核电站范文10篇

时间:2023-03-21 22:30:05

核电站

核电站范文篇1

坐落在海盐县的东南面,距海盐县县城约十公里。据说秦始皇南巡驻跸过而得名天下。

参观核电站后让我记住二十年前为中国第一座寻找地址的作出“重大贡献”原核工业局基建处处长。他为建核电站带领全国核电专家、工程技术人员十一次登上峰顶,进行科学勘探和考察。

年月,一期核电站主体工程正式开工,年月开始发电。至今建成的有一期、二期、三期,总装机容量为00万千瓦,另外还有20万千瓦机组在建。近万名工作人员服务于核电站的各个岗位,而离核电站8公里的核电新村和枫叶小区等,就是核电站一期、三期的员工生活区。

核电站目前已完成三期。第一个0万千瓦级的核电站就放在脚下的龙王庙处;第二个放在西侧和方家山;第三个南端的杨柳山下;第四个放在长山河畔的长山脚下。经过20年的努力,我们中国人自力更生,自行设计,自行建造,滚动发展,把地区建设成为融设计建造、技术更新、人才培养为一体的新中国第一个核电基地。

我不懂核电站发电原理,但我听了介绍后只知道我们的核电站安全设计比日本福岛先进。核电站不会发生像日本福岛那样的事故,福岛采用的是第二代早期的沸水堆技术,而选用的是改进型的压水堆,堆型和特性与福岛不同,万一失控或发生故障,反应堆会自动停堆。所谓压水堆是目前国内外建造核电站时采用最多、最成熟的堆型。

中国的核电站都不是在地震带上的,而且抗震、防洪的标准都‘高一级,像核电站就建在花岗岩上,而且遇到地震等,保护措施会自动启动。而且核电站的设计有固有安全特性,能限制功率突增,而且压水堆有厚达米左右的钢筋混凝土安全壳,内衬密封钢板,即使反应堆出事故,安全壳也能将放射性物质包容起来,防止向环境泄漏。这也是核电安全的核心。截至底,海盐核电关联产业产值已逾亿元。

我们看到海盐县周边并没有因为日本核电站发生泄漏事故就产生联想式的恐慌,是核电站周边民众比较普遍的心态。

最后引用核电人诗:

打破中国无核电的历史

在这个名不经传的地方

被人的热血和汗水点燃

创造中国核工业再一次的奇迹

他们结束了一个时代

核电站范文篇2

关键词:核电站;财产损失险;定价模式

一、研究核保险定价的意义

核电站财产损失险是核保险中的主要险种之一,定价是核保险的核心问题,定价的科学与否,直接关系到核保险的健康发展。由于核保险定价存在许多特殊性,导致核保险定价与一般保险定价存在很大的不同,因此研究核保险的定价具有非常重要的理论意义与实践价值。研究核保险定价的意义主要表现在以下几方面:

(一)大数法则在核保险定价中无法采用

保险定价的一般原理是依据数学概率论中的“大数法则”,通过长期的保险事故统计,确定某类保险标的的出险概率,损失规模,进而确定此类保险标的的费率。根据“大数法则”定律,承保的危险单位越多,损失概率的偏差越小;反之,承保的危险单位越少,损失概率的偏差越大。因此,保险人运用“大数法则”就可以比较精确地预测危险,合理地厘定保险费率。保险人为了保持其财务稳定性,必须扩大承保保险标的的数量,从而使自己的业务规模符合大数法则的要求。

核电站定价的方法并不能完全使用一般的保险定价原理,其主要原因在于核电站数量太少,很难满足大数法则对保险标的数量要求的最小值。核电站保险只有50多年的历史,全世界现在运行的核反应堆只有435个,即便包括已退役的核反应堆,也只有600多个,WANO组织统计的反应堆运行时间累计只有12000堆年左右。在这种状况下,大数法则失效,导致核电站的定价不同于一般的保险定价方法。

(二)核保险属于高风险业务,有可能酿成巨灾风险

核巨灾风险发生,会导致大量费用发生:核泄漏会造成严重的污染,涉及到非常高的清污费用;由核巨灾风险而触发的核责任险还具有保险责任长期性的特点。核保险的这些特殊性,是核保险定价中必须要考虑的因素。

(三)吸收与借鉴国外核保险定价的最新研究成果,指导我国核保险的科学定价

虽然有关保险定价的文献比较多,如李冰清、田存志(2002)利用资本资产定价模型(CAPM),从资本市场的角度研究巨灾保险产品的定价,以便更合理地解释巨灾保险产品的定价问题;毛宏、罗守成、唐国春(2003)介绍了资本资产定价模型和期权定价模型及其在保险定价中的应用;张勇(2004)阐释了保险产品定价的效用理论;曾娟、王文(2006)通过对我国现行财产保险领域费率计算方法的研究,认为财产保险领域费率厘定技术的改进非常关键,并探讨财产保险领域费率计算方法的新途径。但是有关核保险的研究文献非常少,关于核保险如何定价的文献目前是一项空白,核电站如何定价一直是核保险中的一大技术难题。

从核保险的实践来看,我国核保险业务开始于1994年,至今只有13年的发展历史。虽然我们已经掌握了核保险定价的基本技术与方法,考虑到核保险在国外已有50多年发展历史的现状,国外关于核保险定价无论在理论上还是在实践上,都有许多可以吸取与借鉴的成果。随着核保险业务的不断发展,国外核保险定价的方法也在不断发展,继续吸收与借鉴国外最新的研究成果,有利于丰富与充实我国核保险定价的理论,并且能够指导我国核保险科学的定价。

二、核电站财产损失险定价原理

(一)核电站危险单位的划分

在对核电站进行定价时,事先要明确危险单位的划分。核风险保险事故下的核电站的危险单位是指,一次核风险保险事故对一个保险标的造成的最大的可能损失范围。根据核电站的设计特点,一次核风险保险事故最小可限于核反应堆内,最大可导致包括核电站现场以外的方圆几百公里范围。在确定核电站核风险保险事故危险单位时,实践中有三种划分法:第一,把整个核电站视作一个危险单位,而不论该核电站拥有1座或2座以上反应堆;第二,以一张保单作为一个危险单位,该保险单可以覆盖地点不同的数十个反应堆,并且这些反应堆共享一个保险单限额,如英国、法国、韩国;第三,同一保险标的由多张保单保障,如财产损失险、核第三者责任险、核物质运输责任险、核恐怖责任险、利损险等,不论这些险种是单独出单还是作为附加险出单,所有险种的保险责任应累加在同一保险标的下,即承保能力不能重复使用。大多数国家包括我国采用的是第一种划分方法,因此本文在对核电站财产损失险定价时,以整个核电站视作一个危险单位。

(二)核电站财产损失险理论费率的确定

1.纯费率的确定

保险费率可以分成两部分:纯费率与附加费率两部分。纯费率主要是根据保险标的风险的高低来确定,它是保险费率的基础与主要构成部分。保险费率的厘定,关键在于纯费率的确定。

保险是对风险的保险,因此风险的高低以及风险的不确定性是保险在厘定价格时所考虑的最主要因素。在核电站定价中,准确地划分以及估计风险因素发生的概率,是厘定核电站费率的基本工作。

核电站可能遭受的风险是制定纯费率需考虑的最主要因素,识别与估计出核电站的关键风险及其发生概率,就为制定合理的保险费率奠定了重要的基础。根据40多年来全世界核电站的运行记录,核电站事故发生的概率有明显的规律性。从1962年至2004年,全世界核电站共发生了800多次保险事故,其中只有10%的损失是由核事故引起的,其它大部分的损失是由火灾、机器损坏和电器设备损坏造成的。也就是说,核电站发生特大事故的概率是极小的,大部分事故是几百万至几千万美元的损失。核电站所面临的关键风险主要包括以下几个方面:

(1)机器损坏。机械故障是核电站保险业务中引起保险损失的最主要因素,发生频率约为25%,损失金额一般占总损失的34%。损失区域主要集中在汽轮机、发电机、变电站、装卸料机、备用柴油发电机,以及各类型泵等。

(2)火灾。火灾是引起核电站保险损失的关键风险因素之一,发生频率约占损失事故的22%,损失金额一般占总损失的19%。

(3)电气事故。电气事故是核电站保险损失的常见因素,这类损失的发生频率为23%,损失金额约占总损失的30%。

(4)核事故。指发生与核泄漏有关的核损害事故,其损失还包括人员疏散、除污、核电站彻底关闭、余热排除等系列后果损失。这类损失的发生频率为10%,损失金额占总损失的13%。目前核事故损失的概率为a×l0-5~10-7,a≤3,其含义是安全性最好的核电站每运行100万年,才可能出现不高于3次堆芯熔化事故,而安全性最差的核电站每运行1万年,就可能出现不高于3次的堆芯熔化事故,可见不同的核电站核事故发生的概率差异较大。世界上迄今只发生了两次重大核事故,一次是美国的三厘岛核电站事故,一次是前苏联的切尔诺贝利核电站事故。

(5)其他风险。主要指自然灾害、意外事故等引发的物质损失赔偿,发生频率约为20%,累积损失程度占比约为4%。

此外,在实际确定纯费率时,为了安全起见,还要在预期损失率基础上考虑一定的安全系数,纯费率=预期损失率×(1安全系数)。

2.附加费率的确定

附加费率主要包括保险公司的运营成本以及保险公司期望的合理利润率,它由费用率、营业税率和利润率构成。一般来讲,保险公司的成本费用率为30%左右,但是考虑到核电站保险是一类特殊的保险,它不同于常规保险,核电站保险涉及到许多常规保险所没有的风险检验、风险测定环节,因此核电站保险的成本费用一般要高于常规保险的成本费用,核电站保险所需的成本费用在35%左右。

假设用r表示纯费率,用k表示附加费率,用R表示理论保险费率,则三者的关系可以表示为:R=r/1-k

(三)核电站财产损失险实际费率的确定

以上计算出来的保险费率仅仅是理论费率,由于影响核电站财产保险定价的因素非常多,在实际定价时还需要综合考虑这些复杂因素,合理地选择不同的实际费率确定方法才能制定出比较符合实际的实际费率,这些因素主要包括:

1.核保险市场供求状况。核保险的供给方包括国际核共体、美国核自保组织(NEIL)、欧洲核自保组织(EMANI)三家。随着国际核自保组织的发展,境外核保险市场呈现三足鼎立的局面。从上世纪80年代后期开始,随着国际核保险市场的竞争日趋激烈,以及世界核电站的安全运行水平的不断提高,国际核保险市场费率呈缓慢下降的趋势。

2.保险单的保障范围,包括责任限额、免赔额、除外责任、特殊条款、附加险等都会对保险费率产生影响。如含有营业中断险的财产损失险保单,必须单独确定营业中断险的费率。最新的保单条款内容体现了对核电站安全运行水平的重视,世界核电营运者协会(WANO)的强制损失率(ForcedLossRate)指标被首次引入英国的核物质损失险保单中,强调了安全运行好的核电站可以享受更加优惠的费率水平。纯益手续费、无赔款退费、停堆退费等条款广泛使用,使得保费水平更加接近核电站的实际风险水平。

3.被保险人的损失记录。被保险人以往的损失情况不但反映了核电站的风险状况,而且也反映了核电站的风险管理水平,这些会影响到对核电站的风险评估,进而对费率的确定产生影响。

4.核保险责任准备金。由于核保险有可能产生巨灾风险,巨灾风险一旦产生,其赔偿额是非常巨大的。因此,国外的核共体一般都要从保费当中提取一定比例的巨灾保险准备金,比例高的占到保费的75%,低的占到保费的50%左右,这也会影响到保险费率的水平。

5.出单核共体。出单核共体的实力、地位、经验及其它与再保险接受人的合作关系及谈判技巧等,决定了出单核共体在定价方面是否拥有足够的话语权,也是影响保险费率的重要因素。

6.常规保险市场对核保险市场的影响。核保险市场虽然相对独立于常规保险市场,但是仍然会受到常规保险市场的影响。当常规保险市场竞争过度激烈时,保险利润减少,部分保险人就会进入核保险市场,提高核保险的总体承保能力,从而引起核保险市场费率的下降;反之,当核保险市场利润下降时,部分保险人就会离开核保险市场,也会引起核保险市场费率的上升。

7.核电站保险费率在核电站不同运行阶段具有不同的费率水平。一个核电站的生命周期一般设计为40年,运行的前5—10年与最后5—10年是风险高发期,相应的保险费率也较高;中间20多年属于运行的稳定期,风险较低,相应的保险费率也较低。从核电站的生命周期来看,一个核电站的保险费率大致呈U形,处于不同生命周期核电站的保险费率显然就存在差异。

可见,核电站的定价非常复杂,以上仅是核电站定价的一般原理。不同核电站的风险状况存在一定的差异,所处的市场状况不同,即使风险因素完全相同的两个核电站,其保险定价也是相差很大的。

三、核电站财产损失险定价模式

根据纯费率确定方法的不同,核电站财产损失险定价的方法可以划分为三类模式。

(一)关键风险因素定价模式

关键风险因素定价模式的原理是依据分类法中纯保费法计算保险费率的方法。纯保费是以每一危险单位的平均损失概率乘以最大损失可能(或被保险标的的重置价格),计算公式为:P=S×F

其中,S为最大损失可能(或被保险标的的重置价格),F为每一保险标的的平均损失概率,P为纯保费。

关键风险因素定价模式是指将核电站所面临的风险首先分为几个大类,在每个大类之下再具体考虑可能存在的各类风险的发生概率,在此基础上测算出各具体风险的保险费率,通过汇总各个具体风险的保费从而得到每一大类风险保费,再汇总各大类的保费从而得到纯保费的定价方法。假设核电站所面临的风险主要划分为五大类:机器损坏风险、火灾风险、电气事故风险、核风险、其它风险。具体方法为:

假设可能引发机器损坏的因素表示为m1,m2,…mn,每个因素的最大可能损失表示为Lm1,Lm2,…Lmn,每个因素发生损失的年度频率为fm1,fm2,…fmn,则每年因机器损坏这一关键因素而收缴的纯保费为:

假设可能引发火灾的因素表示为f1,f2,…fn,每个因素的最大可能损失表示为Lf1,Lf2,…Lfn,每个因素发生损失的年度频率为ff1,ff2,…ffn,则每年因火灾这一关键因素而收缴的纯保费为:

假设可能引发电气事故的因素表示为e1,e2,…en,每个因素的最大可能损失表示为Le1,Le2,…Len,每个因素发生损失的年度频率为fe1,fe2,…fen,则每年因火灾这一关键因素而收缴的纯保费为:

假设可能引发核事故的因素表示为n1,n2,…nn,每个因素的最大可能损失表示为Ln1,Ln2,…Lnn,每个因素发生损失的年度频率为fn1,fn2,…fnn,则每年因核事故这一关键因素而收缴的纯保费为:

假设可能引发保险损失的其他因素表示为o1,o2,…on,每个因素的最大可能损失表示为Lo1,Lo2,…Lon,每个因素发生损失的年度频率为fo1,fo2,…fon,则每年因其他因素而收缴的纯保费为:

则核电站财产损失险的纯保费为:

(二)区位划分定价模式

国际上流行的核电站财产损失险保单主要有两种:一种是列明风险的保单,另一种是一切险保单。当所使用的保单不同时,核电站的定价方法也不同,关键风险因素定价模式主要适用于列明责任的保单,而核电站区位划分定价法主要适用于一切险保单。

当核电站保单采用一切险保单时,保单的责任范围扩大,风险因素增加,虽然在理论上我们仍然可以使用关键风险因素定价模式对核电站进行定价,但是由于存在许多不确定性的风险因素,使用关键风险因素定价模式存在一定的缺陷,这样所计算出来的价格有可能不能真实地反映核电站所潜在的各种关键风险因素。在这种条件下,核电站定价的方法应该使用第二种模式:即区位划分定价模式。所谓区位划分定价模式,其基本的原理是按照核电站不同区域存在的放射性高低差异,将核电站分成高放区(highradioactivityzone)、低放区(lowradioactivityzone)、零放区(zeroradioactivityzone)三部分。

高放区主要是指核岛中的部分财产,指核燃料装入反应堆后的反应堆压力容器、核燃料、反应堆内部构件和控制棒(但不包括控制机械),此外还包括核燃料处理厂房的部分区域等;低放区依据不同类型的核电站而有所不同,以压水堆核电站为例,主要是指热交换器、稳压器、控制棒的控制机械、循环系统泵、通风系统、装卸料机、核物质传输机械、核物质运输起重机、控制室、乏燃料水池等;零放区主要指常规岛和办公区域,包括汽轮机厂房、应急柴油发电机厂房、变电站、开关站、消防站、重要厂用水系统、一般材料仓库、油库、车库、厂区办公楼、餐厅、道路、围墙等。

核电站保险与一般电站保险的最大不同在于:核电站存在一定的放射性风险,一旦发生核泄漏,处理核污染所花费的成本是非常高昂的,清污费用构成了核电站保险定价当中所必须要考虑的一个重要因素。显然,发生核泄漏,核电站三个不同区域所遭受的污染程度会有很大不同。清污费用是涉及到整个核电站甚至核电站方圆几百公里范围的,发生的清污费用也会有很大差异。因此不同放射性区域的风险状况是不同的,可以通过风险检验确定不同区域的风险概率,从而确定出纯费率。在此基础上,再考虑其它可扣除因素,从而确定核电站保险价格。

(三)分段定价模式

以上两种定价模式适用于正常运营的核电站的财产损失险定价,但是在建安工险向核保险交接过程中的核电站,由于尚未进入正常的运营阶段,其定价不能使用正常运营的核电站的定价方法。在从建筑安装完成到正常运营之前,要经历几个关键阶段:第一阶段,装料前阶段;第二阶段,装料阶段;第三阶段,临界点阶段;第四阶段,并网发电阶段;第五阶段,满功率运行阶段。在不同阶段,风险状况不同,保险费率也不同:在第一阶段,由于还没有加装核燃料,核保险尚未开始,这时核保险的费率为0;在第二个阶段,核保险正式开始,由于仅仅开始加装核燃料,尚未进入自动裂变反应阶段,风险因素比较小,因此这一阶段的保费率仅占到正常运营阶段保费率的25%左右;在第三个阶段,加装的核燃料达到了维持链式反应的临界阶段,风险因素开始增加,因此核保险费率也相应地提高到占正常运营费率的50%;在第四个阶段,核电站已经进入了并网发电阶段,风险因素进一步增加,保费率提高到占正常运营的90%;在第五阶段,核电站已经达到满功率运营,与正常运营的核电站一样了,所收取的保费率达到最高,为正常运营核电站的100%。每一阶段的保费按该阶段的实际天数占全年天数的比例收取,核电站的总保费是各阶段保费的总和。

四、对我国的启示

核电站财产损失险定价是非常复杂的问题,核电站所处的地理位置、核电站建造所使用的技术、核电站运行的时间、反应堆的类型等因素,都会对定价有影响。在对国外大量文献归纳整理的基础上,结合多年工作经验的积累,我们归纳出核电站财产损失险定价的三种基本模式。通过对这三种定价模式的理论分析,我们认识到准确、科学地对核电站财产损失险进行定价,必须要做到以下三个方面:

(一)必须要有健全、完善的核保险风险数据库

核电站财产损失险定价需要大量样本的长期统计数据,国外核共体拥有比较完备的各国核电站风险损失以及赔偿的数据,这些数据成为他们进行定价的原始依据。我国应继续充实与完善核保险风险数据库,以拥有比较完善的核保险风险数据,作为核保险定价的基础。在此基础上,才可能建立符合我国核风险特征的定价模型,进而制定出较为科学的核电站财产损失险费率。

(二)必须要有较强的风险检验能力

在核电站定价时,核电站的风险水平是由核能检验工程师所出具的风险检验报告为依据的,核电站风险检验水平的高低,直接影响到核电站保险定价的准确性。我们可以通过对外交流,在国内外培训的方式与方法,提高风险检验的理论水平;通过积极参加国际核能检验工程师风险检验实践的方式,在“干中学”里进一步提高我国对核电站风险检验的现场能力。

核电站范文篇3

论文摘要:核电企业是我国新兴的产业,在运用管理会计的理论和方法进行企业管理方面做得较早,也做得较好。文章阐述了核电企业发展过程中面临的形势和挑战,并针对这些形势和挑战提出应对措施。

核电在我国属于新兴的电力企业,从上世纪九十年代初的秦山核电站和大亚湾核电站起,到现在只有十几年的发展史,核电机组也只有大亚湾、岭澳、秦山和田湾四个核电站共十一台机组,装机容量不到九百万千瓦。核电站因其投资大、建设周期长、大量引进外国技术和设备,并且装机容量少,尚未形成规模效应,使得其初始电价较高,在与常规电力竞争中处于较为不利的地位。随着国家加强对电力行业的改革,市场经济的发展及世界经济形势的变化,以及国家积极发展核电的政策调整,使得核电企业面临着新的机遇与挑战。

一、核电企业成本管理面临的形势和挑战

(一)投资大,建设周期长,建造成本高

建设一个双堆的核电站,大约需要五年左右的建设时间,建设造价在四十亿美元左右,加上建设期间财务费用,核电站的初始投资成本巨大。初始投资形成的固定资产在运营还贷期内折旧进成本,属于不可控成本,对电价的影响大且深远。

(二)厂网分家、竞价上网

随着电力改革的深入,厂网分家、竞价上网已提到议事日程上。进行厂外分家,竞价上网打破了现阶段国家根据电厂投资和建设情况核定电价的机制,改变了一厂一个价甚至一个机组一个价的局面,使各电站处于相对公平的市场竞争地位,需要电厂挖掘内部潜力,降低成本,提高效率,使电价具有较强的竞争力,否则无法生存。

(三)西电东送

西电东送作为支持西部开发的措施之一,其运作模式已经比较成熟,只要没有极端的气候条件变化,西电东送就会得到保障。根据测算,西电输入广东后与广东省电力企业所生产的电力比在价格上有较大的竞争力,这就要求各地电力企业提高竞争力。

(四)经济形势和世界能源供求关系的变化

现在国家正在调整核电发展的政策,由以前的适度发展到现在的积极发展,使得我国核电站的建设进入第一个高潮期,面临这样一个时机,对现有核电生产企业,既是一个机遇,更是一种挑战,从资金、人才、技术等方面影响巨大。由于我国对核电技术并为完全掌握,国外的技术支持和设备制造对核电站的建设成本影响巨大;另一方面,近年来世界性通货膨胀使得公司的物资采购、服务采购等价格大幅增加,基本上形成了我国进口什么物资,什么物资价格就疯涨的局面,加大了核电站运营成本的压力。

(五)人才紧缺带来的影响

核电站建设和运营需要大量人才,而这些人才的培养周期长,培养成本高,并且在核电大发展的形势下人才流动性加大,增加了公司的管理成本。

(六)核燃料市场变化带来的风险

上个世纪末,核燃料市场由于美俄两大核武器国家签定了核裁军协议,美俄大量的用于核武器的浓缩铀通过稀释后进入民用核是市场,造成用于制造核燃料组件的低浓铀供大于求,价格一路下降,降到了生产成本以下。随着该部分浓缩铀的消耗,以及国际石油价上涨、全球温室效应促使的减排压力等因素使得全球核电产业的复苏,民用低浓铀需求逐步超过市场供应,低浓铀价格逐步上涨,到了2005年以后,上涨幅度加大,到2007年十月份已经比2003年上涨了5倍之多,这样就给核电站的运营成本带来的巨大的压力。

(七)核电站备件采购、专用通用检修工具及服务供应渠道

核电站需要的设备、备件及专用通用工具渠道狭窄,采购量小,供应商少,造成采购成本高,采购周期长,库存量大,占用大量的资金,资金成本大;另一方面,核心检修技术依赖国外,检修供应商单一,价格高。

所有这些因素,对核电站的建设和运营都产生很大的成本压力,对公司的成本管理和精细化管理提出新的要求和挑战。

二、核电站面对这些形势和挑战的应对措施

(一)核电技术标准化、堆型标准化、统一堆型规模化

核电站发电成本中最大的一部分就是设备的折旧费,而折旧费用的多寡早在核电站建设阶段就基本上确定了,因此,降低发电成本的最大措施必须在建设期就开始进行。标准化是降低核电站造价的必由之路,只有标准化,才能使各个核电站在设计、建设、设备采购等方面进行共享优化,使电厂建设的复制性成为可能,降低电站建造期间的技术支持和服务费用;只有形成规模效应,才能在设备、备件采购,技术服务等方面取得集约效应,降低核电站的建设成本和运营成本。

(二)设备、备件国产化,技术服务国内化

前面讲到的几个核电站建设,除秦山核电一期属于国产技术原型堆外,大亚湾核电站、岭澳一期、秦山二期核电站都是基于法国第二代压水堆的技术基础上建设的,主要设备在欧洲生产和采购,技术服务由AREVA-NP和EDF提供,技术上受制于人,设备制造方面,质量监督需要派遣大量的技术人员进驻国外,成本高,设备制造工期也受制于外方,设备采购成本高,后续保障比较困难,备件采购价格高、周期长、储存量大。秦山三期是加拿大的重水堆,田湾核电站是俄罗斯的压水堆堆型,同样存在上述的问题。因此,进行核电设备制造、备件生产国产化,技术服务国内化是缩短建造周期,减少初始投资,降低造价的必要手段。也是核电站投产后运营成本降低的必要途径。

(三)检修自主化

由于我国初期建设的核电站主要运用外方的技术和采购国外的设备,因此检修时也需要大量国外专家进行技术支持。聘请国外专家进行技术支持,一来受到国际政治形势的影响较大,二来受到国外专家工作安排的影响,使用上存在一定的风险,最主要的还是费用高昂,给核电的运营成本带来很大的压力。据测算,一位外购专家支持的费用,相当于国内相同等级专家支持费用的十几二十倍。因此,培养国内专家,培养自己的检修人才是核电站降低成本,提供市场竞争力的有力措施之一。

(四)建立设备、备件采购和服务支持的战略供应商联盟关系

核电站所需采购的设备和备件种类繁多,采购量较小,难于形成规模效应,采购成本高,因此必须在培养国内设备制造商的基础上与之建立战略联盟关系,保证核电站能及时、可靠的获得高质量的设备和备件,降低采购成本和库存成本,提高资金周转率;核电站服务支持商要求高,队伍需要稳定,也需要公司与主要服务支持提供商建立长期战略关系,保证电站维修质量,锁定维修成本,减少风险。

(五)建设较为完善的信息化管理系统,为管理工作服务

运用信息化管理系统进行企业管理是提高管理效率,减少管理失误,降低成本的良好实践。核电站应用的信息系统较多,主要分为三大类,第一类主要用于生产技术管理,第二类主要用于合同采购等商务事务管理,第三类为进行财务管理的系统,这些系统都通过某一些途径联系在一起,为企业经营管理服务。

(六)运用管理会计的理论和方法建立全面预算管理制度

核电站范文篇4

1.我国核电站保险的险种不健全,覆盖面低

险种的设置体现了核电站保险体系的健全程度和保险的成熟程度。我国核电站保险发展较晚,与美国等一些发达国家相比,在险种设置方面,我国缺少一些重要的典型险种,核电站保险的覆盖面存在着差距。其中以核电企业营业中断利润损失险的缺失尤为明显。随着我国经济和核能利用的快速发展,核电企业营业中断利润损失险必将出现大量的市场需求。该险种的缺失毫无疑问会带来诸多不利的影响。这会使企业在发展核电的时候得不到充分的资金保障,后顾之忧仍然存在,进而降低企业发展核能的积极性,阻碍我国核能事业的进一步发展。

2.我国核电站保险的赔偿限额与外国相比存在巨大的差距

赔偿限额体现了一国核电站保险的综合实力。赔偿限额越高,说明核电站保险为核能应用提供的护航能力就高,企业在发展核能的时候,就会减少后顾之忧,积极性就会比较大,这会促进我国核能应用的发展。我国核电站第三者责任保险的限额为3亿元人民币,远低于《巴黎公约》所规定的7亿欧元标准,更低于邻国日本1200亿日元的限额。这在某种程度上说明了,我国的核保险赔偿限额远没有达到市场需求的标准,没有提供足够的承保能力,我国的核保险在分散风险、弥补损失等方面没有发挥出预期的作用,存在着进一步发展提升的空间。

3.我国核电站保险的对外依存度过高

对外依存度体现了一个国家核电站保险的独立自主程度。对外依存度越高,说明核电站保险的发展独立自主地位就越强,这样在发生事故的时候,不会受到或较小受到外国的限制。保险是一个国家金融实力和经济实力的重要标志,对外依存度过高削弱了我国核电站保险的独立自主地位,限制了我国的核保险甚至核能的发展。虽然我国的核电站保险发展迅速,但是与其他发达国家相比,我国的核电站保险和核共体在影响力上仍然存在着巨大的差距。这导致我国核电站保险在发展过程中容易受到国际核共体体系的影响,在一些方面会受到国际核共体体系的限制。这不利于我国的保险安全,进而会对我国的金融安全和经济安全产生消极的影响。这会在一定程度上限制和阻碍我国核能事业的进一步发展。

二、我国核电站保险发展建议

1.完善核电站保险的相关制度

制度问题是需要解决的首要问题,良好的制度是发展的前提。我国的核电站保险要想进一步发展,制度的完善是必不可少的环节。完善的制度可以为我国核电站保险的发展提供方向上的指导,让我国核电站保险的日常工作都做到有章可循。目前,国际上的核电站保险制度已经比较成熟,在欧洲有巴黎公约和维也纳公约,在美国和日本等发达国家也有相应的法律规定。与之相比,我国核电站保险的相关制度尚不健全,相关的法律法规仍然处在摸索阶段。从我国的国情出发,形成一套具有中国特色的核电站保险制度。对一些关系发展全局的问题要直接作出规定,形成一套行之有效的涉及到各个方面的法律法规。切实做到与时俱进,开拓创新,为核电站保险的发展提供根本的保障。

2.健全我国核共体的组织机构和工作机制

目前,我国核共体的基本工作制度是年会制度。每年召开一次年会,商谈和讨论有关我国核电站保险和国际核电站保险市场的重大事项。然而,不可否认的是,我国核保险共同体的成员在平时缺乏有效的沟通,这在一定程度上降低了我国核共体的办事效率和工作水平,不利于我国核共体职能的充分发挥,不利于我国核电站保险的发展。因此,我们要加快建立平时的沟通机制和协调工作机制,各个成员单位负责核电站保险方面的主要负责人可以建立固定的交流机制。在固定的时间一起探讨我国核电站保险在发展中存在的问题,一起研究我国核电站保险的发展方向和发展模式。制定出在每一阶段的具体的工作任务,相互学习,相互补充,做到资源共享。这样可以较快的提高我国核电站保险的整体水平,在出现大的问题时也能够及时有效的处理。健全的组织机构和工作机制会在我国核电站保险的发展过程中发挥载体的作用。

3.积极研发适合我国国情的新型核电站保险模式

核电站保险可以有多种模式,我们要积极研发,找到适合我国国情的新型模式。适合我国国情的模式才能在最大程度上促进我国核能事业的发展。目前,在国际上存在着两种核电站保险模式,一种是核保险共同体形式,另外一种是核自保组织形式。在许多专家看来,成立专门的核电保险公司成为了我国核电站保险发展的必然选择。顾名思义,核电保险公司,就是由国内发展核电的企业与保险公司共同发起成立核电保险股份有限公司,采用商业化的股份公司的方式进行经营和管理。像其他的股份公司一样,核电保险公司初期需要数目较大的核保险基金。这可以通过金融市场由参与发起的保险公司和核电企业共同筹措,也可以适当的由国家财政进行补贴。在核电保险公司正常运作之后,可以每年从经营收益中提取固定的专项巨灾风险准备金,以应付未来可能发生的核电站事故。未发生事故的年份积累保费,可以用于银行存款、股票、债券、固定资产等方面的投资,来扩大投资收益,增强偿付能力和应对巨大事故的能力。目前,这种模式仍在探索论证阶段,相信这会为我国核电站保险的发展提供思路。

4.加强我国核电保险的独立自主性

核电站范文篇5

坐落在浙江省嘉兴海盐县的东南面,距海盐县县城约十公里。据说秦始皇南巡驻跸过而得名天下。

参观核电站后让我记住二十年前为中国第一座寻找地址的作出“重大贡献”原陕西省核工业局基建处处长-谢恩吉。他为建核电站带领全国核电专家、工程技术人员十一次登上峰顶,进行科学勘探和考察。

年3月,一期核电站主体工程正式开工,1991年12月开始发电。至今建成的有一期、二期、三期,总装机容量为300万千瓦,另外还有320万千瓦机组在建。近万名工作人员服务于核电站的各个岗位,而离核电站8公里的核电新村和枫叶小区等,就是核电站一期、三期的员工生活区。

核电站目前已完成三期。第一个30万千瓦级的核电站就放在脚下的龙王庙处;第二个放在西侧和方家山;第三个南端的杨柳山下;第四个放在长山河畔的长山脚下。经过20年的努力,我们中国人自力更生,自行设计,自行建造,滚动发展,把地区建设成为融设计建造、技术更新、人才培养为一体的新中国第一个核电基地。

我不懂核电站发电原理,但我听了介绍后只知道我们的核电站安全设计比日本福岛先进。核电站不会发生像日本福岛那样的事故,福岛采用的是第二代早期的沸水堆技术,而选用的是改进型的压水堆,堆型和特性与福岛不同,万一失控或发生故障,反应堆会自动停堆。所谓压水堆是目前国内外建造核电站时采用最多、最成熟的堆型。

中国的核电站都不是在地震带上的,而且抗震、防洪的标准都‘高一级,像核电站就建在花岗岩上,而且遇到地震等,保护措施会自动启动。而且核电站的设计有固有安全特性,能限制功率突增,而且压水堆有厚达1米左右的钢筋混凝土安全壳,内衬密封钢板,即使反应堆出事故,安全壳也能将放射性物质包容起来,防止向环境泄漏。这也是核电安全的核心。截至底,海盐核电关联产业产值已逾亿元。

我们看到海盐县周边并没有因为日本核电站发生泄漏事故就产生联想式的恐慌,是核电站周边民众比较普遍的心态。

最后引用核电人诗:

打破中国无核电的历史

在这个名不经传的地方

被人的热血和汗水点燃

创造中国核工业再一次的奇迹

他们结束了一个时代

核电站范文篇6

(一)投资大,建设周期长,建造成本高

建设一个双堆的核电站,大约需要五年左右的建设时间,建设造价在四十亿美元左右,加上建设期间财务费用,核电站的初始投资成本巨大。初始投资形成的固定资产在运营还贷期内折旧进成本,属于不可控成本,对电价的影响大且深远。

(二)厂网分家、竞价上网

随着电力改革的深入,厂网分家、竞价上网已提到议事日程上。进行厂外分家,竞价上网打破了现阶段国家根据电厂投资和建设情况核定电价的机制,改变了一厂一个价甚至一个机组一个价的局面,使各电站处于相对公平的市场竞争地位,需要电厂挖掘内部潜力,降低成本,提高效率,使电价具有较强的竞争力,否则无法生存。

(三)西电东送

西电东送作为支持西部开发的措施之一,其运作模式已经比较成熟,只要没有极端的气候条件变化,西电东送就会得到保障。根据测算,西电输入广东后与广东省电力企业所生产的电力比在价格上有较大的竞争力,这就要求各地电力企业提高竞争力。

(四)经济形势和世界能源供求关系的变化

现在国家正在调整核电发展的政策,由以前的适度发展到现在的积极发展,使得我国核电站的建设进入第一个高潮期,面临这样一个时机,对现有核电生产企业,既是一个机遇,更是一种挑战,从资金、人才、技术等方面影响巨大。由于我国对核电技术并为完全掌握,国外的技术支持和设备制造对核电站的建设成本影响巨大;另一方面,近年来世界性通货膨胀使得公司的物资采购、服务采购等价格大幅增加,基本上形成了我国进口什么物资,什么物资价格就疯涨的局面,加大了核电站运营成本的压力。

(五)人才紧缺带来的影响

核电站建设和运营需要大量人才,而这些人才的培养周期长,培养成本高,并且在核电大发展的形势下人才流动性加大,增加了公司的管理成本。

(六)核燃料市场变化带来的风险

上个世纪末,核燃料市场由于美俄两大核武器国家签定了核裁军协议,美俄大量的用于核武器的浓缩铀通过稀释后进入民用核是市场,造成用于制造核燃料组件的低浓铀供大于求,价格一路下降,降到了生产成本以下。随着该部分浓缩铀的消耗,以及国际石油价上涨、全球温室效应促使的减排压力等因素使得全球核电产业的复苏,民用低浓铀需求逐步超过市场供应,低浓铀价格逐步上涨,到了2005年以后,上涨幅度加大,到2007年十月份已经比2003年上涨了5倍之多,这样就给核电站的运营成本带来的巨大的压力。

(七)核电站备件采购、专用通用检修工具及服务供应渠道

核电站需要的设备、备件及专用通用工具渠道狭窄,采购量小,供应商少,造成采购成本高,采购周期长,库存量大,占用大量的资金,资金成本大;另一方面,核心检修技术依赖国外,检修供应商单一,价格高。

所有这些因素,对核电站的建设和运营都产生很大的成本压力,对公司的成本管理和精细化管理提出新的要求和挑战。

二、核电站面对这些形势和挑战的应对措施

(一)核电技术标准化、堆型标准化、统一堆型规模化

核电站发电成本中最大的一部分就是设备的折旧费,而折旧费用的多寡早在核电站建设阶段就基本上确定了,因此,降低发电成本的最大措施必须在建设期就开始进行。

标准化是降低核电站造价的必由之路,只有标准化,才能使各个核电站在设计、建设、设备采购等方面进行共享优化,使电厂建设的复制性成为可能,降低电站建造期间的技术支持和服务费用;只有形成规模效应,才能在设备、备件采购,技术服务等方面取得集约效应,降低核电站的建设成本和运营成本。

(二)设备、备件国产化,技术服务国内化

前面讲到的几个核电站建设,除秦山核电一期属于国产技术原型堆外,大亚湾核电站、岭澳一期、秦山二期核电站都是基于法国第二代压水堆的技术基础上建设的,主要设备在欧洲生产和采购,技术服务由AREVA-NP和EDF提供,技术上受制于人,设备制造方面,质量监督需要派遣大量的技术人员进驻国外,成本高,设备制造工期也受制于外方,设备采购成本高,后续保障比较困难,备件采购价格高、周期长、储存量大。秦山三期是加拿大的重水堆,田湾核电站是俄罗斯的压水堆堆型,同样存在上述的问题。因此,进行核电设备制造、备件生产国产化,技术服务国内化是缩短建造周期,减少初始投资,降低造价的必要手段。也是核电站投产后运营成本降低的必要途径。

(三)检修自主化

由于我国初期建设的核电站主要运用外方的技术和采购国外的设备,因此检修时也需要大量国外专家进行技术支持。聘请国外专家进行技术支持,一来受到国际政治形势的影响较大,二来受到国外专家工作安排的影响,使用上存在一定的风险,最主要的还是费用高昂,给核电的运营成本带来很大的压力。据测算,一位外购专家支持的费用,相当于国内相同等级专家支持费用的十几二十倍。因此,培养国内专家,培养自己的检修人才是核电站降低成本,提供市场竞争力的有力措施之一。

(四)建立设备、备件采购和服务支持的战略供应商联盟关系

核电站所需采购的设备和备件种类繁多,采购量较小,难于形成规模效应,采购成本高,因此必须在培养国内设备制造商的基础上与之建立战略联盟关系,保证核电站能及时、可靠的获得高质量的设备和备件,降低采购成本和库存成本,提高资金周转率;核电站服务支持商要求高,队伍需要稳定,也需要公司与主要服务支持提供商建立长期战略关系,保证电站维修质量,锁定维修成本,减少风险。

(五)建设较为完善的信息化管理系统,为管理工作服务

运用信息化管理系统进行企业管理是提高管理效率,减少管理失误,降低成本的良好实践。核电站应用的信息系统较多,主要分为三大类,第一类主要用于生产技术管理,第二类主要用于合同采购等商务事务管理,第三类为进行财务管理的系统,这些系统都通过某一些途径联系在一起,为企业经营管理服务。

(六)运用管理会计的理论和方法建立全面预算管理制度

核电站成本管理是通过全面预算管理来实现的,全面预算管理包括预算编制、预算变更、立项控制、合同承诺控制、合同变更控制、支付控制等子过程或环节,其基本的控制原则为:没有预算,不能立项,没有立项,不能合同承诺,没有承诺,不能支付;预算是控制数,而不是支出的实际数;人员授权无论职位高低,按需要授权,按授权批准,按程序管理。这些过程保证了预算得到真正的控制,成本得到有效的管理。

现在,大亚湾核电站在预算控制、成本管理方面已经形成了一套标准化、系统化、程序化的健全的财务管理体系,为中国广东核电集团集约化、规模化和标准化管理打下坚实的基础,为电站改善管理、降低成本、提高效益、提升市场竞争力提供了条件。

核电站范文篇7

核电站的设备选型和供货商的选择,应采用国际竞争性招标方式,在技术、经济、自主化、国产化等方面进行深入分析比较,来选定供货商和机型。国外制造商必须选择国内设备制造厂作为合作伙伴,转让技术、合作生产,逐步全面实现自主化和设备国产化。

经初步研究,常规岛部分可供选择的国外主要设备潜在供货商有:英法GEC-ALSTHOM公司、美国西屋公司、日本三菱公司、美国GE公司等。到目前为止,ALSTHOM公司已同中国东方集团公司进行合作,形成一个联合体;美国西屋公司已同上海核电设备成套集团公司合资,组成西屋-上海联队。其它公司到目前尚未进行合作。

根据ALSTHOM公司、西屋公司、三菱公司和GE公司等核电设备制造商所提供的资料,按照堆型的不同和一回路的不同,可以形成四类技术方案:

方案一——三环路改进型压水堆核电机组;

方案二——ABB-CE的系统80(System80)型压水堆核电机组;

方案三——日本三菱公司的四环路压水堆核电机组;

方案四——先进型沸水堆(ABWR)核电机组。

下面就各类技术方案分别进行分析。

1三环路改进型压水堆核电机组

此方案的一回路为标准的300MW一个环路的三环路压水堆。此类方案包括中广核集团公司提出的CGP1000、欧洲公司(包括EDF、FRAMATOME、GEC-ALSTHOM)推出的CNP1000和西屋-上海联队推出的CPWR1000三种压水堆核电机组。

1.1CGP1000与CNP1000核电机组

CGP1000由中广核集团提出,以大亚湾核电站为参考站,并借鉴美国西屋公司和ABB-CE公司的部分先进的设计,有选择地吸收了用户要求文件(URD)的要求,形成以300MW一条环路的CGP1000技术方案。常规岛部分,汽轮发电机组选用ALSTHOM的Arabelle1000型汽轮发电机组。

CNP1000由欧洲制造商(EDF、FRAMA-TOME、ALSTHOM)根据法国核电计划及大亚湾核电站、岭澳核电站等工程的设计、制造、安装、运行及维修中积累起来的经验推荐给中国的核电机组。常规岛部分的汽轮发电机组也以Arabelle1000型汽轮发电机组作为推荐机组。

由于CGP1000和CNP1000的常规岛部分的汽轮发电机组均为Arabelle1000型,所以实际上为同一类核电机组。

ALSTHOM在总结54台第1代汽轮发电机组的运行经验基础上,组合出了Arabelle1000型汽轮发电机组,参考电站为ChoozB(2台1450MW机组已分别于1996年7月11月投入运行)。

1.1.1Arabelle1000型汽轮发电机组的主要技术数据

a)最大连续电功率:1051MW;

b)转速:1500r/min;

c)机组效率:36.3%;

d)末级叶片长度:1450mm;

e)排汽面积:76.8m2;

f)背压:5.5kPa;

g)凝汽器冷却面积:68633m2;

h)发电机额定输出功率:1050MW;

i)发电机视在输出功率:1235MVA;

j)发电机额定功率因数:0.85;

k)发电机额定端电压:26kV。

1.1.2Arabelle1000型汽轮发电机组的主要特点

a)缸体结构:三缸四排汽(HP/IP+2×LP94),汽轮机采用高中压组合汽缸并直接和2个双流低压缸相连接,含有流向相反的高压和中压蒸汽流道。低压缸为双流式,低压外缸体支承在冷凝器上面,不是直接装在汽机基础上,轴承座和内缸体直接座于汽机基础上;

b)由于末级叶片比较长,具有较大的排汽面积,可使蒸汽膨胀过程加长,减少余速损失,提高机组效率;

c)由于蒸汽在高/中压缸中膨胀过程是以干蒸汽单流方向进行,另外,在高、中压排汽口加装抽汽扩散器以增加效率,所以,Arabelle1000型汽轮机的高中压膨胀效率相对比较高;

d)发电机采用水氢氢冷却方式,励磁系统采用无刷励磁方式。

1.2CPWR1000核电机组

CPWR1000由西屋-上海联队推出,由上海市核电办公室牵头,组织上海核工程研究设计院、华东电力设计院、西屋公司等单位联合展开CPWR1000概念设计工作,并于1997年6月份完成。

CPWR1000是建立在西屋公司成熟的、经过设计、工程实践验证的技术上,以西班牙的VandellosⅡ为参考电站(该电站已有50000h以上的高利用率的运行业绩),结合西屋先进型压水堆机组(APWR1000)技术,并进行适当改进而来。

1.2.1CPWR1000汽轮发电机组主要技术数据

a)汽轮机型式:单轴、四缸、六排汽、凝汽式、二级再热装置;

b)转速:1500r/min;

c)主蒸汽门前蒸汽压力:6.764MPa;

d)主蒸汽门前蒸汽温度:283.5℃;

e)主蒸汽门前蒸汽流量:5493.5t/h;

f)主蒸汽门前蒸汽湿度:0.25%;

g)回热抽汽级数:6级(1级高压加热器+1级除氧器+4级低压加热器);

h)给水温度:223.9℃;

i)平均冷却水温度:23.0℃;

j)末级叶片长度:1250mm;

k)排汽压力:5kPa;

l)净热耗率:9.788kJ/(Wh);

m)机组最大保证功率:1071.09MW;

n)发电机功率因数:0.9;

o)短路比:0.5;

p)冷却方式:水氢氢;

q)励磁系统:静态励磁系统。

1.2.2APWR1000汽轮发电机组结构特点

汽轮发电机组采用1个双流式高压汽缸及3个双流式低压汽缸串联组合,汽轮机末级叶片长度为1250mm,六排汽口,配置2台一级汽水分离以及两级蒸汽再热的汽水分离再热器。

1.2.3CPWR1000相对于VandellosⅡ的主要改进

a)核电机组最大保证出力由982MW改为1071MW;

b)主汽门前蒸汽参数由6.44MPa、280.2℃改为6.76MPa、283.5℃;

c)平均冷却水温度由17.8℃改为23℃;

d)末级叶片长度由1117.6mm改为1250mm;

e)汽轮机旁路容量由40%额定汽量改为85%;

f)汽轮机回热系统由不设除氧器改为带除氧器;

g)发电机电压拟由21kV改为24kV;

h)凝汽器压力由7kPa改为5kPa;

i)汽轮机净热耗率由10.209kJ/(Wh)降到9.788kJ/(Wh)以下;

j)加大凝结水精处理装置容量;

k)常规岛仪表控制采用微机分散控制系统。

2ABB-CE的系统80(System80)型压水堆核电机组

此方案也是压水堆机组,较三环路方案不同之处是核岛部分为双蒸发器,由美国燃烧工程公司(ABB-CE)开发而成。此方案也为韩国核电国产化方案,核岛部分为ABB-CE的系统80反应堆,相匹配的常规岛部分为美国GE公司的汽轮发电机组。参考电站为韩国灵光3、4机组。

灵光3、4机组经过2~3a的运行,设备运行状况良好。

目前由于还没有收集到GE公司关于灵光3、4机组常规岛部分的详细资料,汽轮发电机组的技术参数、型式、内部结构及热力系统等还暂时不能描述。

3日本三菱公司的四环路压水堆核电机组

此方案亦属成熟技术的压水堆机组,其技术的先进性与安全水平与三环路和双蒸发器方案相当。日本三菱公司推荐的四环路压水堆核电机组方案,是以日本大饭3、4机组作为参考电站。

大饭3、4机组采用了美国西屋公司的Model412的标准设计,与大饭1、2号机组完全一致(大饭1、2号机组均为西屋公司设备),是一个技术成熟的、有丰富运行经验的机组。大饭3、4号机组已分别于1991年和1992年投入商业运行。

3.1三菱公司提供的汽轮发电机组的主要技术数据

a)发电机端额定出力:1036MW;

b)汽轮机型式:TC6F-44;

c)转速:1500r/min;

d)主汽门前蒸汽参数:压力6.30MPa(绝对压力),温度279.6℃,湿度0.43%,额定出力时蒸汽流量5844.129t/h;

e)给水温度:226.7℃;

f)凝汽器压力:5.07kPa(绝对压力);

g)低压缸总的排汽面积:71m2;

h)发电机冷却方式:水氢氢;

i)励磁方式:无刷励磁。

3.2机组的主要特点

3.2.1热力系统

热力系统为压水堆机组典型的热力系统,MSR再热为两级。汽轮机为1个高压缸和3个低压缸。回热系统为1级高压加热器+1级除氧器+4级低压回热器。

3.2.2厂房布置

机组布置为平行式,即反应堆的轴线与汽轮发电机组的轴线平行,这样的布置比较紧凑,汽机房体积小,行车可以共用,电缆长度短,机组之间的交通方便,只需要在汽机房墙的设计上考虑叶片飞射物的保护厚度即可。

4先进型沸水堆(ABWR)核电机组

此方案为美国通用电气公司(GE)推出的先进型沸水堆(ABWR)核电机组,能满足用户要求文件(URD)。以日本东京电力公司的柏崎6、7号机组作为参考电站。

柏崎6、7号机组是目前世界上唯一获得美、日两国设计批准的、已建成并投入商业运行的改进型沸水堆核电机组。反应堆和汽轮发电机组均由美国通用电气公司生产,柏崎6号机是世界上第1个ABWR机组,于1991年9月开始建设,1996年11月竣工投入商业运行。

沸水堆核电机组是以美国通用电气公司(GE)为主进行开发的。1957年首台沸水堆核电机组投入运行,其后,经过多年的改进,从BWR-1到BWR-6,最后到ABWR。

4.1ABWR汽轮发电机组主要技术数据

a)额定功率:1350MW;

b)汽轮机型式:TC6F-52;

c)汽缸结构:四缸六排汽(1HP+3LP);

d)主汽门前主蒸汽压力:6.79MPa;

e)主汽门前主蒸汽流量:7640t/h;

f)主汽门前主蒸汽湿度:0.4%;

g)低压缸末级叶片长度:1320.88mm;

h)回热系统:4级低压加热器+2级高压加热器(无除氧器)。

4.2ABWR核电机组的主要特点

4.2.1热力系统

热力系统为直接循环系统,冷却剂直接作为汽轮机的工质,将PWR核电机组中的一回路和二回路并为1个回路。

ABWR和PWR的汽轮机回热抽汽系统没有什么两样,其参数相似,ABWR主蒸汽压力略高于PWR,MSR的再热采用两级,以提高热效率,4级低加、2级高加,不设除氧器。加热器的疏水泵将疏水打入前级凝结水管。

4.2.2厂房布置

由于ABWR是反应堆核蒸汽直接通到汽轮机,因此汽机厂房需要考虑防放射性的措施,汽机高压缸、MSR、高压加热器均用屏蔽墙隔离,运行期间人员不能进入。汽轮机的抽汽机排汽需经过过滤排入排汽筒,整个汽机车间是闭式通风系统。主蒸汽通过的安全壳两侧都有开关隔离阀。ABWR在正常运转时,如核燃料包壳不破损,主蒸汽携带放射性核元素主要是N16,N16的半衰期仅7s。新蒸汽部分,即高压缸部分、MSR、高压加热器部分是带放射性的,需要屏蔽,而低压缸、凝结水部分是不带放射性的,不做特殊屏蔽。

核电站范文篇8

核电站的设备选型和供货商的选择,应采用国际竞争性招标方式,在技术、经济、自主化、国产化等方面进行深入分析比较,来选定供货商和机型。国外制造商必须选择国内设备制造厂作为合作伙伴,转让技术、合作生产,逐步全面实现自主化和设备国产化。

经初步研究,常规岛部分可供选择的国外主要设备潜在供货商有:英法GEC-ALSTHOM公司、美国西屋公司、日本三菱公司、美国GE公司等。到目前为止,ALSTHOM公司已同中国东方集团公司进行合作,形成一个联合体;美国西屋公司已同上海核电设备成套集团公司合资,组成西屋-上海联队。其它公司到目前尚未进行合作。

根据ALSTHOM公司、西屋公司、三菱公司和GE公司等核电设备制造商所提供的资料,按照堆型的不同和一回路的不同,可以形成四类技术方案:

方案一——三环路改进型压水堆核电机组;

方案二——ABB-CE的系统80(System80)型压水堆核电机组;

方案三——日本三菱公司的四环路压水堆核电机组;

方案四——先进型沸水堆(ABWR)核电机组。

下面就各类技术方案分别进行分析。

1三环路改进型压水堆核电机组

此方案的一回路为标准的300MW一个环路的三环路压水堆。此类方案包括中广核集团公司提出的CGP1000、欧洲公司(包括EDF、FRAMATOME、GEC-ALSTHOM)推出的CNP1000和西屋-上海联队推出的CPWR1000三种压水堆核电机组。

1.1CGP1000与CNP1000核电机组

CGP1000由中广核集团提出,以大亚湾核电站为参考站,并借鉴美国西屋公司和ABB-CE公司的部分先进的设计,有选择地吸收了用户要求文件(URD)的要求,形成以300MW一条环路的CGP1000技术方案。常规岛部分,汽轮发电机组选用ALSTHOM的Arabelle1000型汽轮发电机组。

CNP1000由欧洲制造商(EDF、FRAMA-TOME、ALSTHOM)根据法国核电计划及大亚湾核电站、岭澳核电站等工程的设计、制造、安装、运行及维修中积累起来的经验推荐给中国的核电机组。常规岛部分的汽轮发电机组也以Arabelle1000型汽轮发电机组作为推荐机组。

由于CGP1000和CNP1000的常规岛部分的汽轮发电机组均为Arabelle1000型,所以实际上为同一类核电机组。

ALSTHOM在总结54台第1代汽轮发电机组的运行经验基础上,组合出了Arabelle1000型汽轮发电机组,参考电站为ChoozB(2台1450MW机组已分别于1996年7月11月投入运行)。

1.1.1Arabelle1000型汽轮发电机组的主要技术数据

a)最大连续电功率:1051MW;

b)转速:1500r/min;

c)机组效率:36.3%;

d)末级叶片长度:1450mm;

e)排汽面积:76.8m2;

f)背压:5.5kPa;

g)凝汽器冷却面积:68633m2;

h)发电机额定输出功率:1050MW;

i)发电机视在输出功率:1235MVA;

j)发电机额定功率因数:0.85;

k)发电机额定端电压:26kV。

1.1.2Arabelle1000型汽轮发电机组的主要特点

a)缸体结构:三缸四排汽(HP/IP+2×LP94),汽轮机采用高中压组合汽缸并直接和2个双流低压缸相连接,含有流向相反的高压和中压蒸汽流道。低压缸为双流式,低压外缸体支承在冷凝器上面,不是直接装在汽机基础上,轴承座和内缸体直接座于汽机基础上;

b)由于末级叶片比较长,具有较大的排汽面积,可使蒸汽膨胀过程加长,减少余速损失,提高机组效率;

c)由于蒸汽在高/中压缸中膨胀过程是以干蒸汽单流方向进行,另外,在高、中压排汽口加装抽汽扩散器以增加效率,所以,Arabelle1000型汽轮机的高中压膨胀效率相对比较高;

d)发电机采用水氢氢冷却方式,励磁系统采用无刷励磁方式。

1.2CPWR1000核电机组

CPWR1000由西屋-上海联队推出,由上海市核电办公室牵头,组织上海核工程研究设计院、华东电力设计院、西屋公司等单位联合展开CPWR1000概念设计工作,并于1997年6月份完成。

CPWR1000是建立在西屋公司成熟的、经过设计、工程实践验证的技术上,以西班牙的VandellosⅡ为参考电站(该电站已有50000h以上的高利用率的运行业绩),结合西屋先进型压水堆机组(APWR1000)技术,并进行适当改进而来。

1.2.1CPWR1000汽轮发电机组主要技术数据

a)汽轮机型式:单轴、四缸、六排汽、凝汽式、二级再热装置;

b)转速:1500r/min;

c)主蒸汽门前蒸汽压力:6.764MPa;

d)主蒸汽门前蒸汽温度:283.5℃;

e)主蒸汽门前蒸汽流量:5493.5t/h;

f)主蒸汽门前蒸汽湿度:0.25%;

g)回热抽汽级数:6级(1级高压加热器+1级除氧器+4级低压加热器);

h)给水温度:223.9℃;

i)平均冷却水温度:23.0℃;

j)末级叶片长度:1250mm;

k)排汽压力:5kPa;

l)净热耗率:9.788kJ/(Wh);

m)机组最大保证功率:1071.09MW;

n)发电机功率因数:0.9;

o)短路比:0.5;

p)冷却方式:水氢氢;

q)励磁系统:静态励磁系统。

1.2.2APWR1000汽轮发电机组结构特点

汽轮发电机组采用1个双流式高压汽缸及3个双流式低压汽缸串联组合,汽轮机末级叶片长度为1250mm,六排汽口,配置2台一级汽水分离以及两级蒸汽再热的汽水分离再热器。

1.2.3CPWR1000相对于VandellosⅡ的主要改进

a)核电机组最大保证出力由982MW改为1071MW;

b)主汽门前蒸汽参数由6.44MPa、280.2℃改为6.76MPa、283.5℃;

c)平均冷却水温度由17.8℃改为23℃;

d)末级叶片长度由1117.6mm改为1250mm;

e)汽轮机旁路容量由40%额定汽量改为85%;

f)汽轮机回热系统由不设除氧器改为带除氧器;

g)发电机电压拟由21kV改为24kV;

h)凝汽器压力由7kPa改为5kPa;

i)汽轮机净热耗率由10.209kJ/(Wh)降到9.788kJ/(Wh)以下;

j)加大凝结水精处理装置容量;

k)常规岛仪表控制采用微机分散控制系统。

2ABB-CE的系统80(System80)型压水堆核电机组

此方案也是压水堆机组,较三环路方案不同之处是核岛部分为双蒸发器,由美国燃烧工程公司(ABB-CE)开发而成。此方案也为韩国核电国产化方案,核岛部分为ABB-CE的系统80反应堆,相匹配的常规岛部分为美国GE公司的汽轮发电机组。参考电站为韩国灵光3、4机组。

灵光3、4机组经过2~3a的运行,设备运行状况良好。

目前由于还没有收集到GE公司关于灵光3、4机组常规岛部分的详细资料,汽轮发电机组的技术参数、型式、内部结构及热力系统等还暂时不能描述。

3日本三菱公司的四环路压水堆核电机组

此方案亦属成熟技术的压水堆机组,其技术的先进性与安全水平与三环路和双蒸发器方案相当。日本三菱公司推荐的四环路压水堆核电机组方案,是以日本大饭3、4机组作为参考电站。

大饭3、4机组采用了美国西屋公司的Model412的标准设计,与大饭1、2号机组完全一致(大饭1、2号机组均为西屋公司设备),是一个技术成熟的、有丰富运行经验的机组。大饭3、4号机组已分别于1991年和1992年投入商业运行。

3.1三菱公司提供的汽轮发电机组的主要技术数据

a)发电机端额定出力:1036MW;

b)汽轮机型式:TC6F-44;

c)转速:1500r/min;

d)主汽门前蒸汽参数:压力6.30MPa(绝对压力),温度279.6℃,湿度0.43%,额定出力时蒸汽流量5844.129t/h;

e)给水温度:226.7℃;

f)凝汽器压力:5.07kPa(绝对压力);

g)低压缸总的排汽面积:71m2;

h)发电机冷却方式:水氢氢;

i)励磁方式:无刷励磁。

3.2机组的主要特点

3.2.1热力系统

热力系统为压水堆机组典型的热力系统,MSR再热为两级。汽轮机为1个高压缸和3个低压缸。回热系统为1级高压加热器+1级除氧器+4级低压回热器。

3.2.2厂房布置

机组布置为平行式,即反应堆的轴线与汽轮发电机组的轴线平行,这样的布置比较紧凑,汽机房体积小,行车可以共用,电缆长度短,机组之间的交通方便,只需要在汽机房墙的设计上考虑叶片飞射物的保护厚度即可。

4先进型沸水堆(ABWR)核电机组

此方案为美国通用电气公司(GE)推出的先进型沸水堆(ABWR)核电机组,能满足用户要求文件(URD)。以日本东京电力公司的柏崎6、7号机组作为参考电站。

柏崎6、7号机组是目前世界上唯一获得美、日两国设计批准的、已建成并投入商业运行的改进型沸水堆核电机组。反应堆和汽轮发电机组均由美国通用电气公司生产,柏崎6号机是世界上第1个ABWR机组,于1991年9月开始建设,1996年11月竣工投入商业运行。

沸水堆核电机组是以美国通用电气公司(GE)为主进行开发的。1957年首台沸水堆核电机组投入运行,其后,经过多年的改进,从BWR-1到BWR-6,最后到ABWR。

4.1ABWR汽轮发电机组主要技术数据

a)额定功率:1350MW;

b)汽轮机型式:TC6F-52;

c)汽缸结构:四缸六排汽(1HP+3LP);

d)主汽门前主蒸汽压力:6.79MPa;

e)主汽门前主蒸汽流量:7640t/h;

f)主汽门前主蒸汽湿度:0.4%;

g)低压缸末级叶片长度:1320.88mm;

h)回热系统:4级低压加热器+2级高压加热器(无除氧器)。

4.2ABWR核电机组的主要特点

4.2.1热力系统

热力系统为直接循环系统,冷却剂直接作为汽轮机的工质,将PWR核电机组中的一回路和二回路并为1个回路。

ABWR和PWR的汽轮机回热抽汽系统没有什么两样,其参数相似,ABWR主蒸汽压力略高于PWR,MSR的再热采用两级,以提高热效率,4级低加、2级高加,不设除氧器。加热器的疏水泵将疏水打入前级凝结水管。

4.2.2厂房布置

由于ABWR是反应堆核蒸汽直接通到汽轮机,因此汽机厂房需要考虑防放射性的措施,汽机高压缸、MSR、高压加热器均用屏蔽墙隔离,运行期间人员不能进入。汽轮机的抽汽机排汽需经过过滤排入排汽筒,整个汽机车间是闭式通风系统。主蒸汽通过的安全壳两侧都有开关隔离阀。ABWR在正常运转时,如核燃料包壳不破损,主蒸汽携带放射性核元素主要是N16,N16的半衰期仅7s。新蒸汽部分,即高压缸部分、MSR、高压加热器部分是带放射性的,需要屏蔽,而低压缸、凝结水部分是不带放射性的,不做特殊屏蔽。

核电站范文篇9

根据公司、西屋公司、三菱公司和公司等核电设备制造商所提供的资料,按照堆型的不同和一回路的不同,可以形成四类技术方案:

方案一——三环路改进型压水堆核电机组;

方案二——的系统型压水堆核电机组;公务员之家版权所有

方案三——日本三菱公司的四环路压水堆核电机组;

方案四——先进型沸水堆核电机组。

下面就各类技术方案分别进行分析。

三环路改进型压水堆核电机组

此方案的一回路为标准的一个环路的三环路压水堆。此类方案包括中广核集团公司提出的、欧洲公司包括、、推出的和西屋上海联队推出的三种压水堆核电机组。

与核电机组

由中广核集团提出,以大亚湾核电站为参考站,并借鉴美国西屋公司和公司的部分先进的设计,有选择地吸收了用户要求文件的要求,形成以一条环路的技术方案。常规岛部分,汽轮发电机组选用的型汽轮发电机组。

由欧洲制造商、、根据法国核电计划及大亚湾核电站、岭澳核电站等工程的设计、制造、安装、运行及维修中积累起来的经验推荐给中国的核电机组。常规岛部分的汽轮发电机组也以型汽轮发电机组作为推荐机组。

由于和的常规岛部分的汽轮发电机组均为型,所以实际上为同一类核电机组。

在总结台第代汽轮发电机组的运行经验基础上,组合出了型汽轮发电机组,参考电站为台机组已分别于年月月投入运行。

型汽轮发电机组的主要技术数据

最大连续电功率:;

转速:;

机组效率:;

末级叶片长度:;

排汽面积:;

背压:;

凝汽器冷却面积:;

发电机额定输出功率:;

发电机视在输出功率:;

发电机额定功率因数:;

发电机额定端电压:。

型汽轮发电机组的主要特点

缸体结构:三缸四排汽×,汽轮机采用高中压组合汽缸并直接和个双流低压缸相连接,含有流向相反的高压和中压蒸汽流道。低压缸为双流式,低压外缸体支承在冷凝器上面,不是直接装在汽机基础上,轴承座和内缸体直接座于汽机基础上;

由于末级叶片比较长,具有较大的排汽面积,可使蒸汽膨胀过程加长,减少余速损失,提高机组效率;

由于蒸汽在高/中压缸中膨胀过程是以干蒸汽单流方向进行,另外,在高、中压排汽口加装抽汽扩散器以增加效率,所以,型汽轮机的高中压膨胀效率相对比较高;

发电机采用水氢氢冷却方式,励磁系统采用无刷励磁方式。

核电机组

由西屋上海联队推出,由上海市核电办公室牵头,组织上海核工程研究设计院、华东电力设计院、西屋公司等单位联合展开概念设计工作,并于年月份完成。

是建立在西屋公司成熟的、经过设计、工程实践验证的技术上,以西班牙的Ⅱ为参考电站该电站已有以上的高利用率的运行业绩,结合西屋先进型压水堆机组技术,并进行适当改进而来。

汽轮发电机组主要技术数据

汽轮机型式:单轴、四缸、六排汽、凝汽式、二级再热装置;

转速:;

主蒸汽门前蒸汽压力:;

主蒸汽门前蒸汽温度:℃;

主蒸汽门前蒸汽流量:;

主蒸汽门前蒸汽湿度:;

回热抽汽级数:级级高压加热器级除氧器级低压加热器;

给水温度:℃;

平均冷却水温度:℃;

末级叶片长度:;

排汽压力:;

净热耗率:;

机组最大保证功率:;

发电机功率因数:;

短路比:;

冷却方式:水氢氢;

励磁系统:静态励磁系统。

汽轮发电机组结构特点

汽轮发电机组采用个双流式高压汽缸及个双流式低压汽缸串联组合,汽轮机末级叶片长度为,六排汽口,配置台一级汽水分离以及两级蒸汽再热的汽水分离再热器。

相对于Ⅱ的主要改进

核电机组最大保证出力由改为;

主汽门前蒸汽参数由、℃改为、℃;

平均冷却水温度由℃改为℃;

末级叶片长度由改为;

汽轮机旁路容量由额定汽量改为;

汽轮机回热系统由不设除氧器改为带除氧器;

发电机电压拟由改为;

凝汽器压力由改为;

汽轮机净热耗率由降到以下;

加大凝结水精处理装置容量;

常规岛仪表控制采用微机分散控制系统。

的系统型压水堆核电机组

此方案也是压水堆机组,较三环路方案不同之处是核岛部分为双蒸发器,由美国燃烧工程公司开发而成。此方案也为韩国核电国产化方案,核岛部分为的系统反应堆,相匹配的常规岛部分为美国公司的汽轮发电机组。参考电站为韩国灵光⒊机组。

灵光⒊机组经过~的运行,设备运行状况良好。

目前由于还没有收集到公司关于灵光⒊机组常规岛部分的详细资料,汽轮发电机组的技术参数、型式、内部结构及热力系统等还暂时不能描述。

日本三菱公司的四环路压水堆核电机组

此方案亦属成熟技术的压水堆机组,其技术的先进性与安全水平与三环路和双蒸发器方案相当。日本三菱公司推荐的四环路压水堆核电机组方案,是以日本大饭⒊机组作为参考电站。

大饭⒊机组采用了美国西屋公司的的标准设计,与大饭⒈号机组完全一致大饭⒈号机组均为西屋公司设备,是一个技术成熟的、有丰富运行经验的机组。大饭⒊号机组已分别于年和年投入商业运行。

三菱公司提供的汽轮发电机组的主要技术数据

发电机端额定出力:;

汽轮机型式:;

转速:;

主汽门前蒸汽参数:压力绝对压力,温度℃,湿度,额定出力时蒸汽流量;

给水温度:℃;

凝汽器压力:绝对压力;

低压缸总的排汽面积:;

发电机冷却方式:水氢氢;

励磁方式:无刷励磁。

机组的主要特点

热力系统

热力系统为压水堆机组典型的热力系统,再热为两级。汽轮机为个高压缸和个低压缸。回热系统为级高压加热器级除氧器级低压回热器。

厂房布置

机组布置为平行式,即反应堆的轴线与汽轮发电机组的轴线平行,这样的布置比较紧凑,汽机房体积小,行车可以共用,电缆长度短,机组之间的交通方便,只需要在汽机房墙的设计上考虑叶片飞射物的保护厚度即可。

先进型沸水堆核电机组

此方案为美国通用电气公司推出的先进型沸水堆核电机组,能满足用户要求文件。以日本东京电力公司的柏崎⒍号机组作为参考电站。

柏崎⒍号机组是目前世界上唯一获得美、日两国设计批准的、已建成并投入商业运行的改进型沸水堆核电机组。反应堆和汽轮发电机组均由美国通用电气公司生产,柏崎号机是世界上第个机组,于年月开始建设,年月竣工投入商业运行。

沸水堆核电机组是以美国通用电气公司为主进行开发的。年首台沸水堆核电机组投入运行,其后,经过多年的改进,从到,最后到。公务员之家版权所有

汽轮发电机组主要技术数据

额定功率:;

汽轮机型式:;

汽缸结构:四缸六排汽;

主汽门前主蒸汽压力:;

主汽门前主蒸汽流量:;

主汽门前主蒸汽湿度:;

低压缸末级叶片长度:;

回热系统:级低压加热器级高压加热器无除氧器。

核电机组的主要特点

热力系统

热力系统为直接循环系统,冷却剂直接作为汽轮机的工质,将核电机组中的一回路和二回路并为个回路。

和的汽轮机回热抽汽系统没有什么两样,其参数相似,主蒸汽压力略高于,的再热采用两级,以提高热效率,级低加、级高加,不设除氧器。加热器的疏水泵将疏水打入前级凝结水管。

厂房布置

由于是反应堆核蒸汽直接通到汽轮机,因此汽机厂房需要考虑防放射性的措施,汽机高压缸、、高压加热器均用屏蔽墙隔离,运行期间人员不能进入。汽轮机的抽汽机排汽需经过过滤排入排汽筒,整个汽机车间是闭式通风系统。主蒸汽通过的安全壳两侧都有开关隔离阀。在正常运转时,如核燃料包壳不破损,主蒸汽携带放射性核元素主要是,的半衰期仅。新蒸汽部分,即高压缸部分、、高压加热器部分是带放射性的,需要屏蔽,而低压缸、凝结水部分是不带放射性的,不做特殊屏蔽。

核电站范文篇10

根据ALSTHOM公司、西屋公司、三菱公司和GE公司等核电设备制造商所提供的资料,按照堆型的不同和一回路的不同,可以形成四类技术方案:

方案一——三环路改进型压水堆核电机组;

方案二——ABB-CE的系统80(System80)型压水堆核电机组;

方案三——日本三菱公司的四环路压水堆核电机组;

方案四——先进型沸水堆(ABWR)核电机组。

下面就各类技术方案分别进行分析。

1三环路改进型压水堆核电机组

此方案的一回路为标准的300MW一个环路的三环路压水堆。此类方案包括中广核集团公司提出的CGP1000、欧洲公司(包括EDF、FRAMATOME、GEC-ALSTHOM)推出的CNP1000和西屋-上海联队推出的CPWR1000三种压水堆核电机组。

1.1CGP1000与CNP1000核电机组

CGP1000由中广核集团提出,以大亚湾核电站为参考站,并借鉴美国西屋公司和ABB-CE公司的部分先进的设计,有选择地吸收了用户要求文件(URD)的要求,形成以300MW一条环路的CGP1000技术方案。常规岛部分,汽轮发电机组选用ALSTHOM的Arabelle1000型汽轮发电机组。

CNP1000由欧洲制造商(EDF、FRAMA-TOME、ALSTHOM)根据法国核电计划及大亚湾核电站、岭澳核电站等工程的设计、制造、安装、运行及维修中积累起来的经验推荐给中国的核电机组。常规岛部分的汽轮发电机组也以Arabelle1000型汽轮发电机组作为推荐机组。

由于CGP1000和CNP1000的常规岛部分的汽轮发电机组均为Arabelle1000型,所以实际上为同一类核电机组。

ALSTHOM在总结54台第1代汽轮发电机组的运行经验基础上,组合出了Arabelle1000型汽轮发电机组,参考电站为ChoozB(2台1450MW机组已分别于1996年7月11月投入运行)。

1.1.1Arabelle1000型汽轮发电机组的主要技术数据

a)最大连续电功率:1051MW;

b)转速:1500r/min;

c)机组效率:36.3%;

d)末级叶片长度:1450mm;

e)排汽面积:76.8m2;

f)背压:5.5kPa;

g)凝汽器冷却面积:68633m2;

h)发电机额定输出功率:1050MW;

i)发电机视在输出功率:1235MVA;

j)发电机额定功率因数:0.85;

k)发电机额定端电压:26kV。

1.1.2Arabelle1000型汽轮发电机组的主要特点

a)缸体结构:三缸四排汽(HP/IP+2×LP94),汽轮机采用高中压组合汽缸并直接和2个双流低压缸相连接,含有流向相反的高压和中压蒸汽流道。低压缸为双流式,低压外缸体支承在冷凝器上面,不是直接装在汽机基础上,轴承座和内缸体直接座于汽机基础上;

b)由于末级叶片比较长,具有较大的排汽面积,可使蒸汽膨胀过程加长,减少余速损失,提高机组效率;

c)由于蒸汽在高/中压缸中膨胀过程是以干蒸汽单流方向进行,另外,在高、中压排汽口加装抽汽扩散器以增加效率,所以,Arabelle1000型汽轮机的高中压膨胀效率相对比较高;

d)发电机采用水氢氢冷却方式,励磁系统采用无刷励磁方式。

1.2CPWR1000核电机组

CPWR1000由西屋-上海联队推出,由上海市核电办公室牵头,组织上海核工程研究设计院、华东电力设计院、西屋公司等单位联合展开CPWR1000概念设计工作,并于1997年6月份完成。

CPWR1000是建立在西屋公司成熟的、经过设计、工程实践验证的技术上,以西班牙的VandellosⅡ为参考电站(该电站已有50000h以上的高利用率的运行业绩),结合西屋先进型压水堆机组(APWR1000)技术,并进行适当改进而来。

1.2.1CPWR1000汽轮发电机组主要技术数据

a)汽轮机型式:单轴、四缸、六排汽、凝汽式、二级再热装置;

b)转速:1500r/min;

c)主蒸汽门前蒸汽压力:6.764MPa;

d)主蒸汽门前蒸汽温度:283.5℃;

e)主蒸汽门前蒸汽流量:5493.5t/h;

f)主蒸汽门前蒸汽湿度:0.25%;

g)回热抽汽级数:6级(1级高压加热器+1级除氧器+4级低压加热器);

h)给水温度:223.9℃;

i)平均冷却水温度:23.0℃;

j)末级叶片长度:1250mm;

k)排汽压力:5kPa;

l)净热耗率:9.788kJ/(Wh);

m)机组最大保证功率:1071.09MW;

n)发电机功率因数:0.9;

o)短路比:0.5;

p)冷却方式:水氢氢;

q)励磁系统:静态励磁系统。

1.2.2APWR1000汽轮发电机组结构特点

汽轮发电机组采用1个双流式高压汽缸及3个双流式低压汽缸串联组合,汽轮机末级叶片长度为1250mm,六排汽口,配置2台一级汽水分离以及两级蒸汽再热的汽水分离再热器。

1.2.3CPWR1000相对于VandellosⅡ的主要改进

a)核电机组最大保证出力由982MW改为1071MW;

b)主汽门前蒸汽参数由6.44MPa、280.2℃改为6.76MPa、283.5℃;

c)平均冷却水温度由17.8℃改为23℃;

d)末级叶片长度由1117.6mm改为1250mm;

e)汽轮机旁路容量由40%额定汽量改为85%;

f)汽轮机回热系统由不设除氧器改为带除氧器;

g)发电机电压拟由21kV改为24kV;

h)凝汽器压力由7kPa改为5kPa;

i)汽轮机净热耗率由10.209kJ/(Wh)降到9.788kJ/(Wh)以下;

j)加大凝结水精处理装置容量;

k)常规岛仪表控制采用微机分散控制系统。

2ABB-CE的系统80(System80)型压水堆核电机组

此方案也是压水堆机组,较三环路方案不同之处是核岛部分为双蒸发器,由美国燃烧工程公司(ABB-CE)开发而成。此方案也为韩国核电国产化方案,核岛部分为ABB-CE的系统80反应堆,相匹配的常规岛部分为美国GE公司的汽轮发电机组。参考电站为韩国灵光3、4机组。

灵光3、4机组经过2~3a的运行,设备运行状况良好。

目前由于还没有收集到GE公司关于灵光3、4机组常规岛部分的详细资料,汽轮发电机组的技术参数、型式、内部结构及热力系统等还暂时不能描述。

3日本三菱公司的四环路压水堆核电机组

此方案亦属成熟技术的压水堆机组,其技术的先进性与安全水平与三环路和双蒸发器方案相当。日本三菱公司推荐的四环路压水堆核电机组方案,是以日本大饭3、4机组作为参考电站。

大饭3、4机组采用了美国西屋公司的Model412的标准设计,与大饭1、2号机组完全一致(大饭1、2号机组均为西屋公司设备),是一个技术成熟的、有丰富运行经验的机组。大饭3、4号机组已分别于1991年和1992年投入商业运行。

3.1三菱公司提供的汽轮发电机组的主要技术数据

a)发电机端额定出力:1036MW;

b)汽轮机型式:TC6F-44;

c)转速:1500r/min;

d)主汽门前蒸汽参数:压力6.30MPa(绝对压力),温度279.6℃,湿度0.43%,额定出力时蒸汽流量5844.129t/h;

e)给水温度:226.7℃;

f)凝汽器压力:5.07kPa(绝对压力);

g)低压缸总的排汽面积:71m2;

h)发电机冷却方式:水氢氢;

i)励磁方式:无刷励磁。

3.2机组的主要特点

3.2.1热力系统

热力系统为压水堆机组典型的热力系统,MSR再热为两级。汽轮机为1个高压缸和3个低压缸。回热系统为1级高压加热器+1级除氧器+4级低压回热器。

3.2.2厂房布置

机组布置为平行式,即反应堆的轴线与汽轮发电机组的轴线平行,这样的布置比较紧凑,汽机房体积小,行车可以共用,电缆长度短,机组之间的交通方便,只需要在汽机房墙的设计上考虑叶片飞射物的保护厚度即可。

4先进型沸水堆(ABWR)核电机组

此方案为美国通用电气公司(GE)推出的先进型沸水堆(ABWR)核电机组,能满足用户要求文件(URD)。以日本东京电力公司的柏崎6、7号机组作为参考电站。

柏崎6、7号机组是目前世界上唯一获得美、日两国设计批准的、已建成并投入商业运行的改进型沸水堆核电机组。反应堆和汽轮发电机组均由美国通用电气公司生产,柏崎6号机是世界上第1个ABWR机组,于1991年9月开始建设,1996年11月竣工投入商业运行。

沸水堆核电机组是以美国通用电气公司(GE)为主进行开发的。1957年首台沸水堆核电机组投入运行,其后,经过多年的改进,从BWR-1到BWR-6,最后到ABWR。

4.1ABWR汽轮发电机组主要技术数据

a)额定功率:1350MW;

b)汽轮机型式:TC6F-52;

c)汽缸结构:四缸六排汽(1HP+3LP);

d)主汽门前主蒸汽压力:6.79MPa;

e)主汽门前主蒸汽流量:7640t/h;

f)主汽门前主蒸汽湿度:0.4%;

g)低压缸末级叶片长度:1320.88mm;

h)回热系统:4级低压加热器+2级高压加热器(无除氧器)。

4.2ABWR核电机组的主要特点

4.2.1热力系统

热力系统为直接循环系统,冷却剂直接作为汽轮机的工质,将PWR核电机组中的一回路和二回路并为1个回路。

ABWR和PWR的汽轮机回热抽汽系统没有什么两样,其参数相似,ABWR主蒸汽压力略高于PWR,MSR的再热采用两级,以提高热效率,4级低加、2级高加,不设除氧器。加热器的疏水泵将疏水打入前级凝结水管。

4.2.2厂房布置

由于ABWR是反应堆核蒸汽直接通到汽轮机,因此汽机厂房需要考虑防放射性的措施,汽机高压缸、MSR、高压加热器均用屏蔽墙隔离,运行期间人员不能进入。汽轮机的抽汽机排汽需经过过滤排入排汽筒,整个汽机车间是闭式通风系统。主蒸汽通过的安全壳两侧都有开关隔离阀。ABWR在正常运转时,如核燃料包壳不破损,主蒸汽携带放射性核元素主要是N16,N16的半衰期仅7s。新蒸汽部分,即高压缸部分、MSR、高压加热器部分是带放射性的,需要屏蔽,而低压缸、凝结水部分是不带放射性的,不做特殊屏蔽。