了Mastercam课程教学、模具设计与制造、数控仿真加工等课程的教学。二是建设精密检测技术实训教室,实现精密测量技术的场景教学。三是建设电加工实训教室,保证电加工教学模块的顺利开展。四是建设金工实训教室,满足铣床加工、磨床加工实训的岗位教学要求。五是建设模具钳工综合技能实训教室,突出学生模具制造能力方面的综合训练能力的培养。

四、外引内培,优化教师队伍结构

对内有计划地安排专业教师参加专业进修和企业实践锻炼,开展与专业教学相关的实训技能专项培训和讲座,组织开展三维设计软件使用与开发、精密检测与逆向工程、电切削加工、模具零件表面抛研加工、激光焊接技术等专项技术培训。对外从企业引进具有专业实践经验的企业工程技术人员、行业专家,从高校引进青年教师,充实教师队伍,优化教师队伍结构。

五、建立形式多样的校企合作模式

按照校企共建、互利互惠、双向互动的原则,对合作企业加以遴选,同优秀企业建立深层次的校企合作关系。成立校企合作委员会,定期召开模具设计与制造专业校企合作年会,通过工学交替、顶岗实习、订单培养、企业冠名班等模式,推动模具设计与制造专业教、学、做的统一。加强对校企合作运行情况的督导与管理,根据学校教学进度与企业用工的要求,制订校企合作管理办法与质量评估方案、校企合作委员会章程、学生下厂顶岗实习管理制度等指导校企合作健康开展。

六、结语

模具设计论文篇9

系统构架采用CATIA平台的CAA技术开发的系统,包括4个功能模块,为了保证系统的功能明确、可扩展性强,采用3层系统结构,如图2所示,依次为物理层、数据层和技术层。物理层:应用CAA提供的各种API接口程序,实现在CAITA平台上系统的开发。数据层:用户提供包括新产品工艺数模、模具模板,模板匹配参数文件以及模具结构设计检查表在内的必需数据,为新产品模具的快速设计做好数据准备。技术层:系统以参数化模板为核心,采用向导式模具自动化设计工具,提供了以模具参数自动更新为核心的包括新产品数模导入、模具参数化设计、标准件定位和模具检查在内的4个功能模块,完整地实现了在已有模板基础上快速进行模具“再设计”的流程。其中,在新产品数模导入模块,应用数模自动替换技术完成工艺数模的替换更新工作,为后续的参数化设计打好基础;参数化设计模块通过参数自动更新技术,利用用户提供的参数文件和交互界面,对各类参数进行快速批量更新;在标准件定位模块,应用动态测量技术,实现标准件的快速定位;在模具检查模块,根据用户提供的模具检查表,在CATIA环境中对模具逐项进行检查,并自动输出审核结果。

2关键技术

2.1新产品数模自动替换

数模自动替换功能基于CATIA的“”(Pub-lication)命令,此命令主要用于参数化装配建模(ParametricAssemblyModeling)[5],使用命令可以智能地实现组件之间的替换。元素的几何特征可以根据用户需求进行修改变化,但只要名称不改变,其外部引用就会根据元素的变化而重新构建“”与“外部参考”之间的关联关系。命令实现几何元素之间的关联,由的名称和原几何元素所在零件在装配环境下的实例名称共同决定。因此即使将整个Part文档替换,只要保持新Part在装配环境下的实例名称和元素的名称均与原Part一致,那么几何元素之间依然有效关联,并会根据当前几何特征的变化智能地构建出全新的几何特征。基于命令的关联原理,程序实现数模自动替换的过程如图3所示。用户将提供的新产品数模的模具设计必需元素(如板料轮廓线、分模线、曲面等),按照已导入模板的要求进行,保证元素名称的一致。程序自动获取数模在装配体中的实例名称,赋给替换后的新产品零件。各个外部参考节点根据新的元素几何特征进行相关特征的关联重构,完成模具产品型面的自动替换。对于已更新的型面模型,可以实现各个子节点的重复替换。

2.2参数快速批量更新

2.2.1构建动态交互界面交互界面的动态构建基于用户提供的与模板相匹配的参数文件。参数文件的格式如表1所示,依次为参数所属类别、参数类别表示图片、参数名称及参数所在部件。参数类型和每一类型包含参数的个数由用户自己确定,这种方法不受模具类型的限制,也为初级设计人员提供良好的引导。一套完整的参数化模板拥有庞大的参数信息,用户将模板中的参数进行分类整理,写成与模板匹配的参数文件,程序根据文件驱动生成动态交互界面。即当用户选择不同特征类别时,程序自动在交互界面中显示表示该类别的图片和所包含的所有参数,并根据参数所在部件获取其在特征树上的数值,达到根据类别的不同,智能地动态构造交互界面的目的,方便用户一次性修改某类别的所有参数。例如,用户提供如表1的参数文件,在构建的交互界面中分别选择“特征类别一”和“特征类别二”时,动态参数区分别如图4a和4b。以拉延模为例,可以模具主控参数作为特征类别一,所属2个参数为模具总体高度、总体长度;以导板参数作为特征类别二,所属3个参数为导板长度、宽度、厚度。修改时以类为单位,每次批量修改此几何特征类所属参数的数值,方便快速有效更新。

2.2.2参数批量修改CATIA中参数化过程的实现基于知识工程顾问模块提供的公式(Formulas)、规则(Rules)等方法,即用一组参数约束该几何图形的结构尺寸和零部件的特征。参数与设计对象的尺寸和特征有对应关系,当赋予不同的参数值时,可通过函数关系公式和尺寸驱动达到新的目标几何形状和特征[6]。具体设计时,用户根据新产品的数模型面特点,通过交互界面,对参数值按类别进行一次性批量修改,利用参数驱动重构原理实现模板相关几何特征的更新。借助CAA中CATIProduct,CATIParmPub-lisher,CATICkeParm等几个主要接口提供的函数,程序将用户在对话框中输入的目标参数值自动更新到模板特征树上相应的参数节点下,参数值及引用到该参数值的外部参数值同步更新,通过相应的函数关系公式完成几何特征重构(见图5)。用户根据需要,完成参数文件中所列出参数的更新,最终完成新产品模具的设计。

2.3动态测量

测量距离时,用户通过交互界面选择几组目标测量面,程序自动获取这几组面所在零件的位置矩阵。一般平面上的标准件,其局部坐标系与全局坐标系一致。对于斜面上的标准件,为了使移动功能更符合实际需要,使其可以沿斜面方向移动,程序将其局部坐标系从位置矩阵给出的坐标系原点O1,平移至标准件表面点W处(用户选择W),移动时的方向以该局部坐标系为准(图6)。移动时,程序根据用户选择的移动方向和设定的移动距离构造移动矩阵,与标准件当前的位置矩阵作CATMathTransformation函数的乘积运算,并以运算结果定位标准件的新位置。例如,将某标准件从其当前位置沿向量(a,b,c)移动iDis个单位,则:移动后位置矩阵=当前位置矩阵×移动矩阵,如式(1):移动过程中,程序时时获取标准件当前位置矩阵,并分别测量几组面当前最小距离显示在屏幕上,以便用户参考。在用户选择测量面之前,可根据经验在交互界面设定每组面之间的最小距离值。移动过程中,程序动态测量几组面的最小距离,如果测量的最小距离小于用户设定的最小距离,则程序自动判断后,以红色显示该距离以示提醒,方便用户对标准件的位置及时做出调整。图7为某型号平衡垫块在移动时的距离显示和相应的部分对话框界面。

3应用实例

利用本系统对某汽车的某覆盖件零件数模(图8a)进行模具设计。首先在新产品数模导入模块,选择合适的模具模板(图8b),保证该产品与模板中型面零件的元素名称保持一致的前提下,导入该产品数模零件,完成新产品型面替换工作。在参数化设计模块,导入用户提供的与模板参数相匹配的参数文件(如图9a),用户根据新产品面的特点,在交互界面中选择类别列表中不同的类别,按类别合理修改界面下方参数区动态显示出的参数值,完成模具参数化设计工作。如图9b和9c分别是修改模耳吊座和导板参数时动态显示的交互界面。在调整好的模具主体上对标准件进行重新定位,注意屏幕上红色显示的距离数值(如图7),移动过程中避免与其他零件的干涉。最后在模具结构设计检查模块,导入用户提供的模具结构设计检查表,在CATIA环境中对模具进行逐项审查,并保存审查记录,程序自动输出审核结果。经过以上4个模块流程,在模具模板上快速完成相似结构数模的模具设计,有效减少设计人员的工作量和设计时间。

4结语

模具设计论文篇10

改进后的工艺方案:下料模具成形(完成压筋与折弯)拼焊。该方案需三道工序即可完成一个制件的制作,算上工序与工序之间的输送,制作出一个保险杠大概需2h。经分析,得知方案二工序少、辅助工时及制作工时短、效率高,市场对公司该车型需求量大,其余车型经常需使用液压机、折弯机进行成形,采用改进后的方案适合我公司现阶段的自卸汽车批量生产,也符合公司的统筹规划,并且该方案已在生产实践中取得较好的效果。

2.模具结构及特点

本模具为折弯压筋复合模,采用弹性顶料装置和上出料方式。模具结构如图2所示,上模刃口15是折弯工艺的凸模,是压筋工艺的凹模,下模刃口10、14是折弯工艺的凹模,凸模是压筋的凸模,该模具采用导向板进行导向。

3.模具设计

保险杠成形由折弯压筋两个工序制作而成,钢板Q235-A为软材料,在弯曲时应有一定的凸凹模间隙,工件尺寸均为自由公差,按IT12级选择尺寸公差即可,角度按照GB/T15055—2007冲压件未注公差尺寸极限偏差m级选择,可知:角度为90°±45''''。该钢板的允许最小折弯半径rmin=0.5t=1.25(mm),零件弯曲半径r=15-2.5=12.5(mm)>1.25mm,故不会弯裂。计算零件的相对弯曲半径r/t=12.5/2.5=5,可知弯曲变形后角度回弹较小,弯曲半径变化也不大,所以可通过在凸模上采取补偿且取较小间隙即可达到要求。保险杠展开尺寸:3102mm×555mm,保险杠下料展开如图3所示。

4.模具主要工作部分零件设计

(1)关于折弯模具部分:为防止回弹,在上模刃口的左右两侧留2t作为折弯直边,从2t点到压筋模处采用斜边结构,两侧1mm高度差斜向上,同理在凸模处采取两侧2t宽度采用直边,从2t点到压筋模处采取斜边结构,即两侧1mm斜向上,此凸模是压筋成形的凸模(见图4),对于折弯工艺是作为顶料板的作用,中间高、两侧低;上模座两侧各缩进10mm,以防止回弹板料往外侧扩。间隙在最初设计时按大值设计,在调试模具时可通过在折弯凹模处塞铜皮以达到调整折弯模具间隙的目的。(2)关于压筋模具部分:凹模比凸模进入的深度深1mm,以抵消压筋回弹。

5.结语