制冷压缩机范文10篇

时间:2023-03-28 22:29:31

制冷压缩机

制冷压缩机范文篇1

关键词:电磁振动式压缩机电动式压缩机

制冷压缩机质量的好坏将直接影响着电冰箱、空调器等小型制冷设备的制冷效果、使用寿命、噪音和震动等多种性能。就制冷压缩机的工作原理与结构而言,形式多样,性能各异。现在生产的小型制冷设备采用的全封闭式压缩机,按其结构特性可分为电磁式和电动式两大类。而电动式又可分为往复活塞式、旋转活塞式和涡旋式3种类型。下面就以上几种全封闭制冷压缩机的性能特点简单介绍如下:

1电磁振动式压缩机

电磁振动式压缩机有以下3种:(1)动圈式电磁振动型;(2)动铁芯式电磁振动型;(3)悬吊动磁铁式电磁振动型。其中,动圈式在全封闭式制冷压缩机中被实际应用,它是利用通以交流电流的线圈产生的交变磁场与永久磁场之间相互作用,直接驱动活塞作往复运动的压缩机。其特点是结构简单、零部件少、加工精度要求不高、容易制造。因此从20世纪50年代开始就用于容积较小的电冰箱。但从另一方面,由于电源频率变化引起的制冷量变化大,且50Hz和60Hz不能通用,存在着因排气、吸气压力引起行程变化等问题,使活塞行程的长短随负荷的变化而改变,同时机内弹簧作高频谐振,易产生弹性疲劳,因此一般只适用于生产100W以下的压缩机。而动铁芯式和悬吊动磁铁式电磁振动型由于只在研究阶段还没有实际应用,故此不作介绍。

2电动式压缩机

2.1往复活塞式压缩机

按其结构分为滑管式和连杆式压缩机两类。

(1)滑管式压缩机

滑管式压缩机产生于20世纪60年代,它是往复活塞式压缩机的一种类型。其特点是结构简单,工艺性好,成本较低,对零部件的加工精度要求不高,制造和装配都比较容易,所以发展较快。目前这类压缩机在国内外的电冰箱生产中应用比较普遍。缺点是活塞与缸壁间的侧力较大、磨擦功耗大、能效比偏低,因此目前滑管式压缩机正在进入衰退期,将逐渐被连杆式压缩机或旋转式压缩机所取代。

(2)连杆式压缩机

连杆式压缩机也属往复活塞式,是电冰箱采用时间较早的一种。在20世纪50年代以前生产的电冰箱几乎都是采用连杆式压缩机。其特点是运转比较平稳、噪声低、磨损小、使用寿命长、能效比较高、工作可靠、综合性能优良。但由于零部件形状复杂,加工精度要求较高,工艺难度较大,因此其发展一度受到限制,在电冰箱及其它小型制冷设备中被滑管式和旋转式压缩机所取代。近几年来随着机械工业的不断发展,对其结构进行了多方面的技术改进。目前连杆式压缩机已成为电冰箱压缩机的主导产品,总需求是有较大的提高。近年来世界各电冰箱生产大国,尤其是日本、意大利、美国等国对往复式压缩机的制造技术进行了多方面提改造,从而使连杆式压缩机的各项性能指标都有了很大的提高。因此,有重新成为电冰箱压缩机主导产品的趋势。

2.2旋转式压缩机

旋转式压缩机的电机无需将转子的旋转运动转换为活塞的往复运动,而是直接带动旋转活塞作旋转运动来完成对制冷剂蒸气的压缩。这种压缩机更适合于小型空调器,特别是在家用空调器上的应用更为广泛,如美国通用电器公司和沃普公司生产的旋转式压缩机都设计了较好的防过热和润滑装置。它采用把冷凝器处的部分制冷液用配管引至压缩室,使之在气缸内喷射的冷却方式,提高了冷却效果。为了防止把大量的制冷液直接吸入气缸内,产生液击,在吸气回路的压缩机前部设有气液分离器,润滑油和制冷液一旦进入器内,则制冷液在气液分离器内蒸发,压缩机吸入的是气体;润滑油从气液分离器下方的小孔中缓缓地连续少量进入压缩机,用这种方法防止液击。油泵给油的方法是,在转轴下端装设两个齿轮状的叶轮,它与转轴一同转动,对油施加离心力,从转轴中心孔把油导向上方。另外,在轴的外表面上开有螺旋状的油槽,实现对轴承部位的给油。作为安全措施,在压缩机顶部装有过负荷继电器,这种继电器是用感温板感受压缩机内部高压气体的温度,当达到一定的温度后,继电器动作,压缩机停止运转,用这种方法防止电动机烧毁,因此说旋转式压缩机是一种很有发展前景的压缩机。其主要优点是:由于活塞作旋转运动,压缩工作圆滑平稳,平衡性能好,另外旋转式压缩机没有余隙容积,无再膨胀气体的干扰,因此具有压缩效率高、零部件少、体积小、重量轻、平衡性能好、噪音低、防护措施完备和耗电量小等优点。缺点是压缩机对材质、加工精度、热处理、装配工艺及润滑系统要求较高,由于要靠运动间隙中的润滑油进行密封,为从排气中分离出油,机壳内须做成高压,因此,电动机、压缩机容易过热,如果不采取特殊的措施,在大型压缩机和低温用压缩机中是不能使用的。由于它比其它类型的压缩机有较明显的优势,所以它得到了推广应用。如国产上菱BCD-180W、阿里斯顿BCD—220W等电冰箱都采用了旋转式压缩机。尤其在家用空调器上的应用就更为普遍,从发展的趋势看旋转式压缩机今后有可能成为市场的主导产品。

2.3涡旋式压缩机

涡旋式压缩机是20世纪80年展起来的新型产品。它效率高,噪声低,体积小,重量轻,不需要排气阀组,工作的可靠性及容积效率都较高,允许气体制冷剂中带少量液体,输气效率高,气体泄漏少,可较好地运用于小型热泵系统、小型空调等。综上所述,几种压缩机的性能特点,我们不难看出经多年的技术改造,连杆式压缩机在一定的时期内仍有明显的优势,而旋转式压缩机则是一种新型的产品,特别是在空调器上的应用更为广泛,必将成为制冷产业的主导产品。通过对往复式和旋转式压缩机的性能试验比较可知,往复式和旋转式压缩机,启动后排气、吸气压力的时间变化特性不同,电动机上的负荷转矩由吸、排气压力的大小确定,在往复式的情况下,投入运转几分钟内至十几分钟后,排气压力出现峰值,对于电动机,为了承受这个尖峰负荷,需要比稳定运转时所需转矩大得多(2~4倍)。而旋转式压缩机,由于不存在刚刚启动后的峰值,所以,只要有稳定运所需的转矩即可,因此可以实现电动机的小型化,这也是它今后发展优势所在。

参考文献:

[1]胡鹏程,赵清.电冰箱、空调器的原理和维修.北京:电子工业出版社,1995.114~148

制冷压缩机范文篇2

关键字:离心式制冷压缩机国产化

一、离心式制冷压缩机的特点。

离心式制冷压缩机作为一种速度型压缩机,具有以下优点:

1.在相同冷量的情况下,特别在大容量时,与螺杆压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;

2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;

3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,使得耗功较低;

4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率。

具有以下缺点:

1.转子转速较高,为了保证叶轮一定的宽度,必须用于大中流量场合,不适合于小流量场合;

2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;

3.喘振是离心式压缩机固有的缺点,机组须添加防喘振系统;

4.同一台机组工况不能有大的变动,适用的范围较窄。

二、离心式制冷压缩机的应用状况及趋势。

目前国内离心式冷水机组的大部分市场主要由欧日美一些制冷企业所占据。比较有名的企业如特灵、开利、约克、麦克维尔、AXIMA(原苏尔寿)、荏原、三菱等依靠先进的技术及良好工艺主导离心冷水机组市场。国内企业主要为重庆通用,早期引进NREC的技术来开发离心式制冷机。随着社会的发展,用户需要的冷量越来越高,另外由于节能的要求使得离心机组具有越来越广的市场。一些国内空调厂家如海尔、澳克玛、格力及美的(与重庆通用合并)纷纷推出自己的离心式冷水机组。大冷与AXIMA合作开发出离心冷水机组及区域供暖的离心热泵机组。这些离心机组大部分采用环保工质R134a.

随着能源的形式日趋紧张,节能降耗是产品发展的一大趋势。另外由于中国城镇化水平的不断提高,建筑能耗不断增加。具有最高性能系数的离心冷水机组无疑将成为市场的热点,近年来离心冷水机组的销量不断提高。

国内大部分开发离心冷水机组的企业只是购买进口压缩机,基本上没什么利润。国外离心机厂家不会轻易出让自己的核心技术,要想研制离心式制冷压缩机,只有走自主开发的道路。随着设计及制造技术的不断成熟,使得国产离心式制冷压缩机的研制成为可能。

三、开发研制离心式压缩机的难点、重点及对策。

研制一台离心压缩机包括多方面的内容:气动热力计算、强度与振动计算、结构设计、各种材料的选择、加工制造工艺设计、自动控制与调节设计、以及驱动型式选择等。其中的难重点主要有以下几个方面:

1.叶轮的设计

转子作为离心压缩机的运动部件,其核心部分为叶轮。现在国内外各大离心机厂家均采用三元流方法进行叶轮设计。三元流方法要求设计人员具备数值模拟、计算流体动力学、流体机械内部流场理论等非常专业的知识。国内公司技术人员大部分不具备这些专业知识,要设计高效的三元叶轮,只有和高校科研机构合作。高校中离心式压缩机方面的专家主要有上海交大的谷传纲教授、西安交大的王尚锦教授。谷教授长期从事离心机方面的研究,先后主持完成6项国家自然科学基金项目,在离心机三元流设计,压缩机组试验、监测及控制,系统防喘振等方面均有深入的研究,他所主持完成的《多级离心压缩机气动设计技术与应用》项目获2004年国家科技进步二等奖。王教授领导的西安交大赛尔机泵科研组,以独具特色的“可控涡叶轮设计理论”,在石化等领域的机组改造中有出色的应用。

2.叶轮的加工制作

以三元流理论设计的叶轮叶片形状一般为空间曲面,叶片及叶轮的加工成型是制造的重点,也是难点。对于三元叶轮,常用的加工方法主要有两种:

1)三体焊形式:也就是说、叶片、轮盖分别加工。这种加工方法对设备要求比较简单,、轮盖只需要车出外形就够了。叶片加工要麻烦一些,首先要利用三坐标机床铣出叶片模具,然后将下好料的叶片进行热处理,压型得到所需的叶片形状。最后将叶片焊接到上,再将轮盖焊好。这样的话需要的设备大概是三坐标铣床、热处理炉、油压机以及其他所需的一些常规设备,所需投资比较低,更适合开始做。

2)整体铣制:也就是和叶片是在一起利用多坐标设备进行整体铣制而得到一个半开式叶轮。为避免干涉,目前国际上对这种叶轮的加工大都是利用五坐标加工中心进行。一台五坐标设备大概从几百万到上千万不止,成本非常高。以加工600mm叶轮为例,国内五轴床大概要350万人民币,进口五轴床大概要480万人民币。通过四坐标机床旋转工作台的倾斜实现三元叶轮的四坐标整体铣制,如果叶片稠度比较大,干涉问题在四坐标上就不可避免。四坐标的设备相对比较便宜,大概100多万人民币。

3.转子的临界转速的计算

临界转速是设计转子转速时要考虑的一个重要因素,转子转速要避开临界转速。临界转速的计算一般采用普洛尔法,市场上有专门计算临界转速的软件,也可以自己开发计算软件。

4.防喘振系统的设计

由离心式压缩机的工作机理可知,喘振是离心机所固有的性质,不可消除,但可通过有效途径加以避免。离心式制冷压缩机发生喘振的原因:流量过低及冷凝压力过高。喘振对机组的危害相当大,须认真设计防喘振系统。

5.滑动轴承的设计

离心式制冷压缩机一般采用增速齿轮,转子转速一般都在5000RPM以上,都采用滑动轴承,滑动轴承的设计也是研制离心机的一个重点。

四、开发研制离心式压缩机的大致步骤:

1.搜集、学习离心式压缩机及离心式冷水机组的相关标准。

2.组织有关人员学习离心式压缩机的基本知识,达到用一元流理论设计压缩机的水平。

3.组织有关人员到相关科研院所及专业生产厂家学习参观。

4.与科研院所合作进行三元叶轮的设计。

5.研制开发整机。

6.样机试验改进。

五、一点想法

制冷压缩机范文篇3

关键词:电磁振动式压缩机电动式压缩机

制冷压缩机质量的好坏将直接影响着电冰箱、空调器等小型制冷设备的制冷效果、使用寿命、噪音和震动等多种性能。就制冷压缩机的工作原理与结构而言,形式多样,性能各异。现在生产的小型制冷设备采用的全封闭式压缩机,按其结构特性可分为电磁式和电动式两大类。而电动式又可分为往复活塞式、旋转活塞式和涡旋式3种类型。下面就以上几种全封闭制冷压缩机的性能特点简单介绍如下:

1电磁振动式压缩机

电磁振动式压缩机有以下3种:(1)动圈式电磁振动型;(2)动铁芯式电磁振动型;(3)悬吊动磁铁式电磁振动型。其中,动圈式在全封闭式制冷压缩机中被实际应用,它是利用通以交流电流的线圈产生的交变磁场与永久磁场之间相互作用,直接驱动活塞作往复运动的压缩机。其特点是结构简单、零部件少、加工精度要求不高、容易制造。因此从20世纪50年代开始就用于容积较小的电冰箱。但从另一方面,由于电源频率变化引起的制冷量变化大,且50Hz和60Hz不能通用,存在着因排气、吸气压力引起行程变化等问题,使活塞行程的长短随负荷的变化而改变,同时机内弹簧作高频谐振,易产生弹性疲劳,因此一般只适用于生产100W以下的压缩机。而动铁芯式和悬吊动磁铁式电磁振动型由于只在研究阶段还没有实际应用,故此不作介绍。

2电动式压缩机

2.1往复活塞式压缩机

按其结构分为滑管式和连杆式压缩机两类。

(1)滑管式压缩机

滑管式压缩机产生于20世纪60年代,它是往复活塞式压缩机的一种类型。其特点是结构简单,工艺性好,成本较低,对零部件的加工精度要求不高,制造和装配都比较容易,所以发展较快。目前这类压缩机在国内外的电冰箱生产中应用比较普遍。缺点是活塞与缸壁间的侧力较大、磨擦功耗大、能效比偏低,因此目前滑管式压缩机正在进入衰退期,将逐渐被连杆式压缩机或旋转式压缩机所取代。

(2)连杆式压缩机

连杆式压缩机也属往复活塞式,是电冰箱采用时间较早的一种。在20世纪50年代以前生产的电冰箱几乎都是采用连杆式压缩机。其特点是运转比较平稳、噪声低、磨损小、使用寿命长、能效比较高、工作可靠、综合性能优良。但由于零部件形状复杂,加工精度要求较高,工艺难度较大,因此其发展一度受到限制,在电冰箱及其它小型制冷设备中被滑管式和旋转式压缩机所取代。近几年来随着机械工业的不断发展,对其结构进行了多方面的技术改进。目前连杆式压缩机已成为电冰箱压缩机的主导产品,总需求是有较大的提高。近年来世界各电冰箱生产大国,尤其是日本、意大利、美国等国对往复式压缩机的制造技术进行了多方面提改造,从而使连杆式压缩机的各项性能指标都有了很大的提高。因此,有重新成为电冰箱压缩机主导产品的趋势。

2.2旋转式压缩机

旋转式压缩机的电机无需将转子的旋转运动转换为活塞的往复运动,而是直接带动旋转活塞作旋转运动来完成对制冷剂蒸气的压缩。这种压缩机更适合于小型空调器,特别是在家用空调器上的应用更为广泛,如美国通用电器公司和沃普公司生产的旋转式压缩机都设计了较好的防过热和润滑装置。它采用把冷凝器处的部分制冷液用配管引至压缩室,使之在气缸内喷射的冷却方式,提高了冷却效果。为了防止把大量的制冷液直接吸入气缸内,产生液击,在吸气回路的压缩机前部设有气液分离器,润滑油和制冷液一旦进入器内,则制冷液在气液分离器内蒸发,压缩机吸入的是气体;润滑油从气液分离器下方的小孔中缓缓地连续少量进入压缩机,用这种方法防止液击。油泵给油的方法是,在转轴下端装设两个齿轮状的叶轮,它与转轴一同转动,对油施加离心力,从转轴中心孔把油导向上方。另外,在轴的外表面上开有螺旋状的油槽,实现对轴承部位的给油。作为安全措施,在压缩机顶部装有过负荷继电器,这种继电器是用感温板感受压缩机内部高压气体的温度,当达到一定的温度后,继电器动作,压缩机停止运转,用这种方法防止电动机烧毁,因此说旋转式压缩机是一种很有发展前景的压缩机。其主要优点是:由于活塞作旋转运动,压缩工作圆滑平稳,平衡性能好,另外旋转式压缩机没有余隙容积,无再膨胀气体的干扰,因此具有压缩效率高、零部件少、体积小、重量轻、平衡性能好、噪音低、防护措施完备和耗电量小等优点。缺点是压缩机对材质、加工精度、热处理、装配工艺及润滑系统要求较高,由于要靠运动间隙中的润滑油进行密封,为从排气中分离出油,机壳内须做成高压,因此,电动机、压缩机容易过热,如果不采取特殊的措施,在大型压缩机和低温用压缩机中是不能使用的。由于它比其它类型的压缩机有较明显的优势,所以它得到了推广应用。如国产上菱BCD-180W、阿里斯顿BCD—220W等电冰箱都采用了旋转式压缩机。尤其在家用空调器上的应用就更为普遍,从发展的趋势看旋转式压缩机今后有可能成为市场的主导产品。

2.3涡旋式压缩机

涡旋式压缩机是20世纪80年展起来的新型产品。它效率高,噪声低,体积小,重量轻,不需要排气阀组,工作的可靠性及容积效率都较高,允许气体制冷剂中带少量液体,输气效率高,气体泄漏少,可较好地运用于小型热泵系统、小型空调等。综上所述,几种压缩机的性能特点,我们不难看出经多年的技术改造,连杆式压缩机在一定的时期内仍有明显的优势,而旋转式压缩机则是一种新型的产品,特别是在空调器上的应用更为广泛,必将成为制冷产业的主导产品。通过对往复式和旋转式压缩机的性能试验比较可知,往复式和旋转式压缩机,启动后排气、吸气压力的时间变化特性不同,电动机上的负荷转矩由吸、排气压力的大小确定,在往复式的情况下,投入运转几分钟内至十几分钟后,排气压力出现峰值,对于电动机,为了承受这个尖峰负荷,需要比稳定运转时所需转矩大得多(2~4倍)。而旋转式压缩机,由于不存在刚刚启动后的峰值,所以,只要有稳定运所需的转矩即可,因此可以实现电动机的小型化,这也是它今后发展优势所在。

参考文献:

[1]胡鹏程,赵清.电冰箱、空调器的原理和维修.北京:电子工业出版社,1995.114~148

制冷压缩机范文篇4

关键词:电磁振动式压缩机电动式压缩机

制冷压缩机质量的好坏将直接影响着电冰箱、空调器等小型制冷设备的制冷效果、使用寿命、噪音和震动等多种性能。就制冷压缩机的工作原理与结构而言,形式多样,性能各异。现在生产的小型制冷设备采用的全封闭式压缩机,按其结构特性可分为电磁式和电动式两大类。而电动式又可分为往复活塞式、旋转活塞式和涡旋式3种类型。下面就以上几种全封闭制冷压缩机的性能特点简单介绍如下:

一、电磁振动式压缩机

电磁振动式压缩机有以下3种:(1)动圈式电磁振动型;(2)动铁芯式电磁振动型;(3)悬吊动磁铁式电磁振动型。其中,动圈式在全封闭式制冷压缩机中被实际应用,它是利用通以交流电流的线圈产生的交变磁场与永久磁场之间相互作用,直接驱动活塞作往复运动的压缩机。其特点是结构简单、零部件少、加工精度要求不高、容易制造。因此从20世纪50年代开始就用于容积较小的电冰箱。但从另一方面,由于电源频率变化引起的制冷量变化大,且50Hz和60Hz不能通用,存在着因排气、吸气压力引起行程变化等问题,使活塞行程的长短随负荷的变化而改变,同时机内弹簧作高频谐振,易产生弹性疲劳,因此一般只适用于生产100W以下的压缩机。而动铁芯式和悬吊动磁铁式电磁振动型由于只在研究阶段还没有实际应用,故此不作介绍。

二、电动式压缩机

2.1往复活塞式压缩机

按其结构分为滑管式和连杆式压缩机两类。

(1)滑管式压缩机

滑管式压缩机产生于20世纪60年代,它是往复活塞式压缩机的一种类型。其特点是结构简单,工艺性好,成本较低,对零部件的加工精度要求不高,制造和装配都比较容易,所以发展较快。目前这类压缩机在国内外的电冰箱生产中应用比较普遍。缺点是活塞与缸壁间的侧力较大、磨擦功耗大、能效比偏低,因此目前滑管式压缩机正在进入衰退期,将逐渐被连杆式压缩机或旋转式压缩机所取代。

(2)连杆式压缩机

连杆式压缩机也属往复活塞式,是电冰箱采用时间较早的一种。在20世纪50年代以前生产的电冰箱几乎都是采用连杆式压缩机。其特点是运转比较平稳、噪声低、磨损小、使用寿命长、能效比较高、工作可靠、综合性能优良。但由于零部件形状复杂,加工精度要求较高,工艺难度较大,因此其发展一度受到限制,在电冰箱及其它小型制冷设备中被滑管式和旋转式压缩机所取代。近几年来随着机械工业的不断发展,对其结构进行了多方面的技术改进。目前连杆式压缩机已成为电冰箱压缩机的主导产品,总需求是有较大的提高。近年来世界各电冰箱生产大国,尤其是日本、意大利、美国等国对往复式压缩机的制造技术进行了多方面提改造,从而使连杆式压缩机的各项性能指标都有了很大的提高。因此,有重新成为电冰箱压缩机主导产品的趋势。公务员之家

2.2旋转式压缩机

旋转式压缩机的电机无需将转子的旋转运动转换为活塞的往复运动,而是直接带动旋转活塞作旋转运动来完成对制冷剂蒸气的压缩。这种压缩机更适合于小型空调器,特别是在家用空调器上的应用更为广泛,如美国通用电器公司和沃普公司生产的旋转式压缩机都设计了较好的防过热和润滑装置。它采用把冷凝器处的部分制冷液用配管引至压缩室,使之在气缸内喷射的冷却方式,提高了冷却效果。为了防止把大量的制冷液直接吸入气缸内,产生液击,在吸气回路的压缩机前部设有气液分离器,润滑油和制冷液一旦进入器内,则制冷液在气液分离器内蒸发,压缩机吸入的是气体;润滑油从气液分离器下方的小孔中缓缓地连续少量进入压缩机,用这种方法防止液击。油泵给油的方法是,在转轴下端装设两个齿轮状的叶轮,它与转轴一同转动,对油施加离心力,从转轴中心孔把油导向上方。另外,在轴的外表面上开有螺旋状的油槽,实现对轴承部位的给油。作为安全措施,在压缩机顶部装有过负荷继电器,这种继电器是用感温板感受压缩机内部高压气体的温度,当达到一定的温度后,继电器动作,压缩机停止运转,用这种方法防止电动机烧毁,因此说旋转式压缩机是一种很有发展前景的压缩机。其主要优点是:由于活塞作旋转运动,压缩工作圆滑平稳,平衡性能好,另外旋转式压缩机没有余隙容积,无再膨胀气体的干扰,因此具有压缩效率高、零部件少、体积小、重量轻、平衡性能好、噪音低、防护措施完备和耗电量小等优点。缺点是压缩机对材质、加工精度、热处理、装配工艺及润滑系统要求较高,由于要靠运动间隙中的润滑油进行密封,为从排气中分离出油,机壳内须做成高压,因此,电动机、压缩机容易过热,如果不采取特殊的措施,在大型压缩机和低温用压缩机中是不能使用的。由于它比其它类型的压缩机有较明显的优势,所以它得到了推广应用。如国产上菱BCD-180W、阿里斯顿BCD—220W等电冰箱都采用了旋转式压缩机。尤其在家用空调器上的应用就更为普遍,从发展的趋势看旋转式压缩机今后有可能成为市场的主导产品。

2.3涡旋式压缩机

涡旋式压缩机是20世纪80年展起来的新型产品。它效率高,噪声低,体积小,重量轻,不需要排气阀组,工作的可靠性及容积效率都较高,允许气体制冷剂中带少量液体,输气效率高,气体泄漏少,可较好地运用于小型热泵系统、小型空调等。综上所述,几种压缩机的性能特点,我们不难看出经多年的技术改造,连杆式压缩机在一定的时期内仍有明显的优势,而旋转式压缩机则是一种新型的产品,特别是在空调器上的应用更为广泛,必将成为制冷产业的主导产品。通过对往复式和旋转式压缩机的性能试验比较可知,往复式和旋转式压缩机,启动后排气、吸气压力的时间变化特性不同,电动机上的负荷转矩由吸、排气压力的大小确定,在往复式的情况下,投入运转几分钟内至十几分钟后,排气压力出现峰值,对于电动机,为了承受这个尖峰负荷,需要比稳定运转时所需转矩大得多(2~4倍)。而旋转式压缩机,由于不存在刚刚启动后的峰值,所以,只要有稳定运所需的转矩即可,因此可以实现电动机的小型化,这也是它今后发展优势所在。

参考文献:

[1]胡鹏程,赵清.电冰箱、空调器的原理和维修.北京:电子工业出版社,1995.114~148

制冷压缩机范文篇5

关键字:离心式制冷压缩机国产化

一、离心式制冷压缩机的特点。

离心式制冷压缩机作为一种速度型压缩机,具有以下优点:

1.在相同冷量的情况下,特别在大容量时,与螺杆压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;

2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;

3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,使得耗功较低;

4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率。

具有以下缺点:

1.转子转速较高,为了保证叶轮一定的宽度,必须用于大中流量场合,不适合于小流量场合;

2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;

3.喘振是离心式压缩机固有的缺点,机组须添加防喘振系统;

4.同一台机组工况不能有大的变动,适用的范围较窄。

二、离心式制冷压缩机的应用状况及趋势。

目前国内离心式冷水机组的大部分市场主要由欧日美一些制冷企业所占据。比较有名的企业如特灵、开利、约克、麦克维尔、AXIMA(原苏尔寿)、荏原、三菱等依靠先进的技术及良好工艺主导离心冷水机组市场。国内企业主要为重庆通用,早期引进NREC的技术来开发离心式制冷机。随着社会的发展,用户需要的冷量越来越高,另外由于节能的要求使得离心机组具有越来越广的市场。一些国内空调厂家如海尔、澳克玛、格力及美的(与重庆通用合并)纷纷推出自己的离心式冷水机组。大冷与AXIMA合作开发出离心冷水机组及区域供暖的离心热泵机组。这些离心机组大部分采用环保工质R134a.

随着能源的形式日趋紧张,节能降耗是产品发展的一大趋势。另外由于中国城镇化水平的不断提高,建筑能耗不断增加。具有最高性能系数的离心冷水机组无疑将成为市场的热点,近年来离心冷水机组的销量不断提高。

国内大部分开发离心冷水机组的企业只是购买进口压缩机,基本上没什么利润。国外离心机厂家不会轻易出让自己的核心技术,要想研制离心式制冷压缩机,只有走自主开发的道路。随着设计及制造技术的不断成熟,使得国产离心式制冷压缩机的研制成为可能。

三、开发研制离心式压缩机的难点、重点及对策。

研制一台离心压缩机包括多方面的内容:气动热力计算、强度与振动计算、结构设计、各种材料的选择、加工制造工艺设计、自动控制与调节设计、以及驱动型式选择等。其中的难重点主要有以下几个方面:

1.叶轮的设计

转子作为离心压缩机的运动部件,其核心部分为叶轮。现在国内外各大离心机厂家均采用三元流方法进行叶轮设计。三元流方法要求设计人员具备数值模拟、计算流体动力学、流体机械内部流场理论等非常专业的知识。国内公司技术人员大部分不具备这些专业知识,要设计高效的三元叶轮,只有和高校科研机构合作。高校中离心式压缩机方面的专家主要有上海交大的谷传纲教授、西安交大的王尚锦教授。谷教授长期从事离心机方面的研究,先后主持完成6项国家自然科学基金项目,在离心机三元流设计,压缩机组试验、监测及控制,系统防喘振等方面均有深入的研究,他所主持完成的《多级离心压缩机气动设计技术与应用》项目获2004年国家科技进步二等奖。王教授领导的西安交大赛尔机泵科研组,以独具特色的“可控涡叶轮设计理论”,在石化等领域的机组改造中有出色的应用。

2.叶轮的加工制作

以三元流理论设计的叶轮叶片形状一般为空间曲面,叶片及叶轮的加工成型是制造的重点,也是难点。对于三元叶轮,常用的加工方法主要有两种:

1)三体焊形式:也就是说、叶片、轮盖分别加工。这种加工方法对设备要求比较简单,、轮盖只需要车出外形就够了。叶片加工要麻烦一些,首先要利用三坐标机床铣出叶片模具,然后将下好料的叶片进行热处理,压型得到所需的叶片形状。最后将叶片焊接到上,再将轮盖焊好。这样的话需要的设备大概是三坐标铣床、热处理炉、油压机以及其他所需的一些常规设备,所需投资比较低,更适合开始做。

2)整体铣制:也就是和叶片是在一起利用多坐标设备进行整体铣制而得到一个半开式叶轮。为避免干涉,目前国际上对这种叶轮的加工大都是利用五坐标加工中心进行。一台五坐标设备大概从几百万到上千万不止,成本非常高。以加工600mm叶轮为例,国内五轴床大概要350万人民币,进口五轴床大概要480万人民币。通过四坐标机床旋转工作台的倾斜实现三元叶轮的四坐标整体铣制,如果叶片稠度比较大,干涉问题在四坐标上就不可避免。四坐标的设备相对比较便宜,大概100多万人民币。

3.转子的临界转速的计算

临界转速是设计转子转速时要考虑的一个重要因素,转子转速要避开临界转速。临界转速的计算一般采用普洛尔法,市场上有专门计算临界转速的软件,也可以自己开发计算软件。

4.防喘振系统的设计

由离心式压缩机的工作机理可知,喘振是离心机所固有的性质,不可消除,但可通过有效途径加以避免。离心式制冷压缩机发生喘振的原因:流量过低及冷凝压力过高。喘振对机组的危害相当大,须认真设计防喘振系统。

5.滑动轴承的设计

离心式制冷压缩机一般采用增速齿轮,转子转速一般都在5000RPM以上,都采用滑动轴承,滑动轴承的设计也是研制离心机的一个重点。

四、开发研制离心式压缩机的大致步骤:

1.搜集、学习离心式压缩机及离心式冷水机组的相关标准。

2.组织有关人员学习离心式压缩机的基本知识,达到用一元流理论设计压缩机的水平。

3.组织有关人员到相关科研院所及专业生产厂家学习参观。

4.与科研院所合作进行三元叶轮的设计。

5.研制开发整机。

6.样机试验改进。

五、一点想法

制冷压缩机范文篇6

随着我国经济建设的发展,住宅建设迅猛增长,为了满足人们对室内外空气环境要求不断提高的需要,近年来出现了所谓"住宅空调",水--空气系统、空气系统(管道机)和多联式空调机组分别适合不同需要,呈三足鼎立局面。但是,必须注意的是,住宅空调的特点是冷暖两用、调控优良、可靠性高、节约能源,具备上述四方面的空调设备才堪称"住宅空调",才能在此领域立足壮大。而调控是水-空气系统、空气系统(管道机)当前的薄弱环节,应从速解决。至于多联式空调机组虽然比较完美,但是仍存在标准与难以掌握两大问题,本文将对此进行论述。

变制冷剂流量(VRF)空调系统根据室内机数量多少,可分为单元式和多元式两种类型,而多联式空调机组就是多元式变制冷剂流量空调系统,因此,名为机组实际是一套整体系统,必须用整体的系统的观点进行分析研究与试验,才能正确地掌握与评价。

1两相流体网络模拟分析空调系统

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

2运行稳定性

多联式空调机组以节约能源、智能化调节和精确的温度控制著称,但是,是否能真正具备上述三项优越性呢?实际并不一定,而与其容量大小和系统运行稳定性相关。

21关于多联式空调机组容量

为了宣传多联式空调机组的优越与万能,常用以下几点表达,即:多室外制冷压缩机的单一系统,可联接64台、128台甚至256台室内机,配管最长可达125m,室外机、室内机之间的高差可为50m,室内机之间的高差可达30m。且不论为了实现这种大系统的可靠运行,特别是针对由于环境温度过低与管路过长带来的液体回流、液态制冷剂再闪发和回油困难等问题,需要增加一些辅助回路与附件,致使系统复杂,更重要的是将造成过多能量消耗,以及系统难以稳定运行。

为什么能耗增加?一方面由于机组容量增加,实现系统各部件的最优化匹配有难度,致使能耗增加。例如,日本为了实现1997年12月京都会议决议,规定多联式空调机组的制冷能效比(EER)为:制冷量小于等于4kW为4.12,小于等于7

kW为3.23,小于等于28

kW为3.07,可以说明问题。另一方面,由于管路过长,阻力损失大大增加,也将造成制冷压缩机能耗大为增加,各厂家对此均有说明,故不多述。总之,多联式空调机组容量不宜太大,额定制冷量以不大于56

kW为好,而且,室外机就说可能分散布置。

22关于系统运行稳定性

以制冷工况为例,蒸发温度和冷凝温度是表征系统运行状态的参数。但是,对于室内机来说却不能作为调节参数,为了保证系统稳定运行,需要控制蒸发器制冷剂出口的过热度,以防止回液,因此,室内机的被控参数是室温和蒸发器制冷剂出口的过热度,而调节参数只有室内机的风量和电子膨胀阀的开度。

对于室外机来说,其中变频制冷压缩机是VRF气液两相流体网络的动力源,其吸气压力和排气压力的变化是系统稳定运行的关键;但是,尽管制冷压缩机吸气压力和排气压力一定,室外环境温度、压缩机频率和冷凝器风量变化,都直接影响冷凝器制冷剂出口的再冷度,而此再冷度又是系统稳定可靠运行的一个重要参数,因此,制冷压缩机吸气压力、排气压力以及冷凝器风量是调节参数,而这些参数之间又存在充分的耦合关系。

根据上述分析,石文星博士[1]提出VRF空调系统的自治协调控制法,即:

①在保证室内机蒸发器制冷剂出口具有一定过热度的条件下,应用电子膨胀阀控制室温稳定;

②在保证室外机冷凝器制冷剂出口具有一定再冷度的条件下,调节压缩机频率和冷凝器风量控制制冷压缩机吸气压力和排气压力;

③在室外机处集中控制压缩机吸气过热度。

尽管如此,在众多室内机的运行台数和调节模式组合多变条件下,可以保证系统稳定可靠运行,但是,压缩机吸气压力、排气压力、吸气过热度与冷凝器再冷度会在一定范围内变化,如果系统容量过大,不但各室内机电膨胀阀前的制冷剂供液压力和蒸发器回气压力将有较大的变化,而且,吸气过热度与冷凝器再冷度可能超出期望范围,致使系统不能稳定地运行。

3试验评价

以上反复强调多联式空调机组是多元变制冷剂流量空调系统,对于某给定多联式空调机组来说,在满载运行条件下,系统内在参数(蒸发温度、冷凝温度等)以及系统制冷(制热)特性,取决于外在参数,即室内外空气温湿度。因此,作为标准的评价试验采用分别进行室内机评价试验和室外机评价试验是不正确的,必须在相同要求条件下进行整体系统的试验,才能相对准确地评价与比较多联式空调机组。

31必须整体试验

首先,分析室内机与电子膨胀阀联合调节特性

由于对于给定室内机来说,换热器几何参数是定值,因此,影响蒸发器效果的因素主要有:室内环境温湿度、风量、电子膨胀阀开度以及蒸发温度和冷凝温度。但是,进行机组标定试验时,室内环境温湿度、风量和电子膨胀阀开度可均匀定值,这样,影响蒸发器效果的因素就只有蒸发温度、冷凝温度以及膨胀阀前制冷剂再冷度,而这些参数均为系统的内在参数,取决于多联式空调机组组成与匹配,难以人为给定,所以,单独进行室内机评价试验,实际是不可行的。

其次,分析室外机组联合调节特性。

多联式空调机组的室外机由变频制冷压缩机(组)和换热器及其风扇组成,其中换热器几何参数是定值,因此,影响室外机的制冷剂流量和制冷能力的因素主要有:室外环境温湿度、风量、制冷压缩机频率以及蒸发温度和冷凝温度。这样,与室内机相同,进行机组标定试验时,室外环境温湿度、风量和制冷压缩机频率可均为定值,而影响定外机性能的因素就只有取决于多联式空调机组组成与匹配、且难以人为给定的系统内在参数--蒸发温度、冷凝温度以及吸气过热度和冷凝器出口制冷剂再冷度。所以,单独进行室外机组的评价试验,实际也是不可行的。

总之,企图简化试验手段,采取分别进行室内机评价试验和室外机评价试验,以达到评价多联式空调机组的方法是不可行的。

32多联式空调机组标定试验的设想

由于评价试验多联式空调机组必须整体进行,因此,提出如下设想。

①以标准额定制冷量计,当前被评价的多联式空调机组最在制冷能力取28kW为宜。

②标定试验在室外侧和室内侧分别为上下设置的房间热平衡量热计装置内进行。

以最大制冷能力为28kW的机组为例,试验机组系统的条件应为:室内机与室外机的高差不小于5m;配管最远长度不小于30m。

④按GB/T7725《房间空气调节器》规定的试验工况室内外参数进行。

⑤试验内容见表。

制冷压缩机范文篇7

随着我国经济建设的发展,住宅建设迅猛增长,为了满足人们对室内外空气环境要求不断提高的需要,近年来出现了所谓"住宅空调",水--空气系统、空气系统(管道机)和多联式空调机组分别适合不同需要,呈三足鼎立局面。但是,必须注意的是,住宅空调的特点是冷暖两用、调控优良、可靠性高、节约能源,具备上述四方面的空调设备才堪称"住宅空调",才能在此领域立足壮大。而调控是水-空气系统、空气系统(管道机)当前的薄弱环节,应从速解决。至于多联式空调机组虽然比较完美,但是仍存在标准与难以掌握两大问题,本文将对此进行论述。

变制冷剂流量(VRF)空调系统根据室内机数量多少,可分为单元式和多元式两种类型,而多联式空调机组就是多元式变制冷剂流量空调系统,因此,名为机组实际是一套整体系统,必须用整体的系统的观点进行分析研究与试验,才能正确地掌握与评价。

1两相流体网络模拟分析空调系统

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

2运行稳定性

多联式空调机组以节约能源、智能化调节和精确的温度控制著称,但是,是否能真正具备上述三项优越性呢?实际并不一定,而与其容量大小和系统运行稳定性相关。

21关于多联式空调机组容量

为了宣传多联式空调机组的优越与万能,常用以下几点表达,即:多室外制冷压缩机的单一系统,可联接64台、128台甚至256台室内机,配管最长可达125m,室外机、室内机之间的高差可为50m,室内机之间的高差可达30m。且不论为了实现这种大系统的可靠运行,特别是针对由于环境温度过低与管路过长带来的液体回流、液态制冷剂再闪发和回油困难等问题,需要增加一些辅助回路与附件,致使系统复杂,更重要的是将造成过多能量消耗,以及系统难以稳定运行。

为什么能耗增加?一方面由于机组容量增加,实现系统各部件的最优化匹配有难度,致使能耗增加。例如,日本为了实现1997年12月京都会议决议,规定多联式空调机组的制冷能效比(EER)为:制冷量小于等于4kW为4.12,小于等于7

kW为3.23,小于等于28

kW为3.07,可以说明问题。另一方面,由于管路过长,阻力损失大大增加,也将造成制冷压缩机能耗大为增加,各厂家对此均有说明,故不多述。总之,多联式空调机组容量不宜太大,额定制冷量以不大于56

kW为好,而且,室外机就说可能分散布置。

22关于系统运行稳定性

以制冷工况为例,蒸发温度和冷凝温度是表征系统运行状态的参数。但是,对于室内机来说却不能作为调节参数,为了保证系统稳定运行,需要控制蒸发器制冷剂出口的过热度,以防止回液,因此,室内机的被控参数是室温和蒸发器制冷剂出口的过热度,而调节参数只有室内机的风量和电子膨胀阀的开度。

对于室外机来说,其中变频制冷压缩机是VRF气液两相流体网络的动力源,其吸气压力和排气压力的变化是系统稳定运行的关键;但是,尽管制冷压缩机吸气压力和排气压力一定,室外环境温度、压缩机频率和冷凝器风量变化,都直接影响冷凝器制冷剂出口的再冷度,而此再冷度又是系统稳定可靠运行的一个重要参数,因此,制冷压缩机吸气压力、排气压力以及冷凝器风量是调节参数,而这些参数之间又存在充分的耦合关系。

根据上述分析,石文星博士[1]提出VRF空调系统的自治协调控制法,即:

①在保证室内机蒸发器制冷剂出口具有一定过热度的条件下,应用电子膨胀阀控制室温稳定;

②在保证室外机冷凝器制冷剂出口具有一定再冷度的条件下,调节压缩机频率和冷凝器风量控制制冷压缩机吸气压力和排气压力;

③在室外机处集中控制压缩机吸气过热度。

尽管如此,在众多室内机的运行台数和调节模式组合多变条件下,可以保证系统稳定可靠运行,但是,压缩机吸气压力、排气压力、吸气过热度与冷凝器再冷度会在一定范围内变化,如果系统容量过大,不但各室内机电膨胀阀前的制冷剂供液压力和蒸发器回气压力将有较大的变化,而且,吸气过热度与冷凝器再冷度可能超出期望范围,致使系统不能稳定地运行。

3试验评价

以上反复强调多联式空调机组是多元变制冷剂流量空调系统,对于某给定多联式空调机组来说,在满载运行条件下,系统内在参数(蒸发温度、冷凝温度等)以及系统制冷(制热)特性,取决于外在参数,即室内外空气温湿度。因此,作为标准的评价试验采用分别进行室内机评价试验和室外机评价试验是不正确的,必须在相同要求条件下进行整体系统的试验,才能相对准确地评价与比较多联式空调机组。

31必须整体试验

首先,分析室内机与电子膨胀阀联合调节特性

由于对于给定室内机来说,换热器几何参数是定值,因此,影响蒸发器效果的因素主要有:室内环境温湿度、风量、电子膨胀阀开度以及蒸发温度和冷凝温度。但是,进行机组标定试验时,室内环境温湿度、风量和电子膨胀阀开度可均匀定值,这样,影响蒸发器效果的因素就只有蒸发温度、冷凝温度以及膨胀阀前制冷剂再冷度,而这些参数均为系统的内在参数,取决于多联式空调机组组成与匹配,难以人为给定,所以,单独进行室内机评价试验,实际是不可行的。

其次,分析室外机组联合调节特性。

多联式空调机组的室外机由变频制冷压缩机(组)和换热器及其风扇组成,其中换热器几何参数是定值,因此,影响室外机的制冷剂流量和制冷能力的因素主要有:室外环境温湿度、风量、制冷压缩机频率以及蒸发温度和冷凝温度。这样,与室内机相同,进行机组标定试验时,室外环境温湿度、风量和制冷压缩机频率可均为定值,而影响定外机性能的因素就只有取决于多联式空调机组组成与匹配、且难以人为给定的系统内在参数--蒸发温度、冷凝温度以及吸气过热度和冷凝器出口制冷剂再冷度。所以,单独进行室外机组的评价试验,实际也是不可行的。

总之,企图简化试验手段,采取分别进行室内机评价试验和室外机评价试验,以达到评价多联式空调机组的方法是不可行的。

32多联式空调机组标定试验的设想

由于评价试验多联式空调机组必须整体进行,因此,提出如下设想。

①以标准额定制冷量计,当前被评价的多联式空调机组最在制冷能力取28kW为宜。

②标定试验在室外侧和室内侧分别为上下设置的房间热平衡量热计装置内进行。

以最大制冷能力为28kW的机组为例,试验机组系统的条件应为:室内机与室外机的高差不小于5m;配管最远长度不小于30m。

④按GB/T7725《房间空气调节器》规定的试验工况室内外参数进行。

⑤试验内容见表。

制冷压缩机范文篇8

保证冷冻油源源不断地返回压缩机是制冷系统设计中最重要的课题之一。针对现有技术中存在的缺点,开发了一种低成本的多台制冷压缩机自动均油回路,它不仅生产制造容易,维修、更换配件方便,而且对压缩机安装无任何特殊要求。理论分析了此自动均油回路对变频空调系统回油性能的影响,实验结果表明:此自控装置性能可靠、可用于大、中型变容量制冷系统。

关键词:压缩机,均油,毛细管

ABSTRACT

Itisoneofthemostimportantproblemstoassurelubricatingilofreturningtothecompressorsallthetime.Anautomaticallybalancingoilloopinmulti-compressorssystemisinventedtomakeupthedeficiencyoftechnologiesusedbefore.Ithassuchadvantagesaslowcost,easymanufactur,freelyexchangingpartsetc.Andithasnospecialrequirementtothesettingpositionofcompressors.Theinfluenceontheperformanceofvariablerefrigerantvolumeairconditioningsystemisanalyzedintheory.Andtheexperimentresultsshowthatthisdevicehasreliableperformanceandcanbeusedinlargeandmediumsystems.

KEYWORDS:compressor;balancingoil;capillary

符号说明

ρ:介质密度,kg/m3

u:介质流速,m/s

p:介质压力,Pa

z:沿流向毛细管的长度坐标,m

τ0:介质在内壁面的剪切力,Pa

S:毛细管内壁面的湿周,m

A:毛细管内部横截面积,m2

Cp:比热,J/(kg·℃)

d:毛细管内径,m

T:介质温度,℃

Twi:毛细管内壁面温度,℃

α0:介质与内壁的换热系统,W/(m2·℃)

q:毛细管内壁面的热流密度,W/m2

f:压缩机频率,Hz

1引言

在制冷系统中,压缩机工作时,必定有一少部分冷冻油会连续不断地从气缸中与制冷剂一起被压出,进入制冷系统的管路及冷凝器和蒸发器中。当冷冻油不能连续地返回压缩机时,一定会造成压缩机油面下降,及至冷冻油枯竭,出现压缩机缺油烧毁现象。所以保证冷冻油源源不断地返回压缩机是制冷系统设计中最重要的课题之一。

在只有一台压缩机的氟里昂制冷系统中,只要采用必要的措施,如采用合理的管路设计,系统各部位形成稳定的油量分布后,冷冻油会顺利地通过压缩机吸气管返回曲轴箱,使压缩机保持正常工作油面。而在负荷变化宽的氟里昂制冷系统中,使用单台压缩机仅采用启停控制作为能量调节措施往往不能适应负荷剧烈变化的需要。所以将多台压缩机并联使用在同一制冷系统中,不仅可以拓宽制冷系统的容量范围,降低启动电流,延长压缩机的使用寿命,还能大幅度地简化系统,降低投资成本。但是,在同一制冷系统中使用多台压缩机并联,存在着冷冻油能否顺利返回各台压缩机制的问题。为此,在制冷系统中,一般所采取的措施是在两台压缩机壳体间连接有管径较大的均油管和管径较小的均压管;或在此基础上在每台压缩机的排气管上增设一个油分离器,大部分冷冻油经油分离器分离后,通过减压毛细管流回压缩机吸气管,以减少进入系统管路及蒸发器的油量,而使各压缩机间均油[1]。这种均油方法一般适用于几何尺寸相同的两台压缩机并联使用的场合。当压缩机多于两台时,各压缩机间连接粗大的均油管和均压管,不仅会给生产、运输带来麻烦,维修、更换配件也极不方便,而且当两台压缩机体积不同时,为保证油面一致,要求压缩机的安装高度也不一致,这样给安装又带来困难。另一种方法是在各压缩机排气管上设置油分离器,油分离器再与设置的电磁阀相接而形成油路平衡管,再通过压缩机的内置油面传感器来的信息控制电磁阀的开闭,以控制冷冻油油面[2]。当压缩机富油时,对应电磁阀关闭,缺油时开启,前油分离器中的冷冻油将向后压缩机供油,反之亦然。但这种方法需要对制造商提出压缩机内设置油面传感器要求后才能实现,同时需要与电磁阀配合使用,其可靠性取决于油面传感器和电磁阀的品质,因而使成本大幅度提高。针对上述现有技术中存在的缺点,本文提出了一种低成本的多台制冷压缩机均油自动均油回路。

2自动均油回路的结构原理

多台制冷压缩机自动均油回路,由多台机壳内为高压油的压缩机及各压缩机所配带的油分离器、单向阀、节流器、节流器、贮油包等组成,如图1所示。其结构特点是,所述各压缩机的壳体上设有出油口并与所设贮油包进口相接,各贮油包的出口分别交错与所设均油管A和均油管B相接。各压缩机的排气口与油分离器相接,油分离器的上出口与单向阀进口相接,各单向阀的出口与去冷凝器的排气管相接,各油分离器的下出口与节流器进口相接,各节流器出口与来自蒸发器的吸气管相接后进入各自压缩机的吸气口并引出接管。各接管交错分别与均油管B和均油管A相接,均油管B设有充油口。各接管与均油管A或者均油管B连接段也设有节流器,对均油管A与均油管B的安装高度并无特殊要求。

1回油管

2单向管

3油分离器

4节流器

5压缩机

6贮油包

7截止阀

8充油阀

9均油管A

10均油管B

11节流器

图1多台制冷压缩机均油自控装置原理图

由于采用上述各元件、部件的组合结构及连接关系,在不增设油面传感器、电磁阀的情况下,仅有管道、节流器等无运动部件,可使多台制冷压缩机自动均油。与现有技术相比,它不仅具有结构简单,性能可靠,维修、运输、更换配件方便,对压缩机安装无特殊要求的特点,而且几乎不增加成本。适用于多台、不同形式、不同大小的制冷压缩机之间的均油。

在油分离器(3)中被分离出的冷冻油,经节流器(4)降压后返回各自压缩机(5)中。未被油分离器(3)分离出的油经单向阀(2)随制冷剂一同进入冷凝器、蒸发器和系统管路中。当系统各部位存在一个均匀油量分布后,来自蒸发器的油,经吸气管返回各压缩机。由于返回各台压缩机的油量不可能均匀,即出现某压缩机富油或者缺油的现象。当某台压缩机富油,即超过其正常工作油位时,冷冻油则沿其壳体上所设出油口流入贮油包(6)和与之相连的均油管A(9)或者均油管B(10)中。在均油管A或B中贮存的冷冻油,其压力近似为压缩机的排气压力,在压差的作用下,又经节流器(11)回到缺油压缩机的吸气管中,缺油的压缩机连续不断地回收到富油压缩机多余的冷冻油,使其油位回升到正常的工作油位范围,保证每台压缩机正常工作。在整个均油自控装置中,如果仅有部分压缩机工作时,系统中存留的油,将会回到运转的压缩机中。当出现富油现象,多余的油将会存贮在贮油包(6)和与之相连的均油管A或者B中。原来停止工作的压缩机启动后,短时间内会出现缺油现象,此时由于吸气管的低压抽吸,从富油压缩机的贮油包和均油管A或者B中补足所需的冷冻油。

自动均油回路中的节流器在通常情况下采用毛细管,其结构简单,成本低,运行可靠。

3回油毛细管的数学模型

在压缩机吸收、排气压力差的作用下,液态冷冻油通过毛细管自动地从油分离器返回压缩机吸气管,或从富油压缩机高压壳体内流向欠油压缩机吸气管内。当油面低于毛细管出口时,高压制冷剂蒸气将会经毛细管旁通至压缩机吸气管,过多的高压气体返回压缩机将造成系统的制冷能力下降,压缩机排气温度升高,所以毛细管的内径和长度的确定至关重要。由于回油毛细管内流动的介质是冷冻油或高压制冷剂蒸气,均属于单相流动。但因流动介质与外部空气进行对流换热,使介质沿流方向温度逐渐降低,且油和制冷剂蒸气的密度和粘度随温度变化显著,故不可忽视换热对流动的影响。

对毛细管内介质单相流动建模之前作如下的假设:(1)介质流动为一维流动;(2)在管路流动断面上物性均一;(3)物性仅沿流动方向上发生变化;(4)不考虑重力对流动的影响。故:

质量守恒方程:

动量守恒方程:

能量守恒方程:

若油分离器的毛细管设置在其内部,那么油与制冷剂蒸气的温度变化很小,而将毛细管设置在外部的室外机机箱内,则因油与制冷剂蒸气与外界空气换热引起温度降低,对介质粘度和密度有较大的影响。

4计算

制冷剂蒸气被压缩时,也会带走一部分油,制冷剂的带油量很大程度取决于压缩机结构。对于全封闭压缩机而言,文献[3]指出,油在排气中的质量百分比不超过百分之零点几;比利时列日大学通过不同实验方法研究了压缩机排气的带油量,实验表明,油在排气中的质量百分比为1%~2%,且各种测试方法的误差率在20%~30%以内[4]。当压缩机容量变化时,其排气量和带油量变化时,其排气量和带油量均随之变化。本文对两台压缩机并联使用的自动均油回路所采用的毛细管进行了理论分析,并通过了实验验证了其应用效果。

4.1压缩机参数

在计算和实验中,采用了两台压缩机,其一为变频压缩机,另一台为定速压缩机。其参数见表1。

表1压缩机参数变频压缩机定速压缩机

活塞排量Vh/(mL/rev)23.341.6

频率f/Hz15-12050

充油量Goil/mL6001350

机体高度/mm312.5374.3

机体直径/mm129.6158

制冷剂种类HCFC22

冷冻油种类SUNISO4GSD-T

4.2回油毛细管尺寸与可变因素的关系

以油在排气中的质量百分比1.5%为基准,计算在压缩机频率、吸排气压差和毛细管内径、入口油温度变化时欲将排气带油完全返回所必需的毛细管长度,其结果如图2所示。当压缩机频率、吸排气压差和毛细管内径为定值时,随着入口油温的升高,毛细管长度剧增,这主要是由于油在高温时粘度急剧降低所致;当其它因素不变时,压缩机频率降低,还油量相应减少,其毛细管长度减小;当压差或毛细管内径增大,在返回相同质量的油时所需毛细管亦将增长。

图2各因素变化时所必需的毛细管长度

一旦选定毛细管的几何尺寸(如图2(b)中的线),压缩机在实际运行中能否顺利返油将取决于毛细管入口油温和压缩机频率于吸排气压力差。在线以下的区域不能顺利返油,多余的油将存贮在油分离器或另一台压缩机的贮油包内,若将油分离器的回油毛细管放置在其内部,将有利于压缩机顺利返油。反之,在线以上的区域则能顺利返油,但毛细管相对于带油量所需长度短,故将会有部分排气夹带着油滴经此毛细管一同返回压缩机回气管,由于有部分排气被旁通返回,将会造成制冷系统能力下降。故合理选用毛细管几何尺寸至关重要。

4.3制冷剂旁通率

当毛细管长度小于带油量所需长度时,部分排气将夹带着油滴返回压缩机。如果假想油与制冷剂蒸气间歇返回,则以制冷剂蒸气单相返回时的旁通率如图3所示。从图中可以看出,高低压差越大、压缩机频率越低、压缩机排气温度越高或毛细管短短,其旁通率越大;在压差小于1.3Mpa、压缩机高频运行时,其旁通率随压差的变化有微小上升,但压差继续增大时,旁通率有明显上升趋势。

图3回油毛细管的排气旁通率

4.4应用效果

在空调用制冷装置中,压缩机运行时其油温通常高于60℃,工作压差为(1.0~2.0)Mpa。从图2中的数据看,在油分离器内部及两台压缩机之间均选用内径为1.5mm,长度为3.15m的毛细管作为回油自控装置的节流器使用时,系统运行的大部分能顺利返油。在返油的过程中,制冷剂蒸气与油呈气油两相状态在毛细管内部流动,由于存在临界流动现象,其排气旁通率应远远低于图3中的数据。

笔者在上述两台压缩机组成的变频一拖多空调系统中采用了此回油自控装置,实验中通过压缩机体上的油面镜观察油面变化情况,该装置能在压缩机的不同组合条件(①只开定速机,②不开定速机、变频机变频运行,③二者组合运行)下长时间、安全运行,使工作油面随时稳定在正常油位范围内。在室内负荷较小而压缩机长时间低频运行时,由于压差降低,油分离器及室内机内部的冷冻油不能顺利返回,需要在低频连续运行一段时间后进行高频短期运行,以保证系统安全回油。

5结论

(1)本文针对现有技术中存在的缺点,开发了一种低成本的多台制冷压缩机自动均油回路,它不仅生产制造容易,维修、更换配件方便,而且对压缩机安装无任何特殊要求。

(2)建立毛细管内流动模型,计算并分析了此自动均油回路对变频空调系统回油性能,实验结果表明:此自控装置性能可靠,可用于大、中型变容量制冷系统。

(3)由于顺利返油过程是一个气油两相流动过程,需仔细研究此流动过程以及排气旁通率,以便准确掌握回油毛细管对系统特性的影响。

参考文献

1MitsuoOgawaetc.MultipleAirConditioningSystemforLargeCapacity.NationalTechnicalReport,1995,47(5):507~510.

2KunieSeigami,KoujiNagae."WMultiSystem"forBuildingAirconditioningthatCombinedPluralOutdoorUnitswithIndoorUnitsforaLargeCapacity.Refrigeration,1995,70(812):628~632.

制冷压缩机范文篇9

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

制冷压缩机范文篇10

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。