微电子学范文10篇

时间:2023-04-07 22:07:01

微电子学

微电子学范文篇1

微电子学是电子学的分支学科,主要致力于电子产品的微型化,达到提升电子产品应用便利和应用空间的目的。微电子学还属于一门综合性较强学科类型,具体的微电子研究中,会用到相关物理学、量子力学和材料工艺等知识。微电子学研究中,切实将集成电路纳入到研究体系中。此外,微电子学还对集成电子器件和集成超导器件等展开研究和解读。微电子学的发展目标是低能耗、高性能和高集成度等特点。集成电路是通过相关电子元件的组合,形成一个具备相关功能的电路或系,并可以将集成电路视为微电子学之一。集成电路在实际的应用中具有体积小、成本低、能耗小等特点,满足诸多高新技术的基本需求。而且,随着集成电路的相关技术完善,集成电路逐渐成为人们生产生活中不可缺少的重要部分。

2微电子发展状态与趋势分析

2.1发展与现状

从晶体管的研发到微电子技术逐渐成熟经历漫长的演变史,由晶体管的研发→以组件为基础的混合元件(锗集成电路)→半导体场效应晶体管→MOS电路→微电子。这一发展过程中,电路涉及的内容逐渐增多,电路的设计和过程也更加复杂,电路制造成本也逐渐增高,单纯的人工设计逐渐不能满足电路的发展需求,并朝向信息化、高集成和高性能的发展方向。现阶段,国内对微电子的发展创造了良好的发展空间,目前国内微电电子发展特点如下:(1)微电子技术创新取得了具有突破性的进展,且逐渐形成具有较大规模的集成电路设计产业规模。对于集成电路的技术水平在0.8~1.5μm,部分尖端企业的技术水平可以达到0.13μm。(2)微电子产业结构不断优化,随着技术的革新产业结构逐渐生成完整的产业链,上下游关系处理完善。(3)产业规模不断扩大,更多企业参与到微电子学的研究和电路中,有效推动了微电子产业的发展,促使微电子技术得到了进一步的完善和发展。

2.2发展趋势

微电子技术的发展中,将微电子技术与其他技术联合应用,可以衍生出更多新型电子器件,为推动学科完善提供帮助。另外微电子技术与其他产业结合,可以极大的拉动产业的发展,推动国内生产总值的增加。微电子芯片的发展遵循摩尔定律,其CAGR累计平均增长可以达到每年58%。在未来一段时间内,微电子技术将按照提升集团系统的性能和性价比,如下为当前微电子的发展方向。

2.2.1硅基互补金属氧化物半导体(CMOS)

CMOS电路将成为微电子的主流工艺,主要是借助MOS技术,完成对沟道程度的缩小,达到提升电路的集成度和速度的效果。运用CMOS电路,改善芯片的信号延迟、提升电路的稳定性,再改善电路生产成本,从而使得整个系统得到提升,具有极高研究和应用价值。可以将CMOS电路将成为未来一段时间的主要研究对象,且不断对CMOS电路进行缩小和优化,满足更多设备的需求。

2.2.2集成电路是当前微电子技术的发展重点

微电子芯片是建立在的集成电路的基础上,所以微电子学的研究中,要重视对集成电路研究和分析。为了迎合信息系统的发展趋势,对于集成电路暴露出的延时、可靠性等因素,需要及时的进行处理。在未来一段时间内对于集成电路的研究和转变势在必行。

2.2.3微电子技术与其他技术结合

借助微电子技术与其他技术结合,可以衍生出诸多新型技术类型。当前与微电子技术结合的技术实例较多,积极为社会经济发展奠定基础。例如:微光机电系统和DNA生物芯片,微光机电系统是将微电子技术与光学理论、机械技术等结合,可以发挥三者的综合性能,可以实现光开关、扫描和成像等功能。DNA生物芯片是将微电子技术与生物技术相结合,能有效完成对DNA、RNA和蛋白质等的高通量快速分析。借助微电子技术与其他技术结合衍生的新技术,能够更为有效推动相关产业的发展,为经济发展奠定基础。

3微电子技术的应用解读

微电子学与集成电路的研究不断深入,微电子技术逐渐的应用到人们的日常生活中,对于改变人们的生活品质具有积极的作用。且微电子技术逐渐成为一个国家科学技术水平和综合国力的指标。在实际的微电子技术应用中,借助微电子技术和微加工技术可以完成对微机电系统的构建,在完成信息采集、处理、传递等功能的基础上,还可以自主或是被动的执行相关操作,具有极高的应用价值。对于DNA生物芯片可以用于生物学研究和相关医疗中,效果显著,对改善人类生活具有积极的作用和意义。

4结束语

微电子学与集成电路均为信息技术的基础,其中微电子学中囊括集成电路。在对微电子学和集成电路的解析中,需要对集成电路和微电子技术展开综合解读,分析微电子技术的现状和发展趋势,再结合具体情况对微电子技术的当前应用展开解读,为微电子学与集成电路的创新和完善提供参考,进而推动微电子技术的发展,创造更大的产值,实现国家的持续健康发展。

作者:胥亦实 单位:吉林大学

参考文献

[1]张明文.当前微电子学与集成电路分析[J].无线互联科技,2016(17):15-16.

[2]方圆,徐小田.集成电路技术和产业发展现状与趋势[J].微电子学,2014(01):81-84.

微电子学范文篇2

关键词微电子技术集成系统微机电系统DNA芯片

1引言

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。

50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。

在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。

221世纪上半叶仍将以硅基CMOS电路为主流工艺

微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。

自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。

现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。

21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。

目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。

随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。

3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域

在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:

(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。

因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。

(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。

量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。

以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。

目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。

QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。

4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点

在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。

正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。

系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。

SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。

对于系统芯片(SOC)的发展,主要有三个关键的支持技术。

(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。

(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。

(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。

微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。

在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。

5微电子与其他学科的结合诞生新的技术增长点

微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。

微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。

MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。

MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。

目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。

当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。

微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。

采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。

DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。

目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。

6结语

在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。

回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!

参考文献

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,http///research/barc/gray/moore.law.html.1996.

[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2

[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997

微电子学范文篇3

二、投稿要求如下:1.来稿内容应有较高学术水平,有创新之处,表达上做到主题突出、观点明确、论据充分、结构合理、层次清楚、语言通顺、文字简练。2.作者投稿需向编辑部提供一份声明:稿件内容属于作者的科研成果,署名无争议,且未公开发表过。3.来稿一般不超过8000字(含图、表),内容包括:中英文题目、中文作者姓名及汉语拼音的作者姓名、作者单位及英文译名、作者简介(性别、出生年份、学位、职称及研究方向)、中英文摘要(250字左右)、关键词(3~8个)、中图分类号、正文、参考文献。如为基金项目资助论文,请在文稿首页注明,并列出批准文号。4.摘要应说明论文的目的、方法、结果与结论。英文摘要的内容需与中文一致。5.文中的量与单位应符合国家标准和国际标准。外文字母必须分清大小写、正斜体(包括黑正体、黑斜体及白正体、白斜体);上下角的字母、数字和符号,其位置高低应区分明显。6.图、表不超过6幅;图、表须有名称和编号,其内容要与正文中的编号和说明一致;插图和照片必须是清绘图和原照片,绘制符合国家标准,最好控制在7.5cm×7.5cm内;有坐标系的插图,纵横坐标上均要有适宜的刻度、对应的数据,并标注出其所代表的物理量和单位;表格尽量采用三线表的形式绘制。7.参考文献只择最主要的列入,一般不超过10条,未公开发表的资料请勿引用。文献序号以文中出现的先后顺序编排,文后须与正文中的一一对应。文献作者3名以内应全部列出,4名以上的只列出前3名,后加“等”字(或etal);外文作者姓在前,名在后,名可用缩写,但不加缩写点。

三、来稿请写清作者或联系人姓名、电话、E-mail、工作单位、通讯地址及邮政编码,自投稿之日起,两个月内未接到通知者可自行处理稿件。

四、编辑部对稿件有修改权,不愿改动者,请来稿时说明。

五、本刊已入编《中国学术期刊(光盘版)》及有关数据库,不愿录入各数据库者,请在来稿中注明。

六、稿件一经发表,赠送刊物两册。

七、编辑部唯一投稿邮箱:mc771@163.com(注明新投稿)

微电子学范文篇4

关键词微电子技术集成系统微机电系统DNA芯片

1引言

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。

50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。

在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。

221世纪上半叶仍将以硅基CMOS电路为主流工艺

微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。

自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。

现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。

21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。

目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。

随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。

3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域

在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:

(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。

因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。

(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。

量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。

以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。

目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。

QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。

4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点

在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。

正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。

系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。

SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。

对于系统芯片(SOC)的发展,主要有三个关键的支持技术。

(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。

(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。

(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。

微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。

在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。

5微电子与其他学科的结合诞生新的技术增长点

微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。

微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。

MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。

MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。

目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。

当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。

微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。

采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。

DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。

目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。

6结语

在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。

回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!

参考文献

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,http///research/barc/gray/moore.law.html.1996.

[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2

[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997

微电子学范文篇5

关键词:微电子学,人才培养,芯片产业

最近工信部与教育部等部门提出推进设立集成电路一级学科[1],进一步做实做强示范性微电子学院,加快建设集成电路产教融合协同育人平台等措施。这说明从主管部门到教育、科技和产业界,都普遍关心微电子集成电路的人才培养问题,本文就微电子学科及专业的界定、产业需求和人才培养方向提出一管之见。

1微电子学科专业的重新界定

我国微电子专业开始于1950年代,学科名称为半导体器件与物理,这个名称与当时半导体产业相契合。后来随着集成电路的发展,学科名称定为微电子学与固体电子学。之后,集成电路发展到超大规模阶段,一个芯片就是一个系统,微电子学科专业的定义已经滞后于产业的发展。以芯片设计为例,产业界更需要组合型人才(系统+微电子设计),导致有些企业宁愿招聘计算机、通信、软件等专业毕业生。但这些人员又缺乏微电子专业基础,从事芯片设计也受专业知识不足的限制。集成电路一级学科的设立及示范性微电子学院的实施,首先要认真考虑学科和专业界定。集成电路产业链涉及工艺、设备、材料、封装、设计、EDA工具、单元库等方方面面,诸如设备和EDA工具等,与其他专业(如精密仪器、光学、机械制造和计算机等)有着更密切的联系。因此,微电子学科方向应有所取舍,主要以微电子器件物理(含材料及相关基础研究),集成电路工艺,集成电路设计作为二级学科。我国目前各高校的微电子专业实际上都是侧重微电子器件物理性质,这一方面相对有优势,所以可以单独保留这个方向。另一方面,要极大地加强集成电路工艺和集成电路设计专业两方向。此外,还要注意到集成电路工艺和芯片设计严格地说并不是一个专业。就像出版社和印刷厂其实是分属两个不同的行业和部门。现在普遍把两个方向混淆为一个专业,导致学生的专业学习难以深入,缺乏工艺和设计的训练与实践,与产业界的需求脱节。芯片行业的现状是芯片设计公司和制造公司都是分开的,全球只有极少数几个公司既有设计,也有制造(如Intel,Samsung),但即使这些公司,其设计和制造都有单独的子公司运营。99%的设计公司是没有制造的,都是委托专业的芯片制造公司进行生产。鉴于集成电路工艺和芯片设计从专业培养角度看区别极大,再考虑到高校微电子工艺实验条件越来越跟不上产业先进的工艺(见下节),我们建议大部分微电子学科应以芯片设计为主要方向。这也是我国国民经济发展的需要。我国近年来严重缺“芯”的状况都源于设计能力的不足,芯片设计是我国微电子产业目前最需要重视的环节。因为芯片开发单位才拥有芯片的所有权,终端企业是向设计公司购买芯片而不是向加工工厂购买,加工厂只有自行开发的芯片才自行销售。芯片设计是集成电路行业竞争的主战场,只有具备了基本的系统设计和芯片设计能力,其他环节包括先进的工艺、设备和设计工具才起作用。长期以来,这个简单的道理却被忽略了。当然微电子工艺方向也重要,但由于实验条件的限制,需采取专门的措施,集中建设少数有条件的单位,办成与产业紧密结合、保持足够先进性和开放性的研发中心和培训中心。好在微电子工艺与微电子器件物理基础教学关联度比较大,这两个方向可以采用相似的教学大纲,再充分利用虚拟仿真的手段,与基础的原理性实验部分结合,加强工艺课程的教学效果,深化对工艺原理的认识。

2实验条件和师资建设

实验条件和师资跟不上,是微电子专业发展的最主要的困难。工艺方向对实验的依赖度极大,但学校早就不能承担先进工艺线的巨额投资,现在连零头都难以解决。目前全国高校许多工艺实验室已经下马,存在的也处在很初级的状态,以至于工艺实验就好像土枪土炮与现代化战争完全脱节,几乎没有所谓实训的作用。当然退一步讲,即使没有实验条件,打好微电子理论基础,这样的学生也可以由工厂进行实际培训(相对于实验补课)后使用。对于芯片设计方向,在实验方面倒不存在资金的问题,因为设计所需的软硬件是通用的,规范的,每个学校都有能力购买,并且大学可以有计划利用。因此,在芯片设计工具方面,可以做到与国外大学和研究单位以及产业界接轨。这是一个有利因素。但更大的问题是没有合格的师资。我们必须看到目前所有高校老中青教师队伍中,很少有在先进工艺线工作过或有自己设计过芯片经历的人。以这样的教师授课,基本上照本宣科,效果不会好。仍以集成电路设计为例,虽然每个学校都有能力购买先进的设计工具,但真正能用好工具的却不多。这些工具软件都比较庞大复杂,初学者如入迷宫,只有做过设计的老师才能有效指导学生使用设计工具并完成一个具体设计。因此,要引进一批有理论、有实践的高水平的教师,由他们培训、带领一大批青年教师,熟悉系统和芯片设计,并主攻大部分常用的IP和芯片,通过科研带动教学、培养学生。这才是集成电路竞争的主战场,高校不能回避这个主战场。就像竞技体育的主战场必须是运动员参加各种比赛,踢足球就必须进球。初级目标可设定为培养一批熟悉集成电路设计路径、并熟悉相关标准或算法的教师,开发常用的IP和芯片、包括一些核心的和最新算法的IP和芯片。这个阶段是解决有没有、会不会的问题,还要达到一定的量和规模。在此基础上以创新的思维来主导IP和芯片设计,从算法、结构到具体实现都有所研究和探讨,真正掌握。具有这样能力的教师多了,我国微电子专业科研和教学水平就会大幅度提高。引进和培养高水平的芯片设计的教师,还必须在目前人事制度和评价机制方面有所创新和突破。否则教师都培养不好,何谈学生。

3课程设置

由于集成电路设计实际上与所有电子信息类专业都有交集,因此微电子专业的课程设置是一个很难取舍的问题。从国际上看,这个问题都没有解决好,没有成功的经验可供借鉴。我国目前微电子学科课程设置主要以公共基础课和微电子基础课为主,基本上还是当初半导体器件与物理专业延续下来的。这样的课程对于培养微电子基础方面还是可以的,但对于先进工艺和系统芯片设计人才,就越来越脱节了。以至于现在高校微电子专业招聘导师,来应聘的大多是从事材料器件物理的,而工艺和设计方向的几乎没有。以芯片设计为例,是否需要开设固体物理和半导体物理课?当然就更没有必要上量子物理等高深理论课了。笔者一直想在课程设置上建议较大的改变,但阻力太大。因为很多人认为,不上这些课,就不是微电子专业了,其实不然。现在看来,这种改变势在必行。所以本文呼吁,如果要改变中国缺“芯”状况,微电子专业课程设置尤其是芯片设计方向,必须做根本性的调整。首先,应以系统设计为目的开设基础课程,如通信原理、自动控制原理、信号与系统、大数据和人工智能等基本课程。让学生理解这些基本原理,打好基础。但这些可选课程比较多,如何取舍。另一方面这些课程也需根据芯片设计专业的需要做调整。芯片设计课程应是重头戏。芯片设计的预备课程比较多,如硬件描述语言、EDA技术、FPGA数字系统设计等等,但这些都不是严格意义上的芯片设计主干课程。芯片设计主干课程应讲授什么内容、怎样教?这是一个需要认真探讨的课题,并且要有专家专门做这样的事情。本文高兴地看到已有学校要求研究生有芯片设计的体验并为之提供流片机会,这对学生来说是非常难得的学习和实践。但学生主要靠自学摸索,只是悟性好又勤奋的学生能够完成,而对于本科生群体设计能力的培养,还是必须有适当的主干课程和实验来支撑。这是一个艰巨的任务,需要集思广益[2-24],需要有如改革开放之初教育部组织全国资源编写教材的大动作来完成。

4结语

微电子学范文篇6

【关键词】嵌入式系统;学科体系;平台模式;对象学科

一、嵌入式系统简介

(一)嵌入式系统的产生

嵌入式系统诞生于微型机时代,经过微型计算机的嵌入式专用化的短暂探索后,便进入到嵌入式系统独立的微控制器发展时代。直接在嵌入式处理器与集成电路技术基础上发展的带处理器内核的单片机,即微控制器的智能化电子系统。即便有处理器内核,也是嵌入式处理器而非通用微处理器。

(二)专用计算机探索的失败之路

无论是工控机,还是单板机,都无法彻底地满足嵌入式系统的微小体积、极低价位、高可靠性的要求。人们便直接将微型计算机体系结构进行简化,集成到一个半导体芯片中,做成单片微型计算机。

Motolora公司的6801系列就是由6800系列微型机简化后集成的单片微型计算机。单片微型计算机彻底解决了嵌入式系统的极小体积、极低价位,但在高可靠性及对象可控性方面没有本质上的改进。

(三)嵌入式系统的独立发展道路

嵌入式系统的微控制器(MCU)发展道路,是一条摆脱“专用计算机”羁绊,独立发展的道路。这是一条由IntelMCS51单片机、iDCX51实时多任务操作系统开辟的单片机独立发展的道路。MCS51是一个在微电子学、集成电路基础上,按照嵌入式应用要求,原创的嵌入式处理器。MCS51原创的体系结构、控制型的指令系统与布尔空间、外部总线方式、特殊功能寄存器(SFR)的管理模式,奠定了嵌入式系统的硬件结构基础;iDCX51是专门与MCS51单片机配置,满足嵌入式应用要求原创的实时多任务操作系统。

二、嵌入式系统的四个支柱学科

目前,嵌入式系统尚未形成独立的学科体系。从“嵌入式系统”的诞生、独立的单片机发展道路、微控制器技术发展的内涵、嵌入式系统的多种解决方案来看,“嵌入式系统”是四个支柱学科的交叉与融合,并以平台模式进行学科定位与分工。

(一)四个支柱学科的关系

嵌入式系统的四个支柱学科是微电子学科、计算机学科、电子技术学科、对象学科。微电子学科是嵌入式系统发展的基础,对象学科是嵌入式系统应用的归宿学科,计算机学科与电子技术学科是嵌入式系统技术发展的重要保证。

(二)领衔的微电子学科

微电子学科与半导体集成电路的领衔作用,在于它为嵌入式系统的应用提供了集成电路基础。电子技术学科、计算机学科的许多重要成果,最终都会体现在集成电路中,从早期的数字电路集成,到如今的模混合、软/硬件结合、以IP为基础的知识与知识行为集成。

(三)为平台服务的计算机学科

现代计算机出现后,在计算机学科中形成了两大学科分支,即通用计算机学科与嵌入式计算机学科。通用计算机学科与嵌入式计算机学科有不同的技术发展方向与技术内涵。由于嵌入式计算机学科与对象学科、微电子学科紧密相关,而嵌入式计算机学科与原有计算机学科内容有较大差异,不能用通用计算机的概念来诠释嵌入式系统,因此、嵌入式计算机要加强与微电子学科、电子学科、对象学科的沟通,共同承担起嵌入式系统新学科的建设任务。在嵌入式系统中,计算机学科要承担起嵌入式系统应用平台的构建任务,它包括嵌入式系统的集成开发环境、计算机工程方法、编程语言、程序设计方法等内容。

(四)广泛服务的电子技术学科

在嵌入式系统中,电子技术学科提供了最广泛的技术服务。电子技术将微电子领域的集成电路设计,迅速从电路集成、功能集成、技术集成发展到知识集成;为计算机学科提供嵌入式系统的硬件设计技术支持;在对象学科中,广大的应用工程师在嵌入式软硬件平台上实现最广泛的应用。

(五)对象学科的最终出路

对象学科是嵌入式系统的最终用户学科。对象学科几乎囊括了所有的科技领域,形成了嵌入式系统一个无限大的应用领域。对于对象学科来说,嵌入式系统只是一个智能化的工具,对象学科要在嵌入式系统上构建本领域的一个嵌入式应用系统。嵌入式应用系统的技术基础是本学科的基础理论与应用环境、应用要求。同时,在应用中要不断给微电子、集成电路设计、嵌入式计算机学科提出技术要求,以便不断提升嵌入式系统平台的技术水平。

三、平台模式下的学科

(一)平台模式的由来

平台模式是知识经济时代的一种基本的产业、科技模式,是人类知识分离性规律、集成性规律发展到高级阶段上的必然现象。它将一体化的产业、科技模式变革为知识平台媒介下的平台模式。只要对比上世纪60年代收音机产业与90年代的VCD/DVD产业,就会发现一体化产业模式与平台产业模式的本质差异。

(二)嵌入式系统的平台模式

按照知识的分离性发展规律,知识创新者不从事知识应用,知识应用者不需要了解创新知识原理;按照集成性发展规律要求,知识创新者应该将创新知识成果集成到工具之中,转化为知识平台,知识应用者应该在知识平台基础上实现创新知识应用。对象学科领域是嵌入式系统的最终用户,对象学科领域的电子技术应用工程师应该在一个现成的嵌入式系统平台上实现嵌入式应用系统设计。微电子学科、嵌入式计算机学科、电子技术学科(非对象学科领域中的应用工程师)不是嵌入式系统最终用户,这些学科的重要任务是将创新科技成果转化成形形色色的知识平台。公务员之家

(三)平台模式下的学科定位与分工

嵌入式系统中四个支柱学科的定位,除了学科知识结构的定位外,还要体现出在知识平台模式中的定位。这种平台模式的定位,是一种3+1的定位。即微电子学科、计算机学科、电子技术学科为嵌入式应用构筑各种类型的应用平台,不介入嵌入式系统的具体应用;对象学科一定要在嵌入式系统应用平台基础上,实现嵌入式系统在本学科领域中的产品化应用,不必介入嵌入式系统的平台构建。

嵌入式系统是一个无限大的空间,不论是嵌入式系统平台构建还是嵌入式系统平台应用,都有无限广阔的发展空间,关键是把握好自己的“定位”与“分工”,了解学科的“交叉”与“融合”。

参考文献

[1]何立民。嵌入式系统的产业模式[J].单片机与嵌入式系统应用,2006,(1)。

微电子学范文篇7

关键词:后摩尔时代;微电子;人才培养

一、微电子学科的后摩尔时代

作为一个与社会经济生活联系紧密的学科,发源于半导体物理的微电子专业聚焦于对电子器件和集成电路的研究,为整个电子产业和信息社会从基础单元层面提供着支撑。从2000年的《鼓励软件产业和集成电路产业发展的若干政策》(18号文件),到2011年的《进一步鼓励软件产业和集成电路产业发展的若干政策》(4号文件),再到2014年的《国家集成电路产业发展推进纲要》,国家持续不断地给予鼓励和引导,使得我国的微电子集成电路产业得到了迅速的发展。与此同时,随着工艺尺度逐步进入纳米级范畴,硅基工艺面临的困难不断增多,微电子技术工艺节点进步的速度逐步放慢。2016年,国际半导体路线图组织(InternationalTechnologyRoadmapforSemiconductor,ITRS)宣布从20世纪70年代起支撑微电子产业发展长达半个世纪的摩尔定律(Moore’sLaw)已不再适用[1]。“夕阳产业”的危机一时间笼罩于整个微电子领域之上。临此微电子学科的后摩尔时代,如何保持长期稳定的发展,成为微电子学科的必答题,也是高校微电子人才培养所必须关注的问题。目前而言,广受认可的微电子学科发展趋势可分为以下三类:“MoreMoore”、“MorethanMoore”和“Be-yondMoore”。其中,“MoreMoore”沿着现行道路继续前进,寻求对工艺尺度的进一步缩减,尽量挖掘成熟硅工艺的潜力。这一发展趋势的优点是方法成熟,近期效果较为确定,实用性强。例如,Intel、IBM和三星等正在积极推进7nm和5nm的硅工艺。其缺陷是由于硅在纳米尺度下量子效应的限制,进一步减小工艺尺寸的前景并不乐观,终点似乎就在眼前。“MorethanMoore”是对现有主要依赖工艺进步的道路做出审视,从器件架构、系统体系等多个角度寻求改变。例如,采用多层堆叠的形式提高单位面积的器件密度,使用多核或异构体系提升系统的处理能力等。这一发展趋势在不缩减工艺尺度的情况下延续了微电子器件和系统性能的提升,与现有工艺有较好的结合且具备一定的发展空间。“BeyondMoore”则更为激进。彻底跳出硅材料和传统MOSFET结构的限制,采用在纳米尺度下具有优良特性的新型材料(如碳纳米管、石墨烯、二硫化钼等低维材料),开发基于新物理机理的器件(如自旋器件、量子点器件等),走出一条全新的道路。这一发展趋势不确定性强、难度大、现有产业化基础薄弱,但其为微电子学科的发展打开了一扇全新的大门,具备着广阔的发展空间。

二、社会需求与专业发展的并重

分析以上三条道路,其中任何一条都有着自己的优势和弱点,其相互结合并随着学科和产业的发展变革而不断调整才是最好的发展方式。例如,立足于满足当下对电子信息社会发展支撑的需求,以“MoreMoore”为基础辅以“MorethanMoore”的局部变革,是微电子产业界的主流趋势。一方面,集成电路的主力设计节点继续下沉,从0.18um,0.13um发展到95nm,70nm;另一方面,并行体系、异构系统等新的设计思想不断涌现,保证了微电子产业发展近期的稳定性。而考虑到学科的发展和未来,推进对“BeyondMoore”的探索则尤为重要。目前,截止频率高达数百GHz的石墨烯场效应管[2]、电流密度超过硅的碳纳米管阵列[3]均已在实验室环境下实现了制备,微电子学科逐步过渡到“BeyondMoore”的道路已悄然显现。在此微电子学科及产业发展的历史变革之期,一方面,作为与社会经济生活紧密结合的工科专业,微电子专业人才需要满足“MoreMoore”路线下对具备现行硅基微电子工艺和微电子设计技术的要求,拥有较好的实践能力和应用能力,能迅速投身到产业生产之中。另一方面,面对“BeyondMoore”道路中微电子行业将来可能出现的原理和方法的重大变化,微电子专业人才需要掌握相关的新的科学知识及技术手段,具备适应变化以致引领变化的能力,为其长远的发展打下基础。以上两方面,需要使学生既能满足社会对产业应用能力的需求,又要适应专业发展对学术研究能力的提升,这两大需求无疑对微电子专业的人才培养提出了更高的要求。在当今大力发展微电子产业的背景下,各高校在满足社会需求方面大力探索,通过校企结合[4]、分段式培养[5]等方式在微电子应用型人才的培养上做出了很多卓有成效的工作。但对于面向以“BeyondMoore”为代表的后摩尔时代微电子学科和产业的未来发展趋势,建立相应的人才培养机制方面则需要大力加强,尤其对于研究型人才的培养。

三、人才培养的几点思考

针对这一问题,从以下几点做出一些思考,希望能对微电子专业人才培养的可持续发展做出一些探索。(一)从顶层设计上重视后摩尔时代给微电子专业带来的变革。国家当前正大力促进专业认证、专业评估等规范大学教育专业建设工作。借此时机,根据“以学生为中心,以结果为导向(Outcomebasededucation,OBE)”的现代人才培养的基本原则,对人才培养方案由顶至底进行全方位的梳理。树立微电子人才满足产业需求和专业发展并重的培养目标;分解形成培养学生责任感、专业知识、创新能力、解决复杂问题、信息应用、沟通表达、团队合作、国际化视野及终身学习等9大能力的具体毕业要求;构架落实能力培养的课程体系设置矩阵;并建立效果反馈机制,确保培养目标的达成。(二)补足交叉基础学科知识。对于为微电子专业未来发展打开新大门的“Be-yondMoore”,其核心在于超越硅材料和传统器件结构的限制,涉及到了一系列交叉基础学科的新的知识。而这是现有不少微电子专业人才培养中较为忽视的,必须要加以补足。例如,针对目前看来很有希望的碳纳米管、石墨烯、硫化钼等低维器件及电路,其新的晶体结构体系需要学生具备较好的“固体物理”的功底,纳米级的尺度带来的量子效应需要学生具有“量子力学”的基础,而不同于硅的材料特性则需要学生掌握一定的“近代电子材料”等材料科学的知识。(三)深化专业应用能力的培养。对于以“MoreMoore”为主辅以“MorethanMoore”的现行业界需求,应结合工艺的进步和新技术的涌现,更新、丰富专业课程及实践教学,深化对学生专业应用能力的培养。例如,在“半导体器件”课程中,可在经典长沟道MOSFET基础上增添纳米级器件的新效应等内容;在“电子设计自动化”或“数字集成电路设计”的实践教学中,可培养片上系统、异构系统等新技术的设计能力;在“射频集成电路设计”的课程中,可深化GaN、SiGe等新型高速工艺的应用。此外,可细化方向列出微电子材料类、单元器件类、数字集成电路设计类、模拟集成电路设计类、微电子系统应用类等带有一定探索性、前沿性的综合性实验群,供学生分类选择,以深化学生在某一子领域内的专业应用能力,提高学生解决复杂问题的能力。(四)加强专业创新潜力的挖掘为了使学生能适应微电子领域未来的变革,以致能引领这一变革,创新潜力的培养是研究型人才培养所必不可少的。除常规课堂及实践教学的潜移默化外,可通过多种形式展开科研活动加以强化,使学生具备自我学习和自我发展的能力。例如,可搭建部级、校级、院级多层次的大学生创新计划体系,让不同基础的学生都有机会尝试科研项目,体会工作流程。再如,可建立渠道使学有余力的学生进入老师的科研课题组,发挥科研反哺教学的作用,让学生在具体的科研工作中深化对所学知识和技能的掌握,挖掘学生的创新潜力。此外,可在奖学金、评优评先等调控手段中凸显专业学术创新的比重,营造鼓励创新的氛围,培育学术创新的土壤。(五)构建多元化复合型的实践教育体系研究型高校培养的人才通常有出国学习、继续深造和就业服务社会几种不同的出口选择,其实践教育也不应拘泥于统一固化的模式。本着“以学生为中心”的原则,在完成专业实验、综合实验等基本实践教学之上,对应地提供多元化的提升型实践途径,使其能各取所需。例如,提供交流生机会以满足出国学习的需求;提供校内、外高校和科研院所的科研课题组实习机会以满足继续深造的需求;提供企业交流和实习的机会以满足就业服务社会的需求。考虑到学生发展的可塑性,这些多元化的渠道不必对学生做割裂和限定,符合条件的均可参与,从而形成复合型的教育体系,使学生能历经多层面的实践培养,具有更为广阔的发展空间。(六)鼓励专业视野的拓展宽阔的专业视野有利于学生在后摩尔时代微电子的技术变革中把握方向,寻找适合自身专业及职业发展的道路,也是沟通表达能力、团队合作能力、国际化能力的具体体现。拓展专业视野,可鼓励学生多参加专业竞赛,例如集成电路设计大赛、大学生电子设计大赛等,让学生对书本外的知识展开探索,在竞争的环境中相互合作,与领域内的同行相互交流。还可为学生多创造到企业实习、国外交流的机会,通过在企业中的锻炼了解业界的需求与工作模式,通过在国外高校的进修了解不同的教育培养模式,拓宽产业化与国际化视野。此外,发动学生多参加学术报告等专业交流也是一个好的方法。学术报告中通常针对的是本专业及相关专业的最新科学和技术动态,参加报告不仅对了解微电子领域的发展与变革是十分有益的,也可一览领域内专家学者的治学风范,树立良好的专业态度。

四、结束语

本文针对处于变革中的后摩尔时代微电子领域,从培养方案顶层设计、交叉基础学科知识补足、专业应用能力深化、专业创新潜力增强、专业视野拓展等几方面做出了思考,对如何培养满足社会需求和注重专业发展的研究型微电子专门人才做出了探索。

参考文献:

[1]Waldrop,M.M.Ythesemiconductorindustrywillsoonaban-donitspursuitofMoore'slaw.Nowthingscouldgetalotmoreinteresting[J].Nature,2016,(7589):144-147.

[2]Liao,L.Lin,Y.C.Bao,M.etal..High-speedgraphenetransistorswithaself-alignednanowiregate[J].Nature.,2010,(467):305-308.

[3]Brady,G.J.Way,A.J.Safron,N.S.etal..Quasi-ballisticcarbonnanotubearraytransistorswithcurrentdensityexceedingSiandGaAs[J].ScienceAdvances,2016,(9),e1601240.

[4]虞致国,赵琳娜.基于校企合作提高集成电路设计类课程教学质量的研[J].大学教育,2016,(5):106-107.

微电子学范文篇8

关键词:现代学徒制;产教融合;微电子;评价对接;职业教育

为贯彻落实全国职业教育工作会议精神和《国务院关于加快发展现代职业教育的决定》,扎实推进《国家教育事业发展“十三五”规划》,持续做好现代学徒制试点工作,教育部先后启动两批现代学徒制试点工作,相关文件分别是《教育部关于开展现代学徒制试点工作的意见》(教职成〔2014〕9号)、《教育部办公厅关于做好2017年度现代学徒制试点工作的通知》(教职成厅函〔2017〕17号)[1-3]。为有效开展现代学徒制试点工作,2015年开始,笔者所在学校进行了有序的研究和探索。根据相关文件,牵头试点的主体可以是地级市、行业、企业及职业院校,我校从2015年开始现代学徒制试点探索,2017年成功申报教育部第二批现代学徒制试点项目,试点专业为电子信息工程技术专业(微电子方向),经过学校和北京燕东微电子有限公司的深入合作,正式启动了现代学徒制的试点,共同创新了现代学徒制“燕东微电子”模式。本文将结合我校实际情况,以职业院校和企业同时为主体,就现代学徒制试点研究与实践情况进行阐述。

一依托行业背景,挖掘企业需求,解决企业难题,融入企业发展,夯实合作基础,成立专业学院,形成育人平台

首先,双方具有合作基础。北京信息职业技术学院依靠行业办学,是全额拨款的事业单位,学校和北京燕东微电子有限公司都隶属于北京电子控股有限责任公司,北京电控是北京市国资委管理的市属大型国有企业,并同时地处北京酒仙桥地区,酒仙桥地区曾是我们国家的第一个电子工业基地,学校和燕东保持着良好的沟通和交往关系,现在企业生产一线的骨干员工基本都来自我校,由于这种天然的关系,学校对企业的了解比较深入。随着国家整个集成电路产业政策的调整,燕东进入了发展快车道,企业随着新产线的投产以及产线的升级换代,急需补充大量新员工,同时要对现有员工进行培训,对现有员工的培训主要有以下几个方面:(1)对出国到马来西亚参加培训人员的英语口语能力的培训;(2)现有员工的提升,主要针对学历是中职层次的员工,这部分人已经有丰富的实践经验,但电路原理、电子线路等方面的基础比较薄弱,急需提高。完成(1)和(2)两项工作是学校的强项,利用学校的师资和实训室完全能够高质量完成,并且针对中职层次的员工,学校还可通过与成人教育的对接实现其学历的提升,为企业提供切实的服务。其次,学校具备为企业培训员工所需设备设施。企业对员工进行培训,企业内部也没有好的培训设施作保障,特别是一些重要的培训,要让不同地点的员工都能参加,又不影响生产,同时避免员工路途奔波,需要培训教室具备现场直播功能,大型的培训教室和网络直播功能这些基础设施学校全部具备,基于学校的优势,学校全部承接了燕东的这些培训,解决了企业难题,融入到企业的发展之中,有力支持了企业的发展,夯实了合作基础。第三,校企双方业已搭建共同育人平台。燕东企业星级工程师的评价需要一个培养平台,从而完成对员工的继续教育和评价;同时,燕东是国内多所高校研究生的培养基地,要实现在燕东公司的框架下和高校的对接,也需要一个平台。学校要开展现代学徒制试点,也需要搭建一个平台,突出现代学徒制试点的特点。学校为了将企业在职员工的培训和现代学徒制学生的教育基于同样的文化进行培养,决定提供500平米的场地保障,开展育人环境的文化建设。基于以上多个方面的考虑,经过反复论证,双方决定成立企业冠名的“燕东微电子学院”,构筑共同育人的平台。在上级主管单位的领导下,成立理事会,制定章程,制定议事规则和经费管理办法,燕东微电子学院运行机制为理事会领导下的院长负责制;工作地址北京信息职业技术学院和北京燕东微电子有限公司同时授牌“燕东微电子学院”,日常工作地址设在北京信息职业技术学院电子与自动化工程学院。“燕东微电子学院”专业学院的成立,使校企双方进一步明确了各自的职责、权利,该平台为现代学徒制的试点奠定了坚实基础。

二急企业之所急,提供人才保障,落实招生即招工燕东公司新的生产线的投产需要大批一线技术技能人才

集成电路的生产和其他行业不太一样,厂房净化完毕将是24小时的运转,一线人员需要3班倒。在这样的背景下,燕东公司在北京亦庄开发区的生产线在2018年年底投产,对人员的需求巨大,企业已多次主动找学校落实人才培养问题,所以在落实招生即招工方面,企业方面没有任何障碍。学生入学后即签署了学校、企业、学生三方的招生即招工协议,并且企业为将现代学徒制的学生留住,进行了体制机制创新,以吸引更多的学徒制的学生留在企业,如增设企业奖学金,学徒制的学生提前对接企业星级工程师评价,缩短评价时间要求,为优秀人才的成长创造条件,达到评价要求的按规定落实待遇,让人才有获得感。学校在落实招生即招工方面紧紧围绕企业的需求,因为企业的真实需求是学徒制有效开展的最强有力的保障。

三校企深度融合,挖掘最大利益相关者,成立最强的人才培养方案的制定

团队,共同制定人才培养方案,基于OBE对学习的效果进行评价现代学徒制人才培养质量是否有保障,首先要看人才培养方案制定的是否合理。具体来说,就是人才培养的目标是否定位准确,人才培养的实施方案是否合理,人才培养的考核评价是否有标准。明确了人才培养方案的地位和作用,就需要成立一支对微电子专业现代学徒制试点最负责的团队。为此我们成立了以学校主管教学的校长和燕东主管人才队伍建设的书记为领导,以燕东微电子生产部部长、人力资源部部长、工艺工程师,学校以教务处长、二级学院院长、专业带头人、骨干教师为成员的开发团队,采用DACUM方法,以“典型工艺过程”为载体,对工艺过程中的每个岗位进行了全面的岗位分析,获得了微电子专业的职业分析表,并对每项专项技能进行了全面解析,获得了其知识、能力、素质要求,制定出以“典型工艺过程”为载体的人才培养方案,并对知识、能力、素质的培养是否达到预期学习成果,采用基于成果的评价进行考核。在具体评价中采用校企共同评价的方式。

四建立津贴制度,校企共同选育教师,形成教师选拔、培养、评价、使用的有效机制,建成一支有活力的教师团队

(一)制定准入标准,校企双方共同选育教师对能够进入燕东微电子学院承担微电子专业现代学徒制专业课程教学工作的教师,制定明确的准入标准,由校企双方共同选派。来自学校的师资,必须具备本专业中级及以上职称,至少要有半年以上的微电子企业的工艺实践;来自企业的主讲教师必须具有本专业大学本科及以上的第一学历,5年以上工作经验;一线师傅必须具有专科及以上的第一学历,具有8年以上工作经验。教师的选拔采取自愿报名和组织选拔相结合的原则,确保准入教师的数量和质量。(二)对初选合格的教师进行培养和评价,评价合格者进入燕东微电子学院教师库对初选合格的教师要进行全面培养,针对教师来源的不同,采取不同培养方式。对于学校教师,主要考核其实践能力,若教师实践能力不足,则安排其下企业实践半年及以上,进行企业实践锻炼;对于来自企业的主讲教师,主要进行教学基本功的培训,如基本教学资料的编写开发能力(授课计划、教案等编写)、课程教学基本功的训练、教学组织与考核能力训练;企业一线师傅,主要开展基本教学和指导能力的训练。所有的教师要通过试讲答辩合格后才能进入燕东微电子学院教师库,只有进入教师库的教师才具有开展教学的资格。(三)对进入燕东微电子学院教师库开展现代学徒制试点的教师实行津贴制度对进入到燕东微电子学院教师库的教师,颁发聘书,明确聘期,在聘任期内发放基本津贴,让担任学徒制试点课程的教师既有荣誉感又有获得感,体现对知识的尊重,对人才的重视。

五充分发挥企业优势,破解微电子专业领域学校实训基地建设困局,落实学生的实习实训计划

有关微电子专业电子理论的基础课程和基本工程能力的训练,现有电子专业的实验室和实训室都能很好地满足要求,但涉及到微电子专业工艺的专业实训室就很难满足,主要原因是:(1)微电子工艺方面的设备,复杂,数量多,价格昂贵,建设投资巨大;(2)即使有资金保障将实训室建立起来,其超净环境运维也是一个巨大的难题,运行成本居高,学校很难承受。基于这样原因,学校要开办微电子专业就必须与企业深度合作,充分利用企业的生产资源来保障学生的实习实训,在跟燕东的合作中,双方达成了一致,将充分发挥燕东的生产设备资源优势,为学校现代学徒制的学生提供全面的实习实训条件,破解学校建设微电子工艺方面实训基地的困局。

六基于历史经验,优化学程设计,合理调度配备师资,调动企业兼职教师(师傅)对人才培养的主动性

在开展现代学徒制试点之前,学校已经跟燕东合作开展了3批学生的订单培养,并且燕东微电子也接收过多批次本科学生的实习。从最终实习效果来看,以2~4周作为一个考察教学效果的单元,由工程师负责的集中的理论和工艺学习,与整学期实习或短期实习相比,学习效果差别不大;但对于一线师傅负责指导的实习实践,则整学期实习与2~4内实习相比,学习效果要远远好得多。通过对上述现象的分析,我们发现,学生在企业一线实习时间越长,指导的师傅积极性越高,学习效果就更好。通过对师傅的访谈,得出待的时间越长的学生,师傅会更用心地去指导,因为越早教会他,他就能更多地替师傅干活,原来道理就这样简单!我们需要基于这一点更好地发挥师傅的工作积极性。再有,进入顶岗实习的学生,理论基础越扎实,工艺实践技能就掌握得更好,工艺方案的优化设计能力就更强。基于以上分析,学校对学习进程进行了全面优化设计:前2年以理论知识学习为主,每个学期安排4周的企业实习实训,并由企业工程师担任主讲教师,确保教学质量;最后1年以企业岗位训练为主,培养学生的独立工作能力,由企业的师傅担任指导教师,由于集成电路行业岗位的特点,每个指导师傅指导的学生数不超过2人。

七企业实习期间办理入职手续,按准员工标准落实各项待遇

学生去企业实习期间,按照新员工入职的标准办理入职手续,发放员工卡,提供工作餐,发放工作服,按标准发放实习补贴,按国家法律法规要求上齐各类保险。按照双重身份落实双重管理完成各项在企业的教学工作。

八设立企业奖学金,对接企业工程师评价机制,调动学生学技术技能的积极性,促进人才的快速成长

虽然落实了招生即招工,但学生对企业认同或归属感需要进一步培养,除了在企业实习期间将学生按照准员工对待之外,需要进一步将企业文化融入到学徒的心灵之中。(一)设立企业奖学金每个学期根据学生的学习情况,综合评价的基础上,按比例设立企业奖学金,促进学生学习的主动性,培养对企业文化的认同。(二)跟企业星级工程师评价机制对接,缩短晋升时间,打通晋升通道燕东微电子公司内部有一套星级工程师评价体系。工程师按级别分为5星,最高级别为5星,其年薪与企业中层领导持平。每年招收的应届大学毕业生都有1年实习期,实习期结束后都要进入到星级工程师评价体系,根据其所获得的星级不同享受不同的绩效工资。为了鼓励现代学徒制的学生更好地学技术、学技能,学徒在第3年顶岗实习期间就可以申请星级工程师评价,取消1年实习期限制。如果考核合格达到某星级的要求,则直接享受该星级工程师的绩效工作待遇,1星级工程师的绩效工资待遇都大大超过其每月2000元左右的顶岗实习补贴,并且获得的星级在学生毕业正式入职后可以继承,这样将大大缩短在企业的晋升时间。通过打通人才成长的通道,为人才的脱颖而出创造条件。

九结束语

现代学徒制是职业教育改革中的一项重大制度创新,现代学徒制要区别于传统的学徒制,仍然有许多理论和实践问题需要解决[4],本试点工作在共建共育人才平台的建设,人才培养方案的制定,校企共建师资队伍,校企共建实训基地,校企共同评价现代学徒制学生和企业星级工程师的评价对接等方面取得了一定的成果,但在招生招工一体化方面仍然存在不少的问题,面对北京市生源的急剧下降,学校外埠招生数量严格控制的背景下,如何进一步保障生源数量,满足企业的需求方面需要进一步探索,突破体制机制,在招生规模上实现有效保障和突破[5]。以上是我们进行现代学徒制试点时的一点感受和经验的总结,在后期实践中还需要调整和优化,肯定有很多不妥之处,敬请指正。

参考文献

[1]马树超.产教融合:从示范到优质院校建设的主线[J].职教论坛,2017(01):32-35.

[2]教育部.关于开展现代学徒制试点工作的意见(教职成〔2014〕9号)[Z].2014.

[3]教育部.关于做好2017年度现代学徒制试点工作的通知(教职成厅函〔2017〕17号)[Z].2017.

[4]郭文富,马树超.现代职业教育体系建设的制度配置思考[J].中国高教研究,2017(10):83-87.

微电子学范文篇9

1.1认识微电子

微电子技术的发展水平已经成为衡量一个国家科技进步和综合国力的重要标志之一。因此,学习微电子,认识微电子,使用微电子,发展微电子,是信息社会发展过程中,当代大学生所渴求的一个重要课程。生活在当代的人们,没有不使用微电子技术产品的,如人们每天随身携带的手机;工作中使用的笔记本电脑,乘坐公交、地铁的IC卡,孩子玩的智能电子玩具,在电视上欣赏从卫星上发来的电视节目等等,这些产品与设备中都有基本的微电子电路。微电子的本领很大,但你要看到它如何工作却相当难,例如有一个像我们头脑中起记忆作用的小硅片—它的名字叫存储器,是电脑的记忆部分,上面有许许多多小单元,它与神经细胞类似,这种小单元工作一次所消耗的能源只有神经元的六十分之一,再例如你手中的电话,将你的话音从空中发射出去并将对方说的话送回来告诉你,就是靠一种叫“射频微电子电路”或叫“微波单片集成电路”进行工作的。它们会将你要表达的信息发送给对方,甚至是通过通信卫星发送到地球上的任何地方。其传递的速度达到300000KM/S,即以光速进行传送,可实现双方及时通信。“微电子”不是“微型的电子”,其完整的名字应该是“微型电子电路”,微电子技术则是微型电子电路技术。微电子技术对我们社会发展起着重要作用,是使我们的社会高速信息化,并将迅速地把人类带入高度社会化的社会。“信息经济”和“信息社会”是伴随着微电子技术发展所必然产生的。

1.2微电子技术的基础材料——取之不尽的硅

位于元素周期表第14位的硅是微电子技术的基础材料,硅的优点是工作温度高,可达200摄氏度;二是能在高温下氧化生成二氧化硅薄膜,这种氧化硅薄膜可以用作为杂质扩散的掩护膜,从而能使扩散、光刻等工艺结合起来制成各种结构的电路,而氧化硅层又是一种很好的绝缘体,在集成电路制造中它可以作为电路互联的载体。此外,氧化硅膜还是一种很好的保护膜,它能防止器件工作时受周围环境影响而导致性能退化。第三个优点是受主和施主杂质有几乎相同的扩散系数。这就为硅器件和电路工艺的制作提供了更大的自由度。硅材料的这些优越性能促成了平面工艺的发展,简化了工艺程序,降低了制造成本,改善了可靠性,并大大提高了集成度,使超大规模集成电路得到了迅猛的发展。

1.3集成电路的发展过程

20世纪晶体管的发明是整个微电子发展史上一个划时代的突破。从而使得电子学家们开始考虑晶体管的组合与集成问题,制成了固体电路块—集成电路。从此,集成电路迅速从小规模发展到大规模和超大规模集成电路,集成电路的分类方法很多,按领域可分为:通用集成电路和专用集成电路;按电路功能可分为:数字集成电路、模拟集成电路和数模混合集成电路;按器件结构可分为:MOS集成电路、双极型集成电路和BiIMOS集成电路;按集成电路集成度可分为:小规模集成电路SSI、中规模集成电路MSI、大规模集成电路LSI、超导规模集成电路VLSI、特大规模集成电路ULSI和巨大规模集成电路CSI。随着微电子技术的发展,出现了集成电路(IC),集成电路是微电子学的研究对象,其正在向着高集成度、低功耗、高性能、高可靠性的方向发展。

1.4走进人们生活的微电子

IC卡,是现代微电子技术的结晶,是硬件与软件技术的高度结合。存储IC卡也称记忆IC卡,它包括有存储器等微电路芯片而具有数据记忆存储功能。在智能IC卡中必须包括微处理器,它实际上具有微电脑功能,不但具有暂时或永久存储、读取、处理数据的能力,而且还具备其他逻辑处理能力,还具有一定的对外界环境响应、识别和判断处理能力。IC卡在人们工作生活中无处不在,广泛应用于金融、商贸、保健、安全、通信及管理等多种方面,例如:移动电话卡,付费电视卡,公交卡,地铁卡,电子钱包,识别卡,健康卡,门禁控制卡以及购物卡等等。IC卡几乎可以替代所有类型的支付工具。随着IC技术的成熟,IC卡的芯片已由最初的存储卡发展到逻辑加密卡装有微控制器的各种智能卡。它们的存储量也愈来愈大,运算功能越来越强,保密性也愈来愈高。在一张卡上赋予身份识别,资料(如电话号码、主要数据、密码等)存储,现金支付等功能已非难事,“手持一卡走遍天下”将会成为现实。

2.微电子技术发展的新领域

微电子技术是电子科学与技术的二级学科。电子信息科学与技术是当代最活跃,渗透力最强的高新技术。由于集成电路对各个产业的强烈渗透,使得微电子出现了一些新领域。

2.1微机电系统

MEMS(Micro-Electro-Mechanicalsystems)微机电系统主要由微传感器、微执行器、信号处理电路和控制电路、通信接口和电源等部件组成,主要包括微型传感器、执行器和相应的处理电路三部分,它融合多种微细加工技术,并将微电子技术和精密机械加工技术、微电子与机械融为一体的系统。是在现代信息技术的最新成果的基础上发展起来的高科技前沿学科。当前,常用的制作MEMS器件的技术主要由三种:一种是以日本为代表的利用传统机械加工手段,即利用大机械制造小机械,再利用小机械制造微机械的方法,可以用于加工一些在特殊场合应用的微机械装置,如微型机器人,微型手术台等。第二种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件,它与传统IC工艺兼容,可以实现微机械和微电子的系统集成,而且适合于批量生产,已成为目前MEMS的主流技术,第三种是以德国为代表的LIGA(即光刻,电铸如塑造)技术,它是利用X射线光刻技术,通过电铸成型和塑造形成深层微结构的方法,人们已利用该技术开发和制造出了微齿轮、微马达、微加速度计、微射流计等。MEMS的应用领域十分广泛,在信息技术,航空航天,科学仪器和医疗方面将起到分别采用机械和电子技术所不能实现的作用。

2.2生物芯片

生物芯片(Biochip)将微电子技术与生物科学相结合的产物,它以生物科学基础,利用生物体、生物组织或细胞功能,在固体芯片表面构建微分析单元,以实现对化合物、蛋白质、核酸、细胞及其他生物组分的正确、快速的检测。目前已有DNA基因检测芯片问世。如Santford和Affymetrize公司制作的DNA芯片包含有600余种DNA基本片段。其制作方法是在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维,不同的DNA纤维图案分别表示不同的DNA基本片段。采用施加电场等措施可使一些特殊物质反映出某些基因的特性从而达到检测基因的目的。以DNA芯片为代表的生物工程芯片将微电子与生物技术紧密结合,采用微电子加工技术,在指甲大小的硅片上制作包含多达20万种DNA基本片段的芯片。DNA芯片可在极短的时间内检测或发现遗传基因的变化,对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。生物工程芯片是21世纪微电子领域的一个热点并且具有广阔的应用前景。

2.3纳米电子技术

在半导体领域中,利用超晶格量子阱材料的特性研制出了新一代电子器件,如:高电子迁移晶体管(HEMT),异质结双极晶体管(HBT),低阈值电流量子激光器等。在半导体超薄层中,主要的量子效应有尺寸效应、隧道效应和干涉效应。这三种效应,已在研制新器件时得到不同程度的应用。(1)在FET中,采用异质结构,利用电子的量子限定效应,可使施主杂质与电子空间分离,从而消除了杂质散射,获得高电子迁移率,这种晶体管,在低场下有高跨度,工作频率,进入毫米波,有极好的噪声特性。(2)利用谐振隧道效应制成谐振隧道二极管和晶体管。用于逻辑集成电路,不仅可以减小所需晶体管数目,还有利于实现低功耗和高速化。(3)制成新型光探测器。在量子阱内,电子可形成多个能级,利用能级间跃迁,可制成红外线探测器。利用量子线、量子点结构作激光器的有源区,比量子阱激光器更加优越。在量子遂道中,当电子通过隧道结时,隧道势垒两侧的电位差发生变化,如果势垒的静电能量的变化比热能还大,那么就能对下一个电子隧道结起阻碍作用。基于这一原理,可制作放大器件,振荡器件或存储器件。量子微结构大体分为微细加工和晶体生长两大类。

3.微电子技术的主要研究方向

微电子学范文篇10

【关键词】微电子化计量仪;半导体探测器;特性研究;试验方法

半导体技术近年来被运用于多种领域,尤其是在核辐射探测器方面的运用,将半导体技术的优势发挥得淋漓尽致,为社会经济发展做出了巨大贡献。近年来,细数将半导体技术引入核辐射探测器领域的过程,我国的相关科研单位耗费了大量的人力、财力和物力。随着时代的发展,深化半导体材料和技术在核辐射探测器的运用研究将继续为我国的科技发展提供重要支持。结合本文研究方向,拟从半导体探测器特性的实验研究层面展开,利用实验数据进行相关讨论。

1半导体探测器的内涵

半导体探测器以其高效、实用、成本低、性能稳定等特性,目前在各个领域的应用十分广泛。明确半导体探测器的内涵概念,能够深化我们对半导体探测器的了解,为接下来的更深入的探究工作打下坚实基础。接下来笔者就从半导体探测器的概念及发展历程两个方面来粗浅剖析半导体探测器的内涵:1.1半导体探测器的概念。顾名思义,半导体探测器就是利用半导体材料和特点研发的探测设备。结合原理分析,半导体探测器是一种通过锗、硅等半导体材料物理属性、并利用其作为探测介质的辐射探测器。由于半导体探测器的工作原理和气体电离室有诸多相似之处,因此半导体探测器也被称之为固体电离室。从技术原理的层面来讲,半导体探测器的工作原理是在半导体探测器的灵敏体积内带电粒子产生“电子——空穴对”,之后“电子——空穴对”在外电场环境下做出漂移继而产生并输出信号。经过大量科学家的研究,半导体探测器诞生至今,经过不断的技术概念和材料改良,目前性能和效用已经十分优良。1.2半导体探测器的发展历程。半导体技术在核辐射探测器方面的应用分为几个阶段:第一个阶段是八十年代之前。当时的探测器受到技术技术条件和认知的影响,最为常见的探测器是GM计数管探测器。这种GM计数管探测器的产品性能和效果并不理想。随着技术的不断更新和科学家探索的深入。第二个阶段是九十年代之后,在法国、德国出现了用半导体材料作探测器的小型剂量仪器。至此,半导体技术正式被应用于探测器领域。这种半导体探测器具有体积小、工作电压低、耗能少等优势,这些特点为半导体探测器的应用空间和范围奠定了良好基础。

2用于微电子化计量仪的半导体探测器特性的实验方法

为了进一步地探究半导体探测器的特性,更明确地了解并认知其优势,笔者通过一组实验来进行说明。在这一实验中笔者所用的半导体测试器是目前业界内比较新型的设备,它是笔者单位和某原子能科学研究院合理研发的。实验中与半导体探测器相连接的电力属于微电子学混合电路。下面笔者对实验方法(如图2.1所示)作详细的论述与分析:图2.1实验示意图考虑到夜晚的干扰信号比白天小很多,因此我们在做此实验时选择在了晚上的时间段。为了处理好半导体探测器特性实验中噪音大的问题,本次实验所选择的单道阈值是0.21V。在实验中,主放大倍数为50积分、微分常数为0.5μs。定标器的工作方式为积分,脉冲为正脉冲方式。基于上述这些情况,我们的“用于微电子化计量仪的半导体探测器特性”实验研究正式开始。

3用于微电子化计量仪的半导体探测器特性的实验数据及处理

关于特性研究实验过程中的实验数据及处理方式,笔者对其进行了详细的记录。笔者将半导体的探测器面积分为10平方豪米、25平方毫米和50平方毫米三种数据类型来进行测验。第一,半导体探测器的面积为10平方毫米,98型的半导体探测器辐射响应特性的数据结果如图3.1、3.2所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系;99型的半导体探测器所反馈的实验曲线如图3.3、3.4所示,98型半导体探测器的辐射响应特性数据如图3.5、3.6所示。图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系。第二,当半导体探测器的面积增加到25平方毫米之后,99型的半导体探测器辐射响应特性的数据结果如图3.5、3.6所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,99型号的半导体探测器中净计数和剂量率之间的关系。基于系列实验分析,当半导体探测器的面积从10平方豪米增加到25平方毫米,在递增到50平方毫米的过程中,在不同的偏压下,98型和99型的半导体探测器的净计数率在0.869cGy/h点上,半导体探测器的型号和探测器偏压的关系如表1所示。在表中,在照射量率为均为1的情况下,当半导体探测器的偏压设定为1V时,探测面积为10平方毫米的98型探测器的净计数率是68.2,探测面积为25平方毫米的98型探测器的净计数率是104.0;探测面积为50平方毫米的98型探测器的净计数率是181.7,探测面积为10平方毫米的99型探测器的净计数率是125.3。当半导体探测器的偏压设定为3V时,探测面积为10平方毫米的98型探测器的净计数率是90.4,探测面积为25平方毫米的98型探测器的净计数率是167.6;探测面积为50平方毫米的98型探测器的净计数率是316.4,探测面积为10平方毫米的99型探测器的净计数率是178.6。

4用于微电子化计量仪的半导体探测器特性的结果与讨论

通过上述关于不同型号半导体探测器在不同辐射面积中辐射响应特性等相关数据的分析我们可以得出如下三个方面的结论:第一,该半导体探测器的工作电压相对较低,对γ响应十分敏感。当“用于微电子化计量仪的半导体探测器特性研究”的实验电压在1V—3V单偏压电源数据之间变动时,半导体探测器的灵敏度能够在68-316S/(R/h)区间进行变化。结合实验数据的分析与反馈,总体来讲,辐射面积为10平方毫米的99型探测器性能比辐射面积为10平方毫米的98型探测器性能优良。在同样的实验条件中,用来测定DM91的辐射面积为10平方毫米的半导体探测器灵敏度情况如下:当实验偏压为1V时,10平方毫米的半导体探测器灵敏度为87.2;当实验偏压为3V时,10平方毫米的半导体探测器灵敏度是1.8。对比关于试验偏压和不同辐射面积的半导体探测器灵敏度的这几组实验数据,我们可以得出如下结论:辐射面积为10平方毫米的99型半导体探测器敏感度性能相比较国外辐射面积为10平方毫米的半导体探测器,在对γ辐射方面的灵敏度方面性能要高出很多。也就是说我们目前的辐射面积为10平方毫米的半导体探测器性能已经达到并超出国外同类探测器的水平。第二,从噪音阈值的层面来讲,本次实验中所采用的半导体探测器噪音极小,这种小分贝的噪音数值可以显著提升信噪比,这种情况可以促进微电子学设计工作的更好开展。这一点在微电子化计量仪的半导体探测器特性实验中虽然是一个细节,但也应当充分引起我们的注意和重视。第三,本次“用于微电子化计量仪的半导体探测器特性”实验中,当探测器的屏蔽材质发生变化时,其抗干扰能力也会有明显改变。这一现象表明在实验室中,空间的电磁干扰因素需要引起实验者的重视。

5结束语

综上所述,半导体探测器在当前多种行业中所发挥的作用不容忽视,为了探究“用于微电子化计量仪的半导体探测器特性”,笔者通过开展一项专题实验来进行阐述与说明,在上述文段中,笔者不仅对实验的方法进行罗列和描述,还对实验的数据及处理进行对比分析,并有针对性地提出自己的见解。通过上述实验的分析,笔者希望能够唤起更多业界同行对于半导体探测器特性的关注,通过群策群力,为促进半导体探测器的运用水平贡献力量。

作者:马骏 单位:东华理工大学

参考文献

[1]崔晓辉,谷铁男,张燕,袁宝吉,刘明健,闫学昆.离子注入型与金硅面垒型半导体探测器温度特性比较[J].辐射防护通讯,2011,31(02):26-28.

[2]蔡志猛,周志文,李成,赖虹凯,陈松岩.硅基外延锗金属-半导体-金属光电探测器及其特性分析[J].光电子.激光,2008(05):587-590.