构造柱范文10篇

时间:2023-04-11 15:39:50

构造柱

构造柱范文篇1

构造柱的应用主要是为了提升混凝土结构的稳定性和可靠性。在建筑结构当中,整体部分的强度和抗剪能力都是比较重要的因素。构造柱结构在建筑工程中得到广泛地应用已经有多年地历史,研究成果显著。在防止建筑结构出现裂缝以及渗漏的过程中起到重要的作用。

2构造柱的质量通病和原因

2.1楼层间构造柱轴线错位。在构造柱应用的过程中,出现轴线错位的可能性很大,如果没有认真对钢筋的骨架和位置进行调整,在进行下层放线的过程中就会出现构造柱的错位,所以,上下层的贯通性丧失。构造出出现了轴线错位的问题会直接影响到钢筋混凝土结构的稳定性,存在着建筑的安全隐患。

2.2箍筋拉接筋没有满足要求。在墙体和构造柱之间需要设置相应的拉接筋,通常情况下都是两根,同时要相隔500米。而且在施工的过程中,需要伸入到墙体内。每两个顾金金的距离不能超过10cm,最重要的是构造柱的钢筋需要绑扎相应的接头。绑扎的接头需要控制长度,另外还要进行间隙的控制。

2.3构造柱断条。出现构造柱的断条是较为严重的一种质量病害,究其原因主要是由有构造柱内部的箍筋或者是拉接筋以及各种钢筋构造交叉到一起,而且,钢筋的绑扎工作不到位。在混凝土浇筑的工作中,会受到一定的因素的影响,而且构造柱会出现严重的柱腔受损的问题,这就对混凝土的填充问题产生了严重的阻碍作用。有些建筑工程中,施工单位为了偷工减料,采用级配较低的砂石,有些砂石的直径较大,在浇筑的过程中会直接影响到构造柱的稳定性。

2.4构造柱烂根的现象。根据构造柱的工作原理可以看出,构造柱在砌筑完成之后,需要最后我那个构造柱的内腔中关注相应的混凝土材料,以保证其稳定性。但是,在浇筑的过程中,由于混凝土凝固的时间较长,或者是,柱腔中的环境很很多不确定因素。会造成构造柱的烂根问题。主要是由于根部杂物较多,而且,砖渣或者是砂浆等清理不够。久而久之就会出现烂根的现象。

2.5混凝土存在的问题。露筋和麻面是混凝土存在的主要问题。支模前,钢筋骨架上没有绑扎混凝土保护层蛰块,致使钢筋保护层厚度不足,同时,有的钢筋位置不准,造成露筋现象;混凝土浇捣前,模板和马牙搓砖墙未作充分湿润,混凝土中的部分水分,被砖墙和模板吸走,混凝土表面出现麻面和酥松现象。混凝土接搓不好。混凝土浇捣前未清除模内的木屑、碎砖、落地灰等杂物,也不用水清洗,使前后两次浇筑的混凝土不能紧密相接,构造柱的整体性不能保证。

3构造柱施工工艺

3.1施工人员在对构造柱结构进行施工的过程中,首先需要设置小型的砌块形式,然后按照钢筋的绑扎,砌筑的墙体结构以及模板和混凝土的浇筑顺序来进行。在施工的过程中,只要严格地按照施工顺序来进行就可以满足构造柱施工工艺的要求。

3.2墙体结构和构造柱进行连接的过程中应当设置一定的槎,从构造柱的下端开始,对槎口的高度和宽度进行科学地设置。采用先退后进的方式来进行。在柱墙之间应当设置两根直径为6mm左右的拉结筋,其间距要达到施工的标准。3.3构造柱的两侧结构需要紧紧地贴到墙面上,然后支撑结构还需要达到一定的牢固性,这样才能够有效地避免板体出现漏浆的现象。3.4构造柱混凝土的保护层当中,应该设置20mm左右的距离之内,但是不能够低于15mm。混凝土的塌落度也需要受到控制,一般来说,将其设置到50-70mm的状态下为最佳。

4保证构造柱的技术和质量

构造柱范文篇2

关键词:砖砌体构造柱组合墙

1组合砖墙轴心受压承载力

1.1试验与有限元分析结果

砖砌体和钢筋砼构造柱组合墙,在竖向荷载作用下,由于砼柱、砌体的刚度不同和内力重分布的结果,砼柱分担墙体上的荷载。不仅如此,砼柱和圈梁形成一种“弱框架”,其约束作用使墙体横向变形减小,同时该框内的砌体处于双向受压状态。此外,砼柱对提高墙体的受压稳定性也是有利的。

有限元分析结果表明[1],在荷载q作用下,墙体内竖向压应力明显向构造柱扩散;两柱之间的砌体,竖向压应力在中间大,两端小,其应力峰值随构造柱间距的减小而减小;当层高由2.8m增加到3.6m时,构造柱内应力的增加和砌体内应力的减小幅度均在5%以内。因而可知,影响这种墙体受压性能的主要因素是构造柱的间距,房屋屋高的影响甚微。此外,从多层墙体与单层墙体的受力状态来比较,上层墙体对下层墙体的整体工作有利。因此选取单层墙进行试验,将得到构造柱对墙体承载力提高的最小值,以此作为设计依据是偏于安全的。

墙体有限元非线性全过程分析的墙体裂缝的出现、分布和发展与试验结果基本相符;对开裂荷载,有限元分析的计算值与试验值很接近;对极限荷载,试验值较计算值平均高20.4%(见表1)。

表1试验值与有限元分析的计算值

试件编号

№.1

№.2

№.3

№.4

№.5

柱间距(mm)

900

1000

1250

1600

中间1根柱两端无柱

砖强度(MPa)

7.35

6.55

7.35

7.35

7.35

砂浆强度(MPa)

2.79

5.96

2.79

2.95

2.49

砼立方体强度(Mpa)

19.76

20.30

19.76

22.16

19.93

钢筋屈服强度(Mpa)

290

290

290

290

290

开裂荷载

(N/mm2)

试验值

2.30

2.83

2.11

1.92

1.55

计算值

2.45

2.65

2.13

1.96

1.64

极限荷载

(N/mm2)

试验值

3.75

3.90

3.20

2.88

1.99

计算值

3.11

3.15

2.62

2.28

1.79

1.2设计方法

根据有限元非线性分析结果,组合墙与无筋墙体的轴心受压承载力之比,即强度提高系数可按下式确定:

γi=1+2e-0.65s(1)

式中s为沿墙长方向砼构造柱的间距。

按式(1)的计算值与试验值(γ0i)的比较见表2,γi/γ0I的平均比值为0.844,在试验数据有限的情况下,这样取值是稳妥的。

表2γi与γ0i比较

柱间距(m)

γ0I

γI

γi/γ0I

1.8

1.982

1.679

0.847

2.0

1.918

1.602

0.835

2.5

1.705

1.446

0.848

3.2

1.530

1.293

0.845

对于砖砌体和钢筋砼构造柱组合墙的受压承载力,新规范采用了与组合砖砌体受压构件承载力相同的计算模式,但引入强度系数η来反映其差别。按式(2)和式(3)推算的强度提高系数γic与式(1)γi的比较见表3。

表3γic与γi比较

柱间距(m)

γic

γI

γic/γi

1.0

3.139

2.098

1.496

1.5

1.998

1.813

1.102

2.0

1.632

1.602

1.019

2.5

1.453

1.446

1.005

3.0

1.349

1.331

1.104

3.5

1.281

1.245

1.029

4.0

1.234

1.181

1.045

由表3可知,除柱间距为1.0m的情况外,γic与γi的值十分接近。

在有限元非线性分析中,当砼柱间距小于1m后,其计算得到的极限荷载与按组合砖砌体构件公式得到的极限荷载很接近。因而按式(3)计算当s/b<4时取s/b=4。这样式(2)具有与规范中组合砌体受压构件承载力的计算公式的衔接的特点。

在影响这种组合墙受压承载力的诸多因素中,柱间距的影响最为显著。对于中间柱,它对柱每侧砌体的影响长度约为1.2m;对于边柱,其影响长度约为1m。构造柱间距为2m左右时,柱的作用得到充分发挥。构造柱间距大于4m时,它对墙体受压承载力的影响很小。

2组合砖墙的截面抗震承载力

2.1对文献[5]方法的讨论

对于砖砌体和钢筋砼构造柱组合墙,截面抗震承载力的计算公式有多种,但计算结果的差别较大,,主要原因是这些方法所考虑的影响因素不同,且有的方法在概念上不尽合理。

《设置钢筋混凝土构造柱多层砖房抗震技术规程》(JGJ/T13-94)中规定,当隔开间或每开间设置,且墙段中有2根及2根以上构造柱时,可考虑构造柱对截面抗震承载力的有利影响。分析表明,本方法存在以下问题

(1)随着砌体弹性模量的提高,组合墙的截面抗震承载力反而下降;

(2)构造柱砼承担的剪力偏大

(3)构造柱参与墙体的工作系数的取值未考虑构造柱所处位置的影响;

(4)设置构造柱后,组合墙的截面抗震承载力的提高幅度过大。

2.2新规范建议的方法

新规范采用的计算方法较之现有的计算方法作了较大的改进,除考虑砌体受构造柱的约束和作用于墙体上的垂直压应力的影响外,还考虑了构造柱砼和纵向钢筋参与受力,并针对端部构造柱和中部构造柱,引入不同的构造柱砼参与抗剪的工作系数,较为全面,且公式形式合理、概念上也较清楚。

构造柱范文篇3

1.构造柱的作用

(1)它可以加强纵横墙间的连接。

(2)它可以提高砖砌体的抗剪能力,虽然提高的比例不很大,试验表明:能提高砖体的抗剪承载力约为10~30%(提高幅度与墙体的高宽比,竖向压力应力,开洞情况等因素有关)能约束墙体的开裂,对限其裂缝开展,起一定作用。

(3)它与圈梁共同作用,加大了建筑物的整体度,类似框架结构,可称为“弱框架”,对墙体起了约束作用,墙体的四周处于双向双压状态使墙体横向变形减少,改善墙体受压的稳定性能从而提高墙体的承载力。

2.构造柱在构造方面的要求

(1)多层砖房构造柱应符合:最小截面可采用240×180mm,纵筋宜采用4412,箍筋间距不宜大于250mm,且在柱上下端适当加密。7度时超过六层,8度时超过五层和9度时纵筋宜选用4414,箍筋@≯200ram,房屋四角处的构造柱可适当加大截面及配筋。

(2)构造柱与墙体连接应砌成马牙槎并沿墙每隔500mm设2根拉结筋,每边伸人墙体内。

(3)构造柱应与每层圈梁连接,隔层设置圈梁的房屋,应在无圈梁楼层增设配筋砖带;仅在外墙四角设置构造柱时,配筋砖带在外墙上应伸过一个开问:其它情况下,配筋砖带应在外纵墙和相应横墙上接通。配筋砖带的截面高度不小于四皮砖,砂浆强度不低于M5.

(4)构造柱按构造设置,不需单独没置基础。当基础顶部设有圈梁时,构造柱可锚固基础圈梁中。

3.构造柱的质量通病和原因

(1)箍筋、拉接筋设置不足规范规定

墙与构造柱应沿墙高第50cm设置2根水平拉接钢筋连结,每边伸入墙内不应少于1m;在构造柱与圈梁相交的节点处应适当加密柱的箍筋,加密范围在圈梁上、下均不应小于六分之一层高或45cm,箍筋间距不宜大于10cm;构造柱的竖向钢筋可用绑扎接头,其绑扎接头长度1d,一般为35d,在绑扎段内的箍筋间隙不应大于10cm上述几点除墙体拉接筋尚能保证(也不完全是间距50cm)其它如箍筋加密等几乎均最有做到,究其原因是施工管理水平低、技术素质差。

(2)楼层间构造柱轴线错位

在浇注混凝土时不认真调整钢筋骨架,在这层砌筑完毕而进行下层砌筑前的放线时,便发现下层构造柱歪了,因此在这一层又给到正位,便造成了上、下层不贯通,轴线请位的现象。

(3)构造柱“乱根”的原因

因构造柱的施工过程是,砌筑完一层后,往预留的“柱腔”内浇注混凝土。

由于“柱腔”经历了整个一层的砌筑时间,其根部普遍夹有砂浆、砖渣等杂物,又由于混凝土是浇注到圈梁一平,在吊装完楼板,砌筑完墙体后,在构造柱根部出现比楼板低12mm的“柱坑”,在“柱坑”内的杂物很难清除干净,浇注混凝土后便在此处形成“烂根”现象。

(4)构造柱断条

由于构造柱内的箍筋、墙体拉接筋、圈梁钢筋等交织在一起,而且钢筋排放、绑扎又不规则。在圈梁和构造柱同时浇注的过程中,定会阻碍混凝土的下落;在筑施工时有时会不小心在“柱腔”内掉进并卡有砖渣,阻碍混凝土的充填;施工圈梁和构造柱时,所采用的河石又往往都是级配不好的砂漏,如果有大石块存在,也会使构造柱造成“断条”现象。另外,整根柱子一次浇注,如果振捣棒下不击,振捣不周,定会出现“断条”之处。

(5)混凝土存在的问题

1)混凝土接搓不好。混凝土浇捣前未清除摸内的木屑、碎砖、落地灰等杂物,也不用水清洗,使前后两次浇灌的混凝土不能紧密相接,构造柱的整体性不能保证。

2)露筋和麻面。支模前,钢筋骨架上没有绑扎混凝土保护层垫块,到致使钢筋保护层厚度不足,同时,有的钢筋位置不准,造成露筋现象;混凝土浇捣前,模板和马牙搓砖墙未作充分湿润,混凝土中的部分水分,被砖墙和模板吸走,混凝土表面出现麻面和酥松现象。

3)“跑浆”。一方面马牙搓两侧面的砖墙表面不平整,模板与砖墙之间缝隙大,另一方面,模板拼缝不严密,形成“跑浆”。

4)空洞和“断层”。有的浇捣混凝土不使用插入式振动器,盲目采用摇晃钢筋骨架和敲打模板,代替振捣,造成严重质量问题:一是混凝土普遍不密实,马牙搓内混凝土不到位,砖墙与构造柱结合不紧密,拆模后,空洞和“断层”现象多;二是钢筋骨架普遍出现“散架”和移位。

4.保证构造柱的技术和质量

(1)对于嵌在墙体中的钢筋混凝土构造柱,一般是先砌纵横墙,在墙体砌完后形成“柱腔”,即预留构造柱的位置。构造柱随着墙体和圈梁的分层砌筑和浇注,进行分柱段施工。为了,保证构造柱的中心线在同一条重直线上,必须使预留的“柱腔位置准确。因而砌筑时要经常检查构造柱钢筋骨架的垂直度,钢筋骨架吊直校正后立即用墙体拉结筋固定其位置。然后在浇捣混凝土前将构造柱中心线引向圈梁模板或”柱腔“上口上,使钢筋骨架中心与柱中心线对齐。这样才能保证构造柱的正确位置。

(2)设计为马牙搓的构造柱,从每层柱脚开始,砌筑时必须严格执行先退后前的原则,阻保证柱脚为大断面。每一马牙搓的齿高一般约为30cm(5层砖高),齿深不小于6cm.当齿深为12cm时,其上口采用一层进6cm、再一层进12cm的方法,使马牙搓上口死角的混凝土能保证浇捣密实。

(3)钢筋骨架应随分柱段施工面分段梆扎,绑扎点要牢固可靠,避免错位和滑移。竖向搭接头长度z一般为35d.构造柱箍筋应在圈梁上下均不小于1/6层高或45cm高度内,箍筋间距不大于10cm.对于沿墙体每隔500mm设置一道2根06拉结筋的要求,必须严格要求砌筑者随砌随放,并保证放入固定在密实的砂浆水平灰缝中。

(4)严格执行配合比搅拌工艺要求。粗骨料位径宜用2cm下,坍落度宜控制在5-7cm.分段浇注时要按规定留置相应试块。

(5)构造柱混凝土通常是分段浇灌的,一般每层作为一个施工段,柱段的施工高度不宜大于2m.每层柱的底部预留清扫口,便在浇灌前清扫柱模板内的砂浆、木屑、砖碴等杂物。新的混凝土柱段浇捣前,对衔接处的旧混凝土面需铲除松动石子,并用水冲洗。再用构造柱混凝土配合比中的灰砂量配置咸水泥砂浆,铺在旧混凝土面上,厚度为1~2cm,保证新旧混凝土结合有可靠的质量。

构造柱范文篇4

在砌体结构中其主要作用一是和圈梁一起作用形成整体性,增强砌体结构的抗震性能,二是减少、控制墙体的裂缝产生,另外还能增强砌体的强度。在框架结构中其作用是当填充墙长超过2倍层高或开了比较大的洞口,中间没有支撑,纵向刚度就弱了,就要设置构造柱加强,防止墙体开裂。

2构造柱的设置

构造柱应与圈梁有可靠的连接。墙体的高厚比较大如自承重墙或风荷载较大时,可在墙的适当部位设置构造柱,以形成带壁柱的墙体满足高厚比和承载力的要求,此时构造柱的间距不宜大于4M,构造柱沿高度横向支点的距离与此同时与构造柱截面宽度之比不宜大于30,构造柱的配筋应满足水平受力的要求。跨度较大的梁下墙体的厚度受限制时,于梁下设置。受力或稳定性不足的小墙垛也要设置构造柱。

3工程量测算

混凝土工程量:柱高*断面面积*柱根数=(m3);式中:柱高为自柱基上表面至柱顶面高度,或自地圈梁顶面至屋顶圈梁顶面高度。钢筋工程量:一般为主筋为4C12;箍筋为6@200;主筋:主筋长*根数*比重(kg/m)*柱根数=(kg);箍筋:(柱断面周长-8*保护层厚度+2弯钩增加长度)*((柱高-2*保护层厚度)/箍筋间距@)*比重(kg/m)*柱根数=(kg);式中主筋长=柱高+伸入地圈梁长+上下的直钩长+42.5dn(n为层数)。有马牙槎的构造柱:有的构造柱有马牙槎,其宽一般为60mm。其模板面积=(构造柱宽+马牙槎宽)*柱高。混凝土体积=柱底面积*柱高=【(柱截面长+边数*马牙槎/2)*墙厚】*柱高。

4施工工艺

构造柱是在主体框架与砌体工程完成后浇筑的,施工操作工艺比较困难,构造柱砼容易出现蜂窝、露筋及端部砼不密实现象,在施工过程中要做好质量控制。

4.1砌体施工中预留构造柱位置

与构造柱连接处的墙应砌成马牙槎,每一个马牙槎沿高度方向的尺寸不应超过300mm或5皮砖高,马牙槎从每层柱脚开始,应先退后进,进退相差1/4砖。砌体砌块普遍使用蒸压加气砼砌块,加气砼砌块模数高度为250mm高,刚好作为一个马牙。砌筑时第一块砖应为凹入,谓之咬脚,然后按顺序同进同退砌筑马牙槎(若底部采用灰砂砖砌筑,也应视为一个马牙槎凹入咬脚)。不论马牙槎凹入凸出,同时都要用线坠吊垂直,马牙槎砌体界面应放整砖面,砌块切割面应放在里侧,确保马牙槎美观。

4.2钢筋安装及预埋砌体拉结筋

纵向钢筋顶部和底部应锚入混凝土梁或板中。浇筑主体砼时应准确测量构造柱纵筋位置,确保插筋位置准确。为确保钢筋位置准确,可以采用后植筋法预埋构造柱纵筋。若采用后植筋法施工,钻孔深度60mm,植筋前先用吹筒吹净孔内粉尘,然后注满结构胶液或环氧树脂液,再植入钢筋。砌体与混凝土构造柱之间应设置拉结钢筋。拉结钢筋应沿砌筑全高设置,拉结筋间隔不应超过600mm设置2Ф6拉结筋。蒸压加气砼砌体的拉结筋埋入深度宜为700mm,且拉结筋末端应加弯勾,放置拉结钢筋的砌体水平灰缝厚度应比拉结钢筋直径大4mm。

4.3模板安装与混凝土浇筑

构造柱范文篇5

由于板柱结构(无抗震墙者)抗震性能较差,北京市建筑设计院1992年出版的《结构专业技术措施》中规定,在抗震设防烈度为6度的地区,层数不能超过四层,房屋总高不能超过16m,7度区为三层及12m,8度区为二层及8m。(以上指未设抗震墙的板柱结构)新的抗震规范GB50011-2001对于板柱结构作了比较严格的规定,例如,对于适用最大高度,6、7、8度区分别为40,35,30米;抗震墙应能承担全部地震作用,板柱部分能额外承担全部地震作用的20%;沿两个主轴方向通过柱截面的板底连续钢筋,有数量的要求(抗震规范6.6.9式)等等。

在抗震规范表6.1.1,现浇钢筋混凝土房屋适用的最大高度中,有板柱-抗震墙结构,但是没有不设抗震墙的板柱结构,它的意思是,不推荐采用不设抗震墙的板柱结构。

此外,目前有一种说法:抗震规范对于各种结构体系的房屋,都有一个“限制高度”,这是一个误解。的确,包括过去的抗震规范都提出了“适用的最大高度”,但这并不是“限制高度”,它的意思是,在使用该规范进行设计,并遵守规范的计算、构造等一系列要求,各种体系在各设防烈度时,该规范的适用范围,是多少高度。例如,在8度区,框架-抗震墙按该规范设计时,适用到100m高度。如果建筑物高度需要高于100m,就需采取比规范内容更严格的措施(包括计算与构造),并经过规定的审查,只要符合要求,是可以超过抗震规范表6.1.1中的高度的。总之,并无“限高”的说法。如果限制高度,只许建多少米,岂不是限制了科技的进步?

新抗震规范对于板柱-抗震墙的适用高度,规定得较低,这对于一般的高层建筑,是远远不够用的。是否可以建得更高一些,可以根据从震害分析着手:

美国阿拉斯加四季公寓的倒塌,往往被认为是板柱-抗震墙性能不好的一个例证。但从林同炎事务所的分析报告来看,该工程的设计按100%地震力由核心筒来承担,在承载力方面也是足够的,只因施工单位在钢筋接头上未按规定施工,才造成严重破坏。

阿尔及利亚的倒塌事故,是由于该工程为纯板柱结构(楼板为双向密勒,无梁),层高较高,跨度也较大。此种结构不能抵抗地震是不足为奇的,也不提倡此类结构。

综上所述,板柱结构的破坏主要是:

①.未布置一定数量的抗震墙,因而地震作用全由板柱框架承受。由于未布置抗震墙,此种结构的节点刚度又相对较弱,因此侧向位移常较大。由于它延性差,抗弯和变形能力很弱,再加上P-⊿效应,在强震时造成严重破坏甚至倒塌是很可能的。

②.板柱节点处,楼板抗冲切能力差。在柱子周边板内,未设置抗冲切的钢筋,或设置得不恰当,节点处不平衡弯矩对楼板造成的附加剪应力未适当考虑,柱周边板的厚度不够,使抗剪箍筋不易充分发挥作用,或柱子纵筋在节点处滑移。

由于这些原因,在强震时使墙板产生冲切破坏,随之楼板坠落,造成巨大损失。明白了板柱的破坏原因,采取相应有效的措施之后,板柱-抗震墙结构的抗震性能,将能有很大的提高,其设计强度也将提高。

2.板柱-抗震墙的设计建议

2.1结构布置

2.1.1应布置足够数量的抗震墙(包括核心筒),墙的位置宜避免偏心。

2.1.2在房屋周边,应布置边梁,以形成周边框架。

2.1.3抗震墙的厚度不应小于180mm,且不应小于层高的1/20,底部加强部位的抗震墙厚度不应小于200mm,且不应小于层高的1/16(可取层高及无支长度二者中较小值计算)。

2.1.4单片抗震墙的两端应设置端柱,楼层处应设置暗梁。筒体墙的端部应设置端柱或暗柱,楼层处应设置暗梁。

2.1.5抗震等级的选用:可比抗震规范表6.1.1中之“板柱-抗震墙结构”一栏所规定者,提高一级,但原为一级者,不必提高(房屋高度不超过抗震规范中的规定时,抗震等级不必提高)。

2.2设计计算

2.2.1抗震墙(核心筒)应承担结构的全部地震作用,各层梁柱框架应能承担不少于各层全部地震作用的20%,也即,墙与框架承担的地震作用总和为120%的全部地震作用。板柱框架不考虑承受地震作用,但仍应按抗震构造。

2.2.2当房屋高度超过抗震规范表6.1.1之规定值时,其楼层的最大弹性层间位移角限值应取为1/1000。

2.2.3楼板在柱周边临界截面的冲切应力,宜控制在较低水平,一般不宜超过允许值0.7ft的75%。

2.2.4当地震作用能导致柱上板带的支座弯矩反号时,应验算图中虚线截面的冲切承载力。

2.2.5板柱结构在地震作用下按等代框架分析时,其等代梁的宽度采用:

①.框架方向跨度的3/4

②.垂直于等代框架方向柱距的1/2两者中的小值。

2.2.6沿两个主轴方向通过柱截面的板底连续钢筋的总截面面积,应符合下式要求:

AS≥NG/fy

式中,AS——板底连续钢筋总截面面积。可按每方向1/2AS配置,此钢筋应位于柱截面范围内。

NG——各层楼板传到柱子的轴压力,取设计值

fy——该连续钢筋的抗拉强度设计值。

2.2.7应考虑由于板柱节点处的不平衡弯矩引起的附加剪应力。

2.3构造

2.3.18度时宜采用有托板的板柱节点,托板根部的厚度(包括板厚)不宜小于柱纵筋直径的16倍。托板的边长不宜小于4倍板厚及截面相映边长之和。7度时也宜尽可能设置托板。

2.3.2宜在柱上板带中设置暗梁。暗梁宽度可取柱宽及柱两侧各1.5倍板厚。暗梁支座上部钢筋面积应不小于柱上板带钢筋面积的50%(此钢筋可作为柱上板带负弯矩钢筋的一部分),暗梁下部钢筋不宜少于上部钢筋的1/2。

暗梁箍筋的配置:当计算不需要时,箍筋直径不小于8mm,间距≤3/4h0,肢距≤2h0;当计算需要时,箍筋直径按计算确定,但不小于10mm,间距≤0.5h0,肢距≤1.5h0,h0为板截面有效高度(不包括托板厚度)。

2.3.3柱上板带支座处暗梁的上部钢筋,至少1/4应在跨度方向通长。

2.3.4尽可能采用高效能的“抗剪栓钉”,以提高板柱结构的抗冲切性能。

构造柱范文篇6

1构造柱质量通病的几种表现

1.1构造柱的设置不合理

(1)设置部位和数量不符合规范要求,出现漏设和少设现象。如变形缝两侧的墙体,未能视为外墙,漏设构造往。

(2)埋设深度不符合要求。构造柱伸入室外地面不到500ram或未锚入浅于500mm的基础圈梁内。

(3)部分施工图对构造柱仅以涂阴影的示意方式表示位置,但对构造柱的编号、断面尺寸和配筋未作具体规定。

1.2构造柱的施工不规范

1.2.1钢筋

(1)纵向钢筋支立不稳定。东偏西斜、位置不正、错位现象明显,纵向钢筋随意搭接。有的搭接松散,有的搭接长度小于规定的35d的要求(d为纵向钢筋直径)。

(2)纵向钢筋根部反复弯折,钢筋骨架支立后,未作固定支撑,施工中不断碰撞,根部反复弯折,留下明显伤痕,强度降低,严重者出现折断。

(3)规范规定的箍筋加密部位未加密。箍筋绑扎不牢固,松滑现象严重,造成箍筋间距有大有小,不符合规范要求;马牙槎内少放或漏放拉结筋。

1.2.2马牙槎

(1)马牙槎两侧面的砖墙,表面凹凸不平,直接影响模板不能与砖墙密合。

(2)马牙槎留设位置不准,造成构造柱纵向横向的中心线(轴线)不准。

(3)马牙槎留置方法不符合要求,未按规定分别进行退与进,有个别部位甚至不设马牙搓,盲目留直槎。在建筑标高±0.000以下的构造柱部位砖墙,不留马牙槎现象更为常见。

1.2.3混凝土

(1)夹渣和“烂根”。混凝土浇捣前,未将构造柱底部松动石子、残留砂浆、碎砖等废物彻底清除,形成夹渣和烂根。

(2)露筋和麻面。支模前,钢筋骨架上没有设置混凝土保护层垫块。同时,有的钢筋位置不准,造成露筋现象;混凝土浇捣前,模板和马牙槎砖墙未作充分洒水湿润,混凝土中的部分水分被砖墙和模板吸走,造成水泥与水的化学反应不能充分进行,降低混凝土的强度,表面出现麻面和酥松现象。

(3)“跑浆”。一方面马牙槎两侧面的砖墙表面不平整,模板与砖墙之间缝隙大,另~方面模板拼缝不严密,形成“跑浆”。

(4)空洞和“断层”。①浇捣混凝土不使用插入式振动器,盲目采取摇晃钢筋骨架和敲打模板代替振捣,造成严重质量问题;②混凝土普遍不密实,马牙槎内混凝土不到位,砖墙与构造柱组合不紧密,拆模后,空洞和“断层”现象多;③钢筋骨架普遍出珊‘散架”和移位。

(5)冻坏。冬季施工条件下未采取任何技术保温措施,盲目浇捣混凝土,结果出现构造柱普遍冻坏,造成混凝土强度最终强度降低。

2质量通病的防范措施

2.1设计措施

2.1.1完善设置部位

针对多层混合结构的工程,在平面上,应按照层数多少和抗震烈度,在外墙四角,楼(电)梯间横墙与外墙交接处,错层部位横墙与外纵墙交接处,较大洞口两侧、伸缩缝两侧等部位,按照《抗震设计规范》的规定,分别设置构造柱,确保不缺不漏,并与每层圈梁有可靠的连接。竖向构造柱应沿整个建筑物高度对正贯通,形成一个类似“小框架”的空间结构,这样,才能保证圈梁与构造柱共同工作,达到增强抗震的效果。

2.1.2满足构造要求

(1)烈度为Ⅶ度的6层混合结构的建筑工程,构造柱截面最小为240mmx120mm。纵向宜用4根直径12mm的~级钢筋,箍筋直径最小为6ram,间距一般为200mm。

(2)烈度为Ⅶ度、层数超过6层;烈度为Ⅷ度、层教超过5层和烈度为Ⅸ度时,纵向宜用4根直径14ram钢筋,箍筋问距不应大于200ram,同时四只墙角的构造柱,可适当加大截面及配筋。

(3)对于箍筋间距,在上部1/6柱高和下部1/6柱高且不小于500mm范围内,箍筋加密为100mm的间距(包括构造柱的柱基础部位)。

(4)构造柱应伸入到室外地面以下500mm或锚入浅于500mm的基础圈粱内。

2.2施工措施

2.2.1严格控制轴线

马牙槎砌筑前,应按照砖墙轴线拉通线定位;拉结筋应与钢筋骨架绑扎牢固,不使钢筋骨架歪斜移位;混凝土浇捣前,应将砖墙轴线垂直引至圈粱模板和构造柱模板上。核查钢筋骨架中心线,确保钢筋骨架、构造柱和砖墙三者中心线(轴线)满足施工图要求。

2.2.2正确留设马牙槎

马牙槎位置确保正确,马牙槎砌筑,先退后进,沿砖墙高度每隔5层砖退或进且槽深不少于60ram。沿马牙槎高度,砖墙两边每隔500ram设置一道2根直径6ram拉结筋,每边伸入墙内不少于1000mm,拉结筋的水平灰缝砂浆应有足够强度并必须饱满,确保拉结牢固,见图1、图2。

2.2.3正确绑扎钢筋

钢筋骨架支立后要加设临时支撑,确保稳固,不偏不斜,纵向钢筋搭接长度应达到35d(d为纵向钢筋直径),并且应在圈梁上面绑扎搭接。严格保证箍筋加密范围的箍筋间距,确保箍筋绑扎牢固,绑扎好控制混凝土内钢筋保护层的垫块。

2.2.4牢固支设模板

首先检查构造柱马牙槎两侧墙面平整度。若发现局部平整度差,可采取局部砂浆刮糙后,再支模,确保模板紧贴墙面;模板与墙面马牙槎的搭接宽度以50~80mm为宜,宽度过小.直接影响下浆效果;模板立设应牢固,特别要确保模板的刚度,以防模板弯曲;底部一侧模板应预留清扫口,清理结束,混凝土浇捣前,再行封闭。构造柱底部、钢筋骨架和马牙槎内的残留砂浆、碎砖垃圾等落物和底部松动石子,应彻底清理,并应冲洗于净;浇捣混凝土之前,沿模板和马牙槎范围的砖墙,自上而下充分浇水,确保模板和砖墙充分湿润。

2.2.5认真浇注混凝土

(1)构造柱底部在清理、湿润后,先铺厚度l0~20ram的水泥砂浆,保证上下部构件接合牢固;严格控制混凝土配合比,并计量准确。

(2)混凝土坍落度应控制在5~7cm为宜;房屋层高在2.8m左右,一根构造柱可一次浇捣完毕,同时应做到与圈梁同步浇捣;混凝土应分层用插入式振动器振捣,严禁摇晃钢筋骨架和敲打模板;振动器的振棒应避免碰撞钢筋,以防墙体松动和钢筋移位变形。

(3)应按规定留设混凝土试块,做好混凝土养护工作。

(4)进入冬季施工期,一般不宜浇捣混凝土。如果要施工,必须提出技术措施(包括掺加抗冻剂,采用较高标号普通水泥,增加水泥用量等),与监理单位协商并经其同意后才能施工。

构造柱范文篇7

关键词:抗震砌体设计

1前言

我国位于四川西部的南北地震构造带,其地震的频度高、强度大。我国大陆地震活动目前正处于本世纪以来的第五个活跃期。四川已经缺震7级以上地震近23年,缺震6级以上地震近10年。目前,四川的地震形势十分严峻。

地震造成人民生命财产损失的主要原因,是由地震引起的建筑物(绝大部分是砖房)和工程设施的破坏,以及次生灾害。国内外历次地震的经验告诉我们:抓好抗震设防地区建设工程的抗震设计,是减轻未来地震灾害损失最积极、最有效和最根本的措施。

据文献[4]记载,全国城镇民用建筑中以砖砌体作为墙体材料的占90%以上;据有关部门近两年对四川省的16个城镇各类公建房屋统计显示,多层砖房(含底框砖房)所占(面积)比例达89%;筠连县城的这类房屋,预计所占比例在90%以上。所以,砖房是我国房屋建筑的主体。同时,砖房在历次地震中的震害又是严重的。据对1976年我国唐山7.8级地震震害统计,砖房是100%破坏,其中85%以上倒塌。砖房之所以地震破坏比例如此大,主要原因是砖砌体是一种脆性结构,其抗拉和抗剪能力均低,在强烈地震作用下,砖结构易于发生脆性的剪切破坏,从而导致房屋的破坏和倒塌。如果在多层砖房的设计中再过度追求大开间、大门洞、大悬挑,甚至通窗效果等,必将大大削弱房屋的抗震能力

2目前多层砖房抗震设计中存在的主要问题

(1)城市住宅砖房建设中,房屋超高或超层时有发生,尤其是底层为“家带店”的砖房,高度超过限值1m以上。

(2)在“综合楼”砖房中,底层或顶层有采用“混杂”结构体系的,即为满足部分大空间需要,在底层或顶层局部采用钢筋砼内框架结构。有的仅将构造柱和圈梁局部加大,当作框架结构。

(3)住宅砖房中为追求大客厅,布置大开间和大门洞,有的大门洞间墙宽仅有240mm,并将阳台作成大悬挑(悬挑长度大于2m)延扩客厅面积;部分“局部尺寸”不满足要求时,有的不采取加强措施,有的采用增大截面及配筋的构造柱替代砖墙肢;住宅砖房中限于场地或“造型”,布置成复杂平面,或纵、横墙沿平面布置多数不能对齐,或墙体沿竖向布置上下不连续等等。

(4)多层砖房抗震设计中,未作抗震承载力计算的占多数,加之缺乏工程经验,使相近的多层砖房采用的砌体强度等级相距甚远。

(5)多层砖房抗震设计中,所采取的抗震措施区别较大。构造柱和圈梁的设置:多数设计富余较大,部分设计设置不足(含大洞口两侧未设构造柱);抗震连接措施:多数设计不完整或未交待清楚,有的设计还采用“一本图集打天下”的作法,不管具体作法和适用与否,全包在“图集”身上。

3多层砖房抗震设计意见

我国建筑抗震设防的目标是三个水准。多层砖房可通过一阶段设计达到下列要求:满足抗震承载力要求,房屋可“小震不裂”;满足结构体系、平立面布置和抗震措施等要求,房屋可符合“中震可修”;满足房屋高度和层数及构造柱和圈梁等要求,房屋可做到“大震不倒”。

确保多层砖房抗震设计质量,主要有以下三个方面的内容。

3.1抗震概念设计

3.1.1房屋的高度和层数

实心粘土砖的多层砖房,墙厚不小于240mm,总层数不应超过文献[1]表5.1.2的规定,总高度不宜超过表5.1.2的规定,高度允许稍有选择的范围应不大于0.5m。需要特别指明的是,表5.1.2是适用于横墙较多的多层砖房。横墙较多是指同一层内开间大于4.2m的房间占该层总面积的1/4以内。对于医院、教学楼等横墙较少的多层砖房总高度,应比表5.1.2的规定降低3m,层数相应减少一层;对横墙很少的多层砖房,应根据具体情况,在横墙较少的基础上,再适当降低总高度和减少层数;对抗震横墙最大间距超过文献[1]表5.1.5要求的多层砖房,已不属于侧力作用下的刚性房屋,不能按多层砖房设计,应按空旷房屋进行抗震设计。多层砖房总高度与总宽度的最大比值,不应超过文献[1]表5.1.3的要求。

房屋的总高度指室外地面到檐口的高度,半地下室可从地下室室内地面算起,全地下室和嵌固条件好的半地下室(符合文献[2]第250页半地下室在地面下嵌固的条件)可从室外地面算起;顶层利用阁楼坡屋面设跃层时应算到山尖墙的半高处。多层砖房的层高不宜超过4m。房屋总宽度的确定,可分下列四种情况:对于规则平面,可按房屋的总体宽度计算,不考虑平面上局部凸出或凹进;对于凸出或凹进的较规则平面,房屋宽度可按加权平均值计算或近似取平面面积除以长度;对悬挑单边走廊或单边由外柱承重的走廊房屋,房屋宽度不包括走廊部分的宽度;对设有外墙的单面走廊房屋,房屋宽度可以包括1/2走廊部分的宽度。

3.1.2结构体系

应优先采用横墙承重或纵横墙共同承重的结构体系。同一结构单元中应采用相同的结构类型,不应采用砖房与底框砖房或内框架砖房或框架结构等“混杂”的结构类型。墙体布置应满足地震作用有合理的传递途径。纵横向应具有合理的刚度和强度分布,应避免因局部削弱或突变造成薄弱部位,产生应力集中或塑性变形集中;对可能出现的薄弱部位,应采取措施提高其抗震能力。

3.1.3平、立面布置

建筑的平面布置和抗侧力结构的平面布置宜规则、对称,平面形状应具有良好的整体作用。纵、横墙沿平面布置不能对齐的墙体较少,楼梯间不宜设在房屋的尽端和转角处;建筑的立面和竖向剖面力求规则,结构的侧向刚度宜均匀变化,墙体沿竖向布置上下应连续,避免刚度突变;竖向抗侧力结构的截面和材料强度等级自下而上宜逐渐减小,避免抗侧力构件的承载力突变。8度和9度时,当房屋的立面高差较大、错层较大和质量及刚度截然不同时,宜采用防震缝将结构分割成平面和体形规则的独立单元。房屋的顶层不宜设置大会议室、舞厅等空旷大房间,房屋的底层不宜设铺面等通敞开大门洞。当确需设置时,应采取弥补薄弱部位的加强型措施或进行专门研究。

多层砖房门窗间墙的局部尺寸宜符合文献[1]表5.1.6的要求。当部分的局部尺寸不满足要求时,如该部位已设构造柱,可对已设构造柱增大截面及配筋;如该部位原未设构造柱,则可用增设构造柱来满足要求。房屋转角处的门窗间墙承受双向侧向应力,其局部尺寸应不小于1m;其余外纵墙的门窗间墙局部尺寸部分不满足1m要求时,其限值可放宽到0.8m;内墙门间墙局部尺寸不满足要求时,可用设构造柱来满足。

值得指出的是,近几年在多层砖房的抗震设计中,较普遍存在为了客厅开大门洞,不惜牺牲门间墙宽度的现象。这是个对局部尺寸认识不足的概念设计问题,一是认为部分不满足局部尺寸要求关系不大;二是认为只要用扩大了的构造柱替代门间墙就没有问题了,在设计中将构造柱当作“灵丹妙药”到处使用。应当明白,砖砌体和砼的变形模量差别很大,虽然砖砌体与构造柱和圈梁可以协同工作,增加房屋的延性,但是它们不能同时段进入工作状态,在“中震”阶段的抗震承载力主要由砖砌体承担。因此,砌体结构中过多配置砼的杆系构件,其作用是有限的。

3.2抗震计算

抗震计算是抗震设计的重要组成部分,是保证满足抗震承载力的基础。多层砖房的抗震计算,可采用底部剪力法。对平面不规则和竖向不规则的多层砖房,宜采用考虑地震扭转影响的分析程序。目前,多层砖房的抗震设计中,不作抗震验算是较普遍的现象,这样就必然存在一是不安全二是浪费的问题。多层砖房的抗震计算比较容易,文献[2]中有较完整的计算实例,可供手算时参考。笔者经对7度区若干幢规则的7层住宅砖房抗震计算分析显示,底层所用混合砂浆的强度等级不能低于M10。

3.3抗震措施

保障多层砖房的抗震措施,是多层砖房“大震不倒”和不作“二阶段设计”的关键。多层砖房的抗震措施内容较多,概括起来,可分为三部分。

3.3.1构造柱和圈梁的设置

对横墙较多的多层砖房,应按文献[1]表5.3.1的要求设置构造柱;对横墙较少或横墙很少的多层砖房,应根据房屋增加一层或二层后的层数,按表5.3.1的要求设置构造柱。表中的“较大洞口”,设计中可界定为:门洞宽不小于2m和窗洞宽不小于2.3m;“大房间”可界定为:层高超过3.6m或长度大于7.2m。

对横墙承重或纵横墙共同承重的装配式钢筋砼楼、屋盖或木楼、屋盖的多层砖房,应按文献[1]表5.3.5的要求设置圈梁;对于隔开间或每开间设置构造柱的多层砖房,应沿设有构造柱的横墙及内、外纵墙在每层楼盖和屋盖处均设置闭合的圈梁。

值得注意的是,圈梁的截面和配筋不宜过大,通常按文献[1]第5.3.6条要求的数值或提高一个等级采用就可以了,不宜无限提高。同理,圈梁的作用也是有限的。

3.3.2构件间的连接措施

多层砖房各构件间的抗震构造连接是多层砖房抗震的关键。抗震构造连接的部位较多,重要部位的连接措施有下列几项。

a)构造柱与楼、屋盖连接

当为装配式楼、屋盖时,构造柱应与每层圈梁连接(多层砖房宜每层设圈梁);当为现浇楼、屋盖时,在楼、屋盖处设240mm×120mm拉梁(配4φ10纵筋)与构造柱连接。

b)构造柱与砖墙连接

构造柱与砖墙连接处应砌成马牙槎,并沿墙高每隔500mm设2φ6拉结钢筋,每边伸入墙内不小于1m。

c)墙与墙的连接

7度时层高超过3.6m或长度大于7.2m的大房间,以及8度和9度时,外墙转角及内外墙交接处,当未设构造柱时,应沿墙高每隔500mm设2φ6拉结钢筋,每边伸入墙内不小于1m。

d)屋顶间的连接

突出屋面的楼梯间等,构造柱应从下一层伸到屋顶间顶部,并与顶部圈梁连接。屋顶间的构造柱与砖墙以及砖墙与砖墙的连接,可按上述抗震措施采取。

(5)后砌体的连接

后砌的非承重砌体隔墙,应沿墙高每隔500mm设2φ6拉结钢筋与承重墙连接,每边伸入墙内不小于0.5m。8度和9度时,长度大于5.1m的后砌墙顶,应与楼、屋面板或梁连接。

(6)栏板的连接

砖砌栏板应配水平钢筋,且压顶卧梁应与砼立柱相连,压顶卧梁宜锚入房屋的主体构造柱。

(7)构造柱底端连接

构造柱可不单独设基础(承重构造柱除外),但应伸入室外地面下500mm,或锚入室外地面下不小于300mm的地圈梁。

3.3.3悬臂构件的连接

(1)女儿墙的稳定措施

6~8度时,240mm厚无锚固女儿墙(非出入口处)的高度不宜超过0.5m,当超过时,女儿墙应按抗震构造图集要求采取稳定措施。女儿墙的计算高度可从屋盖的圈梁顶面算起,当屋面板周边与女儿墙有钢筋拉结时,计算高度可从板面算起。

(2)悬挑构件

悬臂阳台挑梁的最大外挑长度不宜大于1.8m,不应大于2m。

不应采用墙中悬挑式踏步或竖肋插入墙体的楼梯。

4结语

多层砖房在城乡建设中量大面广,又是人类活动和生活的主要场所。因此,加强多层砖房抗震设计,重视多层砖房抗震设计中的三个环节,就能使多层砖房的地震破坏降低到最低限度。

参考文献

1建筑抗震设计规范(GBJ11—89)及1993年局部修订.中国建筑工业出版社,1989辽宁科学技术出版社,1993

2建筑结构设计手册丛书编委会.建筑抗震设计手册.中国建筑工业出版社,1994

3四川省行业技术规定.四川省新建工程抗震设计评定标准(试行).1997

构造柱范文篇8

关键词:烟站建设;结构设计;地基;构造柱;框架结构

作为烟站项目建设的基础组成部分,结构设计是直接影响并左右建筑质量的重要环节。由于结构设计是一个深度较深、宽度较广的领域,其对于设计者的专业技能水平,设计理解能力以及设计经验都具有较高的要求。高质量的结构设计不但能够为居住者提供更加便利与舒适的居住环境,同时对于提高建筑质量整体水平以及安全性具有重要作用。

1地基与基础设计中存在的问题

常规房屋结构设计中最为基础的部分就是地基的结构设计,地基的基础设计主要牵扯到基础类型的选择及上部结构的设计等内容,由于这些内容往往都与设计开展前的勘测工作具有密切的联系[1],设计人员必须充分了解勘测情况后才能开展设计工作,在设计中常常出现的结构设计问题主要包括以下方面:1.1盲目依据地基承载力地基承载力只能够在一定程度内反映房屋地基的最低限度的承载能力,但是这种承载能力是在稳定、科学的范畴内进行数据计算的,只能够提供一定的数据理论依据,却不能够成为设计的基本依据。要想提升结构设计的水平与安全质量,就必须结合实际工况全面考虑,而不是片面依据地基承载力的数值计算。1.2没有充分运用换土垫层法换土垫层法是指在处理软地基时使用换土垫层的方法进行厚度与宽度的计算,其中最为重要的环节就是对软弱下卧层进行充分的演算,这也是设计人员容易忽视的一个问题。一旦忽视了演算工作,就极易出现经验主义错误,使用砂石垫层不但无法提高承载力,甚至还会出现承载力不均衡的情况,反而会削减承载质量,降低安全系数[2]。1.3载荷值计算存在偏差对于民用建筑的各个结构的载荷值的计算都必须要结合实际情况进行计算,不但要获得现行荷载规范,还要根据国家相关技术标准乘以一定的分项系数,如果在计算中出现偏差,则会导致载荷值的计算有误,从而无法对整个结构设计的优化产生作用,有时还会出现严重的设计安全隐患。

2构造柱与框架结构设计中存在的问题

在针对一些砖混结构的房屋进行构造柱设计时(例如:水泵房、倒班宿舍),一些没有经验的设计师往往会将构造柱作为称重柱使用,其结果往往就会导致墙体裂缝出现,从而降低了结构的抗震性能,同时还会导致以下几个方面问题的出现。如果直接将构造柱作为承重柱进行使用,由于构造柱本身并不具有承重柱的称重能力,其势必会导致构造柱承受较大的压力,过程中不但会直接缩短构造柱的寿命,同时还会降低原有设计结构中对于墙体抗剪切能力的协助,当出现地震等地质灾害时,更会出现应力集中的情况,轻则出现构造柱寿命降低,重则出现构造柱裂缝甚至断裂[3]。构造柱在常规设计中主要生根于地圈之中,这样一来并不会为构造柱另设其他的基础,如果强行将构造柱当做承重柱使用,那么构造柱设计过程中底部的基础也就达不到承重柱的要求,所以就在基础部门出现冲切甚至局部压裂等情况,严重的还会出现裂缝和垮塌。为了解决类似的情况,不属于称重柱的构造柱在位于大梁之下时也按照承重柱进行结构设计,以稳定房屋结构,提高承重能力。承重柱截面高度设计存在问题,当承重柱的截面高度设计不符合科学计算要求出现高度较小的情况时,结构上就会出现梁柱线刚度比例失衡的情况,从而出现转轴心受压计算的情况。经过受力分析就可以发现,这种结构设计存在着严重的质量安全隐患,不但梁柱间的刚接部分无法发挥其全部的效果,还会出现柱子附近水平裂缝的衍生,无论从抗震能力还是从建筑结构的整体质量稳定性方面进行分析,该设计都存在严重的结构设计隐患,如图1所示[4]。框架结构设计中存在的问题,框架结构出现问题的情况往往都是由于设计人员在设计过程中仅仅关注了横向框架的安全设计,忽视了纵向框架的设计。这种情况的发生主要是由于设计人员认为横向框架的安全设计对于房屋的抗震能力具有较强的作用,但是却忽视了抗震设计中连续梁的设计,导致两者出现配置不匹配的情况。为了杜绝类似情况的出现,最好的办法还是充分考虑地震的纵向力的基础上进行框架的全面构造设计。楼板设计中存在的问题。楼板设计中常见的问题较多,其出现原因大多是设计人员偷懒图省事没有结合实际施工需要对受力状态进行全面分析,导致配筋比不符合受力标准,出现相应的安全隐患。为了解决楼板设计中的问题,就必须加强设计人员的专业素质水平,完善其设计安全意识,另外,还需要根据设计的具体需求情况,优化楼板承受线荷载时的设计。这个问题的出现主要是由于楼板上部在正常使用时经常会安放一些重物,所以线载荷必须要经过计算成等效均布载荷后才能够进行相应的配筋计算。

3结束语

综上所述,烟站结构设计本身就属于一个牵扯面较广的系统工程,其对于设计人员的观察能力,分析计算能力以及总结修改能力都具有较高的要求,任何设计都必须依附于基础的数据开展,认真负责并按照科学合理的设计规则开展设计工作,才能够在根本上提高烟站结构设计整体水平,最终为促进烟草行业的进步与发展做出相应的贡献。

参考文献:

[1]苑绍东.房屋建筑裂缝控制的研究及应用[D].青岛理工大学,2016.

[2]杨昇瑜.建筑结构设计阶段工程造价控制的研究[D].华南理工大学,2012.

[3]陈久鑫.基于本体的建筑结构设计案例表示与检索研究[D].大连理工大学,2013.

构造柱范文篇9

设计人员在建筑工程的设计时候,往往缺乏实际施工经验,并且在通常情况下对于高层建筑物的实际过程中,设计人员么诶有地质方面较为详细的勘察报告,是根据建筑单位的报告获取设计过程中所需要的基础地质资料,并由此来设计建筑物的施工图纸。因为在报告过程中容易因为表述不清或者理解差异而使设计人员所最终完成的图纸与实际情况有所偏差,尤其是基础细节方面的问题,更容易出现错误。所以在设计师进行基础设计的过程中,一定要尽量获得最为准确的地质勘探报告,并且根据实际情况进行实地地质勘查,并结合建筑物多方面案的因素进行上层结构设计,若仅凭一方的资料对设计来说易造成不准确的现象,同时也不安全,在进行设计的时候,我们不能够自多主张的把耐力的容许值取小一些,认为这样就可以了。通常情况下,我们会选用换土垫层来对软弱地基进行处理。但是在实际操作中我们往往不进行设计,仅仅只是凭借自己的所积累下来的实际经验进行换土垫层相关操作。有些情况下,建筑物的设计人员往往对软弱地基的危害性认识不够全面,片面相信自己积累经验用垫砂层对建筑工程的承重力进行加强,并且没有详细的计算出来砂垫层需要的宽度与厚度,这种做法不但不安全还不经济。设计师在设计民用建筑时,不按照规定计算梁和柱的基础负荷值,造成梁、柱的承载能力不准确。

2关于构造柱在砖混房屋中承担承重作用的细节设计

设计砖混结构的建筑时,设计的构造柱既有利于对墙体抗震的能力有所加强,并且能够将建筑物的圈梁与构造柱较为紧密的联系在一起,这样可以起到对砌体的约束作用,使用这种方法不但可以有效的防止或者限制墙体中裂缝的进一步加大,并且可以维持墙体的竖向承重能力,从而进一步的提高整个砖混结构建筑的抗震能力。在现在房屋的结构设计过程中,很多人将构造柱当做承重柱来进行设计,采用这种方法将会产生以下几个方面的问题。在构造柱作为建筑整体承重墙之后,并将出现构造柱受理提前的现象,如果使用了这种做法将会使构造柱拥有的约束以及拉结的作用效果直接降低。如果在遭遇地震等意外发生的过程时,构造柱将会被首先破坏掉,这主要是由于产生在地震产生的过程中构造柱的部位势必成为建筑物整体应力集中的原因之一。在这样的情况下,构造柱如果没有办法起到其应发挥的有效作用,必会使自身成为整个建筑物最为脆弱的一部分,导致建筑物的质量安全出现严重威胁。建筑构造柱一般是由砖混结构所构成的并且由地梁部分自上延伸,但是因为没有为构造物另外建造其他基础设施,所以在构造柱如果又承担承重柱的作用后,在构造柱底部的基础设施的承压能力将不能达到要求。构造柱的基础一旦产生冲切与局部的承载加强就会产生裂纹。所以我们在承重的大梁下面的柱子一定要严格按照承重需求进行设计。当房屋梁所承载力量或者跨度都比较小的情况下,构造柱就可以设置在梁的下面,但在这个时候就可以不必考虑构造柱的作用,并以此为基础来计算墙体部分的承压能力和抗弯能力。如果测算之后可以满足设置的条件才可以在房梁下合理设置构造柱。

3承重截面的高度设计细节的问题

通常来说,在被设定为六度抗震的设防区域内的建筑物设计往往会面临着建筑物承重柱截面高度大小的设计方面的问题。一部分设计师为了在进行受力分析的过程中简化过程,就故意把承重柱的截面高度在设计过程中设计的比较小,但这样会造成梁柱线刚度承载过大。采用这种方法虽然可以比较容易的进行结构受力分析,但是如果这样做将会给房屋的整体结构带来隐患。由于采用这种方法是以将梁柱间一定会存在相互的刚结作用力忽略不计的情况下,也就是说没有将建筑物承重柱对于房梁所产生约束弯矩考虑在内。因为建筑柱截面钢筋都相应比较小,所以房屋的结构如果收到外力,将使承重柱的抗弯能力显著不足,这就导致构造柱将会在梁底的附近出现很多裂缝,最终将会产生塑性铰。一般来讲,柱子在使用的过程中就会有带铰工作的事情发生。但是如果长期不管的话将会影响到房屋在使用过程中的耐久能力,也将会使得房屋的住户产生恐惧心理。当房屋遇到地震等强自然灾害的情况下,将面临着倒塌的风险,这对于居民人身财产安全都构成了极大的威胁,并且违反我国建筑物抗震规范中有关于强柱弱梁的相关基本原则。在建筑物的框架设计中,如果仅仅关注了横向框架设计而不重视建筑纵向的框架,这种情况也违反了另外的建筑抗震规范条例的要求。即为在设计建筑物的过程中,如果产生了水平的地震作用,就必须要将两个建筑主轴分别得进行相应计算,各方面所受的地震应力应该由其发生方向抗侧力的构件来对其进行担负。设计师在对建筑物框架进行设计的过程中,纵向的框架结构与横向的框架结构的重要性是同等的。但有些设计师在设计非抗震房屋时,就会简化设计,纵向时使用普通的连续梁设计,这样将会使梁、柱在设计过程中如果纵筋与箍筋的配置无法达到规范设计,将会使房屋达不到抗震的要求。

4关于悬挑梁的梁高选用过小的细节设计

有的设计师不注重梁挠度的计算,只注重梁强度的计算。建筑物的梁如果在选择过小,则会使得梁横截面所承受的压力过高,势必遭城管建筑物的悬挑梁产生非线性的徐变现象。这样使得悬挑梁的梁挠度不断地增加,必将导致梁出现变形现象并且还会造成裂纹的产生。并且悬挑梁上出现的裂纹还会随着梁变形程度的增加而加大,逐渐影响到整个建筑物使用的安全性。但如果任由悬挑梁持续发生徐变现象,就会使房梁的支座截面之上的受拉部分发生较大的纵向裂纹现象,这样就直接导致了房梁支座附近因为其弯曲形变,使得纵向的裂纹不断地向下发展延伸,逐渐的形成一条斜裂缝。这就表明房梁已经被破坏,所以在托墙挑梁的过程中,房梁的扰度过大将会导致梁上墙体在梁支座的部位就出现裂纹。当裂纹沿着梁支座延伸时,裂缝将会越向上越宽。这对于建筑物的安全施工和使用埋下了极大的安全隐患,必须建筑结构的设计过程中注重悬挑梁细节方面的设计来避免上述情况的发生。

5结束语

构造柱范文篇10

关键词:砌体结构整体性/稳定性抗裂/防裂措施

在《砌体结构设计规范》GB50003(以下简称新规范或GB50003)第四章4.1.2条规定:砌体结构应按承载力极限状态设计,并应满足正常使用极限状态下的要求。根据砌体结构的特点,砌体结构正常使用要求,一般情况下可由相应的构造措施保证。这些构造措施包括砌体结构或结构构件的稳定和整体性构造措施、耐久性措施及裂缝或变形控制措施等等。由于砌体结构组成材料的多样性,其相应的构造措施也要比其他材料结构的相应措施看起来显得“繁杂或琐碎”些。多层砌体结构是我国应用最广泛和应用数量最大的结构形式。近年来随着国家墙改推广应用新型墙体材料,由于研究乏力和相应措施的滞后,设计、施工、施工管理的针对性不强,又因系多层结构,对其重视程度不够等因素,致使砌体结构房屋出现了一些带普遍性所谓质量问题,而新型砌体材料较传统砌体材料表现的尤其突出,这在一定程度上影响了新型墙材的顺利推广应用。另外随着国家住宅产业化和商品化的深入,对房屋的建筑结构功能,提出了更高的要求,包括业主的使用要求、设计、施工的责任以及主管部门的监管责任的强化。这其中体现标准强化、管理的措施就是国家已颁布实行的“工程建设标准强制性条文”。这对全面提高工程质量具有重大作用和深远意义。新规范就是根据这样的背景,总结我国近年来试验研究成果、工程经验以及借鉴国外可行的技术的基础上完成本规范的全面修订的。本章的构造要求,和原规范相比虽仍为三节,但其内容已有较大的扩充和变化,有关构造要求的标准也有所提高。限于篇幅,本文着重介绍新增和修改变动较大的那些条文以及被列为强制性的条文,并按“深入浅出”的原则,在简介背景的基础上,力求在执行和应用方面提出注意事项或例证,供参考。

6.1墙、柱的高厚比

墙、柱的高厚比验算是保证砌体结构稳定性的重要构造措施之一,本次修订因提高了砂浆的强度,本节表6.1.1墙、柱允许高厚比[]值取消了M2.5以下的数值。墙、柱的允许高厚比与承载力计算无关,主要根据墙、柱在正常使用和施工情况下的稳定性和刚度要求,由经验确定,近年来在理论上进行了报导或论证[1]。

墙、柱的高厚比验算以带壁柱更具代表性,而且包括带壁柱墙的整体高厚比验算和壁柱间墙高厚比验算。设置壁柱的墙又是砌体结构最常用的提高结构稳定性和承载力重要措施。70年代已来构造柱、圈梁系统已成我国多层砌体房屋的最重要的抗震构造措施之一[2]。近年来为提高砌体的结构的承载能力或稳定性而又不增大截面尺寸,墙中的构造柱间距已不仅仅设置在房屋墙体转角、边缘部位,而按需要设置在墙体的中间部位。这样的墙体的稳定性和承载力就成为本规范解决的课题之一[3]。其中带构造柱墙的稳定性是按类似带壁柱墙的原则处理的。即把墙中的构造柱当作壁柱,并根据墙中构造柱的设置情况进行了理论分析并提出使用要求。

1、带构造柱墙稳定性推导要点

1)构造柱的纵向配筋率较小,当间距0.9~4.8m,墙厚为240mm时,配筋率均小于0.2%(当构造柱配筋为4φ12,柱距0.9、4.8m时的配筋率分别为0.13%和0.03%)。因此这种墙体的纵向弯曲的影响可按无筋砌体考虑;

2)根据压杆稳定理论,无构造柱和有构造柱纵向变形曲线为(图1~2):

图1墙体构造间图图2墙体失稳临界曲线

(1)

(2)

对两式分别求一阶、二阶导数并根据能量法分析压杆稳定的理论,可推得

(3)

令分别为不设构造柱墙和设构造柱墙的高厚比,可求出设构造柱墙在相同临界荷载下允许高厚比提高系数为

(4)

(5)

式中:mc——允许高厚比的提高系数。

从式(4)可看出,构造柱对墙体允许高厚比的影响大小,随块材强度等级、砌筑砂浆强度等级,以及构造柱的宽度bc、构造柱的间距而变化的。根据工程中常用的各类砌体块材、砂浆强度等级及构造柱的砼强度等级(C15~C20),可求出相应条件下计算高厚比提高系数mc。从式(4)和计算结果看出,随着块材和砂浆等级的提高,mc值降低,这是自然的。因有较高的砌体强度,其弹性模量与砼的弹性模量比()减少,当砌体的弹性模量与砼弹性模量接近或相等时,mc=1,即不提高;另外构造柱间距和截面宽度的比值bc/s也是影响mc的一个重要因素,计算表明当bc/s<1/20时,mc没有明显变化。构造柱宽一般为240mm或180mm,当bc/s=20时,s分别为4.8m或3.6m,最后根据数据分析,得到各种砌体材料时的mc取值:

①对烧结砖(含烧结多孔砖)、蒸压灰砂砖、粉煤灰砖和轻骨料砼小型空心砌块砌体:

(6)

②对砼小型空心砌块、粗骨料、半细料石、毛料石及毛石砌体:

(7)

③按式(6)、(7)计算的计算允许高厚比提高系数mc列于下表:

表—1计算允许高厚比提高系数mc

公式类别

bc/s

1/20

1/15

1/12

1/10

1/8

1/4

公式(6)

1.075

1.100

1.125

1.150

1.188

1.375

公式(7)

1.050

1.067

1.083

1.100

1.125

1.250

由表可见,当bc/s=1/20时构造柱的作用不大,而当bc/s=1/4,尽管构造柱的影响很大,但考虑到构造柱间距太密,不仅施工较繁,经济效果也因之下降,因此规范规定其范围定为1/20~1/4,其平均的mc值对式(6)对应的材料为1.19,对式(7)对应的材料为1.11。即通过在墙体设置构造柱可使允许高厚比[]提高10%~20%,已接近组合砖砌体构件提高幅度。这是容易理解的,当增大墙中构造柱后不仅增大了其稳定性,而且显著提高了墙体的平面外抗弯能力。

3)若把公式(5)看作构造柱截面面积的放大系数,那么带构造柱墙可看作相应的带壁柱墙。

2、带构造柱墙高厚比验算注意事项

1)按下式验算带构造柱墙的高厚比

(7)

式中h为墙厚。

2)构造柱沿墙方向的宽度(bc)不小于180mm,沿墙厚方向的边长不小于墙厚,主筋不小于4ф12,砼强度等级不应低于C15;

3)当构造柱的截面高度(沿墙厚方向的边长)≥1/30柱高和墙厚,且顶部与横向支承结构(楼、屋盖、大梁等)有可靠连接时,可作为带壁柱墙验算柱间墙的高厚比。这和6.1.2条3款中,当圈梁的截面高度与柱间距之比(b/s)≥1/30时,圈梁可视作壁柱间墙或构造柱间墙的不动铰支点的道理是相同的。前者通过设构造柱减小了墙的长度,后者则减少了柱间墙的高度,这种方法对解决较高和较长的墙体,尤其是砌体隔墙的稳定验算提供了理论依据。砌体规范管理组反馈到不少关于这方面应用的例子;

4)设置构造柱对墙体允许高厚比的提高仅适于正常使用阶段;

5)当利用构造柱提高砌体的承载力,设构造柱墙体的构造应按本规范8.2.8的规定;

6)构造柱应为先砌墙后浇砼柱的施工顺序,并与墙体有可靠的连接。

6.2一般构造措施

本节共有16条主要根据砌体结构的特点,对砌体结构房屋或构件的耐久性和整体稳定性作出的规定。以下择重点或新条文简介:

一、耐久性措施

为保证砌体结构各部分具有较均衡的耐久性等级,因此对处于受力较大或不利环境条件下的砌体材料,规定了比一般条件下较高的材料等级低限,对使用年限大于50年的砌体结构,其材料耐久性等级应更高。国外发达国家的砌体材料强度等级比我国高得多,自然相应的耐久性等级也高。这两条和原规范的相应条文的要求相比虽然高了一些,但限于国情,提高幅度也不大,这和新规范适当提高砌体结构可靠度的耐久性和可靠度、促进砌体材料向高强发展都是有利的。另外,当多孔块体用于有冻胀的环境时,应采取相应的措施(表6.2.2注1):当蒸压粉煤灰砖用于地面以下或基础时,其强度等级不应低于MU15,并应选用一等砖;蒸压灰砂砖、蒸压粉煤灰砖不宜用于有侵蚀介质的地基。

二、整体性措施

砌体结构房屋的整体性取决于砌体、砌体构件的整体稳定性及其与非砌体构件连接的可靠程度。砌体和砌体构件的整体稳定性与非砌体构件主要由其间的传力、连接构造,如设置梁垫或垫梁,以及锚固连接等措施保证。

1、填充墙、隔墙与周边构造的连接(6.2.8条、6.2.11条)

通常作为自承重墙的骨架房屋的填充墙及围护墙,除满足稳定和自承重之外,从使用角度,还应具有承受侧向推力、侧向冲击荷载、吊挂荷载以及主体结构的连接约束作用的能力。因此骨架填充墙及围护墙的材料强度等级不宜过低;与骨架或承重结构的连接,应视具体情况,采用柔性连接、半柔性或半刚性连接和刚性连接。对可能有振动或需抗震设防的骨架或结构的填充墙及围护墙宜优先选用柔性或半柔性连接。

砌块墙与后砌隔墙的连接(6.2.11)是保证后砌隔墙稳定性的主要措施,砌块后砌隔墙的厚度多数为90mm非承重砌块砌筑的,因其墙厚较承重砌块墙(通常为190mm厚)薄得多,相应高厚比很大,自然墙体自身的稳定性成为主要矛盾。由于后砌隔墙是按自承重墙设计的,容易忽略它可能要承受来自侧向的推力、撞击或冲击荷载、吊挂荷载以及地震作用,这可能成为后砌隔墙失稳或倒塌的主要原因,而一旦出现隔墙倒塌也会对生命财产造成一定的损失。因此在《建筑抗震设计规范》GB50011的第13.3节规定了建筑非结构构件的基本抗震措施。尽管未专门列出砌块后砌隔墙的连接构造要求,但其原则是完全适用的,说明后砌隔墙与主体结构连接的重要性。本条的连接方式属柔性连接,除便于承重砌块墙体的排块设计外,对调节较长砌块隔墙的变形(砌体干缩或地震作用)有一定的作用。但对较长的隔墙(如超过4m)除本条的连接外,尚应考虑其它增加稳定和防裂的措施。另外,填充墙连接处的抗裂措施也是当今工程中被看作“质量标准”的一个非常重要的内容,应引起足够重视。下面提供两个示例:

①多层和高层房屋悬挑外廊的填充墙,宜与其上部的梁底脱开或设置柔性垫层(图3)。

图3悬挑外廊填充墙脱开示意图

该例始于一个高层外悬挑梁刚度偏小,填充墙与梁底塞紧,引起底部填充墙因超载(即上部数十层的墙体卸载),产生压曲破坏。

②框架柱与墙的柔性连接(图4)。既解决施工后砌难,又能避免荷载集中引起自承重墙体承载力不足,设计时应控制悬挑板的刚度。

图4悬挑外夹心墙示意图

2、砌块砌体的组砌搭接要求(6.2.10)

砼砌块与整浇的砼结构不同,砌体是由块体和砂浆组砌而成的,砌体的强度是通过块体和砂浆的共同工作实现的,而砌体中块体必要的搭接长度是保证砌体强度的关键,反之砌体中的材料就形不成整体,受荷后就会过早地出现解体破坏,其受力机理是砌体中块体的错缝搭接(长度)是维持砌体在竖向荷载(或变形)作用下引起的横向变形应力不致产生过早破坏的基本要素或基本构造措施。按砌体基本力学试验方法标准规定,砌体的基本抗压强度试件,其搭接长度为1/2标准块长(对砌块为190mm),它反映了砌体施工中最普遍的组砌方式,而出现搭长为1/4标准块长(对砌块为90mm)的情况在砌体中占的数量很少,考虑到基本试件比实际墙体的边界条件更不利,因此从总体上讲能保证砌体强度的发挥。如不能满足上述的最小搭接长度,采用本条规定的灰缝钢筋网片也能起到类似的作用,包括抗裂约束作用。当承受较大的竖向荷载时,该部位的拉结网片的竖向间距不应大于200mm。

砌块砌体结构房屋的组砌搭接要求,是通过砌块设计时的墙体排列图来保证的,也是砌块结构标通图包括的重要内容,另外砌块砌体分皮错缝搭砌还能保证砌块孔洞上下贯通,是砌块砌体设置竖向钢筋的最重要的结构功能要求。

3、砌体中设置凹槽和管槽的要求

为防止在墙体中任意开凿沟槽埋设管线引起墙体承载力的降低或承载力不足,本规范6.2.14条规定,当无法避免时应采取必要的措施或按削弱后的截面验算墙体的承载力。这些必要的措施包括允许按规定设置小的凹槽和管槽,而不需计算。而国际标准《无筋砌体结构设计规范》ISO9652-1均有具体规定。

4、夹心墙的构造要求(6.2.15~16)

夹心墙是集承重,保温和装饰于一体的一种墙体,特别适用于寒冷和严寒地区的建筑外墙。国外应用广泛并具有完整的设计和构造规定。我国试验表明[4]按照本规范规定的构造设计的夹心墙具有可靠的建筑结构功能。而保证这些功能的基本要素为墙体的材料、构造方式,包括拉结件的布置及拉结件(筋)的防腐,以及外叶墙的横向支承的间距等。

由内外叶墙和连接这些叶墙的拉结件组成的夹心墙在荷截作用下存在着一定程度的共同工作,国外规范也有相应的计算方法。砌体规范从简化夹心墙的设计仅规定了6.2.15~16条的构造要求。为加深对夹心墙的构造原理的理解,下面简介美国建筑统一规范(UBC)[5]砌体部分中夹心墙设计及构造要求。

1)夹心墙承受的荷载

①每叶墙单独承受作用其上的竖向荷载,即不考虑荷载的相互分配;

②由夹心墙支承的水平构件(如梁、板)产生的重力荷载,应由距该构件中心最近的叶墙承受;绕夹心墙平面外方向的弯距,应按每个叶墙的相对刚度进行分配;

③平行于夹心墙平面的荷载,仅应由受荷载的叶墙承受,不考虑叶墙间的应力传递;

④横向作用于夹心墙平面的荷载,应按所有叶墙的抗弯刚度进行分配。

2)夹心墙的有效厚度

①当夹心墙的两叶墙均受轴向荷载时,每叶墙的有效厚度即为其单叶墙的厚度;

②当仅一个叶墙受轴向荷载时夹心墙的有效厚度,取各叶墙厚度的平方和的开方。

3)夹心墙的拉结件(筋)

①夹心墙单位面积(m2)的钢筋拉结件,对Ф3.8不少于4个,对Ф4.8不少于2.4个;

②拉结件(筋)应沿竖向交错布置,其最大间距,水平为900mm,竖向为600mm,沿洞口周边300mm范围内应附加间距不大于900mm的拉结件,允许灰缝钢筋网片的横向钢筋作拉结件,但其间距不大于400mm;允许用矩形或Z形拉结件拉结任何块体;

③拉结件应具有足够的长度,以连接(咬合)所有墙片,拉结件在叶墙上的部分应全部埋入砂浆或混凝土中。拉结件的端部应弯折90度,其弯折端的长度不小于50mm。在叶墙间未埋入砂深或混凝土中的拉结件,应为每端咬合于每个叶墙的单独构件;

④拉结件应能将横向荷载从一叶墙传到另一叶墙;

⑤拉结件或网片应作防腐处理。国外采用重镀锌或不锈钢拉结件;

⑥拉结件和灰缝钢筋的保护层,其最小保护层厚度不小于16mm,墙体和灰缝钢筋间的砂浆或混凝土厚度不小于3mm。

4)夹心墙的横向支承

①夹心墙的横向支承可由交叉墙、墙、壁柱提供;当竖向跨越时,可由楼盖、梁或屋盖提供。梁的横向支承间的净距不应大于其受压截面最小宽度的32倍;

②美国规范未明确夹心墙外叶墙的横向支承高度。而国际标准《无筋砌体结构设计规范》ISO9652-1,明确规定夹心墙外叶墙的横向支承间距不大于12m或100倍的外叶墙的厚度;

5)夹层宽度大于100mm的夹心墙

规范中规定的夹心墙的夹层厚度不应大于100mm及金属拉结件的规格、数量及间距,是基于过去的经验确定的。当夹层大于100mm时,必须在墙的拉结件设计时,考虑压屈、抗拉、拔出和荷载分布等因素。美混凝土协会和加拿大标准协会已提出了宽夹心墙的建议。

6)夹心墙裂缝控制

夹心墙与一般外墙有两点不同,一是内外叶墙承受力的荷载不同,前者要比后者大得多,因而在竖向有着较大的变形差,也是引起这种墙体开裂的重要原因;二是外叶墙处在室外不利环境中,对内墙提供保护,这也是外叶墙易开裂的另一个原因,国外有专门考虑内外叶墙差异变形的连接构造,如可调拉结件及沿竖向分布的水平控制缝等措施。

7)本规范夹心墙拉结件的设置,从直径、间距及洞口周边附加拉结件的要求均较UBC的规定更严。如我国砌体规范规定的最大横向支点距离,对6度、7度及8度区,分别为9m、6m和3m,即近似于3层、2层和一个楼层。夹心墙的构造示于图5中。夹心墙横向支承圈梁节能构造示于图6。

a)拉结件布置b)外叶墙的横向支承

(a)矩形(b)Z形(c)焊接网片

c)拉结件型式

图5夹心墙结构构造

注:图中括号内数字仅用于砼砌块

图6夹心墙节能构造

8)夹心墙的抗震性能、简化计算及应用注意事项

本规范规定的夹心墙属于非组合作用的夹心墙。两叶墙间的连接属于柔性连接,其刚度很少,因此不能按整体受力考虑。但是通过叶墙间的连接件(网)较大地提高了夹心墙的稳定性(增加了夹心墙的有效厚度),从而相应地提高了叶墙,特别是内叶墙的承载能力,而外叶墙通常是按自承重墙考虑的,因其很薄一般只有90mm~120mm厚,其稳定性主要靠与内叶墙的连接保证。根据夹心墙所受的荷载或叶墙间的传力路线,确保叶墙间连接的可靠性就成为该构件的关键点,尤其在地震作用下。我国的试验[5]也证明了这一点,如在往复荷载作用下,钢筋拉结件能在大变形情况下防止外叶墙失稳破坏。从保温角度,夹心墙叶墙间除连接件外不宜再有相连的构件(竖向的横向支承点除外),也是普遍采用的作法。因此其计算简图或试件也应这样,才能符合夹心墙的实际受力状态(图7)。

a)外叶墙端部无约束b)外叶墙端部有约束

图7夹心墙的构造及试件简图

很显然图7b)过分强化了外叶墙在端部的约束作用和其刚度,而按图7a)则外叶墙在纵向刚度要小得多,加之其竖向荷载很小(仅为自重),其变形能力要比前者好,其受到的地震作用较前者小。因此在文献[5]中砌体构件的抗震计算未列出夹心墙(Multiwythewalls)计算要求,而重申了连接构造,如拉结件、灰缝拉结网片、竖向及横向支承的规定。夹心墙的拉结件(网)具有足够的连接和传递横向荷载或作用的能力。根据本规范规定的拉结网片1φ4,横筋间距为400mm,竖向间距为400mm,其灰缝砂浆握裹承担的拉、拔力为3.3KN/m2,网片钢筋承担的抗压力为4.3KN/m2,外叶墙的自重为1.6KN/m2。可见其富裕度非常大,即使将外叶墙自重作为地震作用,也不会将外叶墙拉脱。这也就是本规范未列其计算方法的原因,但对于设计应用提出下列注意事项:

①在抗震计算时可不考虑外叶墙的作用,但偏于安全在计算承重的内叶墙承载力时应计入外叶墙的重力作用;

②夹心墙的有效厚度可取内、外叶墙平方和的开方根;

③楼层悬挑构件,如雨蓬、挑梁其底部应与外叶墙脱开,避免外叶墙受载;

④外叶墙上吊挂的重物,其支承点也应设在内叶墙上;

⑤外叶墙直接受到外界环境影响,对其可能产生的温度或变形裂缝应予以充分注意,如设置较短的水平控制缝和内外叶墙竖向变形引起的水平裂缝,当内外墙采用不同砌体材料时,尚应考虑叶墙砌体附加变形的影响;

⑥夹心墙在楼屋盖处既是夹心墙的横向支点,又是构件的最大热桥部位,因此在保证其横向支托作用的同时,采用减少热桥影响的措施。图6给出了节能圈梁的构造,供设计参考。

6.3防止或减轻墙体开裂的主要措施

一、防裂措施原则注释

1、裂缝的主要表征

引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计疏忽、不合理,施工质量、材料不合格及缺乏经验等,但最为常见的,也是砌体规范着力要解决的则为“温度裂缝”、“干缩裂缝”,以及“温度和干缩裂缝”。

1)温度裂缝

主要由屋盖和墙体间温度差异变形应力过大产生的砌体房屋顶层两端墙体上的裂缝,如门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝及水平包角裂缝(含女儿墙)。这类裂缝,在所有块体材料的墙上均很普遍,即不论是低干缩性的烧结块材,还是高干缩性的非烧结类块材,裂缝形态无本质区别,仅有程度上不同,而且分布位置也较集中,在房屋上层的两侧。因此《砌体结构设计规范》6.3.2条专门提出了有关防止或减轻端部墙体开裂的构造措施。

2)干缩裂缝

主要由干缩性较大的块材,如蒸压灰砂砖、粉煤灰砖、混凝土砌块,随着含水率的降低,材料会产生较大的干缩变形。干缩变形早期发展较快,以后逐步变慢。但干缩后遇湿又会膨胀,脱水后再次干缩,但干缩值较小,约为第一次的80%左右。这类干缩变形引起的裂缝,在建筑上分布广、数量多,开裂的程度也较严重。最有代表性的裂缝分布为在建筑物底部一至二层窗台部位的垂直裂缝或斜裂缝,在大片墙面上出现的底部重上部较轻的竖向裂缝,以及不同材料和构件间差异变形引起的裂缝等。

3)温度和干缩裂缝

墙体裂缝可能多数情况下由两种或多种因素共同作用所致,但在建筑物上仍能呈现出是温度还是干缩为主的裂缝特征。

4)其它原因引起的裂缝

如设计方案不合理、施工质量和监督失控也常是重要的裂缝成因。

2、裂缝宽度的控制标准问题

1)鉴于裂缝成因的复杂性,按目前条件和本规范提供的措施,尚难完全避免墙体开裂,而是使裂缝的程度减轻或无明显裂缝,故采用了“防止或减轻”墙体开裂的措施的用语;

2)墙体裂缝允许宽度的含意包括:一是裂缝对砌体的承载力和耐久性影响很少,二是人的感观的可接受程度。钢筋混凝土结构的裂缝宽度大于0.3mm时,通常在美学上难以接受,砌体结构也不例外。尽管砌体结构的安全的裂缝宽度可以更大些。但是在住宅商品化的今天,砌体房屋的裂缝,不论是否为0.3mm,只要可见,已成为住户判别“房屋安全”的直观标准。据资料只有德国对砌体结构有成文的规定:对外墙或条件恶劣的部位的墙体,裂缝宽度不大于0.2mm,其它部位裂缝宽度不大于0.3mm。其它发达国家对裂缝控制的要求较高,但未对砌体裂缝宽度规定标准。因此如何面对砌体结构的裂缝,确实是一个较突出和需要认真对待的课题,需要引起足够的重视。

3、关于控制缝(controljoint)

本规范6.3.7条提出了设置控制缝的原则规定。控制缝是个外来的概念。它不同于我国规范规定的双墙伸缩缝,而是针对高干缩性砌体材料,把较长的砌体房屋的墙体划分为若干个较小的区段,从5~6m到10多m,这样可使由干缩、温度变形引起的应力或裂缝减小,从而达到可以控制的程度。它是对我国较长的传统的伸缩缝的必要补充。因为即使按修订后缩短的伸缩缝间距(30~40m),也难以控制这类高干缩性材料砌体的裂缝。

但是在房屋某些部位的墙体上设置控制缝,防裂效果较好,而对房屋的整体受力性能影响很小,并可满足抗震设防的要求。这已被我国的理论分析和试验研究得到证实[6][7]。

4、抗裂措施效果评价

引入本节的防止或减轻墙体开裂的主要措施,在基本原理上分别基于防裂概念的“防”、“放”、“抗”的原则。

1)“防”,即适当的屋面构造处理,减少屋盖与墙体的温差,减少屋盖与墙体的变形,效果最佳,通常采取的措施包括:

①保证屋面保温层的性能,采用低含水或憎水保温材料,防止屋面渗漏,南方刚加设屋面隔热及通风层;

②外表浅色处理,外墙、屋盖刷白色,可使其内表面降温,隔热指标可显著提高;

③严格控制块体材料的上墙含水率。

2)“放”,即采用适当措施,允许屋面或墙体在一定程度上自由伸缩,如屋面设置伸缩缝、滑动层、墙体设置控制缝等,都能有效的降低温度或干缩变形应力。

3)“抗”,即通过构造措施,如设置圈梁、构造柱、芯柱、提高砌体强度,加强墙体的整体性和抗裂能力,以减少墙体变形、减少裂缝。是砌体房屋普遍采用的抗裂构构造措施。但是这些措施的效果如何,以及用何种方法对已开裂墙体的修补最有效,下面给出我国最近的研究成果[6],供参考:

①提高砌体材料强度等级,不是最有效的防裂措施。

②芯柱或构造柱加圈梁能加强整体性,提高抗裂能力。

③在关键部位和易裂部位,或已开裂部位采取下列措施有显著效果;

a、玻璃纤维砂浆能提高墙体的抗裂能力两倍。

b、玻璃丝网格布砂浆加芯柱可使墙片的抗裂能力提高3倍。

c、玻璃网格布砂浆抹面的砌块墙的初开荷载可提高1倍。

d、开洞墙片设芯柱和钢筋砼带形成的封闭框架式的墙体的抗裂能力可提高33%~100%。

e、增加芯柱对门窗洞口的墙体抗裂最有效;增加芯柱的墙片温度应力降低21%,而用玻璃网布砂浆后使墙片温度应力减少18%。

④使用高弹涂料也能有效的保护已开裂的墙体不受外界浸蚀。

二、防止温度变化和砌体干缩变形引起的砌体房屋顶层墙体开裂的措施

为防止或减轻由于混凝土屋盖和墙体间的温差变形和墙体干缩变形引起的顶层墙体的开裂,可根据具体情况采取或选择下列措施:

1、根据砌体房屋墙体材料和建筑体型、屋面构造选择适合的温度伸缩区段(规范表6—3—1)。表中对于干缩性较大的材料:石砌体、砼小型砌块砌体房屋的最大伸缩缝间距宜为烧结类块体材料的砌体伸缩缝间距的0.8倍。

2、屋面应设置有效的保温层或隔热层。

3、采用装配式有檩体系钢筋混凝土屋盖或瓦材屋盖。

4、屋面保温层或屋面刚性面层及砂浆找平层设置分隔缝,其间距不大于6m,并与女儿墙隔开,缝宽不小于30mm。

5、在屋盖的适当部位设置分割缝,间距不宜大于20m(图8)。

6、当现浇混凝土挑檐或坡屋顶的长度大于12m,宜沿纵向设置分隔缝或沿坡顶脊部设置分隔缝,缝宽不小于20mm,缝内应用防水弹性材料嵌填(图9)。

7、当房屋进深较大时,在沿女儿墙内侧的现浇板处设置局部分割缝,缝宽不小于20mm,缝内应用防水弹性材料嵌填(图10)。

8、在混凝土屋面板与墙体圈梁间设置滑动层。滑动层可采用两层油毡夹滑石粉或橡胶片;对较长的纵墙可只在两端的2-3个开间内设置,对横墙可只在其两端各1/4墙长范围内设置。

9、顶层屋面板下设置现浇混凝土圈梁,并沿内外墙拉通,房屋两端圈梁下的墙体内适当配置水平钢筋。

10、顶层挑梁与圈梁拉通。当不能拉通时,在挑梁末端下墙体内设置3道焊接钢筋网片或2Φ6钢筋,其从挑梁末端伸入两边墙体不小于1000mm(规范图6.3.2)。

11、在顶层门窗洞口过梁上的水平灰缝内设置2-3道焊接钢筋网片或2Φ6钢筋,并应伸入过梁两端墙内不小于600mm。

12、顶层墙体内适当增设构造柱。

13、女儿墙应设构造柱,其间距不大于4m,构造柱应伸入女儿墙顶,并与现浇混凝土压顶梁浇在一起。

三、防止或减轻房屋其它有关部位墙体开裂的构造措施

根据砌体材料、结构形式选择或采用下列构造措施:

(一)增强砌体抗裂能力的措施

1、设置基础圈梁或增加其刚度。

2、在底层窗台下砌体灰缝中设置3道2Φ4焊接钢筋网片或2Φ6钢筋;或采用现浇混凝土配筋带或窗台板,灰缝钢筋或配筋带不少于3Φ8并应伸入窗间墙内不小于600mm。

3、在墙体转角和纵横墙交接处沿竖向设置拉结钢筋或钢筋网片。对砖砌体拉结筋的数量每120mm厚墙不少于1Φ6,竖向间距不大于500mm;对砌块砌体拉结网片不小于2Φ4,竖向间距不大于600mm。拉结钢筋和钢筋网片埋入砌体的长度,从转角墙或交接墙内侧算起每边不小于600mm。

4、对灰砂砖、粉煤砖砌体房屋尚宜在下列部位加强:

1)在各层门窗过梁上方的水平灰缝内及窗下第一和第二道水平灰缝内设置焊接钢筋网片或2Φ6钢筋,其伸入两边窗间墙内不小于600mm。

2)当实体墙的长度大于5m,在每层墙高中部设置2~3道焊接钢筋网片或3Φ6的通长水平钢筋,其竖向间距为500mm。

5、对混凝土砌块砌体房屋尚宜在下列部位加强:

1)在门窗洞口两侧不少于一个洞口中设置不小于1Φ12钢筋,钢筋应在楼层圈梁或基础梁锚固,并采用不低于Cb20混凝土灌实;

2)在顶层和底层设置通长钢筋混凝土窗台梁,窗台梁的高度宜为块高的模数,纵筋不少于4Φ10,箍筋Φ6@200、C20混凝土,其它各层门窗过梁上方及窗台下的配筋要求,宜符合本节4.1)的要求;

3)对实体墙的长度大于5m的砌块,沿墙高400mm配置不小于2Φ4通长焊接网片,网片横向钢筋的间距为200mm,直径同主筋。

4)在门窗洞口两边墙体的水平灰缝中,设置长度不小于900mm,竖向间距为400mm的2Φ4焊接网片。

6、灰砂砖、粉煤灰砖砌体宜采用粘结性好的砂浆,混凝土砌块应采用专用砂浆,其强度等级不宜低于Mb10。

(二)在墙体中设置竖向控制缝(图11)

本措施可用于所有材料的砌体,但更适于干缩变形较大的灰砂砖、粉煤灰砖、混凝土砌块等砌体结构的裂缝控制,房屋墙体控制缝设置的位置和间距可按下列规定采用:

1、在建筑物墙体高度或厚度突然变化处,在门窗洞口的一侧或两侧设置竖向控制缝;并宜在房屋阴角处设置控制缝;

2、对3层以下的房屋,应沿墙体的全高设置,对大于3层的房屋,可仅在建筑物的1~2层和顶层墙体的上列部位设置;

3、控制缝在楼、屋盖的圈梁处可不贯通,但在该部位圈梁外侧宜留宽度和深度均为12mm的槽作成假缝,以控制可预料的裂缝;

4、控制缝的间距不宜大于9m;落地门窗口上缘与同层顶部圈梁下皮之间距离小于600mm者可视为控制缝;建筑物尽端开间内不宜设置控制缝;

5、控制缝可作成隐式,与墙体的灰缝相一致,控制缝的宽度宜通过计算,且不宜大于12mm。控制缝应用弹性密封材料填缝。

a)预制板屋盖分割缝b)现浇板屋盖分割缝

图8屋盖分割缝

a)女儿墙分割缝

b)坡屋顶分割缝

图9女儿墙、坡屋顶分割缝

图10沿女儿墙屋盖处局部分割缝

图11在墙体中设置竖向控制缝

参考文献

1.施楚贤.砌体结构理论与设计.中国建工出版社,1992

2.建筑抗震设计规范.GBJ11-89/GB50011-2001

3.刘立新等.带构造柱墙的高厚比验算.世纪之交砌体结构的新发展—99′全国砌体结构学术论文集.杭州,1999.9

4.唐岱新等.空腔墙结构性能研究.现代砌体结构.2000年全国砌体结构学术会议论文集.中国建工出版社,2000.12

5.Masonrycodesandspecifications,1994UBC—Masonry