材料物理论文范文10篇

时间:2023-03-21 11:42:49

材料物理论文

材料物理论文范文篇1

材料的计算模拟方法介绍

材料的计算模拟研究是近年来飞速发展的一门新兴学科和交叉学科.它综合凝聚态物理学、理论化学、材料物理学和计算机算法等多个相关学科.它的目的是利用现代高速计算机,模拟材料的各种物理化学性质,深入理解材料从微观到宏观多个尺度的各类现象与性能,并对材料的结构和物性进行理论预言,从而达到设计和开发新材料的目的.材料的多尺度计算模拟方法主要有以下几种:

(1)第一性原理计算方法(First-principlesMethods)基于密度泛函理论的第一性原理计算方法是目前研究微观电子结构最主要的理论方法.第一性原理计算方法只用到普朗克常数(h),玻尔兹曼常数(kB),光速(c),电子静态质量(m0)和电子电荷电量(e)这5个基本物理变量和研究体系的基本结构.从量子力学出发,通过数值求解薛定谔方程,计算材料的物理性质.在密度泛函理论,局域密度近似(LDA)和广义梯度近似(GGA)框架下的计算已广泛应用于第一性原理的电子结构研究中,并已经取得很大的成功.结合一些能带结构计算的方法,对于半导体和一些金属基态性质,如晶格常数,晶体结合能,晶体力学性质都能够给出与实验符合得很好的结果,同时能够比较精确地描述很多体系的电子结构(如能带结构、电子态密度、电荷密度、差分电荷密度和键布局等)、光学性质(介电函数、复折射率、光吸收系数、反射光谱及光电导等)和磁性质,从微观理论角度分析和揭示材料物理性质的起源,使实验者主动对材料进行结构和功能的控制,以便按照需求制备新材料.

(2)分子动力学方法(MolecularDynamicsMethods)分子动力学是一种确定性方法,是按照该体系内部的内禀动力学规律来确定位形的转变,跟踪系统中每个粒子的个体运动,然后根据统计物理规律,给出微观量(分子的坐标、速度)与宏观可观测量(压力、温度、比热容、弹性模量等)的关系来研究材料性能的一种方法[5].分子动力学方法首先需要建立系统内一组分子的运动方程,通过求解所有分子的运动方程,来研究该体系与微观量相关的基本过程.对于这种多体问题的严格求解,需要建立并求解体系的薛定谔方程.根据波恩-奥本海默近似,将电子的运动与原子核的运动分开来处理,电子的运动利用量子力学的方法处理,而原子核的运动则使用经典动力学方法处理.此时原子核的运动满足经典力学规律,用牛顿定律来描述,这对于大多数材料来说是一个很好的近似.只有处理一些较轻的原子和分子的平动、转动或振动频率γ满足hγ>kBT时,才需要考虑量子效应.

(3)蒙特卡洛方法(MonteCarloMethods)蒙特卡洛方法是在简单的理论准则基础上(如简单的物质与物质或者物质与环境相互作用),采用反复随机抽样的手段,解决复杂系统的问题.该方法采用随机抽样的手法,可以模拟对象的概率与统计的问题.通过设计适当的概率模型,该方法还可以解决确定性问题,如定积分等.随着计算机的迅速发展,蒙特卡洛方法已在材料、固体物理、应用物理、化学等领域得到广泛的应用[6].蒙特卡洛方法可以通过随机抽样的方法模拟材料构成基本粒子原子和分子的状态,省去量子力学和分子动力学的复杂计算,可以模拟很大的体系.结合统计物理的方法,蒙特卡洛方法能够建立基本粒子的状态与材料宏观性能的关系,是研究材料性能及其影响因素的本质的重要手段.

材料专业引入计算模拟教学的探索

材料计算的目的在于理解和发现新的材料性能及其物理本质.计算已经与实验和形式理论一样成为材料研究的3大支柱之一.为学生将来能够有更高的起点研究材料科学,适应新形势下材料研究方法,培养具有宽广材料科学基础,掌握材料现代研究手段的“宽口径、厚基础、强能力、高素质”的材料科学专业人才.我们在本科教学阶段就应该有计划的引入和加强计算模拟方法的教学.采用的教学形式可以结合实际情况,灵活的应用.近年来我们采取的教学方式主要有以下3种方式:(1)开设计算材料学类课程在2006年物理与电子信息学院材料物理与化学专业培养方案中已经确定《计算机在材料科学中的应用》和《计算物理》课程为专业选修课程,学时分别为36学时和54学时.《计算机在材料科学中的应用》课程偏重实践教学,通过上机操作学习计算软件的基本原理和使用方法.主要教学内容包括:材料学的发展现状及计算机在材料科学与工程中的应用;材料科学研究中的数学模型;材料科学研究中常用的数值分析方法;材料科学研究中主要物理场的数值模拟;材料科学与行为工艺的计算机模拟;材料数据库和新材料、新合金的设计;材料加工过程的计算机控制;计算机在材料检测中的应用;材料研究科学中的数据和图像处理;互联网在材料科学研究中的应用等9部分内容,基本涵盖当今计算机技术在材料科学研究中应用的各个方面.《计算物理》课程则以理论教学为主,偏重物理基本原理的介绍.主要教学内容包括:计算物理学发展的最新状况;蒙特卡洛方法及其若干应用;有限差分方法;分子动力学方法;密度泛函理论;计算机代数;高性能计算和并行算法等8部分内容.计算材料类课程的开设注重理论和实践并重的原则,在讲解基本原理的同时加强学生动手上机实践能力的培养,因此,经过课程的学习,学生已经初步具备利用计算机进行材料模拟的能力.部分选修计算材料类课程的同学在学习中对计算模拟产生了极大的兴趣,在大四时选择材料计算相关课题作为本科毕业论文选题.例如,08届学生的毕业论文《ZnS掺杂Cu光学性质的第一性原理研究》和《布朗运动的蒙特卡洛模拟》,09届学生的毕业论文《ZnO电子结构和光学性质的研究》,11届学生的毕业论文《晶格热容的理论计算》和《简立方晶体结构能量分布的理论模拟》等均为材料计算和模拟相关课题,并且有多人的毕业论文被评为优秀毕业论文.个别优秀的学生读研后继续从事材料的计算模拟相关研究.通过几年的教学实践,计算材料相关课程的开设对于扩大学生的知识面,提高学生的理论分析能力有极大地帮助.(2)在材料相关的理论课程中加入计算模拟方法介绍虽然已经在材料专业开设《计算机在材料科学中的应用》和《计算物理》等材料计算相关的课程,但这两门课均为专业选修课,只有选修相关课程的学生才能得到相应的计算模拟培训,受众面还比较窄.因此,为使更多的学生了解到材料模拟计算的相关理论和知识,在材料专业主干课的教学中也适时地加入相关的计算模拟方法的介绍,从而扩大计算模拟知识的普及面.例如,在《固体物理》课程中,当讲解到能带理论一章时,我们会在本章结束时,加入一次课,着重介绍基于第一性原理的平面波赝势计算方法计算材料的能带结构、电子态密度等以及第一性原理计算的常用软件(CASTEP、VASP等).一方面,对学生学习的理论知识加以直观化和适度的扩展,另一方面也进一步普及第一性原理计算的相关知识.在《材料科学基础》教学中讲解到相平衡与相图一章时,我们会在本章内容结束后介绍相图计算近年来的发展现状,包括CALPHAD(CalculationofPhaseDiagram)计算方法、热力学与动力学的结合、第一性原理与相图计算方法的结合,并简要介绍今后相图计算可能的发展方向[7].在晶体缺陷内容的教学中,穿插介绍利用分子动力学计算面心立方金属空位和间隙原子点缺陷的形成能的方法.通过在课程教学中穿插入计算模拟方法的介绍,一方面也加深了学生对所学内容的理解,另一方面开阔了学生的眼界.(3)举办计算模拟相关的学术讲座.自从2009年以来,物理与电子信息学院从事计算模拟研究的教师每学期都结合自身的科研情况举办面向全院学生的学术讲座.例如在2011至2012学年第二学期,我们举办两场学术讲座,分别是《氧化锌晶体及其掺杂的第一性原理研究》以及《可见光响应半导体光催化材料的结构和能带设计》,教师在讲座中介绍自己的科研情况,同时也使学生了解到如何把学到的计算模拟知识应用到科研实践中去,让学生体会到如何利用计算模拟预测材料的物理性质以及指导材料设计的研究方式,提高学生自觉学习计算模拟方法的积极性.

结束语

材料物理论文范文篇2

1.1“创新”概念界定“创”,始造的意思.“新”,初次出现的意思.“创新”是指始造新的.“创新”是对传统的创新,但创新又离不开传统,在很多情况下,没有继承就没有创新.说它们“相对”,是因为创新本质上是一种在原有基础上“突破性的追新、变革、求优”的行为.“创新”既包括新事物微元的创立又包括新事物发展的过程和发展结果,包括新的发现、新的发明、新的思想和新的理念、新的学说、新的技术、新的策略、新的方法和新的行为等.“创新”强调新颖性成分,而“新”又总是相对个体、群体和整体而言的.“创新”可分为3种类型:(1)相对于个体来说是前所未有、首次出现的事物;(2)相对于所属群体来说是他人未涉足、提出或实施的事物;(3)相对于全社会来说是独创的、具有社会积极意义的新事物或新活动.

1.2“创新教育”概念界定创新教育早在20世纪5O年代美国就开始实行教育改革,致力于创造性人才的培养,特别是2O世纪90年代以来一些发达国家的大学都开展了创新教育改革.在我国,“创新教育”作为一种教育理念是在《中共中央、国务院关于深化教育改革全面推进素质教育的决定》公布以后才逐步形成和发展的,近年来才逐渐由创新教育理念转化为创新教育行为.对“创新教育”的界定既要考虑创新教育已经形成的内涵要素,又要考虑到创新教育在我国已有的升华和将来的发展趋势.我们试探性地从纵观层面上来界定“创新教育”.“创新教育”是指以加强培养学生的创新素质、充分提高学生的创新能力为主要教育改革目的和改革行为的素质教育.创新教育的核心就是要培养创新人才,创新人才培养是创新教育的定位基点.

1.3“高等物理”概念界定课题中的“高等物理”主要是指当前全国高等学校各理工科专业开设的“大学物理”、“大学物理实验”、“理论物理”、“近代物理”、“近代物理实验”、“材料物理”和“固体物理”等高等物理课程群.

1.4“实践性研究”概念界定课题中的“实践性研究”是指把高等物理创新教育改革深入到高等物理创新教育实践层面内进行专题研究,以现实可行性和具体可操作性为课题研究的基本原则,以具体实践过程为研究主体,课题研究的重心定位在实实在在的高等物理创新教育改革实践层面上.这主要是因为近几年来在我国对“创新教育”的研究基本上都还停留在“理论性研究”上,理论性研究是重要的,但现实情况是很多的“创新教育”理论研究过于笼统、有些虚大,显得浮空,理论脱离实践,理论性研究多,而实践性研究太少,更缺乏实实在在的深入到具体操作和具体实践层面内的高等物理创新教育改革实践性专题研究.高等物理创新教育改革实践性研究具有实效性强和示范辐射性广的特点,因此,高等物理创新教育改革实践性研究将成为我国高等物理创新教育研究的突破点.

2高等物理创新教育改革实践性研究的现状与价值

2.1高等物理创新教育改革实践性研究的现状1)“创新教育”研究的现状在《中国学术期刊全文数据库》和《高教信息数据库》中搜索2005年1月~2009年6月期间发表的有关“创新教育”研究的学术论文共有3598条信息.经过抽样查阅了“创新教育”研究学术论文题目200篇,并取样详细阅读了“创新教育”研究学术论文6O篇,其中具有代表性的论文是许晓呜的论文“以创新教育培养创新型科技人才”(《中国高等教育)2O07年第24期).查阅“创新教育”研究学术论文发现已发表的有关“创新教育”研究的论文基本上都停留在空泛的理论性研究上,很少见到实实在在的深入到实践层面内的创新教育改革专题研究成果.2)“高等物理创新教育”研究的现状在《中国学术期刊全文数据库》和《高教信息数据库》中搜索2005年1月~2009年6月期间发表的有关“物理创新教育”研究的学术论文共有5o条,搜索“高等物理创新教育”研究的相关学术论文只有4条,其中具有代表性的论文是王红梅的论文“突出创新教育,大学物理课堂教学改革的研究与实践”(《中国校外教育(理论)》2009年第2期).高等物理创新教育研究成果少得令我们担忧.3)“高等物理创新教育改革实践性研究”研究的现状在《中国学术期刊全文数据库》和《高教信息数据库》中搜索2005年1月~2009年6月期间发表的有关“高等物理创新教育实践性研究”学术论文信息为零,一篇相关的学术论文都搜索不到.实地调研情况:我们选取了6所江苏省省内高校和3所省外高校,对高等物理创新教育实践性研究进行了实地调研,调研的结果是这9所高校没有一所学校已经或正在进行以“高等物理创新教育”为研究实体,以“创新人才培养”为改革导向,以“实践性研究”为课题定位的高等物理创新教育改革实践性研究.综合调研结果归纳:(1)“创新教育”研究的论文很多(共有3598条),“高校创新教育”研究相关的论文少(共有987条),“物理创新教育”研究的论文就更少(共5O条);(2)从纯理论层面上空泛地对“创新教育”研究的论文相对多,但从具体务实的实践层面上对“创新教育”进行研究的论文却很少;(3)“高等物理创新教育”研究论文很少(共有4条),而“高等物理创新教育改革实践性研究”的类似课题、资讯和论文至今都搜索不到,高等物理创新教育改革实践性研究还几乎是一块空白.

2.2高等物理创新教育改革实践性研究的价值物理学,特别是高等物理学是科学技术的排头兵,全国高校的各理工科专业都开设了高等物理教育课程,高等物理教育培养的人才是我国现代化建设各个领域都急需的基础性科技人才.但是当前在我国,缺乏实实在在的深入到具体专业、具体学科、具体操作和具体实践层面上的高等物理创新教育改革实践性研究,高等物理创新教育实践性研究具有战略性地位.

3高等物理创新教育改革实践性研究的策略框架

高等物理创新教育改革实践性研究以切实加强培养学生的创新素质、充分提高学生的创新能力为主要教育改革目标,以“创新教育改革行为”为突破口和落脚点,以实实在在的实践层面为研究重心定位,以“一个核心”、“两个重点”、“六条主线”和“一个综合体系”为研究策略,在实践层面上提升高等物理创新教育改革理论的实践性,突显高等物理创新教育改革的实践行为,遵循高等物理创新教育改革的特点和规律,优化高等物理创新教育改革的实践性研究策略,切实有效地培养高等物理教育学生的创新能力,更好地提高高等物理教育学生的创新素质.

3.1高等物理创新教育改革实践性研究的一级目标高等物理创新教育改革实践性研究一级目标设定为3个:探究和归纳高等物理创新教育改革实践目标要素;设计和优化高等物理创新教育改革实践方案;总结和提炼高等物理创新教育改革实践行为策略.

3.2高等物理创新教育改革实践性研究的二级目标高等物理创新教育改革实践性研究二级目标设定为6个:探究和实践高等物理创新教育改革学生创新意识激发策略;探究和实践高等物理创新教育改革学生创新获得知识策略;探究和实践高等物理创新教育改革学生创新思维训练策略;探究和实践高等物理创新教育改革学生创新人格形成策略;探究和实践高等物理创新教育改革学生创新发现问题策略;探究和实践高等物理创新教育改革学生创新实验实策略.

3.3高等物理创新教育改革实践性研究的策略模块高等物理创新教育改革实践性研究策略由3个子模块和一个母模式构建而成.高等物理创新教育改革实践性研究策略子模块之一:创新提问能力培养“四环节”策略.高等物理创新教育改革创新提问技能讲座环节策略;高等物理创新教育改革创新提问激发和示范环节策略;高等物理创新教育改革创新提问点拨环节策略;高等物理创新教育改革创新提问评价与考核环节策略.高等物理创新教育改革实践性研究策略子模块之二:创新实验、实践能力培养六策略.高等物理创新教育改革物理平衡原理创新实验、实践策略;高等物理创新教育改革物理转换原理创新实验、实践策略;高等物理创新教育改革物理比较原理创新实验、实践策略;高等物理创新教育改革物理放大原理创新实验、实践策略;高等物理创新教育改革物理模拟原理创新实验、实践策略;高等物理创新教育改革物理变换原理创新实验、实践策略.高等物理创新教育改革实践性研究策略子模块之三:创新意识培养六策略.高等物理创新教育改革专业创新素质之一—_一物理理论创新意识培养策略;高等物理创新教育改革专业创新素质之二—~物理技术创新意识培养策略;高等物理创新教育改革专业创新素质之三——物理实践创新意识培养策略;高等物理创新教育改革人文创新素质之一——敬业创新意识培养策略;高等物理创新教育改革人文创新素质之二——专业创新意识培养策略;高等物理创新教育改革人文创新素质之三——精业创新意识培养策略.高等物理创新教育改革实践性研究策略综合母模式构建:六目标和八因子模式策略构建.六目标为:高等物理创新教育改革学生创新意识激发的实践目标;高等物理创新教育改革学生创新获得知识的实践目标;高等物理创新教育改革学生创新思维训练的实践目标;高等物理创新教育改革学生创新人格形成的实践目标;高等物理创新教育改革学生创新发现问题的实践目标;高等物理创新教育改革学生创新实验实践的实践目标.八因子为:高等物理创新教育改革创新课程因子,加大课程创新教育的实践;高等物理创新教育改革创新教师因子,加大力度培训创新型教师的实践;高等物理创新教育改革创新学生因子,逐步养成创新学习习惯的实践;高等物理创新教育改革创新教法因子,探究式、发现式、互动式的实践;高等物理创新教育改革创新实验因子,提升设计性实验和创新性实验的实践;高等物理创新教育改革创新管理因子,营造创新人才培养管理氛围的实践;高等物理创新教育改革创新实践因子,开展创新性实践活动的实践;高等物理创新教育改革创新评价因子,知识与技能、过程与方法和发现与创新三维综合评价的实践因子.

材料物理论文范文篇3

(一)由社会发展的需要所决定要建设有中国特色的社会主义,我国的现代化建设进程,就要靠科学技术。科学技术是第一生产力。科技的进步与发展,关键在于提高人才的素质和造就大量科技人才。教育是发展科技的基础工程,强化科技意识教育的实质就是使教育与科技、社会发展相适应,以主动适应社会主义现代化建设发展的需要。

(二)由教学改革的根本目的所决定

《中共中央关于教育体制改革的决定》指出:教育体制改革的根本目的是提高全民族素质,多出人才,出好人才。提高全民族的素质,要从小学抓起。师范学校的培养目标是小学教师。为此首先要深化师范学校的改革,彻底改变重知识,轻能力,重理论,轻实践的传统教学模式,切实提高师范生的素质,使他们具有为发展小学教育而艰苦奋斗的献身精神。强化科技意识教育是深化教学改革,提高学生素质的有效途径。只有当师范生有了浓厚的科技意识,才能在小学教育中把这种意识渗透到青少年中,从而激发小学生爱科学、学科学、用科学的乐趣,培养小学生勇于动手,敢于创新的进取精神,为培养浩浩荡荡的科技队伍打下基础,这是一个有战略意义的大事。

(三)由物理学科的特点所决定

作为自然科学基础的物理学在科技意识教育中占有特别重要的地位。现代化高科技领域的成果,很大程度上可以说是物理学发展的成果。如能源技术、电子技术、空间技术等,作为信息时代核心的电脑也与物理学密切相关。可以说,没有物理学的发展,就没有今天的高科技,也没有人类社会的现代化。物理学还渗透着科学方法教育和科学精神培养,包含着丰富的科技意识教育内容。所以通过物理学来加强科技意识教育有得天独厚的优势。为此中师物理应在以下几方面作出努力:

1、使学生认识科学的价值,激发科学兴趣。

2.培养学生的科学方法和科学精神,养成爱科学、学科学、用科学的习惯,树立远大理想。并使学生认识到自己对于小学科学教育所担负的责任,增强他们的责任感和使命感。

3.把提高学生素质放在首位,切实提高学生的各种能力,特别是提高教小学自然和辅导科技活动的能力。

二、强化科技教育的途径和做法

(一)课堂教育是强化科技意识教育的主战场就目前的教学组织和教学秩序而言,课堂教学应作为科技意识教育的主战场,这是由课堂教学在教育中的中心地位所决定的。为此我是从下面几方面来努力的:

1、结合教材,进行科学意义教育,激发学生的科学兴趣。首先要对学生进行科学、技术与社会发展关系的教育,如学习了电磁感应原理后,应不失时机指明电磁感应现象的发现对科学进步、社会发展所起的作用,引导学生认识我们现代生活与电磁感应现象发现的密切关系,指明现代化通讯、电子技术的应用和电视、电话、自动控制技术的应用都是由此而产生的。其次要重视小科技、小发明。如防裂水表,解决了冬天因气温过低冻裂水表的难题,使学生认识到搞科技发明的奥秘在于善于动脑,勤于动手,打破搞科技发明高不可攀的神秘感。

2.结合教学各个环节进行科学研究方法教育和科学精神培养。教师要把科学方法教育贯穿到教学各个环节中。如介绍历史上的科学发现时,要明确其科学研究方法;在学习物理理论规律时要指明其研究方法;在引导学生应用物理知识解决实际问题时,要提醒学生注意方法,使学生逐步认识“观察、假设、实验、理论”的意义。并使学生懂得:(1)科学上的发现往往都是在总结前人经验的基础上加以科学分析推理而得出来的;(2)探索真理要有勇于创新、百折不挠的精神;(3)不要过分迷信权威,只能相信科学;(4)对真理的探索和研究要善于积极思维,要有科学方法,要勇于实践。

3.加强实验教学,提高动手能力和增强实验教改科研意识。实验是物理教学的重要内容,也是科学教育的重要内容。新编中师物理教学大纲规定学生实验14个,演示实验115个,还有数量较多的小实验、小研究等,同84年中师物理教学大纲的实验内容相比,有大幅度的增加。这体现了大纲对实验教学、科学教育的高度重视。为此我主要从以下两方面来努力。一方面是增加学生练的机会和效果。如:(1)大纲规定的14个学生实验,要求学生从理论依据、实验器材到操作方法,都要真正掌握并进行严格的考核;(2)大纲规定的115个演示实验,尽可能地实行课前辅导,课堂上让学生上台演示操作。(3)增加实验内容,特别是小学教学的实用技术,如电灯装接、广播喇叭配接、幻灯机、电影机、录像机的操作使用。另一方面是大力改进实验。如:(1)改验证性实验为探索性实验,改演示实验为学生实验,改学生的理论性作业为实验性、实践性作业;(2)改落后的传统教具为自制教具。教学中,教师及时指出有些传统教具的不足,引导学生提出实验改进意见和自制教具。在我的启发下,学生对中师物理实验提出了50多个实验改进方案,自制了900多种教具,并改善了实验条件,增强了学生实验教改科研意识。

4.探索教材科技因素,丰富科技活动内容。教材中虽只明确要求15个小制作,但实际上隐含着内容丰富的小制作内容,需要教师去挖掘,需要教师在课堂上结合教材内容不失时机地启发学生去制作。如反冲汽车、直升飞机、电动荡秋千都有一定的使用价值,富有一定的创造性。教材中有的简单易懂的内容,我指导学生以自学、写小论文代替课堂教学。如《能源的开发和利用》一节,我先作简单的指导,然后布置学生写好小论文在课堂上宣读交流。学生引用了大量的数据和日常生活及工农业生产中的例子,对能源的开发和利用作了辩证的论述,不但锻炼了学生的写作能力,而且起到很好的教育作用。

(二)社会实践活动是强化科技教育的广阔天地

要更有效地使学生认识科学的价值,更快地培养学生的能力,以弥补课堂教学的不足,开展广泛的社会实践活动是一条有效的途径。我在教学中是从以下几方面来考虑的:

1.举行各种讲座介绍物理知识的应用价值,介绍历史上科学家创造发明经过,介绍科学家生平事迹,介绍近代新科技、新成果、新动向,请富有自然教学经验和辅导科技活动经验的小学教师作报告,作技术表演。深化学生对科学意义的认识,进一步激发科学兴趣。

2.带领学生走出校门,深入小学参观、见习,了解小学自然教学和科技活动的情况和经验,明确加强小学科技教育的迫切性,加强责任感和使命感。参观农村、工厂、电站等,了解物理知识和科学技术在工农业生产实际中的应用,了解农村经济发展特点和科技应用情况,分析存在的问题,提出有实用价值的方案,提高学生将所学知识应用于实际的能力。

3.广泛开展小制作活动。新大纲明确规定,每个学生每个学期至少完成一件小制作,说明小制作是中师生科技活动的主要内容。我在教学中比较重视学生的小制作活动,引导学生结合教材内容、小学自然内容与生产和生活实际,自己设计,自找材料,自己动手制作3800多件小制作,其中有相当部分小制作原理简明,设计新颖,结构简单,制作精致,效果明显,可直接用于中师物理实验教学、小学自然教学和小学科技活动。如用电风扇设计的旋转飞船,用日光灯丝设计的验证导体、电阻与温度的关系演示器,用电动机设计的电铃、电控斗鸡,用白炽灯泡设计的走马灯等。

4.广泛开展写小论文活动。中师生是未来的小学教师,学写科学小论文直接关系到他们从事小学教育的教研水平和科技能力。我在教学中也比较注意指导学生写科学小论文,引导学生多动脑,多实践,多写作,要求学生将小观察、小研究、小发现、小制作、小感想、小意见、实验改进等都写成小论文。一年来收到小论文100多篇,其中有二分之一以上文章,内容新颖,有一定的水平和实用价值。

5.举行科技作品展览和评选优秀科技作品,布置学生收看科技节目,阅读科技书刊,组织学生收集科技信息,推广和应用先进科学经验,以提高学生的科学意识。

6.组织各种兴趣小组。如电工培训班,微机应用培训班,让学生学习电脑知识,以适应现代社会对人才的需要。

(三)教师是强化科技教育的关键科技教育中,教师起主导作用,学生是主体。但学生主体作用的发挥依赖于教师的主导作用,只有充分发挥教师的主导作用,学生的主体作用才能发挥。如何发挥教师的主导作用呢?

1.精心指导。我在学生小制作中抓好三个环节指导:制作前,学生做什么,用什么材料做,要进行充分的指导,这是关系到作品质量高低的重要一环;制作过程中,有的学生再造思维和动手能力较差,教师要给予及时的指导;制作后有的不成功、不牢固、不美观等,教师要提出修改意见,提高作品质量。

材料物理论文范文篇4

关键词:半导体物理实验;教学改革;专业实验

实验教学作为高校教学环节中的一个重要组成部分,不仅因为其是课堂教学的延伸,更由于通过实验教学,可以加深学生对理论知识的理解,培养学生的动手能力,拓展学生的创造思维[1,2]。实验教学分为基础实验和专业实验两部分[3,4]:基础实验面向全校学生,如大学物理实验、普通化学实验等,其主要任务是巩固学生对所学基础知识和规律的理解,旨在提高学生的观察、分析及解决问题的能力,提供知识储备[5,6];与基础实验不同,专业实验仅面向某一专业,是针对专业理论课程的具体学习要求设计的实验教学内容,对于学生专业方向能力的提高具有极强的促进作用[7~8]。通过专业实验教学使学生能够更好的理解、掌握和应用基础知识和专业知识,提高分析问题的能力并解决生活中涉及专业的实际问题,为学生开展专业创新实践活动打下坚实的基础[9~11]。

1半导体物理实验课程存在的问题与困难

半导体物理实验是物理学专业电子材料与器件工程方向必修的一门专业实验课,旨在培养学生对半导体材料和器件的制备及测试方法的实践操作能力,其教学效果直接影响着后续研究生阶段的学习和毕业工作实践。通过对前几年本专业毕业生的就业情况分析,发现该专业毕业生缺乏对领域内前沿技术的理解和掌握。由于没有经过相关知识的实验训练,不少毕业生就业后再学习过程较长,融入企事业单位较慢,因此提升空间受到限制。1.1教学内容简单陈旧。目前,国内高校在半导体物理实验课程教学内容的设置上大同小异,基础性实验居多,对于新能源、新型电子器件等领域的相关实验内容完全没有或涉及较少。某些高校还利用虚拟实验来进行实验教学,其实验效果远不如学生实际动手操作。我校的半导体物理实验原有教学内容主要参照上个世纪七、八十年代国家对半导体产业人才培养的要求所设置,受技术、条件所限,主要以传统半导体物理的基础类实验为主,实验内容陈旧。但是在实验内容中添加新能源、新型电子器件等领域的技术方法,对于增加学生对所学领域内最新前沿技术的了解,掌握现代技术中半导体材料特性相关的实验手段和测试技术是极为重要的。1.2仪器设备严重匮乏。半导体物理实验的教学目标是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制奠定基础。随着科学技术的不断发展,专业实验的教学内容应随着专业知识的更新及行业的发展及时调整,从而能更好的完成课程教学目标的要求,培养新时代的人才。实验内容的调整和更新需要有新型的实验仪器设备做保障,但我校原有实验教学仪器设备绝大部分生产于上个世纪六七十年代,在长期实验教学过程中,不少仪器因无法修复的故障而处于待报废状态。由于仪器设备不能及时更新,致使个别实验内容无法正常进行,可运行的仪器设备也因为年代久远,实验误差大、重复性低,有时甚至会得到错误的实验结果,只能作学生“按部就班”的基础实验,难以进行实验内容的调整,将新技术新方法应用于教学中。因此,在改革之前半导体物理实验的实验设计以基础类实验为主,设计性、应用性、综合性等提高类实验较少,且无法开展创新类实验。缺少自主设计、创新、协作等实践能力的训练,不仅极大地降低学生对专业实验的兴趣,且不利于学生实践和创新创业能力的培养,半导体物理实验课程的改革势在必行。

2半导体物理实验课程改革的内容与举措

半导体物理实验开设时间为本科大四秋季学期,该实验课与专业理论课半导体物理学、半导体器件、薄膜物理学在同一学期进行。随着半导体技术日新月异发展的今天,对半导体物理实验的教学内容也提出了新的要求,因此,要求这门实验课程不仅能够通过对半导体材料某些重要参数和特性的观测,使学生掌握半导体材料和器件的制备及基本物理参数与物理性质的测试方法,而且可以在铺垫必备基础和实际操作技能的同时,拓展学生在电子材料与器件工程领域的科学前沿知识,为将来独立开展产品的研制和科学研究打下坚实的基础。2.1实验基础设施的建设。2013年年底,基于我校本科教学项目的资金支持,半导体物理实验教学团队通过调研国内外高校现行半导体物理实验教学资料,结合我校实验教学的自身特点,按照创新教育的要求重新设计了半导体物理实验内容,并根据所开设实验教学内容合理配置相应的实验仪器设备,新配置仪器设备具有一定的前瞻性,品质优良,数量合理,保证实验教学质量。由于作为一门专业实验课,每学年只有一个学期承担教学任务,为了提高仪器设备的利用率,做到实验设备资源的不浪费,计划成立一间半导体物理实验专属的实验室,用于陈放新购置的实验设备,在没有教学任务的学期,该实验室做为科研实验室和创新创业实验室使用。通过近三年的建设,半导体物理实验专属实验室———新能源材料与电子器件工程创新实验室建成并投入使用,该实验室为电子材料与器件工程方向的本科生毕业论文设计以及全院本科生的创新创业实验设计提供了基本保障,更为重要的是该实验室的建成极大地改善了半导体物理实验的原有教学条件,解决了实际困难,使得半导体物理实验教学效果显著提升。不仅加强了学生对专业核心知识理解和掌握,而且启发学生综合运用所学知识创造性地解决实际问题,有效提高学生的实践动手能力、创新能力和综合素质。2.2实验教学内容的更新。半导体物理实验是一门72学时的实验课,在专属实验室建成后,按照重视基础、突出综合、强调创新、提升能力的要求,逐步培养与提高学生的科学实验素质和创新能力,构建了“九—八—五”新的实验内容体系,包括如下三个层次(表1)。第一层次为“九”个基础型实验,涵盖对半导体材料的物理性质(结构、电学、光学)的测定,通过对物理量的测量验证物理规律,训练学生观察、分析和研究半导体物理实验现象的能力,掌握常用基本半导体物理实验仪器的原理、性能和测量方法等。第二层次为“八”个提高型实验(综合、应用性实验),学生通过第一层次的实验训练后,已掌握了基本的实验方法和技能,在此基础上,开展综合性实验,可以培养学生综合运用所学知识以及分析和解决问题的能力。通过应用性实验培养学生将来利用设备原理从事生产或者技术服务的能力。第三层次为“五”个设计创新型实验,学生需运用多学科知识、综合多学科内容,结合教师的科研项目进行创新研究,通过设计型实验可以锻炼学生组织和自主实验的能力,着力培养学生创新实践能力和基本的科研素质。每个基础型实验4学时,提高型实验8学时,创新型实验12学时,规定基础型为必修实验,提高型、创新型为选作实验。九个基础型实验全部完成后,学生可根据兴趣和毕业设计要求在提高型、创新型实验中各分别选做一定数量的实验,在开课学期结束时完成至少72个学时的实验并获得成绩方为合格。2.3实验教学方式的优化。在教学方式上,建立以学生为中心、学生自我训练为主的教学模式,充分调动学生的主观能动性。将之前老师实验前的讲解转变为学生代表讲解实验内容,然后老师提问并补充完善,在整个实验安排过程中,实验内容由浅入深、由简单到综合、逐步过渡至设计和研究创新型实验。三个层次的实验内容形成连贯的实验梯度教学体系,在充分激发学生学习兴趣的同时,培养学生自主学习、自发解决问题的能力。2.4实验考核机制的改革。目前大部分实验课的成绩由每次实验后的“实验报告”的平均成绩决定,然而单独一份实验报告并不能够完整反应学生的实际动手操作能力和对实验内容的熟悉程度。因此,本课程将此改革为总成绩由每次“实验”的平均成绩决定。每次实验成绩包括实验预习、实验操作和实验报告三部分,实验开始前通过问答以及学生讲解实验内容来给出实验预习成绩;实验操作成绩是个团队成绩反映每组实验学生在实验过程中的动手能力以及组员之间的相互协助情况;针对提高型和创新性实验,特别是创新性实验,要求以科技论文的形式来撰写实验报告,以此来锻炼本科生的科技论文写作能力。通过三部分综合来给出的实验成绩更注重对知识的掌握、能力的提高和综合素质的培养等方面的考核。

3半导体物理实验课程改革后的成效

半导体物理实验在我校本科教学项目的支持下,购置并更新了实验设备建立了专属实验室,构建了“九—八—五”新实验内容体系,并采用新的教学方式和考核机制,教师和学生普遍感觉到新实验教学体系的目的性、整体性和层次性都得到了极大的提高。教学内容和教学方式的调整,使学生理论联系实际的能力得到增强,提高了学生的积极性和主动性。实验中学生实际动手的机会增多,对知识的渴求程度明显加强,为了更好地完成创新设计实验,部分本科生还会主动去查阅研中英文科技文献,真正做到了自主自觉的学习。通过实验课程的教学,学生掌握了科技论文的基本格式,数据处理的图表制作,了解了科学研究的过程,具备了基本的科研能力,也为学生的毕业设计打下了良好的基础。与此同时,利用新购置的实验设备建立的实验室,在做为科研实验室和创新创业实验室使用时,也取得了优异的成绩。依托本实验室,2015年“部级大学生创新创业训练计划”立项3项,2016年“部级大学生创新创业训练计划”立项4项。

4结语

材料物理论文范文篇5

一、背景与突破的开端

几十年来,阻碍超导电性得以广泛应用的最重大的障碍之一,就是已知超导体的临界转变温度(Tc)太低。虽经众多科学家在此方向的多年努力,但自从1973年在铌三锗中发现23K的临界转变温度之后,这一纪录一直保持了13年之久。如此之低的温度,通常要用代价昂贵的液氦手段才能获得,而对液氮温区(77K以上)超导体的发现,则似乎成了一个难以实现的梦想。超导研究一度曾处于低潮。但是,1986年,转机终于出现在对氧化物超导体的研究中。

在国际商业机器公司(IBM)苏黎世研究实验室工作的瑞士科学家缪勒(A.Müller)可以说是超导研究领域中的一位“新手”。直到1978年他去IBM在美国的一家研究实验室作休假研究时,才接触到了超导问题,并对氧化物超导体的研究产生了兴趣。1964年,人们发现了第一个氧化物超导体,即锶钛氧化物,但Tc只有0.3K。1975年由斯莱特(A.W.Sleight)等人发现的Tc为14K的钡铅铋氧化物超导体,虽然吸引了若干科学家的注意力,但一时也未再有更惊人的进展。1983年夏,缪勒邀请并说服了在同一实验室工作的贝德诺兹(J.G.Bednorz)一起进行研究,虽然对更年轻些的贝德诺兹来说,高温超导体的探索是不易有成果因而颇具“风险”的,但他还是在完成其他主要工作之外的业余时间与缪勒一道从事这项工作。

缪勒和贝德诺兹的最初设想是,在某些具有可导致畸变的所谓Jahn-Teller效应的氧化物中进行寻找。在二年多的时间里,他们先研究了镧镍氧化物系统,但没有成功。1985年,在读到了法国科学家米歇尔(C.Michel)等人对钡镧铜氧化物所做的研究后,他们又将注意力转向了这种含铜的氧化物。[3]很快地,1986年1月,他们在自己制备的钡镧铜氧样品中,利用电阻测量观察到了30K左右的起始转变温度。[4]这是一个绝对令人兴奋但又有些难以置信的结果。但为了保险起见,经验丰富的缪勒还是坚持继续重复实验,直到4月中旬,他们才向《物理学杂志》送交了论文。该论文于4月17日为杂志收到,论文被谨慎地题为“钡镧铜氧系统中可能的高Tc超导电性”。[5]由于要进一步确认他们发现的是超导电性,除电阻测量之外,尚需测量其样品的迈斯纳效应,但当时他们手头甚至没有可用的仪器。定购的仪器到8月份才到货。[6]贝德诺兹和缪勒迅速调试好仪器,果然进一步的磁测量支持了他们原来的结论,当报道新结果的第二篇论文寄到《欧洲物理快报》时,已是10月22日了。[7]

在超导史上,曾多次有人宣称发现了高温超导体,但最终均以结果无法为他人所重复或被证伪而告终。由此大多数科学家对大多数发现高温超导体报道总是倾向于持怀疑的态度。很自然地,与对待重大科研发现的常规作法不同,贝德诺兹和缪勒除了送交论文去发表之外,他们没有再以任何其他的方式来公布这项划时代的成果。当然,据一份文献所讲,在等待测量迈斯纳效应的仪器到达的这段时间中,他们曾有少数几次向为数不多的人介绍其工作,但听众的反应“充其量只是不冷不热”而已。[8]他们的第一篇文章直到9月份才正式发表(而他们第二篇关于磁测量的论文的问世已是1987年的事了),因此,在经过了半年之后,广大的物理学界才有可能了解其工作。

按照贝德诺兹和缪勒原来的估计,别人对他们的工作的证实和接受恐怕至少要用2-3年的时间。[9]此时,贝德诺兹和缪勒在超导物理学界并不是知名人物,其论文所发表的杂志也算不上是发表超导研究工作的最权威刊物,再加上历史上的教训,大多数超导物理学家或是并未留意到其工作,或是持怀疑态度。但是,在中国、日本和美国,毕竟有少数科学家敏锐地迅速抓住了这一难得的机会,正是由于他们的证实和进一步研究,使得事态后来发展的速度远远地超出了贝德诺兹和缪勒原初的预期。

二、反应

9月底,中国科学院物理研究所的赵忠贤在物理所图书馆中读到了贝德诺兹和缪勒刚刚发表的文章。[10]基于长期研究高温超导的背景,赵忠贤在回忆当时的想法时说:“我认为缪勒的想法是有道理的。尽管对于真正的机制至今也不清楚,但我认为存在Cu3+与Cu2+之间的巡游电子将导致具有Jahn-Teller效应的Cu2+与无Jahn-Teller的Cu3+交替变化,从而将有利于造成很强的点阵不稳定,而又不引起结构相变。这将有利于超导体的临界温度。”[11]正是根据这种将结构的不稳定与高温超导相联系的推理,赵忠贤相信了贝德诺兹和缪勒的结果,马上找人联系和筹备,于10月中旬和陈立泉等人合作开始了研究工作。同时,他也将自己的看法通知了国内外的一些同事。

在日本,反应也同样迅速而且更富于戏剧性。9月份,日本电子技术实验室的科学家就获得了消息,而且试图重复贝德诺兹和缪勒的实验,但没有成功。[12]10月4日,在一次由文部省组织的关于超导材料的会议上,日本大学的關泽和子将贝德诺兹和缪勒文章的事告诉了同在参加会议的东京大学的北泽宏一,但后者并未相信这是真的,只是随后将此事随便地告诉了同事而已。直到11月初,他手下的研究助理高木英典找到了内田慎一和北泽宏一教授,建议将重复贝德诺兹和缪勒的工作作为本科生毕业论文的课题,因当时本科生已完成了研究生入学考试,正准备开始做论文。北泽宏一虽然同意,但他此时甚至忘记了论文的出处,再度查寻找到后,他建议用更简单的方法来合成材料。[13]实验从11月6日开始,出人意料之外的是,仅仅在11月13日,北泽宏一就接到了高木英典的电话,得知本科生金泽尚一已成功地用磁测量证实了贝德诺兹和缪勒的结果。此后,东京大学的研究工作才迅速全面展开。而金泽尚一也被人们类比灰姑娘而称为“灰小子”。[14]这是国际上第一次对贝德诺兹和缪勒的工作的独立证实。11月19日,该研究小组的负责人田中昭二在日本举行的一次全部由日本人参加的会议上,首次简要地报告了他们的工作,由此迅速地引发了日本对高的高温超导体研究的热潮。[15]他们首篇报道对钡镧铜氧高温超导体(其样品起始转变温度约为30K)的迈斯纳效应测量的论文,于11月22日为日本的《日本应用物理杂志》收到。[16]11月28日的《朝日新闻》对此也作了报道,将这一消息传向了世界。在此之前,东京大学工业化学系的另一个研究小组致力于新材料的研究,该小组的岸尾光二等人于12月18日发现了锶镧铜氧和钙镧铜氧的超导电性,虽然后者的转变温度只有18K,但锶镧铜氧却达到了37K的起始转变温度和33K的零电阻温度。他们还以笛木和雄教授的名义在12月23日递交了专利申请,这也是世界上第一份关于高温超导材料的专利申请。[17]有关的论文于11月22日也寄交到了日本的《化学快报》[18]

在美国,是休斯顿大学的朱经武领先一步。11月6日,朱经武才首次读到了贝德诺兹和缪勒的论文,虽然在时间上要晚于中国和日本的科学家,但他立即召集了手下的研究人员,并宣布,停下一切工作,马上开始对钡镧铜氧超导体的研究。[19]至于他相信的理由,在访谈中,他承认当时在物理上并没有什么推理,“我们当时一直在做钡铅铋氧化物,我们一直觉得在氧化物里搞超导是很有希望的,所以我们一看到他们的文章就绝对相信,虽然当时那些报道的结果量的还不是那么仔细。”[20]他们的工作准备进展迅速,两三天内就开始了实验。到11月下旬,休斯顿小组得到了肯定的结果。在11月25日,他们甚至在钡镧铜氧样品中观察到了73K的超导转变,虽然这结果并不稳定,在第二天就消失而无法再现了,但这一迹象无疑更增强了他们的信心,成了新的动力。

12月初,材料研究学会的秋季年会(简称MRS会议)在美国的波士顿召开,其中的超导讨论会是在4-5日举行。碰巧北泽宏一和朱经武都参加了这次会议。据北泽宏一的回忆,或许是由于《朝日新闻》的报道,当时关于日本研究高温超导体的传言已不胫而走。[21]当他刚到达波士顿时,便有人询问,他的回答是:“是的”,“非常有趣”。为此,他打电话给田中昭二,问是否可以在会上讲此新材料,但因为当时日本尚未确定新超导体的确切组分,田中坚持不要讲。因此,12月4日,北泽宏一只是在报告中按原计划讲了关于钡铅铋氧化物超导体的工作。后些,朱经武亦是报告有关氧化物超导体的工作,但在发言的最后,他简要地提到了休斯顿小组近来电阻测量的结果支持了贝德诺兹和缪勒的工作。这一消息的宣布当即引起了与会者的兴趣和疑问。在此情况下,北泽宏一也终于按耐不住,在对朱经武报告的提问和评论时,上前宣布了日本科学家自10月以来对新超导体所做的电阻和磁测量的结果。因为有了日本对迈斯纳效应的测量结果,使得这一证实更为令人信服。于是北泽宏一被要求并安排在5日专门就日本的工作再作一报告。但此时他却仍未得到田中的许可。适逢在日本时间4日的中午,日本方面最终确定了新超导体的组分,并在电阻测量中得到了零电阻温度为23K的新结果,于是在预定的报告时间之前,通过频繁的电话联系,田中终于同意了让北泽宏一报告。[22]在5日的会议上,北泽宏一全面地介绍了日本的工作。

利用高压手段来研究超导也是朱经武的长项。12日,朱经武向权威的刊物《物理评论快报》寄出了关于在高压下的钡镧铜氧中发现起始临界转变温度为40K的论文。[23]在MRS会议上,朱经武还找到了他原来的学生,在阿拉巴马大学工作的吴茂昆,邀请他一起工作。12月14日,吴茂昆小组通过替换成分,在锶镧铜氧中发现了39K的超导转变。到12月的第三周,朱经武领导的休斯顿小组在高压下又将钡镧铜氧的起始临界转变温度提高到了52.5K,并再次观察到了70K超导的迹象。[24]关于这一新的结果的论文,于12月30日寄到了《科学》杂志。[25]与此同时,贝尔实验室的卡瓦(R.J.Cava)等人也进展迅速地在锶镧铜氧中发现了36K的超导转变,并在29日将论文寄到了《物理评论快报》。[26]虽然朱经武等人的第一篇论文到达《物理评论快报》的时间要早了两个星期,但由于被要求修改等的拖延,直到1月份才与卡瓦等人的论文相继发表在同一期杂志上,但这也给了他们以机会,能够在1月6日添加的附注中,提到了对70K超导迹象的观察和吴茂昆小组对锶镧铜氧超导性的发现。12月30日,在休斯顿的新闻会上,朱经武总结了前段的工作,也简要提到了对70K迹象的观察。[27]12月31日,在美国的报刊中,《纽约时报》首次报道了休斯顿大学和贝尔实验室在高温超导研究方面的最新进展,包括70K的可能。[28]

中国方面的工作这段时间相对慢了一些,但也很快地跟了上来。到12月20日左右,赵忠贤等人也已在锶镧铜氧中实现了起始温度为48.6K的超导转变,并在钡镧铜氧中看到了70K的超导迹象,遗憾的是70K的超导迹象也是在热循环之后便消失而无法重复了。正是因为有了这个70K的迹象,所以他们并没有象常规那样地接着马上就写文章和做结构分析,而是全力地试图重复70K的超导。[29]直到1987年1月17日,他们有关钡镧铜氧46.3K和锶镧铜氧48.6K起始超导转变的研究论文才送交到《科学通报》。[30]但在12月27日,《人民日报》就报道了发现70K超导体的消息。[31]

三、跃上液氮温区

在上面提到的工作中,除了贝德诺兹和缪勒的第一篇论文之外,其他工作的正式发表都是在1987年1月以后,但由于在会议上的宣布和新闻媒介的报道,发现高温超导体的消息早已传遍世界。众多科学家都已投身到研究中来,并向着更高的目标,即做出液氮温区超导体而奋斗。竞争已趋于白热化。

此时,朱经武小组的工作仍处于领先地位。他们通过前段的高压研究,认识到应替换其他的元素,以及试做单晶,但一时又没有成功。于是,朱经武认为:“我们看看旧的日期,好早就已经看到有70K的迹象,而且70K迹象产生时往往在多相的样品中……所以我们决定找一个方法做一个样品,使得它经过热处理之后里面有一个不同成分的分布。如果我们运气好就可以看到高温。所以就特别做了一个样品,还是一个镧钡铜氧的样品,然后我们就看到了高温。这一个我记得很清楚,是元月12日。”[32]只是在第二天再测量时,结果又完全消失了。但就是在12日,朱经武还是正式提交了一份关于许多氧化物,包括钇钡铜氧在内的超导专利申请,尽管此时,其中许多物质还并未成功地做成稳定的超导体。

作为朱经武的合作者,阿拉巴马大学的吴茂昆等人也在忙于新材料的研究。1月17日,吴茂昆手下的研究生阿斯伯恩(J.Ashburn)在一份家庭作业的背面草草地做了一项计算,在作了若干不同元素对晶格结构和临界温度的影响的假定后,他的计算预言钇钡铜氧将是最佳的超导体候选者。但当时他们手头没有现成的钇,于是吴茂昆便去其他部门借了一些来。1月28日钇钡铜氧样品按计算的比例被合成。[33]1月29日下午,测量开始,在新合成的钇钡铜氧样品中,居然发现了起始转变温度达90K左右的超导电性(不过人们后来认识到这种超导体的组分与原初的计算预言并不一致)。吴茂昆立即通过电话将这一消息告诉了在休斯顿的朱经武。到这天晚上时,阿斯伯恩又合成了更多的材料,其测量结果要更加理想。转天,1月30日,吴茂昆和阿斯伯恩便带着他们的样品飞抵休斯顿,以便用那里更精密的设备来重复检验这一结果。[34]在休斯顿,这一结果果然被证实,又经改变制备条件的进一步努力,2月5日,朱经武便将两篇有关的研究论文寄往《物理评论快报》,分别报道了在常压和高压下钇钡铜氧的高温超导电性。[35]这就是人们对液氮温区超导体的首次发现!

2月16日,在休斯顿举行了新闻会。在会上,朱经武宣布了发现液氮温区超导体的重要消息,但没有公布新超导体的成分,并解释说,细节要到3月2日《物理评论快报》上的文章正式发表时才能公开。[36]但出乎朱经武预料的是,未经他同意,休斯顿大学理学院的院长温斯坦(R.Weinstein)将这一秘密泄露给了当地报纸的记者。当天,在当地《休斯顿纪事报》的报道中,也将新超导体的成分泄露了出去。[37]但幸运的是,几乎没有什么物理学家注意到这份地方报纸上的报道。

就在前后几乎同时,在2月18-19日于日本伊东市举行的一次讨论氧化物超导体的会议上,鹿见岛诚一宣布说,他在东京大学的同事水上忍领导的小组已发现了一种临界温度高达80K的新超导体。[38]但这种超导体的成分并未公布。实际上,这就是他们独立于朱经武等人发现的在液氮温区之上的钇钡铜氧超导体。他们的论文于2月23日寄到了《日本应用物理》杂志,并于4月份才发表。[39]总的来说,除了北泽宏一在MRS会议上的宣布之外,日本科学家的工作大多是在日本国内宣布的,而且其论文又正式发表得较晚,这在一定程度上影响了外界对日本工作的了解。

在中国方面,由于1986年12月底在钡镧铜氧中发现了70K的超导迹象,赵忠贤等人主要集中精力于重复这一结果,尽管当时所里搞理论的人和一些年轻人提出了掺杂和替换元素的设想,但由于工作条件太差,烧样品的炉子不够,低温测量也困难,便拖延了一些时间。[40]大约到1987年1月底,赵忠贤等人开始怀疑杂质的问题。因为当时做有70K迹象的样品时所用的原料竟是从仓库中找来的1956年公私合营工厂生产的,含有较多杂质。而后来用较纯原料做出的样品,转变温度全在30K左右。于是他们坚持在多相材料中寻找,并替换其他成分。他们在与国内外同行的交流中也曾就这些想法交换了意见。当组里有人从《美国之音》中听到了朱经武在2月16日(美国时间)新闻会上宣布发现90K超导体的消息时,赵忠贤等人反而觉得减轻了压力,因为这证明他们正在做的工作是有道理的。当然,这里也有遗憾。[41]终于,2月19日,他们在钇钡铜氧中发现了起始温度高于100K,中点温度为92.8K的超导转变。与以前不同,这一次,他们迅速地在第二天就将论文写成并寄出,并办理申请专利。《科学通报》于2月21日收到论文,[42]但专利申请却没有成功,因国外已申请在先了。

中国科学家此时的另一项明智决定是,在2月24日召开了新闻会,正式公布了赵忠贤等人的成果和新超导体的成分。2月25日的《人民日报》头版刊登了这一消息。[43]这是首次对液氮温区超导体成分的正式公布。

大约与此同时,刊有朱经武等人论文的3月2日号的《物理评论快报》也提前在2月25日就为美国东海岸的许多实验室所得到。在此情况下,2月26日下午,朱经武在美国西海岸的加洲大学圣巴巴拉分校也宣布了新超导体的成分。[44]尽管如此,包括考虑到在《休斯顿纪事报》上刊载的非正式消息,在世界范围内,影响最大、流传最广的还是《人民日报》的报道。例如,正是在听到《人民日报》报道的消息后,美国贝尔通讯实验室的化学家特拉斯康(J-M.Tarascon)才想起自己早在1月3日就曾制备了5块钇钡铜氧样品而从未对之做超导测试,此时,只经几个小时的测试,便发现其中竟有两块是超导的!有关的论文被赶在2月27日(周五,美国的周末)前送往《物理评论快报》编辑部,虽然信使没能在下午5点关门前赶至,但他还是设法吸引了一位迟走的工作人员的注意,终于在论文上盖上了2月27日收到的印迹,从而创下的论文送交速度的一项新纪录。[45]

当然,在第一种液氮温区超导体发现的激励下,更多的科学家随后又陆续发现了许多其他的液氮温区超导体,超导临界转变温度不断得到提高,对高温超导体的基础研究和应用研究也不断深入,但限于篇篇幅,这就不在本文的讨论范围之内了。四、竞争中的几个问题

在如前所述的这段时间中,世界范围内探索高温超导体的竞争的激烈程度,是科学史中罕见的。这里不仅在意识上有对诺贝尔奖之类荣誉的竞争,更有潜在的巨大商业价值的诱惑,竞争名次和优先权的时间标度,甚至是以小时来计算的,而且已不是象通常那样按的日期先后,各种大众媒介亦成了重要的传播手段。同时,在此特殊时期的科研竞争中,也出现了一些较有争议、值得进行科学社会学家研究并且在科学史的叙述中所无法回避的问题。这里,择其重要者作简要讨论如下。

首先是两个在《科学》杂志上都曾有过讨论的问题:一涉及朱经武在递交论文中对符号使用,[46]另一涉及公众在荣誉上对工作参予者的承认。[47]

当钇钡铜氧液氮温区超导体刚刚被发现时,朱经武马上就与《物理评论快报》编辑部联系协商。为了防止泄密,他先是提出是否可不经评审而发表,在这一要求被否定后,又提出是否可在论文中用星号来代替关键的化学信息,到排字前再补上正确的公式,这一要求又被再次否定了。最后达成的协议是,由作者和编辑共同认可(而不是象通常那样对作者保密)的两位评审人来评审。当然,朱经武坚持在论文正式发表前,论文中的信息绝不能泄露出去。[48]论文由秘书打印好后,用快递分别向编辑部和评审人寄出,于6日便寄到收件人手中。四天之内,两篇论文就通过了评审并付排。除了再由朱经武保留一份之外,组中的其他人都没有看到论文。不过,这两篇论文中数十处代表元素钇的符号Y却被打印成了元素镱的符号Yb,表示组分的数字系数1也被打印成了4。但不出几日,果然有信息被泄露了出去,关于镱的传言四处传播。关于打印错误是怎样发现的,有不同版本的说法,但共同的是,直到2月18日论文马上就要付印前,朱经武才打电话给编辑部,说有打字错误并作了更正。

由多人论及的此事,可以分几个方面来讨论。首先,这是否真是一打字错误?按一位声称曾采访过阿斯伯恩的作者的说法,据吴茂昆的学生阿斯伯恩的回忆,在休斯顿大学确曾有一次由朱经武、吴茂昆和朱经武的几位学生参加的会议,讨论为防止泄密而在论文中采用“打字错误”的事。[49]在访谈中向朱经武问及此事时,朱经武的回答是:“我现在还是不想作评论。因为不管你怎么讲,人家都不相信你,人家想别的。我想以后大家会慢慢清楚的。”[50]其次,这一消息倒底是怎样泄露出去的?当论文在周四(2月4日)寄出后,周末传言就甚至已传到了欧洲!黑曾(R.Hazen)在其书中详细地分析了多种的可能性,在各个环节中,至少有25人可能读到论文,此外还有更多其他偶然泄密的可能,如编辑部的计算机登录系统防范也并不严密而有可能让他人通过计算机联网而得知论文题目等等。但事情的真相至今仍是一个难以确证的谜。第三,如果“打字错误”是有意设计的,那么这种做法从科研伦理规范上应如何评价?从常规上说,有意做假当然不对,但事实是信息确实被泄露了出去,不管是偶然的失误还是有意的设计,符号Yb确实保护了朱经武的利益。这可以说是向科学社会学家提出了一个两难的问题。正如一位IBM的研究人员所说的那样:“坦率地讲,如果我是朱经武的话,在发表之前我甚至不会将化合物写入论文。人就是人,象这样的结果必定是要泄露出去的。”[51]有趣的是,与此相反,在《休斯顿记事报》上泄露的真实成份倒没有成为传播广泛的传言。再则,虽然那些听信传言转向研究镱的人会心怀不满,除了浪费时间,纯镱氧化物的价格也不菲,但日后人们却发现,镱钡铜氧竟然也是液氮温区超导体,只是当时人们(包括朱经武)没有成功而已。

在笔者对北泽宏一作访谈时,北泽宏一提到他们在《人民日报》上读到赵忠贤等中国科学家发现液氮温区超导体,成分是镱钡铜氧,这一消息来源使得许多日本的研究者都去做镱钡铜氧。[52]为此,笔者专门再次查阅了载有这一报道的《人民日报》国内版和海外版,发现所印内容中讲的成分确系钇钡铜氧,而非镱钡铜氧。故这种说法和解释是不对的。本文前面提到的美国科学家根据《人民日报》的报道做成钇钡铜氧超导体的事例也证明了这一点。

如前所述,最初的液氮温区超导体是由朱经武的合作者、阿拉巴马大学吴茂昆小组制出的,但后来在传播媒介和公众舆论中,荣誉的光环却集中地罩在了朱经武身上。后来,对于吴茂昆小组工作的独立性和朱经武在其中的作用等,又出现了不同的说法。也有人为吴茂昆打抱不平。[53]但事实上朱经武本人的做法并无不当之处。在发表的关于常压下钇钡铜氧超导电性的论文中,他将吴茂昆小组的人员署名在休斯顿小组的人员之前,而自己则名列最后。至于公共舆论的问题,则可视为是科学社会学中“马太效应”的一个典型案例。其实,在这场竞争中,类似的问题不仅于此。在日本东京大学的研究中,最初制备钡镧铜氧超导体和以电阻法测出23K超导转变的,分别是两位本科生,但在发表的文章中却没有他们的署名。笔者就此问及北泽宏一时,他讲:只因为他们是本科生,如果他们是研究生的话,我们就会将他们署名了。

朱经武的合作者之一,参与了超导体结构测定的黑曾在他回忆这场竞争的书中,针对中国几次获得成果和宣布成果都是在朱经武获得成果后不久,数次暗示有人将秘密消息传到中国。他特意提到在2月16日休斯顿的新闻会上一位姓杜的中国外交官也来出席,并认为他可能会注意到《休斯顿纪事报》上的报道。黑曾在书中还提到,有证据表明在休斯顿大学物理系中有工业间谍存在。但在访谈中,朱经武则表示不愿谈及这个问题。

在笔者对赵忠贤的访谈中,赵忠贤谈到,在做钇钡铜氧的过程中,他们是在探索的工作中认识到象杂质和多相等的作用,从而独立地发现了钇钡铜氧超导体。“如果我们在开始的时候,在对外交往中,不是那么缺少经验,不是那么天真,如果我们的实验条件再稍稍好那么一点的话,那就会是由我们发现,而不仅仅是‘独立’发现液氮温区(1-2-3)超导体了,因为我们最早认识到缪勒的工作的意义,和杂质的作用。”[54]

最后,贝德诺兹和缪勒因其重要发现仅仅在一年后便获得了1987年度的诺贝尔物理奖。按照一种说法,其他人未能获奖是因其发现的宣布均在1987年1月31日的提名截止日期之后。[55]无论如何,评奖委员会的这种抉择毕竟免除了众多可能的争议。当然,对于未来高温超导体的研究者们来说,诺贝尔奖的大门仍敞开着。

[1]本工作得到了美国“美中学术交流委员会”(CommitteeonScholarlyCommunacationwithChina)的资助,使笔者得以在美国作为期半年的相关访问研究期间完成了本文的大部分工作,本工作亦得到了美国物理学会下属的物理学史中心(CenterforHistoryofPhysics,AIP)的部分资助。本文写作得到了LawrenceBadash教授的指导和王作跃博士的帮助。赵忠贤教授、田中昭二教授、北泽宏一教授和朱经武教授在百忙中接受了笔者的访谈。另有一位不知名的新加坡朋友热心寄赠了有关资料。在此作者特致谢意。

[2]如:P.F.Dahl,Superconductivity:ItsHistoricalRootsandDevelopmentfromMercurytotheCeramicOxides,AIP,1992,pp.294-303;又如:刘兵、章立源著,《超导物理学发展简史》,陕西科学技术出版社,1988年,pp.127-123.

[3]J.G.贝德诺兹,K.A.米勒,钙钛矿型氧化物--实现高温超导的新途径(诺贝尔物理学奖演讲,1987),高学贤译,《自然科学年鉴(1987)》,上海翻译出版公司,1990年,pp.4.1-4..17.

[4]按照Hazen的说法(R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.xxvii),得此确切结果的日期为1986年1月27日。(由于各地时差及日期的不同,本文中所用日期均指事件发生地的日期。)

[5]J.G.BednorzandK.A.Müller,PossiblehighTcSuperconductivityintheBa-La-Cu-Osystem,Z.Phys.64B,(1987)189-193.

[6]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989,P.83.

[7]J.G.Bednorz,etal,SusceptibilityMeasurementSupportHighTcSuperconductivityintheBa-La-Cu-Osystem,Europhys.Lett.,(1987)379-382.

[8]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989,p.83.

[9]K.A.MüllerandJ.G.Bednorz,TheDiscoveryofaClassofHigh-TemperatureSuperconductors,Science,237(1987)1133-1139.

[10]1994年5月19日笔者对赵忠贤的访谈。

[11]赵忠贤1987年在第三次世界科学院物理学奖获奖仪式上的发言。

[12]1994年1月5日笔者对北泽宏一的访谈。

[13]K.Kitazawa,TheFirst5YearsoftheHighTemperatureSuperconductivity:CulturalDifferencesbetweentheUSandJapan,inJapanese/AmericanTechnologicalInnovation,ed.byW.D.Kingery,Elsevier,1991,pp.119-127.

[14]InterviewwithKoichiKitazawa,Supercurrents,March,1989,pp.13-29.

[15]1993年1月4日笔者对田中昭二的访谈。

[16]S.Uchida,etal,HighTcSuperconductivityofLa-Ba-CuOxides,JapaneseJournalofAppledPhysics,26(1987)L1-L2.

[17]K.Kitazawa,TheFirst5YearsoftheHighTemperatureSuperconductivity:CulturalDifferencesbetweentheUSandJapan,inJapanese/AmericanTechnologicalInnovation,ed.byW.D.Kingery,Elsevier,1991,pp.119-127.

[18]K.Kishio,etal,NewHighTemperatureSuperconductingOxides,(La1-xSrx)2CuO4-δand(La1-xCax)2CuO4-δ,ChemistryLetters,(1987),pp.429-432.

[19]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.

[20]1994年3月15日笔者对朱经武的电话访谈。

[21]1994年1月5日笔者对北泽宏一的访谈。

[22]1993年1月4日笔者对田中昭二的访谈。

[23]C.W.Chu,etal,EvidenceforSuperconductivityabove40KintheLa-Ba-Cu-OCompoundSystem,Phys.Rev.Lett.,58(1987)405-407.

[24]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,pp.43-44.

[25]C.W.Chu,etal,Superconductivityat52.5KintheLanthanum-Barium-Copper-Oxidesystem,Science,235(1987)567-569.

[26]R.J.Cava,etal,BulkSuperconductivityat36KinLa1.8Sr0.2CuO4,Phys.Rev.Lett.,58(1987)408-410.

[27]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.

[28]W.Sullivan,2GroupsReportaBreakthroughinFieldofElectricalConductivity,NewYorkTimes,Dec.31,1986.

[29]1994年5月19日笔者对赵忠贤的访谈。

[30]赵忠贤等,Sr(Ba)-La-Cu氧化物的高临界温度超导电性,《科学通报》,32(1987)177-179.

[31]张继民等,我发现迄今世界转变温度最高超导体,《人民日报》,1986年12月26日。

[32]1994年3月15日笔者对朱经武的电话访谈。

[33]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

[34]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;p.83.p.92-93.B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;pp..92-93.

[35]M.K.Wu,etal,Superconductivityat93KinaNewMixed-PhaseY-Ba-Cu-OCompoundSystematAmbientPressure,Phys.Rev.Lett.,58(1987)908-910;P.H.Hor,etal,High-PressureStudyoftheNewY-Ba-Cu-OSuperconductingCompoundSystem,Phys.Rev.Lett.,58(1987)911-912.

[36]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,P.70.

[37]C.Byars,DiscoveryMayEarnBillions,NobelforUH,HoustonChronicle,Feb.16,1987.

[38]S.Tanaka,ResearchonHigh-TcSuperconductivityinJapan,PhysicsToday,December,(1987),53-57.

[39]S.Kikami,etal,HighTransitionTemperatureSuperconductor:Y-Ba-CuOxide,JapaneseJournalofAppliedPhysics,26(1987)L314-L315.

[40]1994年5月21日赵忠贤给笔者的信。

[41]1994年9月14日笔者对赵忠贤的访谈。

[42]赵忠贤等,Ba-Y-Cu氧化物液氮温区的超导电性,《科学通报》,32(1987)412-414.

[43]我国超导体研究又获重大突破,发现绝对温度百度以上超导体,《人民日报》,1987年2月25日。

[44]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.P.73.

[45]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.P.73.

[46]G.Kolata,YborNotYb?ThatIstheQuestion,Science,236(1987)663-664.

[47]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

[48]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;P.98.

[49]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;P.98.

[50]1994年3月15日笔者对朱经武的电话访谈。

[51]G.Kolata,YborNotYb?ThatIstheQuestion,Science,236(1987)663-664.

[52]1994年1月5日笔者对北泽宏一的访谈。

[53]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

材料物理论文范文篇6

一、背景与突破的开端

几十年来,阻碍超导电性得以广泛应用的最重大的障碍之一,就是已知超导体的临界转变温度(Tc)太低。虽经众多科学家在此方向的多年努力,但自从1973年在铌三锗中发现23K的临界转变温度之后,这一纪录一直保持了13年之久。如此之低的温度,通常要用代价昂贵的液氦手段才能获得,而对液氮温区(77K以上)超导体的发现,则似乎成了一个难以实现的梦想。超导研究一度曾处于低潮。但是,1986年,转机终于出现在对氧化物超导体的研究中。

在国际商业机器公司(IBM)苏黎世研究实验室工作的瑞士科学家缪勒(A.Müller)可以说是超导研究领域中的一位“新手”。直到1978年他去IBM在美国的一家研究实验室作休假研究时,才接触到了超导问题,并对氧化物超导体的研究产生了兴趣。1964年,人们发现了第一个氧化物超导体,即锶钛氧化物,但Tc只有0.3K。1975年由斯莱特(A.W.Sleight)等人发现的Tc为14K的钡铅铋氧化物超导体,虽然吸引了若干科学家的注意力,但一时也未再有更惊人的进展。1983年夏,缪勒邀请并说服了在同一实验室工作的贝德诺兹(J.G.Bednorz)一起进行研究,虽然对更年轻些的贝德诺兹来说,高温超导体的探索是不易有成果因而颇具“风险”的,但他还是在完成其他主要工作之外的业余时间与缪勒一道从事这项工作。

缪勒和贝德诺兹的最初设想是,在某些具有可导致畸变的所谓Jahn-Teller效应的氧化物中进行寻找。在二年多的时间里,他们先研究了镧镍氧化物系统,但没有成功。1985年,在读到了法国科学家米歇尔(C.Michel)等人对钡镧铜氧化物所做的研究后,他们又将注意力转向了这种含铜的氧化物。[3]很快地,1986年1月,他们在自己制备的钡镧铜氧样品中,利用电阻测量观察到了30K左右的起始转变温度。[4]这是一个绝对令人兴奋但又有些难以置信的结果。但为了保险起见,经验丰富的缪勒还是坚持继续重复实验,直到4月中旬,他们才向《物理学杂志》送交了论文。该论文于4月17日为杂志收到,论文被谨慎地题为“钡镧铜氧系统中可能的高Tc超导电性”。[5]由于要进一步确认他们发现的是超导电性,除电阻测量之外,尚需测量其样品的迈斯纳效应,但当时他们手头甚至没有可用的仪器。定购的仪器到8月份才到货。[6]贝德诺兹和缪勒迅速调试好仪器,果然进一步的磁测量支持了他们原来的结论,当报道新结果的第二篇论文寄到《欧洲物理快报》时,已是10月22日了。[7]

在超导史上,曾多次有人宣称发现了高温超导体,但最终均以结果无法为他人所重复或被证伪而告终。由此大多数科学家对大多数发现高温超导体报道总是倾向于持怀疑的态度。很自然地,与对待重大科研发现的常规作法不同,贝德诺兹和缪勒除了送交论文去发表之外,他们没有再以任何其他的方式来公布这项划时代的成果。当然,据一份文献所讲,在等待测量迈斯纳效应的仪器到达的这段时间中,他们曾有少数几次向为数不多的人介绍其工作,但听众的反应“充其量只是不冷不热”而已。[8]他们的第一篇文章直到9月份才正式发表(而他们第二篇关于磁测量的论文的问世已是1987年的事了),因此,在经过了半年之后,广大的物理学界才有可能了解其工作。

按照贝德诺兹和缪勒原来的估计,别人对他们的工作的证实和接受恐怕至少要用2-3年的时间。[9]此时,贝德诺兹和缪勒在超导物理学界并不是知名人物,其论文所发表的杂志也算不上是发表超导研究工作的最权威刊物,再加上历史上的教训,大多数超导物理学家或是并未留意到其工作,或是持怀疑态度。但是,在中国、日本和美国,毕竟有少数科学家敏锐地迅速抓住了这一难得的机会,正是由于他们的证实和进一步研究,使得事态后来发展的速度远远地超出了贝德诺兹和缪勒原初的预期。

二、反应

9月底,中国科学院物理研究所的赵忠贤在物理所图书馆中读到了贝德诺兹和缪勒刚刚发表的文章。[10]基于长期研究高温超导的背景,赵忠贤在回忆当时的想法时说:“我认为缪勒的想法是有道理的。尽管对于真正的机制至今也不清楚,但我认为存在Cu3+与Cu2+之间的巡游电子将导致具有Jahn-Teller效应的Cu2+与无Jahn-Teller的Cu3+交替变化,从而将有利于造成很强的点阵不稳定,而又不引起结构相变。这将有利于超导体的临界温度。”[11]正是根据这种将结构的不稳定与高温超导相联系的推理,赵忠贤相信了贝德诺兹和缪勒的结果,马上找人联系和筹备,于10月中旬和陈立泉等人合作开始了研究工作。同时,他也将自己的看法通知了国内外的一些同事。

在日本,反应也同样迅速而且更富于戏剧性。9月份,日本电子技术实验室的科学家就获得了消息,而且试图重复贝德诺兹和缪勒的实验,但没有成功。[12]10月4日,在一次由文部省组织的关于超导材料的会议上,日本大学的關泽和子将贝德诺兹和缪勒文章的事告诉了同在参加会议的东京大学的北泽宏一,但后者并未相信这是真的,只是随后将此事随便地告诉了同事而已。直到11月初,他手下的研究助理高木英典找到了内田慎一和北泽宏一教授,建议将重复贝德诺兹和缪勒的工作作为本科生毕业论文的课题,因当时本科生已完成了研究生入学考试,正准备开始做论文。北泽宏一虽然同意,但他此时甚至忘记了论文的出处,再度查寻找到后,他建议用更简单的方法来合成材料。[13]实验从11月6日开始,出人意料之外的是,仅仅在11月13日,北泽宏一就接到了高木英典的电话,得知本科生金泽尚一已成功地用磁测量证实了贝德诺兹和缪勒的结果。此后,东京大学的研究工作才迅速全面展开。而金泽尚一也被人们类比灰姑娘而称为“灰小子”。[14]这是国际上第一次对贝德诺兹和缪勒的工作的独立证实。11月19日,该研究小组的负责人田中昭二在日本举行的一次全部由日本人参加的会议上,首次简要地报告了他们的工作,由此迅速地引发了日本对高的高温超导体研究的热潮。[15]他们首篇报道对钡镧铜氧高温超导体(其样品起始转变温度约为30K)的迈斯纳效应测量的论文,于11月22日为日本的《日本应用物理杂志》收到。[16]11月28日的《朝日新闻》对此也作了报道,将这一消息传向了世界。在此之前,东京大学工业化学系的另一个研究小组致力于新材料的研究,该小组的岸尾光二等人于12月18日发现了锶镧铜氧和钙镧铜氧的超导电性,虽然后者的转变温度只有18K,但锶镧铜氧却达到了37K的起始转变温度和33K的零电阻温度。他们还以笛木和雄教授的名义在12月23日递交了专利申请,这也是世界上第一份关于高温超导材料的专利申请。[17]有关的论文于11月22日也寄交到了日本的《化学快报》[18]

在美国,是休斯顿大学的朱经武领先一步。11月6日,朱经武才首次读到了贝德诺兹和缪勒的论文,虽然在时间上要晚于中国和日本的科学家,但他立即召集了手下的研究人员,并宣布,停下一切工作,马上开始对钡镧铜氧超导体的研究。[19]至于他相信的理由,在访谈中,他承认当时在物理上并没有什么推理,“我们当时一直在做钡铅铋氧化物,我们一直觉得在氧化物里搞超导是很有希望的,所以我们一看到他们的文章就绝对相信,虽然当时那些报道的结果量的还不是那么仔细。”[20]他们的工作准备进展迅速,两三天内就开始了实验。到11月下旬,休斯顿小组得到了肯定的结果。在11月25日,他们甚至在钡镧铜氧样品中观察到了73K的超导转变,虽然这结果并不稳定,在第二天就消失而无法再现了,但这一迹象无疑更增强了他们的信心,成了新的动力。

12月初,材料研究学会的秋季年会(简称MRS会议)在美国的波士顿召开,其中的超导讨论会是在4-5日举行。碰巧北泽宏一和朱经武都参加了这次会议。据北泽宏一的回忆,或许是由于《朝日新闻》的报道,当时关于日本研究高温超导体的传言已不胫而走。[21]当他刚到达波士顿时,便有人询问,他的回答是:“是的”,“非常有趣”。为此,他打电话给田中昭二,问是否可以在会上讲此新材料,但因为当时日本尚未确定新超导体的确切组分,田中坚持不要讲。因此,12月4日,北泽宏一只是在报告中按原计划讲了关于钡铅铋氧化物超导体的工作。后些,朱经武亦是报告有关氧化物超导体的工作,但在发言的最后,他简要地提到了休斯顿小组近来电阻测量的结果支持了贝德诺兹和缪勒的工作。这一消息的宣布当即引起了与会者的兴趣和疑问。在此情况下,北泽宏一也终于按耐不住,在对朱经武报告的提问和评论时,上前宣布了日本科学家自10月以来对新超导体所做的电阻和磁测量的结果。因为有了日本对迈斯纳效应的测量结果,使得这一证实更为令人信服。于是北泽宏一被要求并安排在5日专门就日本的工作再作一报告。但此时他却仍未得到田中的许可。适逢在日本时间4日的中午,日本方面最终确定了新超导体的组分,并在电阻测量中得到了零电阻温度为23K的新结果,于是在预定的报告时间之前,通过频繁的电话联系,田中终于同意了让北泽宏一报告。[22]在5日的会议上,北泽宏一全面地介绍了日本的工作。

利用高压手段来研究超导也是朱经武的长项。12日,朱经武向权威的刊物《物理评论快报》寄出了关于在高压下的钡镧铜氧中发现起始临界转变温度为40K的论文。[23]在MRS会议上,朱经武还找到了他原来的学生,在阿拉巴马大学工作的吴茂昆,邀请他一起工作。12月14日,吴茂昆小组通过替换成分,在锶镧铜氧中发现了39K的超导转变。到12月的第三周,朱经武领导的休斯顿小组在高压下又将钡镧铜氧的起始临界转变温度提高到了52.5K,并再次观察到了70K超导的迹象。[24]关于这一新的结果的论文,于12月30日寄到了《科学》杂志。[25]与此同时,贝尔实验室的卡瓦(R.J.Cava)等人也进展迅速地在锶镧铜氧中发现了36K的超导转变,并在29日将论文寄到了《物理评论快报》。[26]虽然朱经武等人的第一篇论文到达《物理评论快报》的时间要早了两个星期,但由于被要求修改等的拖延,直到1月份才与卡瓦等人的论文相继发表在同一期杂志上,但这也给了他们以机会,能够在1月6日添加的附注中,提到了对70K超导迹象的观察和吴茂昆小组对锶镧铜氧超导性的发现。12月30日,在休斯顿的新闻会上,朱经武总结了前段的工作,也简要提到了对70K迹象的观察。[27]12月31日,在美国的报刊中,《纽约时报》首次报道了休斯顿大学和贝尔实验室在高温超导研究方面的最新进展,包括70K的可能。[28]

中国方面的工作这段时间相对慢了一些,但也很快地跟了上来。到12月20日左右,赵忠贤等人也已在锶镧铜氧中实现了起始温度为48.6K的超导转变,并在钡镧铜氧中看到了70K的超导迹象,遗憾的是70K的超导迹象也是在热循环之后便消失而无法重复了。正是因为有了这个70K的迹象,所以他们并没有象常规那样地接着马上就写文章和做结构分析,而是全力地试图重复70K的超导。[29]直到1987年1月17日,他们有关钡镧铜氧46.3K和锶镧铜氧48.6K起始超导转变的研究论文才送交到《科学通报》。[30]但在12月27日,《人民日报》就报道了发现70K超导体的消息。[31]

三、跃上液氮温区

在上面提到的工作中,除了贝德诺兹和缪勒的第一篇论文之外,其他工作的正式发表都是在1987年1月以后,但由于在会议上的宣布和新闻媒介的报道,发现高温超导体的消息早已传遍世界。众多科学家都已投身到研究中来,并向着更高的目标,即做出液氮温区超导体而奋斗。竞争已趋于白热化。

此时,朱经武小组的工作仍处于领先地位。他们通过前段的高压研究,认识到应替换其他的元素,以及试做单晶,但一时又没有成功。于是,朱经武认为:“我们看看旧的日期,好早就已经看到有70K的迹象,而且70K迹象产生时往往在多相的样品中……所以我们决定找一个方法做一个样品,使得它经过热处理之后里面有一个不同成分的分布。如果我们运气好就可以看到高温。所以就特别做了一个样品,还是一个镧钡铜氧的样品,然后我们就看到了高温。这一个我记得很清楚,是元月12日。”[32]只是在第二天再测量时,结果又完全消失了。但就是在12日,朱经武还是正式提交了一份关于许多氧化物,包括钇钡铜氧在内的超导专利申请,尽管此时,其中许多物质还并未成功地做成稳定的超导体。

作为朱经武的合作者,阿拉巴马大学的吴茂昆等人也在忙于新材料的研究。1月17日,吴茂昆手下的研究生阿斯伯恩(J.Ashburn)在一份家庭作业的背面草草地做了一项计算,在作了若干不同元素对晶格结构和临界温度的影响的假定后,他的计算预言钇钡铜氧将是最佳的超导体候选者。但当时他们手头没有现成的钇,于是吴茂昆便去其他部门借了一些来。1月28日钇钡铜氧样品按计算的比例被合成。[33]1月29日下午,测量开始,在新合成的钇钡铜氧样品中,居然发现了起始转变温度达90K左右的超导电性(不过人们后来认识到这种超导体的组分与原初的计算预言并不一致)。吴茂昆立即通过电话将这一消息告诉了在休斯顿的朱经武。到这天晚上时,阿斯伯恩又合成了更多的材料,其测量结果要更加理想。转天,1月30日,吴茂昆和阿斯伯恩便带着他们的样品飞抵休斯顿,以便用那里更精密的设备来重复检验这一结果。[34]在休斯顿,这一结果果然被证实,又经改变制备条件的进一步努力,2月5日,朱经武便将两篇有关的研究论文寄往《物理评论快报》,分别报道了在常压和高压下钇钡铜氧的高温超导电性。[35]这就是人们对液氮温区超导体的首次发现!

2月16日,在休斯顿举行了新闻会。在会上,朱经武宣布了发现液氮温区超导体的重要消息,但没有公布新超导体的成分,并解释说,细节要到3月2日《物理评论快报》上的文章正式发表时才能公开。[36]但出乎朱经武预料的是,未经他同意,休斯顿大学理学院的院长温斯坦(R.Weinstein)将这一秘密泄露给了当地报纸的记者。当天,在当地《休斯顿纪事报》的报道中,也将新超导体的成分泄露了出去。[37]但幸运的是,几乎没有什么物理学家注意到这份地方报纸上的报道。

就在前后几乎同时,在2月18-19日于日本伊东市举行的一次讨论氧化物超导体的会议上,鹿见岛诚一宣布说,他在东京大学的同事水上忍领导的小组已发现了一种临界温度高达80K的新超导体。[38]但这种超导体的成分并未公布。实际上,这就是他们独立于朱经武等人发现的在液氮温区之上的钇钡铜氧超导体。他们的论文于2月23日寄到了《日本应用物理》杂志,并于4月份才发表。[39]总的来说,除了北泽宏一在MRS会议上的宣布之外,日本科学家的工作大多是在日本国内宣布的,而且其论文又正式发表得较晚,这在一定程度上影响了外界对日本工作的了解。

在中国方面,由于1986年12月底在钡镧铜氧中发现了70K的超导迹象,赵忠贤等人主要集中精力于重复这一结果,尽管当时所里搞理论的人和一些年轻人提出了掺杂和替换元素的设想,但由于工作条件太差,烧样品的炉子不够,低温测量也困难,便拖延了一些时间。[40]大约到1987年1月底,赵忠贤等人开始怀疑杂质的问题。因为当时做有70K迹象的样品时所用的原料竟是从仓库中找来的1956年公私合营工厂生产的,含有较多杂质。而后来用较纯原料做出的样品,转变温度全在30K左右。于是他们坚持在多相材料中寻找,并替换其他成分。他们在与国内外同行的交流中也曾就这些想法交换了意见。当组里有人从《美国之音》中听到了朱经武在2月16日(美国时间)新闻会上宣布发现90K超导体的消息时,赵忠贤等人反而觉得减轻了压力,因为这证明他们正在做的工作是有道理的。当然,这里也有遗憾。[41]终于,2月19日,他们在钇钡铜氧中发现了起始温度高于100K,中点温度为92.8K的超导转变。与以前不同,这一次,他们迅速地在第二天就将论文写成并寄出,并办理申请专利。《科学通报》于2月21日收到论文,[42]但专利申请却没有成功,因国外已申请在先了。

中国科学家此时的另一项明智决定是,在2月24日召开了新闻会,正式公布了赵忠贤等人的成果和新超导体的成分。2月25日的《人民日报》头版刊登了这一消息。[43]这是首次对液氮温区超导体成分的正式公布。

大约与此同时,刊有朱经武等人论文的3月2日号的《物理评论快报》也提前在2月25日就为美国东海岸的许多实验室所得到。在此情况下,2月26日下午,朱经武在美国西海岸的加洲大学圣巴巴拉分校也宣布了新超导体的成分。[44]尽管如此,包括考虑到在《休斯顿纪事报》上刊载的非正式消息,在世界范围内,影响最大、流传最广的还是《人民日报》的报道。例如,正是在听到《人民日报》报道的消息后,美国贝尔通讯实验室的化学家特拉斯康(J-M.Tarascon)才想起自己早在1月3日就曾制备了5块钇钡铜氧样品而从未对之做超导测试,此时,只经几个小时的测试,便发现其中竟有两块是超导的!有关的论文被赶在2月27日(周五,美国的周末)前送往《物理评论快报》编辑部,虽然信使没能在下午5点关门前赶至,但他还是设法吸引了一位迟走的工作人员的注意,终于在论文上盖上了2月27日收到的印迹,从而创下的论文送交速度的一项新纪录。[45]

当然,在第一种液氮温区超导体发现的激励下,更多的科学家随后又陆续发现了许多其他的液氮温区超导体,超导临界转变温度不断得到提高,对高温超导体的基础研究和应用研究也不断深入,但限于篇篇幅,这就不在本文的讨论范围之内了。四、竞争中的几个问题

在如前所述的这段时间中,世界范围内探索高温超导体的竞争的激烈程度,是科学史中罕见的。这里不仅在意识上有对诺贝尔奖之类荣誉的竞争,更有潜在的巨大商业价值的诱惑,竞争名次和优先权的时间标度,甚至是以小时来计算的,而且已不是象通常那样按的日期先后,各种大众媒介亦成了重要的传播手段。同时,在此特殊时期的科研竞争中,也出现了一些较有争议、值得进行科学社会学家研究并且在科学史的叙述中所无法回避的问题。这里,择其重要者作简要讨论如下。

首先是两个在《科学》杂志上都曾有过讨论的问题:一涉及朱经武在递交论文中对符号使用,[46]另一涉及公众在荣誉上对工作参予者的承认。[47]

当钇钡铜氧液氮温区超导体刚刚被发现时,朱经武马上就与《物理评论快报》编辑部联系协商。为了防止泄密,他先是提出是否可不经评审而发表,在这一要求被否定后,又提出是否可在论文中用星号来代替关键的化学信息,到排字前再补上正确的公式,这一要求又被再次否定了。最后达成的协议是,由作者和编辑共同认可(而不是象通常那样对作者保密)的两位评审人来评审。当然,朱经武坚持在论文正式发表前,论文中的信息绝不能泄露出去。[48]论文由秘书打印好后,用快递分别向编辑部和评审人寄出,于6日便寄到收件人手中。四天之内,两篇论文就通过了评审并付排。除了再由朱经武保留一份之外,组中的其他人都没有看到论文。不过,这两篇论文中数十处代表元素钇的符号Y却被打印成了元素镱的符号Yb,表示组分的数字系数1也被打印成了4。但不出几日,果然有信息被泄露了出去,关于镱的传言四处传播。关于打印错误是怎样发现的,有不同版本的说法,但共同的是,直到2月18日论文马上就要付印前,朱经武才打电话给编辑部,说有打字错误并作了更正。

由多人论及的此事,可以分几个方面来讨论。首先,这是否真是一打字错误?按一位声称曾采访过阿斯伯恩的作者的说法,据吴茂昆的学生阿斯伯恩的回忆,在休斯顿大学确曾有一次由朱经武、吴茂昆和朱经武的几位学生参加的会议,讨论为防止泄密而在论文中采用“打字错误”的事。[49]在访谈中向朱经武问及此事时,朱经武的回答是:“我现在还是不想作评论。因为不管你怎么讲,人家都不相信你,人家想别的。我想以后大家会慢慢清楚的。”[50]其次,这一消息倒底是怎样泄露出去的?当论文在周四(2月4日)寄出后,周末传言就甚至已传到了欧洲!黑曾(R.Hazen)在其书中详细地分析了多种的可能性,在各个环节中,至少有25人可能读到论文,此外还有更多其他偶然泄密的可能,如编辑部的计算机登录系统防范也并不严密而有可能让他人通过计算机联网而得知论文题目等等。但事情的真相至今仍是一个难以确证的谜。第三,如果“打字错误”是有意设计的,那么这种做法从科研伦理规范上应如何评价?从常规上说,有意做假当然不对,但事实是信息确实被泄露了出去,不管是偶然的失误还是有意的设计,符号Yb确实保护了朱经武的利益。这可以说是向科学社会学家提出了一个两难的问题。正如一位IBM的研究人员所说的那样:“坦率地讲,如果我是朱经武的话,在发表之前我甚至不会将化合物写入论文。人就是人,象这样的结果必定是要泄露出去的。”[51]有趣的是,与此相反,在《休斯顿记事报》上泄露的真实成份倒没有成为传播广泛的传言。再则,虽然那些听信传言转向研究镱的人会心怀不满,除了浪费时间,纯镱氧化物的价格也不菲,但日后人们却发现,镱钡铜氧竟然也是液氮温区超导体,只是当时人们(包括朱经武)没有成功而已。

在笔者对北泽宏一作访谈时,北泽宏一提到他们在《人民日报》上读到赵忠贤等中国科学家发现液氮温区超导体,成分是镱钡铜氧,这一消息来源使得许多日本的研究者都去做镱钡铜氧。[52]为此,笔者专门再次查阅了载有这一报道的《人民日报》国内版和海外版,发现所印内容中讲的成分确系钇钡铜氧,而非镱钡铜氧。故这种说法和解释是不对的。本文前面提到的美国科学家根据《人民日报》的报道做成钇钡铜氧超导体的事例也证明了这一点。

如前所述,最初的液氮温区超导体是由朱经武的合作者、阿拉巴马大学吴茂昆小组制出的,但后来在传播媒介和公众舆论中,荣誉的光环却集中地罩在了朱经武身上。后来,对于吴茂昆小组工作的独立性和朱经武在其中的作用等,又出现了不同的说法。也有人为吴茂昆打抱不平。[53]但事实上朱经武本人的做法并无不当之处。在发表的关于常压下钇钡铜氧超导电性的论文中,他将吴茂昆小组的人员署名在休斯顿小组的人员之前,而自己则名列最后。至于公共舆论的问题,则可视为是科学社会学中“马太效应”的一个典型案例。其实,在这场竞争中,类似的问题不仅于此。在日本东京大学的研究中,最初制备钡镧铜氧超导体和以电阻法测出23K超导转变的,分别是两位本科生,但在发表的文章中却没有他们的署名。笔者就此问及北泽宏一时,他讲:只因为他们是本科生,如果他们是研究生的话,我们就会将他们署名了。

朱经武的合作者之一,参与了超导体结构测定的黑曾在他回忆这场竞争的书中,针对中国几次获得成果和宣布成果都是在朱经武获得成果后不久,数次暗示有人将秘密消息传到中国。他特意提到在2月16日休斯顿的新闻会上一位姓杜的中国外交官也来出席,并认为他可能会注意到《休斯顿纪事报》上的报道。黑曾在书中还提到,有证据表明在休斯顿大学物理系中有工业间谍存在。但在访谈中,朱经武则表示不愿谈及这个问题。

在笔者对赵忠贤的访谈中,赵忠贤谈到,在做钇钡铜氧的过程中,他们是在探索的工作中认识到象杂质和多相等的作用,从而独立地发现了钇钡铜氧超导体。“如果我们在开始的时候,在对外交往中,不是那么缺少经验,不是那么天真,如果我们的实验条件再稍稍好那么一点的话,那就会是由我们发现,而不仅仅是‘独立’发现液氮温区(1-2-3)超导体了,因为我们最早认识到缪勒的工作的意义,和杂质的作用。”[54]

最后,贝德诺兹和缪勒因其重要发现仅仅在一年后便获得了1987年度的诺贝尔物理奖。按照一种说法,其他人未能获奖是因其发现的宣布均在1987年1月31日的提名截止日期之后。[55]无论如何,评奖委员会的这种抉择毕竟免除了众多可能的争议。当然,对于未来高温超导体的研究者们来说,诺贝尔奖的大门仍敞开着。

[1]本工作得到了美国“美中学术交流委员会”(CommitteeonScholarlyCommunacationwithChina)的资助,使笔者得以在美国作为期半年的相关访问研究期间完成了本文的大部分工作,本工作亦得到了美国物理学会下属的物理学史中心(CenterforHistoryofPhysics,AIP)的部分资助。本文写作得到了LawrenceBadash教授的指导和王作跃博士的帮助。赵忠贤教授、田中昭二教授、北泽宏一教授和朱经武教授在百忙中接受了笔者的访谈。另有一位不知名的新加坡朋友热心寄赠了有关资料。在此作者特致谢意。

[2]如:P.F.Dahl,Superconductivity:ItsHistoricalRootsandDevelopmentfromMercurytotheCeramicOxides,AIP,1992,pp.294-303;又如:刘兵、章立源著,《超导物理学发展简史》,陕西科学技术出版社,1988年,pp.127-123.

[3]J.G.贝德诺兹,K.A.米勒,钙钛矿型氧化物--实现高温超导的新途径(诺贝尔物理学奖演讲,1987),高学贤译,《自然科学年鉴(1987)》,上海翻译出版公司,1990年,pp.4.1-4..17.

[4]按照Hazen的说法(R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.xxvii),得此确切结果的日期为1986年1月27日。(由于各地时差及日期的不同,本文中所用日期均指事件发生地的日期。)

[5]J.G.BednorzandK.A.Müller,PossiblehighTcSuperconductivityintheBa-La-Cu-Osystem,Z.Phys.64B,(1987)189-193.

[6]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989,P.83.

[7]J.G.Bednorz,etal,SusceptibilityMeasurementSupportHighTcSuperconductivityintheBa-La-Cu-Osystem,Europhys.Lett.,(1987)379-382.

[8]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989,p.83.

[9]K.A.MüllerandJ.G.Bednorz,TheDiscoveryofaClassofHigh-TemperatureSuperconductors,Science,237(1987)1133-1139.

[10]1994年5月19日笔者对赵忠贤的访谈。

[11]赵忠贤1987年在第三次世界科学院物理学奖获奖仪式上的发言。

[12]1994年1月5日笔者对北泽宏一的访谈。

[13]K.Kitazawa,TheFirst5YearsoftheHighTemperatureSuperconductivity:CulturalDifferencesbetweentheUSandJapan,inJapanese/AmericanTechnologicalInnovation,ed.byW.D.Kingery,Elsevier,1991,pp.119-127.

[14]InterviewwithKoichiKitazawa,Supercurrents,March,1989,pp.13-29.

[15]1993年1月4日笔者对田中昭二的访谈。

[16]S.Uchida,etal,HighTcSuperconductivityofLa-Ba-CuOxides,JapaneseJournalofAppledPhysics,26(1987)L1-L2.

[17]K.Kitazawa,TheFirst5YearsoftheHighTemperatureSuperconductivity:CulturalDifferencesbetweentheUSandJapan,inJapanese/AmericanTechnologicalInnovation,ed.byW.D.Kingery,Elsevier,1991,pp.119-127.

[18]K.Kishio,etal,NewHighTemperatureSuperconductingOxides,(La1-xSrx)2CuO4-δand(La1-xCax)2CuO4-δ,ChemistryLetters,(1987),pp.429-432.

[19]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.

[20]1994年3月15日笔者对朱经武的电话访谈。

[21]1994年1月5日笔者对北泽宏一的访谈。

[22]1993年1月4日笔者对田中昭二的访谈。

[23]C.W.Chu,etal,EvidenceforSuperconductivityabove40KintheLa-Ba-Cu-OCompoundSystem,Phys.Rev.Lett.,58(1987)405-407.

[24]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,pp.43-44.

[25]C.W.Chu,etal,Superconductivityat52.5KintheLanthanum-Barium-Copper-Oxidesystem,Science,235(1987)567-569.

[26]R.J.Cava,etal,BulkSuperconductivityat36KinLa1.8Sr0.2CuO4,Phys.Rev.Lett.,58(1987)408-410.

[27]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.

[28]W.Sullivan,2GroupsReportaBreakthroughinFieldofElectricalConductivity,NewYorkTimes,Dec.31,1986.

[29]1994年5月19日笔者对赵忠贤的访谈。

[30]赵忠贤等,Sr(Ba)-La-Cu氧化物的高临界温度超导电性,《科学通报》,32(1987)177-179.

[31]张继民等,我发现迄今世界转变温度最高超导体,《人民日报》,1986年12月26日。

[32]1994年3月15日笔者对朱经武的电话访谈。

[33]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

[34]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;p.83.p.92-93.B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;pp..92-93.

[35]M.K.Wu,etal,Superconductivityat93KinaNewMixed-PhaseY-Ba-Cu-OCompoundSystematAmbientPressure,Phys.Rev.Lett.,58(1987)908-910;P.H.Hor,etal,High-PressureStudyoftheNewY-Ba-Cu-OSuperconductingCompoundSystem,Phys.Rev.Lett.,58(1987)911-912.

[36]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,P.70.

[37]C.Byars,DiscoveryMayEarnBillions,NobelforUH,HoustonChronicle,Feb.16,1987.

[38]S.Tanaka,ResearchonHigh-TcSuperconductivityinJapan,PhysicsToday,December,(1987),53-57.

[39]S.Kikami,etal,HighTransitionTemperatureSuperconductor:Y-Ba-CuOxide,JapaneseJournalofAppliedPhysics,26(1987)L314-L315.

[40]1994年5月21日赵忠贤给笔者的信。

[41]1994年9月14日笔者对赵忠贤的访谈。

[42]赵忠贤等,Ba-Y-Cu氧化物液氮温区的超导电性,《科学通报》,32(1987)412-414.

[43]我国超导体研究又获重大突破,发现绝对温度百度以上超导体,《人民日报》,1987年2月25日。

[44]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.P.73.

[45]R.M.Hazen,Superconductors:TheBreakthrough,Unwin,1988,p.19-23.P.73.

[46]G.Kolata,YborNotYb?ThatIstheQuestion,Science,236(1987)663-664.

[47]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

[48]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;P.98.

[49]B.Schechter,ThePathofNoResistance:TheRevolutioninSuperconductivity,SimonandSchuster,1989;P.98.

[50]1994年3月15日笔者对朱经武的电话访谈。

[51]G.Kolata,YborNotYb?ThatIstheQuestion,Science,236(1987)663-664.

[52]1994年1月5日笔者对北泽宏一的访谈。

[53]R.Pool,SuperconductorCreditsBypassAlabama,Science,241(1988)655-657.

材料物理论文范文篇7

早在远古时期,人们就知道某些物质具有和温度有关的自发电偶极距,因为它们被加热时具有吸引其它轻小物体的能力。1824年Brewster观察到许多矿石具有热释电性。l880年约·居里和皮·居里发现当对样品施加应力时出现电极化的现象。但是,早期发现的热释电体没有一个是铁电体。在未经处理的铁电单晶中。电畴的极化方向是杂乱的,晶体的净极化为零,热释电响应和压电响应也十分微小,这就是铁电体很晚才被发现的主要原因。直到l920年,法国人Valasek发现了罗息盐(酒石酸钾钠,NaKCH4O·4H2o)特异的介电性能,才掀开了铁电体的历史。

在铁电发展史上的重要历史事件按年代顺序列于表l中。

1四个发展阶段

有关铁电的发展历史,大体可以分为以下四个阶段。

1.1罗息盐时期一发现铁电性

1919年,JosephVa1asek在美国明尼苏达州大学读探究生,师从物理学家WFGSwan教授。从事宇宙射线物理理论探究工作而闻名于世的Swan教授建议Valasek探究罗息盐单晶的物理性能。在接下来的两年里,Valasek测量了罗息盐的线性介电响应、非线性介电性能、压电性能、热释电现象等宏观性能。1920年4月23日在华盛顿举办的美国物理学会会议上,铁电性概念诞生了。

Valasek在“PiezoelectricandalliedphenomenainR0chellesalt”报告中指出:电位移D、电场强度E、极化强度尸分别类比于磁学中的、和,.罗息盐中P和E之间存在的回线和磁滞回线类似。1921年。该报告全文发表在PhvsicalReview期刊上。它奠定了两个里程碑:(1)第一次表明罗息盐自身存在持久极化;(2)首次给出电荷和电场之间的回线(见图1)。Valasek是在介电领域使用自发极化和居里点这两个概念的第一人_71。有趣的是,他从未使用过铁电性(Ferr0electricitv)这个词。也许他并不知道。在19l2年闻名的欧文·薛定谔就已经提出了这一概念。

1.2KDP时期一铁电热力学理论

1931年比利时布鲁塞尔大学的物理化学教授JErrera发表了一篇论文,文中指出罗息盐的介电常数随外加电场频率的变化呈典型的反常色散现象。其实AMNich0lson早在1919年就发表了有关罗息盐强烈谐振曲线的论文,但Errem和瑞士苏黎世的物理学家都不知道。他们认为非凡宽的色散曲线不会是分子共振引起的,并决定重复Errera的实验。Scherrer的学生GBusch,将此新问题作为其博士学位论文进行了探究。Busch他找到和此新问题相关、在1897年至1932年出版的文章仅约20篇。其中包括GSteulmann的文章“InstitutfnrallgemeineElektmtechnik”,Steu1.mann测量了K3PO、K2HPO、KH2PO等粉体的介电常数。前面两种盐的值很平常,分别为7.75和9.O5,而KH2PO的值却高达3O。但这些材料都不含结晶水.因而没有引起Busch的重视。在经过诸多失败后,他才探究KH2PO的性能,并于l935年3月13日采用简易的电桥观察到超过量程的大电容。随后,Busch赴柏林做低温实验,证实KH2PO确实是铁电体。有关KH2P0介电常数一温度关系的第一批实验结果见图2。

在理论探究方面,Mnller首先将热力学理论应用于铁电体。VLGinsburg将郎道(Landau)相变理论应用于KH2P0型铁电体,并迈出了将这一理论应用于更一般情况的第一步。德文希尔(Devonshire)将其进行完善,发展为今天仍行之有效的郎道一德文希尔理论。

1.3钙钛矿时期一铁电软模理论

BaTi0铁电性的发现主要源于战争期间对电子元器件(尤其是电容器)的探究。众所周知,金红石具有高介电常数(£100),当时有几个实验室试图将TiO和其他氧化物(非凡是碱土金属氧化物)共烧制备高介电常数陶瓷。有四个国家独立地发现了BaTiO3的铁电性:

(1)美国1941年报道了通过烧结TiO2和BaO制备的陶瓷具有高介电常数。经测试介电常数高达1l00。

(2)英国1942年就发现了碱土金属钛酸盐具有高介电常数。由于战争时期保密限制使得发表时间推迟至1945年。而且在最初的出版物中并没有提及铁电性。

(3)俄国报道了BaTi0,的反常介电行为。虽然探究者意识到这是铁电现象,但是他们最初猜测反常行为是由高介电介质中的介电击穿引起的。不过,

他们很快明白发现了一种新的铁电体,并找出了居里一外斯定律,测定了电滞回线。

(4)日本也发现了BaTi0,的反常介电行为。日本从战前到二战期间一直进行着罗息盐的探究。BaTiO,是第一种不含氢且不溶于水的铁电体。此后,陆续发现了其他钙钛矿铁电体,例如KNb0,和KTa03fMatthias,1949年),LiNbO3和LiTa03(Matthias和Remeika,1949年),PbTi03(Shirane、Hoshima和Suzuki,1950年)。至20世纪50年代末,大约有100种化合物被发现具有铁电性。截至199O年,已知的铁电体约为250种。

1958年11月在莫斯科召开的苏联第二届电介质会议上Anderson提出了软模理论,而Cochran则独立地进行了更具体的探究。Barker和Tinkham运用红外光谱以及随后的C0wlev利用非弹性中子散射进行了实验验证。截至1970年.有关铁电相变晶格动力学的主要思想已经阐明。

1.4铁电薄膜及器件时期一小型化

虽然二战时BaTiO就已经用于器件中.且随后铁电材料被广泛应用于生产多种器件,但是,90年代以前并没有器件真正用到铁电材料的铁电性,而是利用铁电材料的其他性质.主要是压电性和热释电性。80年代中期薄膜制备技术取得了突破性进展,基本扫清了制备高质量铁电薄膜的技术障碍。由于铁电薄膜具有介电性、压电性、热释电性、铁电性以及电光效应、声光效应、光折变效应和非线性光学效应等重要特性,人们单独利用其中某一性质或综合利用多种特性研制出了众多的铁电薄膜器件(见表2)。

随着整机和系统向着小型化、轻量化方向发展,微电子、光电子、微电子机械等对铁电材料提出了小型化、薄膜化、集成化等要求。在此背景下,铁电材料和工艺和传统的半导体材料和工艺相结合而形成了一门新兴的交叉学科一集成铁电学。同时,铁电材料及器件的探究发生了两个重要的转变:一是由单晶器件向薄膜器件发展:二是由分立器件向集成化器件发展。

材料物理论文范文篇8

本学期我们物理教研组工作,将围绕县研训中心物理学科工作计划开展活动,以课堂教学为主渠道,转变教学的行为方式,以课堂教学方式和方法的改革提高课堂教学的有效性。加强本组的学科建设,落实好教学常规工作,加强教学研究、学情研究,促进我校物理教学质量上新台阶。

二、主要工作及措施

(一)、加强教育教学理论学习,提高物理教师理论素养

1、认真学习《物理课程标准》、《学科标准解读》等各类课程改革材料。

2、组织教师进行理论学习交流,积极撰写教学论文(案例)。

(二)组织好集体备课活动

加强集体备课,做到“四定”:定时、定地点、定内容、定中心发言人。发挥群体效应,重视研究教法学法。备课力求做到统一教学内容、统一教学进度、统一辅导资料及作业、统一组织考试。

备课组长在开学初先分好分析内容和负责教材分析的老师,再具体到某个阶段进行对教材的深入解读,分析。备课组长主持并召开每周一次的集体备课会议,要求做到:

①确定主讲人;

②主讲人要准备充分,提前备课;

③主讲人的备课方案由集体讨论、整合后,即形成本课时的纲领性教案,教师们要围绕它并结合自身的特点及班级情况形成自己有特色的教案。

(三)倡导教学教研,提高教师教学科研能力

1、加强学习,研究学习各类报刊杂志,提升教师自身的业务素质。

2、注重收集平时教学过程中的一些经验、心得,倡导教学心得的研究,强调教后记的记载工作。

3、加强命题研究,在编制学习的过程中提高自身的命题能力。

4、大力发动本组教师积极参加各级“个人课题”的申报与研究工作。认真做好组中教师的个人课题的监控工作。

5.每位教师每学年至少交一篇论文参加县级以上论文评比。

(四)加强教学常规工作,提高教学效益

1.本学期根据学校要求每位老师至少上一节校内公开课或示范课,有个人课题的可根据县研训中心的要求上课题研究课或成果展示课。认真组织听、评课,并做好记录。

2.落实教学常规工作

严格执行《高淳县固城中学教师教学规范要求》。加强教学常规研究,做好备课笔记、听课笔记、作业批改等的检查或抽查工作,落实集体备课,切实提高备课和上课的质量,严格控制作业量,规范作业批改,加强差生的辅导。

(五)加强毕业班物理教学工作,提高毕业班教学质量

本届初三毕业班物理教学要把工作重点放在加强双基和能力培养上,注重知识形成过程教学和实验教学,重视学生思维能力的培养,切实提高学生的实验操作技能和创新能力。同时积极进行教学研讨活动,共同研究2011年中考试卷,交流经验,明确教学方向,努力提高成绩。仔细研究近年来的命题思路,精选习题,争取更大的进步。

材料物理论文范文篇9

一、期刊的品种

通过的要求,严格的选刊标准和评估程序来挑选刊源,专业期刊相对更容易接受本领域的文章。假如用于职称评审最好挑选本专业的杂志期刊,这样在平职称的过程中会有优势。

二、期刊的定位

一般来说,各种期刊都有自己的办刊宗旨,比如有的期刊偏重理论研究性,就很少录入技术使用的文章。就是属于同一学科的期刊,刊发论文的侧重点也有所不同,如物理学科类的期刊,有的侧重于理论研究,有的重视使用实例、实验改善,有些理论与使用兼收并用,有些只选用科研性的论文。因此挑选一个适当专业期刊来投稿是很重要的,以防止稿件因不符合所投期刊的领域而被退稿,然后耽误的时刻。稳重挑选一个适宜自己论文内容的期刊来投稿,是顺畅的要害一步。

三、查看期刊每年刊载的文章数目

一般来说,一年录入刊发论文越多的期刊,咱们就越容易在该期刊上,所以这一点关于咱们挑选期刊来说,显得非常重要。

四、期刊的收费情况

大体来说,的收费项目主要包含审稿酬、版面费、加急费、彩图费和单行本费等。一般情况下是审稿酬和版面费为多。因为每个期刊的品质、受欢迎程度、提升职称打分认可度都不同,版面收费标准自然也有所不同,因此建议根据各自的发表用处及经济实力,综合考虑,挑选适宜的期刊,不能一味的追求廉价。

五、期刊的格式和版式特色

挑选期刊时,先要搞清楚期刊的格式要求,因为投稿论文要严格按其要求书写,防止因自己的论文格式与所投刊物要求不相符而被退稿,耽误论文的发表。假如论文格式与所挑选的投稿期刊要求明显不同,短时刻又不能完结论文格式更改的,应该挑选转投其他期刊。

六、刊的审稿周期和发表周期

材料物理论文范文篇10

论文撰写应符合国家及各专业部门制定的有关标准,符合汉语语法规范。

硕士和博士学位论文,除在字数、理论研究的深度及创造性成果等方面的要求不同外,对其撰写规范的要求基本一致。

一、内容要求

1.1题目

题目应恰当、准确地反映本课题的研究内容。学位论文的中文题目一般不超过30字,不设副标题。

1.2摘要与关键词

1.2.1摘要

摘要是学位论文的内容不加注释和评论的简短陈述,是一篇具有独立性和完整性的短文。摘要应包括本论文的创造性成果及其理论与实际意义,一般应说明研究工作目的、实验方法、结果和最终结论等,重点是结果和结论。摘要中不宜使用公式、图表,不标注引用文献编号。避免将摘要写成目录式的内容介绍。

1.2.2关键词

关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准)。关键词一般列3~5个,按词条的外延层次排列(外延大的排在前面)。

1.3论文正文

论文正文包括绪论、论文主体及结论等部分。

1.3.1绪论

绪论一般作为第一章。绪论应包括:本研究课题的学术背景及理论与实际意义;国内外文献综述;本研究课题的来源及主要研究内容。

1.3.2论文主体

论文主体是学位论文的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面:

本研究内容的总体方案设计与选择论证;

本研究内容各部分(包括硬件与软件)的设计计算;

研究内容试验方案设计的可行性、有效性以及试验数据处理及分析;

本研究内容的理论分析。对本研究内容及成果应进行较全面、客观的理论阐述,应着重指出本研究内容中的创新、改进与实际应用之处。理论分析中,应将他人研究成果单独书写,并注明出处,不得将其与本人提出的理论分析混淆在一起。对于将其他领域的理论、结果引用到本研究领域者,应说明该理论的出处,并论述引用的可行性与有效性。

管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行的结果分析或建议、改进措施等。

工程硕士论文(设计)可以是一个完整的工程技术项目的设计或研究课题,可以是技术攻关、技术改造专题,或是新工艺、新设备、新材料、新产品的研制与开发,论文(设计)要有新见解或实用价值(有一定经济效益或社会效益),体现申请人综合运用科学理论、方法和技术手段解决工程实际问题的能力。

自然科学的论文应推理正确,结论清晰,无科学性错误。

论文主体各章后应有一节“本章小结”。

1.3.3结论

学位论文的结论单独作为一章排写,但不加章号。

结论是对整个论文主要成果的总结。在结论中应明确指出本研究内容的创造性成果或创新性理论(含新见解、新观点),对其应用前景和社会、经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论内容一般在2000字以内。

1.4参考文献

按文中出现的顺序列出直接引用的主要参考文献。

1.5攻读学位期间发表的与学位论文内容相关的学术论文

学位论文后应列出研究生在攻读学位期间发表的(含已接受待发表、已投稿、或已成文打算投稿、或拟成文投稿)与学位论文内容相关的学术论文(以表格形式填写,只填写与学位论文内容相关的部分。表格可在研究生院学位授予网页下载)。

1.6致谢

对导师和给予指导或协助完成学位论文工作的组织和个人表示感谢。内容应简洁明了、实事求是。对课题给予资助者应予感谢。

二、书写规定

2.1论文文字

除外语类专业外,一般用汉语简化文字书写。

2.2论文字数

博士学位论文10万字,硕士学位论文5万字,专业学位论文3万字左右。

2.3论文书写

学位论文必须在计算机上输入、编排与打印。

摘要、目录、物理量名称及符号表等正文前部分的页码用罗马数字单独编排,正文以后的页码用阿拉伯数字编排。

硕士学位论文的摘要,博士学位论文的扉页(内封)、摘要、目录、图名及表名,都要求用中、英文两种文字给出,编排上中文在前。扉页、摘要及目录的英文部分另起一页。

2.4摘要

摘要的字数(以汉字计)为1000字左右,以能将规定内容阐述清楚为原则。摘要页不需写出论文题目。

英文摘要与中文摘要的内容应完全一致,在英文语法、用词上应正确无误。

2.5目录

目录应包括论文中全部章节的标题及页码,含:

摘要(中、英文)

物理量名称及符号表(采用国家标准规定符号者可略去此表)

正文章节题目(要求编到第3级标题,即1.1.1)

参考文献

攻读学位期间发表的与学位论文内容相关的学术论文

致谢

附录

2.6论文正文

2.6.1章节及各章标题

论文正文分章节撰写,每章应另起一页。各章标题要突出重点、简明扼要。字数一般在15字以内,不得使用标点符号。标题中尽量不采用英文缩写词,对必须采用者,应使用本行业的通用缩写词。

2.6.2层次

层次以少为宜,根据实际需要选择。层次代号建议采用3.9中表1的格式。

层次要求统一,但若节下内容无需列条的,可直接列款、项。层次用到哪一层次视需要而定。

2.7引用文献

引用文献标示方式应全文统一,并采用所在学科领域内通用的方式,置于所引内容最末句的右上角,用小5号字体。所引文献编号用阿拉数字置于方括号中,如:“…成果[1]”。当提及的参考文献为文中直接说明时,其序号应该用小4号字与正文排齐,如“由文献[8,10~14]可知”。

不得将引用文献标示置于各级标题处。

2.8名词术语

科技名词术语及设备、元件的名称,应采用国家标准或部颁标准中规定的术语或名称。标准中未规定的术语要采用行业通用术语或名称。全文名词术语必须统一。一些特殊名词或新名词应在适当位置加以说明或注解。

采用英语缩写词时,除本行业广泛应用的通用缩写词外,文中第一次出现的缩写词应该用括号注明英文全文。

2.9物理量名称、符号与计量单位

2.9.1物理量的名称和符号

物理量的名称和符号应符合GB3100~3102-86的规定。论文中某一量的名称和符号应统一。

2.9.2物理量计量单位

物理量计量单位及符号应按国务院1984年的《中华人民共和国法定计量单位》及GB3100~3102执行,不得使用非法定计量单位及符号。计量单位符号,除用人名命名的单位第一个字母用大写之外,一律用小写字母。

非物理量单位(如件、台、人、元、次等)可以采用汉字与单位符号混写的方式,如“万t·km”。

文稿叙述中不定数字之后允许用中文计量单位符号,如“几千克至1000kg”。

表达时刻时应采用中文计量单位,如“上午8点3刻”,不能写成“8h45min”。

2.10外文字母的正、斜体用法

物理量符号、物理常量、变量符号用斜体,计量单位等符号均用正体。

2.11数字

按国家语言文字工作委员会等七单位1987年的《关于出版物上数字用法的试行规定》,除习惯用中文数字表示的以外,一般均采用阿拉伯数字。年份一概写全数,如2000年不能写成00年。

2.12公式

原则上居中书写。

公式序号按章编排,如第一章第一个公式序号为“(1-1)”,附录A中的第一个公式为“(A-1)”等。

文中引用公式时,一般用“见式(1-1)”或“由公式(1-1)”。

公式中用斜线表示“除”的关系时应采用括号,以免含糊不清,如a/(bcosx)。通常“乘”的关系在前,如acosx/b而不写成(a/b)cosx。

2.13插表

表格不加左、右边线。

表序一般按章编排,如第一章第一个插表的序号为“表1-1”等。表序与表名之间空一格,表名中不允许使用标点符号,表名后不加标点。表序与表名置于表上,用中、英两种文字居中排写,中文在上。

表头设计应简单明了,尽量不用斜线。

全表如用同一单位,将单位符号移至表头右上角,加圆括号。

表中数据应正确无误,书写清楚。数字空缺的格内加“-”字线(占2个数字),不允许用“²”、“同上”之类的写法。

表内文字说明,起行空一格、转行顶格、句末不加标点。

2.14插图

插图应与文字紧密配合,文图相符,技术内容正确。选图要力求精练。

2.14.1制图标准

插图应符合国家标准及专业标准。

机械工程图:采用第一角投影法,严格按照GB4457~4460-84,GB131-83《机械制图》标准规定。

电气图:图形符号、文字符号等应符合有关标准的规定。

流程图:原则上应采用结构化程序并正确运用流程框图。

对无规定符号的图形应采用该行业的常用画法。

2.14.2图题及图中说明

每个图均应有图题(由图号和图名组成)。图号按章编排,如第一章第一图的图号为“图1-1”等。图题置于图下,用中、英文两种文字居中书写,中文在上。有图注或其他说明时应置于图题之上。图名在图号之后空一格排写。引用图应说明出处,在图题右上角加引用文献号。图中若有分图时,分图号用a)、b)等置于分图之下。

图中各部分说明应采用中文(引用的外文图除外)或数字项号,各项文字说明置于图题之上(有分图题者,置于分图题之上)。

2.14.3插图编排

插图与其图题为一个整体,不得拆开排写于两页。插图处的该页空白不够排写该图整体时,可将其后文字部分提前排写,将图移至次页最前面。

2.14.4坐标单位

有数字标注的坐标图,必须注明坐标单位。

2.14.5论文原件中照片图及插图

学位论文原件中的照片图均应是原版照片粘贴,不得采用复印方式。照片可为黑白或彩色,应主题突出、层次分明、清晰整洁、反差适中。照片采用光面相纸,不宜用布纹相纸。对金相显微组织照片必须注明放大倍数。

2.15参考文献

参考文献书写格式应符合GB7714-87《文后参考文献著录规则》。常用参考文献编写项目和顺序规定如下:

著作图书文献

[序号]作者.书名.版次.出版者,出版年:引用部分起止页

翻译图书文献

[序号]作者.书名.译者.版次.出版者,出版年:引用部分起止页

学术刊物文献

[序号]作者.文章名.学术刊物名.年,卷(期):引用部分起止页

学术会议文献

[序号]作者.文章名.编者名.会议名称,会议地址,年份.出版地:出版者,出版年:引用部分起止页

学位论文类参考文献

[序号]研究生名.学位论文题目.学校及学位论文级别.答辩年份:引用部分起止页

学术会议若出版论文集者,可在会议名称后加上“论文集”字样。未出版论文集者省去“出版者”、“出版年”两项。会议地址与出版地相同者省略“出版地”。会议年份与出版年相同者省略“出版年”。

2.16攻读学位期间发表的与学位论文内容相关的学术论文

有既定的表格,可在研究生院学位授予网页下载。

要求只填写与学位论文内容相关的学术论文(含已接受待发表、已投稿、或已成文打算投稿、或拟成文投稿的论文)。

2.17附录

对需要收录于学位论文中且又不适合书写于正文中的附加数据、资料、详细公式推导、计算机程序等有特色的内容,可做为附录排写,序号采用“附录1”、“附录2”等。

三、打印要求

3.1页面要求

论文需用A4纸印刷,版心大小为155mm×245mm(即使用word编排时,页边距上、下、左、右均为25mm),页眉、页脚均为15mm,每页35行,每行35字,页码在版心下边线之下隔行居中放置。3.2字体和字号

各章题序及标题小2号黑体

各节的一级题序及标题小3号黑体

各节的二级题序及标题4号黑体

各节的三级题序及标题小4号黑体

款、项均采用小4号黑体

正文小4号宋体

页眉、页脚5号宋体

3.3页眉

学位论文各页均加页眉,在版心上边线加一行1.5磅粗的实线,其上居中打印页眉。

奇数页眉:□□……□所在章题序及标题(如第一章绪论)

偶数页眉:华南理工大学□士学位论文(如华南理工大学硕士学位论文或华南理工大学博士学位论文)

3.4封面及内封(扉页)

3.4.1封面(见附录)

博士、硕士、工程硕士、工商管理硕士以及在职人员以同等学力申请学位的学位论文封面已给出相应的固定格式(可在研究生院学位授予网页下载)。以下为学位论文封面的必填项目及字体要求:

分类号、学号:4号黑体字居中

论文题目:2号黑体字居中

学位申请人、导师姓名及职称、专业名称、研究方向、所在学院、论文提交日期:3号黑体字居中

3.4.2内封

(宋体4号)分类号____________________学校代码:10561

(宋体4号)UDC_____________密级______学号:

(粗宋体小2号字居中)华南理工大学□士学位论文

(黑体2号字居中)(论文题目)

(宋体3号字居中)(学生姓名)

(宋体4号字)指导教师姓名(导师姓名、职称、系所名称)

(宋体4号字)申请学位级别________专业名称_____________

(宋体4号字)论文提交日期________论文答辩日期_________

(宋体4号字)学位授予单位和日期_______________________

(宋体4号字)答辩委员会主席(姓名、职称)

(宋体4号字)论文评阅人(姓名、职称)

(姓名、职称)

(姓名、职称)

注:导师姓名以在研究生处备案名单为准

3.5原创性声明

学位论文必须在扉页(内封)后加上一页“学位论文原创性声明”。“学位论文原创性声明”可在研究生院的学位授予网页下载。

3.6摘要及关键词

摘要题头应居中,字样如下:

摘要(小2号黑体)

然后隔行书写摘要的文字部分。

摘要文字之后隔一行顶格(齐版心左边线)印有:

关键词词;词;…;词

小4号黑体关键词3~5个,宋体小4号字

3.7目录

目录中各章题序及标题用小4号黑体,其余用小4号宋体。

3.8正文层次

正文层次的编排建议用以下格式:

各层次题序及标题不得置于页面的最后一行(孤行)。

表1层次代号及说明

章第□章□□……□居中排

章编号用中文数字

顶格,X为章编号,用

节X.1□□……□阿拉伯数字

X.1.1□□……□不接排

条X.1.1.1□□……□□□……□□接排

□□……

款1.□□…□□□…□□…□□接排

□□……

项(1)□□…□□□…□□…□□接排

□□……

3.2字体和字号

各章题序及标题小2号黑体

各节的一级题序及标题小3号黑体

各节的二级题序及标题4号黑体

各节的三级题序及标题小4号黑体

款、项均采用小4号黑体

正文小4号宋体

页眉、页脚5号宋体

3.3页眉

学位论文各页均加页眉,在版心上边线加一行1.5磅粗的实线,其上居中打印页眉。

奇数页眉:□□……□所在章题序及标题(如第一章绪论)

偶数页眉:华南理工大学□士学位论文(如华南理工大学硕士学位论文或华南理工大学博士学位论文)

3.4封面及内封(扉页)

3.4.1封面(见附录)

博士、硕士、工程硕士、工商管理硕士以及在职人员以同等学力申请学位的学位论文封面已给出相应的固定格式(可在研究生院学位授予网页下载)。以下为学位论文封面的必填项目及字体要求:

分类号、学号:4号黑体字居中

论文题目:2号黑体字居中

学位申请人、导师姓名及职称、专业名称、研究方向、所在学院、论文提交日期:3号黑体字居中

3.4.2内封

(宋体4号)分类号____________________学校代码:10561

(宋体4号)UDC_____________密级______学号:

(粗宋体小2号字居中)华南理工大学□士学位论文

(黑体2号字居中)(论文题目)

(宋体3号字居中)(学生姓名)

(宋体4号字)指导教师姓名(导师姓名、职称、系所名称)

(宋体4号字)申请学位级别________专业名称_____________

(宋体4号字)论文提交日期________论文答辩日期_________

(宋体4号字)学位授予单位和日期_______________________

(宋体4号字)答辩委员会主席(姓名、职称)

(宋体4号字)论文评阅人(姓名、职称)

(姓名、职称)

(姓名、职称)

注:导师姓名以在研究生处备案名单为准

3.5原创性声明

学位论文必须在扉页(内封)后加上一页“学位论文原创性声明”。“学位论文原创性声明”可在研究生院的学位授予网页下载。

3.6摘要及关键词

摘要题头应居中,字样如下:

摘要(小2号黑体)

然后隔行书写摘要的文字部分。

摘要文字之后隔一行顶格(齐版心左边线)印有:

关键词词;词;…;词

小4号黑体关键词3~5个,宋体小4号字

3.7目录

目录中各章题序及标题用小4号黑体,其余用小4号宋体。

3.8正文层次

正文层次的编排建议用以下格式:

各层次题序及标题不得置于页面的最后一行(孤行)。

3.9公式

公式序号的右侧符号与右边线顶边排写。

公式较长时最好在等号“=”处转行,如难实现,则可在+、-、×、÷运算符号处转行,转行时运算符号仅书写于转行式前,不重复书写。

公式中第一次出现的物理量应给予注释。

4.0论文印刷与装订

研究生学位论文一律用双面胶印。

学位论文封面要求为套色印刷。硕士用浅蓝色光面纸,限印30份;博士用深蓝色光面纸,可印40份(纸样见附录)。

4.1博士学位论文书脊

博士学位论文书脊处应印刷论文题目、作者姓名及“华南理工大学”字样,字体一律用适当字号的宋体字。