数据挖掘论文范文

时间:2023-04-05 01:35:37

导语:如何才能写好一篇数据挖掘论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数据挖掘论文

篇1

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

3.聚类分析。聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

4.决策树方法。决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

5.神经网络。神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为有指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。人工神经元网络模拟人脑神经元结构,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。

6.遗传算法。遗传算法是一种受生物进化启发的学习方法,通过变异和重组当前己知的最好假设来生成后续的假设。每一步,通过使用目前适应性最高的假设的后代替代群体的某个部分,来更新当前群体的一组假设,来实现各个个体的适应性的提高。遗传算法由三个基本过程组成:繁殖(选择)是从一个旧种群(父代)选出生命力强的个体,产生新种群(后代)的过程;交叉〔重组)选择两个不同个体〔染色体)的部分(基因)进行交换,形成新个体的过程;变异(突变)是对某些个体的某些基因进行变异的过程。在数据挖掘中,可以被用作评估其他算法的适合度。

7.粗糙集。粗糙集能够在缺少关于数据先验知识的情况下,只以考察数据的分类能力为基础,解决模糊或不确定数据的分析和处理问题。粗糙集用于从数据库中发现分类规则的基本思想是将数据库中的属性分为条件属性和结论属性,对数据库中的元组根据各个属性不同的属性值分成相应的子集,然后对条件属性划分的子集与结论属性划分的子集之间上下近似关系生成判定规则。所有相似对象的集合称为初等集合,形成知识的基本成分。任何初等集合的并集称为精确集,否则,一个集合就是粗糙的(不精确的)。每个粗糙集都具有边界元素,也就是那些既不能确定为集合元素,也不能确定为集合补集元素的元素。粗糙集理论可以应用于数据挖掘中的分类、发现不准确数据或噪声数据内在的结构联系。

8.支持向量机。支持向量机(SVM)是在统计学习理论的基础上发展出来的一种新的机器学习方法。它基于结构风险最小化原则上的,尽量提高学习机的泛化能力,具有良好的推广性能和较好的分类精确性,能有效的解决过学习问题,现已成为训练多层感知器、RBF神经网络和多项式神经元网络的替代性方法。另外,支持向量机算法是一个凸优化问题,局部最优解一定是全局最优解,这些特点都是包括神经元网络在内的其他算法所不能及的。支持向量机可以应用于数据挖掘的分类、回归、对未知事物的探索等方面。

事实上,任何一种挖掘工具往往是根据具体问题来选择合适挖掘方法,很难说哪种方法好,那种方法劣,而是视具体问题而定。

三、结束语

目前,数据挖掘技术虽然得到了一定程度的应用,并取得了显著成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将在更加广泛的领域得到应用,并取得更加显著的效果。

篇2

近年来,我国的部队管理体系已经逐渐向着自动化方向发展,部队中各个部门都建立了一定的管理体系,也逐渐脱离了人工管理模式,实现信息现代化模式,很大程度提高了部队工作的效率,但是由于外界因素与经济发展的多样化以及人们的思维模式也在不断改变,从而出现了一些新问题,使得部队管理体系存在着一定问题:第一、关联性小、系统比较独立。现阶段,部队采购食品系统的作用以及目的比较简单,思维面也比较窄,也就是说按照清单进行食品采购时,不能充分考虑到采购人员的健康、效率等问题,不能达到最优化采购方式,因此就变得比较独立;第二,数据功能简单,可靠性不高。现阶段,部队食品采购数据只是对采购的种类与过程进行简单记录,时间一久,就会被损坏或者丢失;第三,数据分散不集中。现阶段与部队人员健康、起居饮食、训练相关的数据分散在不同系统中,使得数据变得不一致、不完整,仅仅只能进行简单查询、汇总、统计等工作,不能对数据进行多角度分析、关联等,不能为采购食品提供很好的政策支持。针对部队采购存在的问题,可以利用数据仓库以及数据挖掘技术建立多为数据库,利用数据挖掘进技术对食品采购数据进行挖掘。依据现阶段部队的实际发展情况,建立一套新数据库的成本代价比较高,因此,选用了目前社会上通用方法,对已经存在的数据进行一定改革与拓展,合理优化系统数据,成为新的数据库。并且选取对数据挖掘影响比较大的系统性分析,包括训练系统,食品采购系统、人员管理系统以及医疗卫生系统。针对食品采购采购系统建立数据模型。

二、在部队食品采购系统中的应用以及其价值评价

在部队食品采购系统实际应用工程中,其实可以运用MicrosoftSQLServerAnalysisServices来对数据进行分析,并且在数据挖掘过程中对多维数据进行描述与查找起到一定作用。因为多维数据比较复杂,增长的也比较快,因此,进行手动查找是很困难的,数据挖掘技术提供的计算模式可以很好的对数据进行分析与查找。在建设部队食品采购仓库数据的时候,数据内容主要包括了人员的健康、兵员的饮食以及训练等,进行数据挖掘主要包括以下内容:第一,把每个主题信息数据进行收集、汇总、分析等,对人员情况、健康、饮食、训练等进行合理分析;第二,多维分析数据信息。根据部队的实际情况,利用数据挖掘技术对部队人员健康、饮食、训练等数据信息进行多维分析,其中包含上钻、切片、下钻等;第三,挖掘健康与饮食之间的内在关系。根据数据库中许多面向主题的历史数据,采用数据挖掘技术进行分析与演算得到部队人员的训练和健康情况与部队饮食之间内在关系,以便于为部队食品采购提供合理的、有效的保障,从而提高部队整体人员的健康水平、身体素质以及训练质量,对提高我国部队战斗力有着深远的意义。

三、结束语

篇3

物联网数据挖掘处理功能需要在Hadoop平台和Map/Reduce模式基础上进行,对此需要划分2个不同层面的操作流程。

1.1Hadoop平台的具体操作流程

(1)对物联网中的RFID数据进行过滤、转换、合并的处理,并在分布式系统HDFS中保存PML文件形式的数据。同时,可采取副本策略来处理PML文件,在同一机构的不同节点或不同机构的某一节点上保存PML文件中的2-3个副本,进而可实现对存储、处理、节点失效问题的有效解决。

(2)在执行任务过程中,创建和管理控制是Master(主控程序)的主要工作,当Worker处于空闲状态时会接收到有关的分配任务,需与Map/Reduce互相合作实现操作处理,处理的最终结果由Master来归并,同时将反馈结果传送给用户。

1.2Map/Reduce的具体操作流程

(1)根据参数在Map/Reduce思想指导下对输入文件进行分割处理,使其细化为M块(16-64M大小范围)。

(2)Master、Worker、Map操作(M个)、Reduce操作(R个)是构成执行程序的主要部分,其中Map/Reduce的处理任务会由Master伴随物联网的快速发展和广泛应用,人们可以有效利用物联网来实现信息交换和通信的目的,不过物联网海量数据的日益增多大大降低了物联网服务的质量。在此,对基于Apriori算法进行物联网数据挖掘研究。摘要将其分配给空闲的Worker。

(3)在处理Map任务时,Worker会读取处理中的数据,并向Map函数传送<key,value>,而后产生中间结果在内存中缓存且定时向本地硬盘传送。此外,依据分区函数将中间结果分割为R块区,利用Master将本地硬盘接收到的数据位置信息传送给Reduce函数。

(4)ReduceWorker根据Master所传送的文件信息采用远程读取方式来操作,以在本地文件中找到对应的文件,对文件的中间key进行有序排列,并利用远程发送信息给具体执行的Reduce。

(5)ReduceWorker依据key排序后的中间数据向Reduce函数传送与key对应的中间结果集,而最后的结果需采取最终输出文件来进行编写。

(6)当Map、Reduce的任务全部完成之后,MapReduce将回归到用户程序的调用点处,同时以Master对用户程序进行激活。

2基于Apriori算法的物联网数据挖掘

2.1Apriori数据挖掘原理和操作流程

Apriori是提升物联网数据挖掘功能的一种最有效算法,其原理是在K项集中以逐层搜索迭代的方式来探索。具体的操作流程包括:

(1)扫描数据集以生成频繁1-项集L1。

(2)通过L1来探索频繁项集L2,采用不断迭代的方式来持续探索,直至频繁项集是空集。

2.2K次循环搜索后的数据挖掘流程

当已完成了K次循环搜索时,还需要进行2个数据挖掘的操作流程:(1)在LK-1生成CK(候选集)之后,开展JOIN操作。(2)支持度统计和剪枝的操作依据Apriori性质来进行,而后使得CK生成LK(频繁集)。为提高物联网数据挖掘的效率,节省系统的时间和内存消耗,在Apriori算法基础上还需要借鉴和移植云计算平台的分布式并行计算性质。如此以实现Hadoop架构的建立,在扫描数据库查找频繁项集中得到的并联规则需要存储在Hadoop架构中。同时,为取得各个计算节点上的局部频繁项集,各个DataNode节点需要经历并行操作的扫描处理,并使用Master来统计和确定实际全局的支持度、频繁项集。

2.3Apriori算法Map/Reduce化的处理流程

上述提及基于Apriori算法的物联网数据挖掘需借助于Map/Reduce模式,其数据挖掘功能的实现还应Map/Reduce化Apriori算法。主要的处理流程包括:

(1)用户提出挖掘服务的请求,且由用户来设置Apriori所需的数据,如最小支持度、置信度。

(2)当Master接收到请求后,通过NameNode来进行PML文件的申请,而后逐步完成访问空闲节点列表、向空闲的DataNode分配任务、调度和并行处理各个DataNode需要的存储节点算法。

(3)运用Map函数来处理每个DataNode的<key,value>对映射、新键值对,以CnK(用1表示每一个CnK的支持度)来表示所产生的一个局部候选频繁K项集。

(4)通过Reduce函数来实现调用计算,对每个DataNode节点上相同候选项集的支持度进行累加,以产生一个实际的支持度,将其与最小支持度(用户申请时所设置)进行比较,进而用LnK表示所生成的局部频繁K项集的集合。

(5)对所有的处理结果进行合并,从而实现全局频繁K项集LK的生成。

3结论

篇4

合肥市是安徽省省会,土地面积1.14万km,常住人口755万,其中城镇人口486万,农村人口266万人。依据合肥市主城区用地规划图以及合肥市2014年遥感影像图,确定本文研究区为合肥市市辖区、功能区以及肥西、肥东县的副城区。根据Voronoi图的理论,在ArcGIS中生成现有研究区范围避难场所的责任区划分。其中,老城区的责任区分布较为均匀,而其他区域由于应急避难场所数量少且较为分散,均出现较大面积的多边形,且形变剧烈,说明某些应急避难场所分担的服务范围较大,分配不合理,需要进一步合理规划。

2空间数据挖掘应用模型的实现

2.1模型设计

城市空间布局及发展具有规范性,因此,对避难场所进行选址需要遵循城市发展战略及人口增长规律。

1)数据挖掘预处理。对研究区各行政区划的人口数据、面积、土地利用类型、已建应急避难场所等数据进行统计,建立txt文本,进行空间数据挖掘,创建数据字典。

2)数据矢量化。在ArcGIS10平台中,以合肥市地图为底图,对行政区划进行数字化,并结合合肥市最新规划图及遥感影像图,对元数据进行矢量化,并编辑地物的属性,形成ShapeFile文件。

3)建立数据库。将空间数据中的属性信息录入属性数据库。

4)空间分析。结合矢量化的人口密度专题图和现有场地点状分布图,重点对服务区覆盖范围外人口进行分析,通过对空间数据进行缓冲区分析、栅格分析、重分类、叠加分析、地图运算等过程,确定应急避难场所综合评价方案,最终确定新场所地址。

5)可视化。根据最终新场所的ShapeFile文件,结合人口密度分布图,制作新场所分布图。

2.2文本及地理信息数据挖掘

1)地理空间特征提取。依据《安徽省应急避难场所分级技术标准(试行)》的场所分级和选址要求[1,2],从纸质地图、规划图、统计数据等地理文本中抽取符合条件的元数据。

2)地理数据分类。从挖掘后的地理空间数据中提取道路、土地利用类型、人口密度、新居民地等地物数据及各类地物的空间特征信息。

3)空间数据挖掘:对空间特征信息进行评价,将符合选址条件的用地数据以及影响避难场所选址的主要因素进行分类、提取,建立相应的空间位置、属性信息,并绘制矢量图层。

3数据库的设计与实现

研究模型的数据库由空间数据库和属性数据库组成,统一存放在关系数据库中,实现数据的统一管理。

1)空间数据库的设计与实现。将要矢量化的合肥市地图进行扫描,加载到ArcMap中,打开ArcCatalog,在目标文件夹下新建ShapeFile文件。通过对需要矢量化的地物进行分析,将现有应急避难场所归为点图层,将城市主、次干道、断裂归为线图层,将土地利用类型、河流、湖泊、人口密度、现有居民地等要素归为面图层。

2)属性数据库的设计与实现。在ArcMap中打开表,进行地物属性库的编辑,对照空间属性库表,分别添加地物的属性字段,并输入属性信息。

4应急避难场所的空间优化和选取

4.1影响选址的主要因素

本文依据《地震应急避难场所选址及配套设施要求》,对影响选址的主要因素进行分类、量化。

4.1.1场地的安全性

选址应具有地质、水文及自然环境方面的抗震安全保障。新建场地距离断层必须有一定的距离,利用GIS的缓冲区分析,建立断层的6层缓冲区,分别赋予不同的评价指标。

4.1.2现有避难场地

按照安徽省地震应急避难场所及配套设施要求,地震应急避难场所分为3类,其服务范围分别为5km、1km、0.5km。以此为标准,对研究区现有27个应急避难场所进行类型划分,并建立服务范围属性表。应用ArcMap的缓冲区分析功能,分别建立以5km、1km、0.5km为服务半径的缓冲区,生成服务范围矢量图,并转换为栅格图像,进行重分类。

4.1.3土地利用现状

新选址的区域覆盖合肥市主、副城区范围,城市区域用地多数被建设用地覆盖,其中有些地块不适于建造避难场地,例如工业用地。土地利用现状评价指标

4.1.4现有居民点空间分布

避难场地的位置距离居民点有距离限制。以居民点为研究对象,进行邻近区分析。对合肥市居民点进行以100m为层次的缓冲区分析,并把矢量数据转为栅格数据。

4.2空间数据挖掘结果的可视化

篇5

现在的网络购物深受广大网民的喜爱,它有着非常广泛的群众基础,在进行网购时一般有下面几方面的特点:

①有大量的成员,

②顾客可以在网络上对购买的商品发表看法从而影响到其他网民的看法,

③大量的购买数据也会为网民指明那个时间断的购物趋势,

④对于较好的商品,为了省事大多数网民会进行购买。而数据挖掘对于网络购物有着重要的意义,网络购物数据库储存了大量的数据信息,而这些数据信息依靠传统的统计分析方法很难做出准确的分析,但是通过网络数据挖掘我们可以对海量的数据信息进行科学的分析,他能同时搜索发现多种模式的信息,揭示隐藏的、不明显的、预料以外的数据,通过评估数据的特征、特性和规则,我们可以发现其中有意义的联系与趋势。这样对于网民在网购时做出准确的判断很有意义。

二、数据挖掘的网络购物现状

21世纪互联网成为了人们的联系沟通的重要工具,网络购物越来越流行,而想要在充满虚假的网络上面进行购物,就要有合适的方法与手段进行甄别。数据挖掘可以在一定的程度上发现网民购买商品数据的联系,找到它们之间的关联性,然后买家可以根据此来进行购买商品。在我国,数据挖掘应用于网络购物还处于试验的阶段,将它的理论基础转化为实践是具有一定的难度的,在进行数据挖掘时会遇到种种的困难,比如:网络购物数据库内的数据没有及时的更新,数据库中的信息不够完善,数据的利用率不足,人们对于数据挖掘技术的不信任等等。而且网络购物数据挖掘技术,它要么是对数据进行分析,要么是对网络关系进行分析,很少将二者综合起来进行全面的分析,这样也会影响到数据挖掘技术所分析出来的信息的准确性,很难对于网络购物的买家产生说服力。由于网络不能使用卡,以及网络宣传是的资质证明的可欺骗性及不完整,导致许多消费者的购买行为和网络购买欲望受限。对企业而言,资质证明是网上合法性和安全性的基本保障,资质证明的标示既有利于监管部门监督管理,又有利于消费者判别和选择。由于我国已有法律法规中没有明确规定在网页上必须标明表示哪些资质合法有效的证明,也没有明确规定这些证明应当标示于何种位置、以何种方式标示,而卡的使用是硬性的问题,可以推荐卡实施与支付宝相关的业务,为消费者提供更多的方便。应对已经消费了的顾客要进行有效的售后回访,在消费者确认收获的同时对消费者进行回访,试问对品的满意程度,在一段时间后对消费者提供使用回访,给消费者最满意的服务,让消费者成为网店的永久性顾客,同时让消费者周边的潜在消费者相信网络的可靠性。而且,据调查,目前大部分网上客服均采用QQ联系的方式设置客服体系,亦有部分网上建立了网页对话模式,但是消费者和师无法面对面沟通的问题就导致很多的消费者对于急需的问题无法解决,卖家可以设置关键字的自动回复设置,只要消费者输入相应的关键字就能得到相应病况的治疗品,而且对该情况的也有相对应的健康小常识介绍,这样就部分解决消费者的需求。如果可以设置“如果有消费者浏览网页,客服人员就能与其主动联系”这样的服务系统,即是消费者首先与客服人员联系,这样就能大大的增加消费者的数量,而客服人员无法及时发现消费者,这也就使网上提供学服务有所欠缺。例如:在网络上销售年轻人信任度高的品品牌,对网页的设计偏向于年轻、有个性、有活力的网页版面,设计简单的购物环节,将繁琐的购物环节都省略,设计简单、快捷的购物渠道。并且根据消费者的心理进行简单的消费促销,但要严格保证不减退消费者的对与的信任度。

三、总结

篇6

根据网络规划的要求,利用大数据可以从覆盖评估,干扰评估和价值评估三个维度建立基于大数据挖掘的LTE网络规划体系,通过对现网问题的全面、准确分析定位,预知LTE网络规划存在的问题,提升LTE网络规划的准确性。

1.1覆盖评估分析

良好的覆盖是网络建设的最基本要求,基站站间距过大,基站覆盖过远会造成部分地点盲覆盖或者室内深度覆盖不足;而站间距过小,重叠覆盖会带来较大干扰,同样影响用户感受,同时不必要的重复建站将会加大投资成本。理想的蜂窝网络结构应该在保证用户移动性的前提下使小区间的交叠区域处在一个较低的水平借助现网2G/3G实测数据,参考工参,扫频及MR等大数据,利用奥村-哈塔传播方程矩阵理论运算,根据不同频段自由空间传播模型损耗、模拟仿真覆盖及损耗矩阵,评估规划LTE网络的覆盖情况;同时构建贴合现网实际的小区传播路损模型,有效识别LTE网络的弱覆盖和过覆盖区域,实现“点、线、面”联合校准验证,获取真实、准确和全面的小区覆盖规划数据。

1.2干扰评估分析

干扰是影响LTE网络质量的关键因素,我们引入干扰贡献系数来评估无线网络重叠覆盖度。定义干扰邻区的能量之和与主小区的总能量的比值为干扰贡献系数,用其来评估主小区A,系数越大,说明该小区对外的干扰越大,需要整改的优先级越高。

1.3价值评估分析

传统规划主要从覆盖与干扰两个维度分析,不能完全识别出高价值站点,导致网络部署后出现建设偏离业务热点,超闲小区较多等问题。而基于大数据挖掘的LTE网络规划可基于话务热点、用户/终端及价值业务等多维度进行关联性分析。首先梳理出数据及话务热点、智能终端/数据卡渗透高区域,判定流量价值高的区域;其次发掘出数据业务使用率高,但实际速率低,话务需求被压制的区域;再次利用VIP/投拆用户列表导出数据业务投诉用户和VIP用户区域,更直观、有效的体现网络热点投诉、流量变化较大的重点小区数据,定位重要客户的高价值流量区域,聚焦影响用户感知的重要问题,发掘LTE潜在高价值区域,有效指导LTE网络规划效益,降低网络资源的管理成本。利用基于栅格的多维度价值得分评估体系,通过高流量小区选择,实现用户分布地理化关联,进行多维度地理化综合分析,得到多个小区构成的栅格的价值得分,得出高优先级建站区域。

1)统计各栅格流量、用户使用TD-SCDMA的速率、用户数量、终端分布、业务流量分布等数据,当某个栅格点上指标值大于全网栅格该指标平均值的k倍,即赋予该栅格价值点相应的分值。

2)栅格价值点相应的分值:栅格内指标值/(全网栅格点该指标平均值×k),k值建议为1.2,意义为在此栅格点的其中某一项因素大于该项因素的平均值的1.2倍,才会进行价值得分分析,小于该值则该栅格点的该项因素的价值得分为0。

3)单个栅格总得分=权重1×热点得分+权重2×速率得分+权重3×终端得分+权重4×业务得分…。

4)统计基站覆盖范围内包含的栅格数量以及各个栅格上的分值,最终输出规划基站的总栅格得分排序,排序高低反映了该基站的价值高低。

1.4评估分析流程

评估分析一般在待建站点资源收集后,按照价值高低,基于基站覆盖范围和受干扰影响程度,选择建站顺序。根据实际情况,可一方面利用2/3G旧站址,一方面建议增加符合合理网络结构的新站点,达到良好规划的目的。

2大数据处理思路

LTE规划过程利用收集到的大量数据,包括工参数据、性能数据、经分口数据、MC口数据、投诉数据、测试数据等六大项13类数据,从中提取有用信息进行分析。

2.1基于大数据的打包清洗

根据大数据删冗去错机制进行数据清洗(见图7),保持数据的准确性。在规划中首先实现数据去冗,对话统过期数据、工参多余字段集中去除;其次是数据去重,去除相同路段多次测试的数据,排除话统及性能相同的数据,保证数据唯一性;再次是数据纠错,结合数据特性,对统计异常、工参错误等数据进行纠错,保证数据区间在合理范围。

2.2基于大数据的关联聚合

根据数据的特征、变量等进行“数据降维”,从覆盖,干扰和价值维度对数据进行投影降维,简化分析数据的复杂度。同时运用强关联聚合、相近聚合、相关聚合等聚合模型进行“关联聚合”,比如在覆盖评估中将道路测试、路测扫频、用户测量报告等信息按照关联强弱聚合,在价值评估中将业务分布、用户分布、终端分布等信息按照比例进行关联聚合。具体来讲,以用户的地理位置为索引,关联其所在位置的信号强度,干扰情况,终端支持类型信息,业务信息以及所在位置的周围基站分布情况,周围环境情况,人群流动情况等等,建立基于时间、位置、用户、终端、应用等多维度的用户行为聚合模型。根据用户行为模型,分析筛选得到绝对静态用户数(静态用户定义为单用户在某小区有5天产生流量且每天在该小区产生流量占当天该用户总流量的70%以上,且产生的流量大于10MB/周)全省共计3.8万人,涉及5798个小区。根据用户在占用静态小区时上报的用户自身所在位置的经纬信息(理论上精度平均误差在55m)结合基站位置关联,发现定位2G/3G数据业务成熟度高的区域。通过精确定位不同用户上网的地理位置,同时关联静态用户终端网络制式信息,用户上网习惯和用户流量,引导4G站点规划,指导指导定向推送4G营销业务。

3应用情况

基于大数据挖掘的LTE网络规划研究在山东公司LTE网络一期网络规划中得到了广泛应用。通过高价值区域定位、干扰问题分析、覆盖评估等维度综合关联性分析,借助2G/3G现网实测数据实现了“点、线、面”联合评估,真实、准确、全面地对4G网络的价值流量、重叠覆盖干扰、弱覆盖等进行了评估,同时输出了LTE工参信息、站址建设优先级,站址地理化呈现等一系列规划结果。通过黑、灰、白名单规则判断,输出了LTE网络不建议规划的黑名单小区、通过相关优化调整后可规划灰名单小区、直接可共址建设的白名单小区,共评估一期工程规划小区60653个,发现低价值用户流量少的黑小区3433个;易产生干扰黑色小区5021个,灰色站点1265个;覆盖问题黑色小区543个,灰色小区3501个。通过规划质量的提高,降低了后续优化调整的难度,共计节约资金11766×0.3=3530万(注:每个基站年优化费用约0.3万),而且原来人工规划、勘察基站的效率大大提升,解放人力成本带来的直接经济效益75×10=750万(注:人力成本节约75人,含外包,年人均成本10万),降低了全省网络规划优化的管理成本。通过TD-LTE的大数据网络规划分析,有效指导了4G网络规划,按照以终为始、聚焦价值、提高投资收益、建设精品网络的目标,提升了4G网络规划的准确性、合理性。

4结语

篇7

对原燃料结算方式进行数据挖掘的目的是为了控制结算成本,采用的方法是根据超出我方检斤检质结算量属性对原燃料进行分类,构建原燃料结算控制模型。

2数据准备

数据收集:需要严格控制我方检斤检质的过程以作为判断的依据,同时尽可能多的从事物数据库中收集各种原燃料按不同结算方式所得到的结算量属性值。数据预处理:首先根据经验去掉明显有误的数据;其次根据原燃料结算方式,选择与数据挖掘相关的属性。数据变换:对数据进行相应的变换,从初始特征中找出真正有用的特征。在本次数据挖掘中原燃料属性主要包括:原燃料种类,供方检斤检质结算量,我方检斤检质结算量,供方检斤检质与我方检斤检质之间的结算量差别。然后根据我方检斤检质结算量与供方检斤检质结算量之间的差别作为分类的依据,对上述属性进行归一化[1],得到表1、表2数据。SupQty表示供方量,SupH2O表示供方水分,Qty表示我方量,H2O表示我方水分,SupInsQty表示供方检斤检质量,in-sQty表示我方检斤检质量,calculQty表示供方检斤检质量与我方检斤检质量之间的差值。

3数据挖掘

通过编程实现K均值聚类方法[6]来处理表2数据。此K-均值算法是发现给定数据集的k个簇的算法,每个簇通过其质心(centroid),即簇中所有点的中心来描述。首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具体来讲,就是为每个点找距其最近的质心,并将其分配给该质心所对应的簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。根据实际情况,本文K均值法采用3个初始点作为质心,按归一化我方检斤检质和归一化超出我方检斤检质量作为分类属性,得到3个类的质心坐标,结果如表3,同时得到每种原燃料的分类图,如图1。

4结果解释和评估

篇8

执行记录属于软件工程中的挖掘领域,其主要任务是针对执行记录的挖掘主要针对程序执行路径进行分析,进而找出与程序代码所具有的必然联系,以实现软件系统程序与模块代码相结合共同发生作用的目的,对程序的整体起到维护、验证和了解的作用[2]。究其工作的实质,就是以执行路径为线索实现逆向建模,有助于软件工程系统各个环节的理解、维护、跟踪以及验证。

2检测软件漏洞

作为软件工程领域需要协助的软件工程目标之一,针对软件漏洞的检测固然是挖掘数据技术系统中不可或缺的一环。检测的对象和任务主要包括:软件测试的具体项目,对软件系统漏洞库数据信息的收集、转换和清理,信息系统数据的采集与抽取,选择合适的软件系统数据挖掘信息并对其展开验证、整合与训练,对软件数据系统中存在的缺陷漏洞进行整体的分类、定位与具体描述,以及广泛应用于软件测试项目中的各种工程活动。究其最终目的,就是找出软件系统在开发与应用的具体过程中存在的问题、谬误与漏洞,对业已搜索出的问题和漏洞进行及时的矫正与修复。确保软件系统的有效运作与安然运行。

3版本控制信息

版本控制的挖掘属于软件工程领域中的挖掘对象技术之一,这种软件系统的驾驭手段具有与上述两种应用截然不同的独特作用:有效确保软件工程项目编程人员所编辑与制作的档案得到十分有效的管理,进而对系统全局的更新提供稳定的基础与平台。版本控制信息的技能价值看似“默默无闻”,地位实则非常重要,是所有软件工程项目开发必须采用的一门技术,否则任何软件工程项目的开发都无从谈及与运作。这门技术功能经过不断的发展更新,多以应用版本控制系统实施软件开发工作的保护或者管理的方式著称于世。

4开源软件挖掘

开源软件的挖掘,其项目的开发环境优势可谓得天独厚,主要体现在开放性、全局性、动态性三个特征层面上。既然具有别具一格的开放手段与应用方式,所以对该类软件的开发管理,也要采取与与其他传统软件和异类软件截然不同的原则与策略,形成“具体问题具体分析”的思想实践思路。针对其开放性的特征,需要工作人员的频繁流动与变更;针对其动态性的特征,开源项目必须达到优质管理的水平;针对其全局性的特征,有需要开发人员在开发活动与应用软件的过程中保持一个比较完整的记录,以便于广泛的社会网络的生成。

5结语

篇9

目前计算机网络教学的模式可以分为如下几种:

1)网络教学:包含异步学习模式与同步学习模式,泛指教师与学生都不用到传统的教室去上课,只要上网到网络教室中就可以进行许多教与学的活动。

2)远程教室:在各大专院校设立有许多远程教学同步视频教室。在该教室中建置了许多视频影音的设备,用来进行课程的实时转播工作。

3)网络同步教室:网络教学活动可以区分为异步与同步的教学活动,其区别在于是否实时。教师和同学在约定的同一时间,通过Inter-net网络进行在线实时的课程教授的教学环境,就可称之为网络同步教室。在网络同步教室中提供许多教学相关的辅助工具及互动相关的功能,以协助课程的进行。研究者希望通过数据挖掘的方法,来分析教师对于网络教学环境的观念,并提供教师在网络同步教室中类似传统教学环境的教学模式,以增加教师采用网络教学的意愿。本研究将先就“传统教学”、“远程教学”及“网络同步教学”的环境因素、教学方式、师生互动、学习成效等构面进行分析比较,来区分出这三种教学环境的优缺点及差异,并将依据目前教师在传统教学中的教学模式,实际应用在网络同步教室中来施行,让参与网络教学的教师可以了解如何运用网络同步教室来经营一门高质量的课程。首先将推行计算机网络教学遇到的问题,大致上区分成以下几个主要因素:

1)数字教材的制作或取得不易:学校对于数字教材的取得感到忧心,大多要求学校教师自行制作,对教师而言会增加额外的负担,导致教师对网络教学产生抗拒的心理。

2)教师对网络教学的成效产生质疑:教师普遍认为网络教学环境的教学效果没有办法像传统教学环境一样,可以和学生有高度的互动,不认为网络学习会比较有教学成效。

3)教师对参与网络教学的意愿低落:教师必须花费许多时间和学生互动,比往常还需要花费更多的时间去回答学生的问题、关心学生的学习状况,教师普遍认为网络学习对教师来说不会比较轻松。将此主要因素做成调查问卷,对数据进行聚类分析,则可以找到主要的影响因素,获得教师对于网络教学环境的态度,进而选择更加有效的授课形式,以此提供类似传统教学环境的教学模式,以提高教师采用网络教学的意愿。

二、总结

篇10

关键字:数据挖掘金融数据

金融部门每天的业务都会产生大量数据,利用目前的数据库系统可以有效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段,导致了数据爆炸但知识贫乏”的现象。与此同时,金融机构的运作必然存在金融风险,风险管理是每一个金融机构的重要工作。利用数据挖掘技术不但可以从这海量的数据中发现隐藏在其后的规律,而且可以很好地降低金融机构存在的风险。学习和应用数扼挖掘技术对我国的金融机构有重要意义。

一、数据挖掘概述

1.数据挖掘的定义对于数据挖掘,一种比较公认的定义是W.J.Frawley,G.PiatetskShapiro等人提出的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识、这些知识是隐含的、事先未知的、潜在有用的信息,提取的知识表示为概念(Concepts),规则(Rules)、规律(Regularities)、模式(Patterns)等形式。这个定义把数据挖掘的对象定义为数据库。

随着数据挖掘技术的不断发展,其应用领域也不断拓广。数据挖掘的对象已不再仅是数据库,也可以是文件系统,或组织在一起的数据集合,还可以是数据仓库。与此同时,数据挖掘也有了越来越多不同的定义,但这些定义尽管表达方式不同,其本质都是近似的,概括起来主要是从技术角度和商业角度给出数据挖掘的定义。

从技术角度看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在的和有用的信息和知识的过程。它是一门广义的交叉学科,涉及数据库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息检索、高性能计算和数据可视化等多学科领域且本身还在不断发展。目前有许多富有挑战的领域如文本数据挖掘、Web信息挖掘、空间数据挖掘等。

从商业角度看,数据挖掘是一种深层次的商业信息分析技术。它按照企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性并进一步将其模型化,从而自动地提取出用以辅助商业决策的相关商业模式。

2.数据挖掘方法

数据挖掘技术是数据库技术、统计技术和人工智能技术发展的产物。从使用的技术角度,主要的数据挖掘方法包括:

2.1决策树方法:利用树形结构来表示决策集合,这些决策集合通过对数据集的分类产生规则。国际上最有影响和最早的决策树方法是ID3方法,后来又发展了其它的决策树方法。

2.2规则归纳方法:通过统计方法归纳,提取有价值的if-then规则。规则归纳技术在数据挖掘中被广泛使用,其中以关联规则挖掘的研究开展得较为积极和深入。

2.3神经网络方法:从结构上模拟生物神经网络,以模型和学习规则为基础,建立3种神经网络模型:前馈式网络、反馈式网络和自组织网络。这种方法通过训练来学习的非线性预测模型,可以完成分类、聚类和特征挖掘等多种数据挖掘任务。

2.4遗传算法:模拟生物进化过程的算法,由繁殖(选择)、交叉(重组)、变异(突变)三个基本算子组成。为了应用遗传算法,需要将数据挖掘任务表达为一种搜索问题,从而发挥遗传算法的优化搜索能力。

2.5粗糙集(RoughSet)方法:Rough集理论是由波兰数学家Pawlak在八十年代初提出的一种处理模糊和不精确性问题的新型数学工具。它特别适合于数据简化,数据相关性的发现,发现数据意义,发现数据的相似或差别,发现数据模式和数据的近似分类等,近年来已被成功地应用在数据挖掘和知识发现研究领域中。

2.6K2最邻近技术:这种技术通过K个最相近的历史记录的组合来辨别新的记录。这种技术可以作为聚类和偏差分析等挖掘任务。

2.7可视化技术:将信息模式、数据的关联或趋势等以直观的图形方式表示,决策者可以通过可视化技术交互地分析数据关系。可视化数据分析技术拓宽了传统的图表功能,使用户对数据的剖析更清楚。

二、数据挖掘在金融行业中的应用数据挖掘已经被广泛应用于银行和商业中,有以下的典型应用:

1.对目标市场(targetedmarketing)客户的分类与聚类。例如,可以将具有相同储蓄和货款偿还行为的客户分为一组。有效的聚类和协同过滤(collaborativefiltering)方法有助于识别客户组,以及推动目标市场。

2..客户价值分析。

在客户价值分析之前一般先使用客户分类,在实施分类之后根据“二八原则”,找出重点客户,即对给银行创造了80%价值的20%客户实施最优质的服务。重点客户的发现通常采用一系列数据处理、转换过程、AI人工智能等数据挖掘技术来实现。通过分析客户对金融产品的应用频率、持续性等指标来判别客户的忠诚度;通过对交易数据的详细分析来鉴别哪些是银行希望保持的客户;通过挖掘找到流失的客户的共同特征,就可以在那些具有相似特征的客户还未流失之前进行针对性的弥补。

3.客户行为分析。

找到重点客户之后,可对其进行客户行为分析,发现客户的行为偏好,为客户贴身定制特色服务。客户行为分析又分为整体行为分析和群体行为分析。整体行为分析用来发现企业现有客户的行为规律。同时,通过对不同客户群组之间的交叉挖掘分析,可以发现客户群体间的变化规律,并可通过数据仓库的数据清洁与集中过程,将客户对市场的反馈自动输人到数据仓库中。通过对客户的理解和客户行为规律的发现,企业可以制定相应的市场策略。

4.为多维数据分析和数据挖掘设计和构造数据仓库。例如,人们可能希望按月、按地区、按部门、以及按其他因素查看负债和收入的变化情况,同时希望能提供诸如最大、最小、总和、平均和其他等统计信息。数据仓库、数据立方体、多特征和发现驱动数据立方体,特征和比较分析,以及孤立点分析等,都会在金融数据分析和挖掘中发挥重要作用。

5.货款偿还预测和客户信用政策分析。有很多因素会对货款偿还效能和客户信用等级计算产生不同程度的影响。数据挖掘的方法,如特征选择和属性相关性计算,有助于识别重要的因素,别除非相关因素。例如,与货款偿还风险相关的因素包括货款率、资款期限、负债率、偿还与收入(payment——to——income)比率、客户收入水平、受教育程度、居住地区、信用历史,等等。而其中偿还与收入比率是主导因素,受教育水平和负债率则不是。银行可以据此调整货款发放政策,以便将货款发放给那些以前曾被拒绝,但根据关键因素分析,其基本信息显示是相对低风险的申请。

6.业务关联分析。通过关联分析可找出数据库中隐藏的关联网,银行存储了大量的客户交易信息,可对客户的收人水平、消费习惯、购买物种等指标进行挖掘分析,找出客户的潜在需求;通过挖掘对公客户信息,银行可以作为厂商和消费者之间的中介,与厂商联手,在掌握消费者需求的基础上,发展中间业务,更好地为客户服务。

7.洗黑钱和其他金融犯罪的侦破。要侦破洗黑钱和其他金融犯罪,重要的一点是要把多个数据库的信息集成起来,然后采用多种数据分析工具找出异常模式,如在某段时间内,通过某一组人发生大量现金流量等,再运用数据可视化工具、分类工具、联接工具、孤立点分析工具、序列模式分析工具等,发现可疑线索,做出进一步的处理。

数据挖掘技术可以用来发现数据库中对象演变特征或对象变化趋势,这些信息对于决策或规划是有用的,金融

行业数据的挖掘有助于根据顾客的流量安排工作人员。可以挖掘股票交易数据,发现可能帮助你制定投资策略的趋势数据。挖掘给企业带来的潜在的投资回报几乎是无止境的。当然,数据挖掘中得到的模式必须要在现实生活中进行验证。

参考文献:

丁秋林,力士奇.客户关系管理.第1版.北京:清华人学出版社,2002

张玉春.数据挖掘在金融分析中的应用.华南金融电脑.2004