风机盘管范文10篇

时间:2023-04-08 05:35:52

风机盘管

风机盘管范文篇1

关键词:机外静压测试工况额定值

国家标准GB/T19232-2003《风机盘管机组》已于2003年7月1日颁布,2003年12月1日起执行。国家空调设备的质量监督检验中心对风机盘管机组的检测已开始采用国标规定的试验方法,对机组的性能指标也按照国标规定的额定值进行判定。

国标与已废止的JB/T4283-91《风机盘管机组》相比较,从型号规格、名词定义及技术参数、安装方式等都有了一些新的规定。对暗装机组测试要求的变化更多一些,而暗装机组在应用中又比较广泛,本文着重对暗装机组在测试中的一些问题进行探讨。

1.术语、定义

1.1标准中按出口静压将风机盘管机组明确分出了低静压型和高静压型。高静压机组是指机组在出风口静压不小于30Pa的机组。低静压机组明确规定不带过滤器和风口时出口静压为12Pa.出口静压指在额定风量时克服自身阻力后,在出风口的静压,单位为Pa.

1.2额定值是指在标准规定的试验工况下,机组应达到的基本值,即产品铭牌和产品样本标注的值。以往对机组的性能判定是依据标准规定的名义值,对铭牌值和样本值不做判定,机组的铭牌值和样本值一般都比名义值好,甚至好很多,这给设计单位和用户在选型时只依据样本值,会产生偏差;在GB/T19232标准中规定当铭牌值或样本值优于标准规定值时,按铭牌值进行判定,这样就控制产品质量,避免某些企业夸大宣传,这一点生产企业在编写样本和产品铭牌时应引起重视。

2.测试方法的影响

2.1按原标准以往在检测卧式暗装机组时,一般出口静压都是在零压状态下检测,而暗装机组检测时均不带风口和过滤器,因此应在出口静压12Pa下检测。国标中增加了有出口静压要求的机组的有关参数,是符合市场需求。

2.2对于有静压要求的机组检测,在检测高、中、低三档参数时,首先要确定在机组三档出口的静压值,建议可采用以下两种方法:

(1)按高、中、低三档风量比例或风量计算

P=(L/L)P,P=(L/L)P

P=LP,P=LP

式中:P、P、P——高、中、低三档的出口静压,单位Pa;

L、L、L——高、中、低三档风量,单位m/h;

L、L——中、低档比例。

例如:当高、中、低三档风量按标准推荐的比例1:0.75:0.5时,机组出口静压分别为12Pa、6.75Pa、3Pa;如三档比例为1:0.8:0.6时,机组出口静压分别为12Pa、7.68Pa、4.32Pa.

(2)按噪声测试方法给出高、中、低三档风量时的出口静压值。

3.卧式暗装机组按标准规定出口静压检测产生的影响

我们对不同生产企业两种型号盘管进行检测,将卧式暗装机组按出口静压0Pa和国标规定的12Pa时检验结果进行比较,机组的风量在出口静压12Pa比0Pa减少6%~11%左右,而功率减少2%~4%,见表<1>、表<2>,这说明为什么机组安装在工程后出现风量不够的原因之一,非常值得生产企业引起重视。

表1FP-6.3型机组对比数据

项目机组号

出口静压1234567

风量

(m/n)0Pa756816939809780760873

12Pa672737873733696713793

差值84796676844780

功率(W)0Pa66635252627053

12Pa64625150606852

差值2112221

表2FP-10型机组对比数据

项目机组号

出口静压123456

风量

(m/n)0Pa12131194118610411178975

12Pa1136110110799491086913

差值7790107929262

功率(W)0Pa10610291959383

12Pa1039989919080

差值332433

4.国标对有静压机组噪声的测试方法及安装要求

4.1测试时需按标准要求在进风口连接实验风管,调整所需的机外静压(见图1)。

4.2在半消声室检测时,测点距反射面(地面)要大于1米;

4.3机组与连接管段应严密无漏风,确保检测的静压值准确。

图一有出口静压的机组噪声测量

5.根据GB/T19232的规定机组在检测时经常遇到的问题

5.1由于以往标准中没有对机组三档风量的比例提出要求,而国标中有静压要求机组必须明确三档风量时的静压值。企业在电机选型时,出现三档风量的比例关系没有调整好,有的机组甚至三档风量几乎没有差别,有的则高、中档没有拉开或低档太小,这些都是不符合用户要求的。

5.2为满足在出口静压12Pa时的风量要求,单纯加大电机功率,造成虽然风量达到指标而供冷量却达不到额定值;

5.3有的机组为使供冷量达标而未对表冷器进行改进,风量超过标准的要求值过多,造成噪声值远远大于标准规定值,这种现象比较普遍;

5.4选用劣质电机,在检测有静压要求的机组噪声时,电机发出轰鸣声;

风机盘管范文篇2

关键词:机外静压测试工况额定值

国家标准GB/T19232-2003《风机盘管机组》已于2003年7月1日颁布,2003年12月1日起执行。国家空调设备的质量监督检验中心对风机盘管机组的检测已开始采用国标规定的试验方法,对机组的性能指标也按照国标规定的额定值进行判定。

国标与已废止的JB/T4283-91《风机盘管机组》相比较,从型号规格、名词定义及技术参数、安装方式等都有了一些新的规定。对暗装机组测试要求的变化更多一些,而暗装机组在应用中又比较广泛,本文着重对暗装机组在测试中的一些问题进行探讨。

1.术语、定义

1.1标准中按出口静压将风机盘管机组明确分出了低静压型和高静压型。高静压机组是指机组在出风口静压不小于30Pa的机组。低静压机组明确规定不带过滤器和风口时出口静压为12Pa.出口静压指在额定风量时克服自身阻力后,在出风口的静压,单位为Pa.

1.2额定值是指在标准规定的试验工况下,机组应达到的基本值,即产品铭牌和产品样本标注的值。以往对机组的性能判定是依据标准规定的名义值,对铭牌值和样本值不做判定,机组的铭牌值和样本值一般都比名义值好,甚至好很多,这给设计单位和用户在选型时只依据样本值,会产生偏差;在GB/T19232标准中规定当铭牌值或样本值优于标准规定值时,按铭牌值进行判定,这样就控制产品质量,避免某些企业夸大宣传,这一点生产企业在编写样本和产品铭牌时应引起重视。

2.测试方法的影响

2.1按原标准以往在检测卧式暗装机组时,一般出口静压都是在零压状态下检测,而暗装机组检测时均不带风口和过滤器,因此应在出口静压12Pa下检测。国标中增加了有出口静压要求的机组的有关参数,是符合市场需求。

2.2对于有静压要求的机组检测,在检测高、中、低三档参数时,首先要确定在机组三档出口的静压值,建议可采用以下两种方法:

(1)按高、中、低三档风量比例或风量计算

P=(L/L)P,P=(L/L)P

P=LP,P=LP

式中:P、P、P——高、中、低三档的出口静压,单位Pa;

L、L、L——高、中、低三档风量,单位m/h;

L、L——中、低档比例。

例如:当高、中、低三档风量按标准推荐的比例1:0.75:0.5时,机组出口静压分别为12Pa、6.75Pa、3Pa;如三档比例为1:0.8:0.6时,机组出口静压分别为12Pa、7.68Pa、4.32Pa.

(2)按噪声测试方法给出高、中、低三档风量时的出口静压值。

3.卧式暗装机组按标准规定出口静压检测产生的影响

我们对不同生产企业两种型号盘管进行检测,将卧式暗装机组按出口静压0Pa和国标规定的12Pa时检验结果进行比较,机组的风量在出口静压12Pa比0Pa减少6%~11%左右,而功率减少2%~4%,见表<1>、表<2>,这说明为什么机组安装在工程后出现风量不够的原因之一,非常值得生产企业引起重视。

表1FP-6.3型机组对比数据

项目机组号

出口静压1234567

风量

(m/n)0Pa756816939809780760873

12Pa672737873733696713793

差值84796676844780

功率(W)0Pa66635252627053

12Pa64625150606852

差值2112221

表2FP-10型机组对比数据

项目机组号

出口静压123456

风量

(m/n)0Pa12131194118610411178975

12Pa1136110110799491086913

差值7790107929262

功率(W)0Pa10610291959383

12Pa1039989919080

差值332433

4.国标对有静压机组噪声的测试方法及安装要求

4.1测试时需按标准要求在进风口连接实验风管,调整所需的机外静压(见图1)。

4.2在半消声室检测时,测点距反射面(地面)要大于1米;

4.3机组与连接管段应严密无漏风,确保检测的静压值准确。

图一有出口静压的机组噪声测量

5.根据GB/T19232的规定机组在检测时经常遇到的问题

5.1由于以往标准中没有对机组三档风量的比例提出要求,而国标中有静压要求机组必须明确三档风量时的静压值。企业在电机选型时,出现三档风量的比例关系没有调整好,有的机组甚至三档风量几乎没有差别,有的则高、中档没有拉开或低档太小,这些都是不符合用户要求的。

5.2为满足在出口静压12Pa时的风量要求,单纯加大电机功率,造成虽然风量达到指标而供冷量却达不到额定值;

5.3有的机组为使供冷量达标而未对表冷器进行改进,风量超过标准的要求值过多,造成噪声值远远大于标准规定值,这种现象比较普遍;

5.4选用劣质电机,在检测有静压要求的机组噪声时,电机发出轰鸣声;

风机盘管范文篇3

1.1标准中按出口静压将风机盘管机组明确分出了低静压型和高静压型。高静压机组是指机组在出风口静压不小于30Pa的机组。低静压机组明确规定不带过滤器和风口时出口静压为12Pa.出口静压指在额定风量时克服自身阻力后,在出风口的静压,单位为Pa.

1.2额定值是指在标准规定的试验工况下,机组应达到的基本值,即产品铭牌和产品样本标注的值。以往对机组的性能判定是依据标准规定的名义值,对铭牌值和样本值不做判定,机组的铭牌值和样本值一般都比名义值好,甚至好很多,这给设计单位和用户在选型时只依据样本值,会产生偏差;在GB/T19232标准中规定当铭牌值或样本值优于标准规定值时,按铭牌值进行判定,这样就控制产品质量,避免某些企业夸大宣传,这一点生产企业在编写样本和产品铭牌时应引起重视。

2.测试方法的影响

2.1按原标准以往在检测卧式暗装机组时,一般出口静压都是在零压状态下检测,而暗装机组检测时均不带风口和过滤器,因此应在出口静压12Pa下检测。国标中增加了有出口静压要求的机组的有关参数,是符合市场需求。

2.2对于有静压要求的机组检测,在检测高、中、低三档参数时,首先要确定在机组三档出口的静压值,建议可采用以下两种方法:

(1)按高、中、低三档风量比例或风量计算

P=(L/L)P,P=(L/L)P

P=LP,P=LP

式中:P、P、P——高、中、低三档的出口静压,单位Pa;

L、L、L——高、中、低三档风量,单位m/h;

L、L——中、低档比例。

例如:当高、中、低三档风量按标准推荐的比例1:0.75:0.5时,机组出口静压分别为12Pa、6.75Pa、3Pa;如三档比例为1:0.8:0.6时,机组出口静压分别为12Pa、7.68Pa、4.32Pa.

(2)按噪声测试方法给出高、中、低三档风量时的出口静压值。

3.卧式暗装机组按标准规定出口静压检测产生的影响

我们对不同生产企业两种型号盘管进行检测,将卧式暗装机组按出口静压0Pa和国标规定的12Pa时检验结果进行比较,机组的风量在出口静压12Pa比0Pa减少6%~11%左右,而功率减少2%~4%,见表<1>、表<2>,这说明为什么机组安装在工程后出现风量不够的原因之一,非常值得生产企业引起重视。

4.国标对有静压机组噪声的测试方法及安装要求

4.1测试时需按标准要求在进风口连接实验风管,调整所需的机外静压(见图1)。

4.2在半消声室检测时,测点距反射面(地面)要大于1米;

4.3机组与连接管段应严密无漏风,确保检测的静压值准确。

图一有出口静压的机组噪声测量

5.根据GB/T19232的规定机组在检测时经常遇到的问题

5.1由于以往标准中没有对机组三档风量的比例提出要求,而国标中有静压要求机组必须明确三档风量时的静压值。企业在电机选型时,出现三档风量的比例关系没有调整好,有的机组甚至三档风量几乎没有差别,有的则高、中档没有拉开或低档太小,这些都是不符合用户要求的。

5.2为满足在出口静压12Pa时的风量要求,单纯加大电机功率,造成虽然风量达到指标而供冷量却达不到额定值;

5.3有的机组为使供冷量达标而未对表冷器进行改进,风量超过标准的要求值过多,造成噪声值远远大于标准规定值,这种现象比较普遍;

5.4选用劣质电机,在检测有静压要求的机组噪声时,电机发出轰鸣声;

5.5机组选用的风轮尺寸过大或过小,而达不到静压要求,尤其是小风量机组叶轮的选用更应慎重;

5.6对高静压机组,在装配时螺孔、板缝、接水盘、表冷器铜管与侧板连接处漏风问题严重,有的机组在高静压时,漏风量达20%之多,建议生产企业在装配时,注意机组的密封问题。

风机盘管范文篇4

关键词:VAV末端变风量冷热负荷末端选型

1、VAV末端的工作原理

向房间送入室内的冷量按下式确定:

Q=C.ρ。L(tn-ts)(1)

式中C—空气的比热容,KJ/(Kg.°c);ρ—空气密度,Kg/m3;L—送风量,m3/S;

tn—室内温度,°c;ts—送风温度,°c;Q—吸收(或放入)室内的热量,KW.

如果把送风温度设为常数,改变送风量L,也可得到不同的Q值,以维持室温不变。

空调系统的VAV末端按变风量的工作原理设计,当空调送风量原理设计,当空调送风通过VAV末端时,借助于房间温控器,控制末端进风口多叶调节风阀的开闭,以不改变送风温度而改变送风量的方法,来适应空调负荷的变化,送风量随着空调负荷的减少而相应减少而相应减少,这样可减少风机和制冷机的动力负荷。

当系统送风量达到最小设定值,而仍需要下调室内空气参数时,可直接通过加热器再热,或启动一台辅助风机,吸取吊顶中的回风,送入末端机组内,与冷气流混合后一起通过加热器再热后送入房间,达到维持室内空气参数的目的。

2、VAV末端的产品特点

2.1省能运行

VAV末端借助于进口调节阀,并联风朵,热水盘管,电热盘管、电热盘管、风速测量装置、房间恒温器,气动或电动控制元件,能使空调系统达到省能运行。

部分负荷时,能避免在定风量系统中,再热器的冷热负荷抵消而造成的双重能量消耗。如考虑到系统设备的同时使用系统,能使VAV末端系统总风量减少,节省大量风机水泵的电能。

2.2组合灵活

VAV末端结构紧凑,机组组合灵活。

按设备的使用功能分,机组有单风道、双风道、热水再热、电热再热,并联风机驱动等不同的末端组合。近空调机需要,机组还可配备静压箱和消声箱和消声器。按设备的控制功能分,机组有气功、电动(模拟/数字)、压力相关型和压力无关型等不同组合。

2.3静音设计

箱体设计成内壁贴有带保温的消声材料的消声器。箱内通常不设风机,并联风机动力小,噪声低。末端的送风动力主要来自于系统的可变风量主风机,这样,能使风机静音运转。

在部分负荷时,VAV末端的噪声通常比同风量的风机盘管加新风系统低,特别适用于图书馆、演播室、影剧院等场合。

2.4控制先进

机组进气口设有电子风速传感器,可以根据房间的温度要求,通过压力无关型气动/电动(模拟/数字)控制器调节送风量,温度控制品质好。

2.5安装方便

与同风量的风柜相比,VAV末端机组结构紧凑,机组高度小于500MM,有效地增加了机组的安装空间,减少了层高对机组安装的影响。由于冷冻/冷凝水管不进入天花板上部,没有风机盘管的凝水盘,不存在冷凝滴水污损天花板现象。设置在机组侧面或底部的维修孔,使机组的安装、维护和保养更为方便,有效地减少机组的安装和维修成本。

3、VAV末端的基本组合

3.1单风道变风量末端

这是最简单的变风是末端,仅有一条送风道通过末端设备和送风口向室内送风。根据空调负荷的减少而相应减少,这样可实现对室温,室内最大,最小风量的有效控制,减少风机和制冷机的动力负荷。

这种组合只能对各房间同时加热工冷却,无法实现在同一时期内,对有的房间加热,有的房间冷却。当显热负荷减少时,室内相对湿度也不易控制。因此,仅适用于室内负荷比较稳定。室内相对湿度无严格要求的场合。

3.2双风道变风量末端

机组具有冷热两个风道,当房间的送风量随着冷负荷的减少而达到最小风量时,开启热风阀,向房间补充热量,使系统的负荷得到有效的调节。

这种组合,对房间的负荷适应性强,能满足有的房间加热,有的房间冷却的要求。由于负荷得到补偿,最小风量得到控制,室内的相对湿度可保持在较好的水平上,但系统需增加一条风道,设备费和运行费将有所提高。

3.3热水再热单风道变风量末端

在单风道变风量末端机组上,串联一热水再热盘管即成。当系统风量达到最小设定值,而仍需要下调室内的空气参数时,一次风可通过热水加热器再热、送入房间,达到维持室内空气参数的目的。

这种末端对房间的调节,基本与双管末端类似,但系统需敷设热水管,设备费和运行费也有气提高。

3.4电热再热单风道变风量末端

由单风道变风量末端串联一电热盘管组合而成,其加热工作原理与串联热水盘管相同。

3.5并联风机驱动的单风道变风量末端

由单风道变风量末端并联一离心风机组合而成,当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气流混合后送入房间。一次风与回风的混合,可有效地节省能量,并使系统具有较好的气流分布。

3.6并联风机驱动热水再热的单风道变风量末端

在并联风机驱动的单风道变风量末端上,串联一热水再热盘管组合而成。当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气混合后通过回热器再热,送入房间。

3.7并联风机驱动电热再热的单风道变风量末端

在并联风机驱动的单风道变风量末端上,串联一电热盘管组合而成。其工作原理与3.6节同。

4、VAV末端的部件结构

4.1箱体采用薄形设计,由镀锌板外壳制成,内衬厚度为25-50mm,密度为40kg/m3的玻璃纤维,表面贴有穿孔铝箔,用保温钉固定在面板上的内表面上,具有防火,隔热、隔声和防腐的能力。机壳内的最大风速可达到20m/S.

一次风高压侧管采用圆管或椭圆管,低压侧风管采用滑动法兰连接。机组下侧或两侧,设有通道门,在不影响机组管道连接的情况下,能方便地对风机和电机进行维护保养。

4.2调节风门

由4-6片对开式叶片组成的节流基本功调节风门,具有良好的密封和气流设计。当进口压力为750Pa时,风门的最大泄漏量为额定风量的2%.

在风门叶片伸出轴上设有无需保养的长寿命尼龙自润滑轴承,与执行器连接后,风门能按房间的温度要求,通过温控器控制进气口的一次风量。

一次风的风量采用压力无关型控制器,控制器可在工厂设定。控制区间为100%-10%,控制误差为±5%-±10%,控制精度主要依赖于控制器的型式。

4.3风速传感器

在机组进口调节风门前设平均风速传感器,提供正比于流量的压差信号,通过压差信号利用图表可直接读得机组一次风的风量,并实现对风门的控制。

最小的一次风压差信号,利用图表可直接读得机组一次风的风量,并实现对风门的控制。

最小的一次风压差信号为25Pa,在典型的一次风流量区间,由平均风速传感器测得的压差,在校正图中的误差为±3%.

4.4热水盘管

热水盘管具有镀锌钢板壳,铜管套铝片结构,机械涨管。铜管内径为??9.5-12.7mm,铝片片距为1.80-2.54mm,排数为1-4排,每排设一回路,其热量区间为2-18KW.

热水盘客设有放水和放气孔并有左右方向之分,盘管的泄漏压力为180Pa.需要时还可设置电动控制阀,调节水量。

4.5电热盘管

电热盘管设置在由镀锌钢板组成框架的卧式机组内,安装在VAV末端机组的出口。通常按加热量、电气特性和控制级数进行设计。由80/20镍铬丝制成的电热盘管放在充满二氧化镁的不锈钢管内,由固定的陶瓷轴套支撑。

4.6并联风机

并联风机具有前向多翼离心叶轮,双吸结构,镀锌板外壳,电动机直接驱动,通常安装在VAV末端机组的出口,有吸入和压出两种不同的安装形式。为了防止停机时的回流,在风机的出口处设在回流风门。

风机电机是一种节能型的单相电容电机,带有自动复位的过载保护,适于调速器(SCR)的调速运行,提供风机风量的无级调速。风机的设计风量可由速度控制器在现场设定。风机电机级与系统匹配,保证从最小电压时稳定运转。

电机风扇部件维修时可直接从机组侧面拆下,而不需将风扇与电机分离,电机安装在进口环上,进口环具有扭曲的机架,机架上设有带含油轴承的橡胶轴套。

4.7控制器

机组具有压力无关型气动,电子和通讯控制。在1.5KPa进口压力下,风量调节的精度为机组额定流量的±5%.无论在工厂或现场,控制器均能按照房间恒温器的要求,在最大和最小(进口管道流速>1.8M/S时)设定点之间调节。通常把带有恒温器的电子控制机组定为标准机组。

在卧式机组的进口截面设线性流量探针。当在现场按提供的流量压力图表检验流量时,传感器将提供放大3倍于动压的压差信号。在管道流速为1.8-13m/s区间内,其精度可达±10%.

5、VAV末端选型程度

根据所提供的控制区大小,冷/热负荷,送风温度和房间的设计温度等参数,按下述程度选择VAV末端。

5.1确定房间的送风量

根据房间的冷/热负荷、设定温度和所要求的送风温度,计算房间的送风量,应注意,不同的冷热负荷具有不同的送风量。

5.2确定机组型号

选择机组型号,使其风量大于等于房间所需的送风量。其中应使一次风的风量满足冷负荷的要求,并联风机的风量应满足热负荷的要求,如系统没有并联风机,机组按冷工况50%的送风量送风,可按如下方法计算再热盘管(电热或热水)所需加热量。

5.2.1按冷工况50%的送风量和要求的热负荷计算空气的温升。

5.2.2按房间的设定温度计算盘管的出风温度。

5.2.3按房间的送风温度计算机组所需的加热量。

5.3确定再热盘管(电热或热水)

5.3.1确定电热盘管

把所需的热负荷换算成KW数。按电热盘管资料,选定其负荷大于等于所换算的KW数,并确定电热盘管所需的电压相数和级数,应注意,电热盘管每kw需要的最小风量为170m3/h.

5.3.2确定热水盘管

按不同的进水和进风温度,对热负荷进行修正。按修正后的热量值,选择在额定风量下盘管的排数。水量和静压降,并使盘管的热量大于等于修正值。

热水盘管也有一个最小风量值,可按机组最大的风量的20%选取。

5.4估算机外静压

按下游侧管网的不同情况,估算组成末端的低速空气分布系统所需的机外静压值,其中包括电热盘管、热水盘管、消声器、扩散器和管网等下游部件的阻力损耗值。并联风机必须满足在额定机外静压下的设计风量值。风量可用下述方法进行调整。

5.4.1借助速度控制器(SCR)调节风机的转速。

5.4.2调节一次风进口静压,为一次风管网所需静压与一次风风门所需最小静压之各,机组的设计必须满足额客风量下的进口静压要求。

机组的最大进口静压通常设定为500-750Pa.

6、VAV末端使用方法

6.1风量区间

6.1.1VAV末端的风量

通常VAV末端的风量小于等于6800M3/H,由设置在机组进口的线性平均流速传感器,借助于压力无关型控制器,按控制信号调节。风量区间由控制器的灵敏度,进口管条件和所选机组的大小限定。

为了防止不稳定的控制方法,进口管道的最小流速应大于1.8m/s,如果小于此值,压力信号不小于2.5Pa,大多数控制系统将不能进行可靠的分辨。

为减少管道的压力阻损和机组的噪声,送风管道的流速高深莫测小于12.8m/s.机组进口的最大流速可达到15.3m/s,这时送风管道的压损将明显增加,机组的噪声也加大。

6.1.2并联风机的风量

并联风机的风量,通常由速度控制器(SCR)设定,最大的风量,由风机、电机和下游侧的压力决定,最小的风量由SCR在工厂设定,风量过低,会使电机转速过低,导致电机过热和轴承过度磨损。

6.1.3系统的总风量

系统的总风量的控制,是通过调节风机的转速或风机进口导叶,保证风道上的某一点的静压恒定来实现的。

系统最大风量的设定,取决于房间朝向,建筑规模、房间性质和使用情况,由设计者作充分调查后决定,考虑到各末端负荷控制的不同时性,系统主风机的标准运转点,通常处在最大负荷的60%-80%,风量过度会使系统静压设定值偏高,影响系统的节能和噪声。

系统最小风量的设定,应满足控制室风的相对湿度,最上新风和气流组织的要求,有时也可按房间最大的风量的越不显著,相反,易引起风机运行的不稳定。

6.2噪声

机组噪声主要由管道和静压引起,而流速也是产生噪声的一个因素。减少送入机组分支风管的压力,会使机组噪声显著减少。在某种情况下,当风机的噪声成为主要矛盾时,减少风机的风量,使其在低于100%风量下运行,能得到较低的声压级。

6.2.1出口器械声/辐射噪声

在机组的下游设置管道,对降低机组出口噪声是非常有效的,如果在末端机组与房间扩散器之间的管道不设消声衬里,整个系统可能噪声很大,通常,减小进口压降是具有益的,但有时减小进口压降会增加噪声,噪声会通过管道传入房间。

由机组的金属板和诱导口发出的噪声,通过吊顶元件如灯具和回风口等,传入房间,在单管系统中,辐射噪声通常不成问题。但设置的挠性管会产生附加的辐射噪声,从空间传入压力通风房间,增加了辐射噪声强度,因此,如有可能,风机末端应设置在远离回风口和噪声敏感的空间。

VAV末端的送风管,如能分成多支,便可有效地降低噪声,划分的每个支风管可降低A声级噪声3dB,但必须注意,分布管的风量不可直接送到同一个房间,为减少噪声在空中相互迭加,多分支风管的出口和T形管的位置,应至少远离风机末端1.8m.

6.2.2扩散器/挠性管

与扩散器连接的挠性管,通常能降低出口噪声级,即使在挠性管断裂时也不例外。但在机组入口处设置挠性管,机组的噪声级将会提高。

如果扩散器与末端具有相同的声级,出口噪声应是两者的合成。在一般情况下,两个相同的声功率级的迭加,噪声级应增加3dB.但在许多情况下,扩散器发出的噪声频率比末端高,两者的合成不会引起房间NC级的提高。

6.2.3电热盘管和热水盘管对机组的声功率级,无论是出口噪声还是辐射噪声,都有一定的影响,把盘管设置在机组出口,通常存有压降,如果包括盘管在内的下游侧压降很小(小于76Pa),计算机组出口噪声时,仍可用原来的进口管道静压查声级表。但如果在机组出口存有较大的压降,且这一压降小于管道进口静压时,应将机组进口的管道静压减去机组出口压降,用其差值查声级表,所计算的噪声值将有所降低。盘管对辐射噪声的影响。通常不作考虑。

6.3系统压力

管道压力控制是保证噪声,较精确的流量调节和节能的最有效方法。使用不同的风机调节和节能的最有效方法。使用不同的风机调节技术,能保证一次风系统最佳的效率和运行。为了防止压力无关型控制器和风机系统之间的系统振荡,风机调节系统的响应时间应可调整。

要重视系统静压设定值的计算。如果设定值偏高,会使末端阀门处于一个开度较小的位置,导致末端噪声明显增大,影响系统节能。

传感器的设定位置是非常关键的,需考虑在满负荷和部分负荷时,风机的节能,系统的稳定性和每台VAV末端前有足够的静压,如果传感器设置在紧靠主风机的下游,主风机出口的静压。如果传感器设置在紧靠主风机的下游,主风机的出口的静压将基本保持定值,不随风量改变,但如把传感器设在保持一固定静压的下游某一点,主风机的静压将随着风量的减少而明显降低。设计风量下,传感器静压的下游某一点,主风机的静压将随着风量的减少而明显降低。

设计风量下,传感器静压控制点最好设置在离主风机出口处2/3处,或距系统末端1/3处的送风管段上,在多区系统中,传感器应设置在各区中的VAV末端前的最小静压处,这对提高VAV末端的运行性能,减少喘振是十分有利的。

最小压力需求对并联风机机级组和单管道机组是相似的,如果风机和一次风同时使用,最小压力需求将增加,其值正压于出口管道的风机诱导压。

并联风机的运行将会影响进口压,应把风机的压力与下游侧压力相加。当并联风机运行时,机组最小应有50Pa的压力。

6.4加热选择

VAV末端有许多加热方式,其中最主要的是电加热和热水加热。选择加热方式时,要注意在安装加热器后,其顶棚的气流分布必须保证居住都舒适。为了避免气流的分层现象,美国ASHRAE手册推荐,机组的出风温度与房间温度之差应小于8.4°C.这意味着选择加热方式时应注意其加热量的输出在全负荷时,是否会使加热量的输出在全负荷时,是否会使加热温差超出这一推荐值。

7、VAV末端发展前景

30年代前,美国空调界认识到,与传统的定风量系统相比,变风量冷却和加热系统提供了许多优点,VAV空调系统不仅导致了空调房间的舒适,低噪声,机组保养的方便,而且增加了有效空间,降低了建筑的空调成本,使初投资明显减少。

风机盘管范文篇5

关键词:VAV末端变风量冷热负荷末端选型

1、VAV末端的工作原理

向房间送入室内的冷量按下式确定:

Q=C.ρ。L(tn-ts)(1)

式中C—空气的比热容,KJ/(Kg.°c);ρ—空气密度,Kg/m3;L—送风量,m3/S;

tn—室内温度,°c;ts—送风温度,°c;Q—吸收(或放入)室内的热量,KW.

如果把送风温度设为常数,改变送风量L,也可得到不同的Q值,以维持室温不变。

空调系统的VAV末端按变风量的工作原理设计,当空调送风量原理设计,当空调送风通过VAV末端时,借助于房间温控器,控制末端进风口多叶调节风阀的开闭,以不改变送风温度而改变送风量的方法,来适应空调负荷的变化,送风量随着空调负荷的减少而相应减少而相应减少,这样可减少风机和制冷机的动力负荷。

当系统送风量达到最小设定值,而仍需要下调室内空气参数时,可直接通过加热器再热,或启动一台辅助风机,吸取吊顶中的回风,送入末端机组内,与冷气流混合后一起通过加热器再热后送入房间,达到维持室内空气参数的目的。

2、VAV末端的产品特点

2.1省能运行

VAV末端借助于进口调节阀,并联风朵,热水盘管,电热盘管、电热盘管、风速测量装置、房间恒温器,气动或电动控制元件,能使空调系统达到省能运行。

部分负荷时,能避免在定风量系统中,再热器的冷热负荷抵消而造成的双重能量消耗。如考虑到系统设备的同时使用系统,能使VAV末端系统总风量减少,节省大量风机水泵的电能。

2.2组合灵活

VAV末端结构紧凑,机组组合灵活。

按设备的使用功能分,机组有单风道、双风道、热水再热、电热再热,并联风机驱动等不同的末端组合。近空调机需要,机组还可配备静压箱和消声箱和消声器。按设备的控制功能分,机组有气功、电动(模拟/数字)、压力相关型和压力无关型等不同组合。

2.3静音设计

箱体设计成内壁贴有带保温的消声材料的消声器。箱内通常不设风机,并联风机动力小,噪声低。末端的送风动力主要来自于系统的可变风量主风机,这样,能使风机静音运转。

在部分负荷时,VAV末端的噪声通常比同风量的风机盘管加新风系统低,特别适用于图书馆、演播室、影剧院等场合。

2.4控制先进

机组进气口设有电子风速传感器,可以根据房间的温度要求,通过压力无关型气动/电动(模拟/数字)控制器调节送风量,温度控制品质好。

2.5安装方便

与同风量的风柜相比,VAV末端机组结构紧凑,机组高度小于500MM,有效地增加了机组的安装空间,减少了层高对机组安装的影响。由于冷冻/冷凝水管不进入天花板上部,没有风机盘管的凝水盘,不存在冷凝滴水污损天花板现象。设置在机组侧面或底部的维修孔,使机组的安装、维护和保养更为方便,有效地减少机组的安装和维修成本。

3、VAV末端的基本组合

3.1单风道变风量末端

这是最简单的变风是末端,仅有一条送风道通过末端设备和送风口向室内送风。根据空调负荷的减少而相应减少,这样可实现对室温,室内最大,最小风量的有效控制,减少风机和制冷机的动力负荷。

这种组合只能对各房间同时加热工冷却,无法实现在同一时期内,对有的房间加热,有的房间冷却。当显热负荷减少时,室内相对湿度也不易控制。因此,仅适用于室内负荷比较稳定。室内相对湿度无严格要求的场合。

3.2双风道变风量末端

机组具有冷热两个风道,当房间的送风量随着冷负荷的减少而达到最小风量时,开启热风阀,向房间补充热量,使系统的负荷得到有效的调节。

这种组合,对房间的负荷适应性强,能满足有的房间加热,有的房间冷却的要求。由于负荷得到补偿,最小风量得到控制,室内的相对湿度可保持在较好的水平上,但系统需增加一条风道,设备费和运行费将有所提高。

3.3热水再热单风道变风量末端

在单风道变风量末端机组上,串联一热水再热盘管即成。当系统风量达到最小设定值,而仍需要下调室内的空气参数时,一次风可通过热水加热器再热、送入房间,达到维持室内空气参数的目的。

这种末端对房间的调节,基本与双管末端类似,但系统需敷设热水管,设备费和运行费也有气提高。

3.4电热再热单风道变风量末端

由单风道变风量末端串联一电热盘管组合而成,其加热工作原理与串联热水盘管相同。

3.5并联风机驱动的单风道变风量末端

由单风道变风量末端并联一离心风机组合而成,当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气流混合后送入房间。一次风与回风的混合,可有效地节省能量,并使系统具有较好的气流分布。

3.6并联风机驱动热水再热的单风道变风量末端

在并联风机驱动的单风道变风量末端上,串联一热水再热盘管组合而成。当系统送风量达到最小设定值,而仍需要下调室内的空气参数时,启动一并联风机,吸取吊顶中的回风,送入机组内,与冷气混合后通过回热器再热,送入房间。

3.7并联风机驱动电热再热的单风道变风量末端

在并联风机驱动的单风道变风量末端上,串联一电热盘管组合而成。其工作原理与3.6节同。

4、VAV末端的部件结构

4.1箱体采用薄形设计,由镀锌板外壳制成,内衬厚度为25-50mm,密度为40kg/m3的玻璃纤维,表面贴有穿孔铝箔,用保温钉固定在面板上的内表面上,具有防火,隔热、隔声和防腐的能力。机壳内的最大风速可达到20m/S.

一次风高压侧管采用圆管或椭圆管,低压侧风管采用滑动法兰连接。机组下侧或两侧,设有通道门,在不影响机组管道连接的情况下,能方便地对风机和电机进行维护保养。

4.2调节风门

由4-6片对开式叶片组成的节流基本功调节风门,具有良好的密封和气流设计。当进口压力为750Pa时,风门的最大泄漏量为额定风量的2%.

在风门叶片伸出轴上设有无需保养的长寿命尼龙自润滑轴承,与执行器连接后,风门能按房间的温度要求,通过温控器控制进气口的一次风量。

一次风的风量采用压力无关型控制器,控制器可在工厂设定。控制区间为100%-10%,控制误差为±5%-±10%,控制精度主要依赖于控制器的型式。

4.3风速传感器

在机组进口调节风门前设平均风速传感器,提供正比于流量的压差信号,通过压差信号利用图表可直接读得机组一次风的风量,并实现对风门的控制。

最小的一次风压差信号,利用图表可直接读得机组一次风的风量,并实现对风门的控制。

最小的一次风压差信号为25Pa,在典型的一次风流量区间,由平均风速传感器测得的压差,在校正图中的误差为±3%.

4.4热水盘管

热水盘管具有镀锌钢板壳,铜管套铝片结构,机械涨管。铜管内径为??9.5-12.7mm,铝片片距为1.80-2.54mm,排数为1-4排,每排设一回路,其热量区间为2-18KW.

热水盘客设有放水和放气孔并有左右方向之分,盘管的泄漏压力为180Pa.需要时还可设置电动控制阀,调节水量。

4.5电热盘管

电热盘管设置在由镀锌钢板组成框架的卧式机组内,安装在VAV末端机组的出口。通常按加热量、电气特性和控制级数进行设计。由80/20镍铬丝制成的电热盘管放在充满二氧化镁的不锈钢管内,由固定的陶瓷轴套支撑。

4.6并联风机

并联风机具有前向多翼离心叶轮,双吸结构,镀锌板外壳,电动机直接驱动,通常安装在VAV末端机组的出口,有吸入和压出两种不同的安装形式。为了防止停机时的回流,在风机的出口处设在回流风门。

风机电机是一种节能型的单相电容电机,带有自动复位的过载保护,适于调速器(SCR)的调速运行,提供风机风量的无级调速。风机的设计风量可由速度控制器在现场设定。风机电机级与系统匹配,保证从最小电压时稳定运转。

电机风扇部件维修时可直接从机组侧面拆下,而不需将风扇与电机分离,电机安装在进口环上,进口环具有扭曲的机架,机架上设有带含油轴承的橡胶轴套。

4.7控制器

机组具有压力无关型气动,电子和通讯控制。在1.5KPa进口压力下,风量调节的精度为机组额定流量的±5%.无论在工厂或现场,控制器均能按照房间恒温器的要求,在最大和最小(进口管道流速>1.8M/S时)设定点之间调节。通常把带有恒温器的电子控制机组定为标准机组。

在卧式机组的进口截面设线性流量探针。当在现场按提供的流量压力图表检验流量时,传感器将提供放大3倍于动压的压差信号。在管道流速为1.8-13m/s区间内,其精度可达±10%.

5、VAV末端选型程度

根据所提供的控制区大小,冷/热负荷,送风温度和房间的设计温度等参数,按下述程度选择VAV末端。

5.1确定房间的送风量

根据房间的冷/热负荷、设定温度和所要求的送风温度,计算房间的送风量,应注意,不同的冷热负荷具有不同的送风量。

5.2确定机组型号

选择机组型号,使其风量大于等于房间所需的送风量。其中应使一次风的风量满足冷负荷的要求,并联风机的风量应满足热负荷的要求,如系统没有并联风机,机组按冷工况50%的送风量送风,可按如下方法计算再热盘管(电热或热水)所需加热量。

5.2.1按冷工况50%的送风量和要求的热负荷计算空气的温升。

5.2.2按房间的设定温度计算盘管的出风温度。

5.2.3按房间的送风温度计算机组所需的加热量。

5.3确定再热盘管(电热或热水)

5.3.1确定电热盘管

把所需的热负荷换算成KW数。按电热盘管资料,选定其负荷大于等于所换算的KW数,并确定电热盘管所需的电压相数和级数,应注意,电热盘管每kw需要的最小风量为170m3/h.

5.3.2确定热水盘管

按不同的进水和进风温度,对热负荷进行修正。按修正后的热量值,选择在额定风量下盘管的排数。水量和静压降,并使盘管的热量大于等于修正值。

热水盘管也有一个最小风量值,可按机组最大的风量的20%选取。

5.4估算机外静压

按下游侧管网的不同情况,估算组成末端的低速空气分布系统所需的机外静压值,其中包括电热盘管、热水盘管、消声器、扩散器和管网等下游部件的阻力损耗值。并联风机必须满足在额定机外静压下的设计风量值。风量可用下述方法进行调整。

5.4.1借助速度控制器(SCR)调节风机的转速。

5.4.2调节一次风进口静压,为一次风管网所需静压与一次风风门所需最小静压之各,机组的设计必须满足额客风量下的进口静压要求。

机组的最大进口静压通常设定为500-750Pa.

6、VAV末端使用方法

6.1风量区间

6.1.1VAV末端的风量

通常VAV末端的风量小于等于6800M3/H,由设置在机组进口的线性平均流速传感器,借助于压力无关型控制器,按控制信号调节。风量区间由控制器的灵敏度,进口管条件和所选机组的大小限定。

为了防止不稳定的控制方法,进口管道的最小流速应大于1.8m/s,如果小于此值,压力信号不小于2.5Pa,大多数控制系统将不能进行可靠的分辨。

为减少管道的压力阻损和机组的噪声,送风管道的流速高深莫测小于12.8m/s.机组进口的最大流速可达到15.3m/s,这时送风管道的压损将明显增加,机组的噪声也加大。

6.1.2并联风机的风量

并联风机的风量,通常由速度控制器(SCR)设定,最大的风量,由风机、电机和下游侧的压力决定,最小的风量由SCR在工厂设定,风量过低,会使电机转速过低,导致电机过热和轴承过度磨损。

6.1.3系统的总风量

系统的总风量的控制,是通过调节风机的转速或风机进口导叶,保证风道上的某一点的静压恒定来实现的。

系统最大风量的设定,取决于房间朝向,建筑规模、房间性质和使用情况,由设计者作充分调查后决定,考虑到各末端负荷控制的不同时性,系统主风机的标准运转点,通常处在最大负荷的60%-80%,风量过度会使系统静压设定值偏高,影响系统的节能和噪声。

系统最小风量的设定,应满足控制室风的相对湿度,最上新风和气流组织的要求,有时也可按房间最大的风量的越不显著,相反,易引起风机运行的不稳定。

6.2噪声

机组噪声主要由管道和静压引起,而流速也是产生噪声的一个因素。减少送入机组分支风管的压力,会使机组噪声显著减少。在某种情况下,当风机的噪声成为主要矛盾时,减少风机的风量,使其在低于100%风量下运行,能得到较低的声压级。

6.2.1出口器械声/辐射噪声

在机组的下游设置管道,对降低机组出口噪声是非常有效的,如果在末端机组与房间扩散器之间的管道不设消声衬里,整个系统可能噪声很大,通常,减小进口压降是具有益的,但有时减小进口压降会增加噪声,噪声会通过管道传入房间。

由机组的金属板和诱导口发出的噪声,通过吊顶元件如灯具和回风口等,传入房间,在单管系统中,辐射噪声通常不成问题。但设置的挠性管会产生附加的辐射噪声,从空间传入压力通风房间,增加了辐射噪声强度,因此,如有可能,风机末端应设置在远离回风口和噪声敏感的空间。

VAV末端的送风管,如能分成多支,便可有效地降低噪声,划分的每个支风管可降低A声级噪声3dB,但必须注意,分布管的风量不可直接送到同一个房间,为减少噪声在空中相互迭加,多分支风管的出口和T形管的位置,应至少远离风机末端1.8m.

6.2.2扩散器/挠性管

与扩散器连接的挠性管,通常能降低出口噪声级,即使在挠性管断裂时也不例外。但在机组入口处设置挠性管,机组的噪声级将会提高。

如果扩散器与末端具有相同的声级,出口噪声应是两者的合成。在一般情况下,两个相同的声功率级的迭加,噪声级应增加3dB.但在许多情况下,扩散器发出的噪声频率比末端高,两者的合成不会引起房间NC级的提高。

6.2.3电热盘管和热水盘管对机组的声功率级,无论是出口噪声还是辐射噪声,都有一定的影响,把盘管设置在机组出口,通常存有压降,如果包括盘管在内的下游侧压降很小(小于76Pa),计算机组出口噪声时,仍可用原来的进口管道静压查声级表。但如果在机组出口存有较大的压降,且这一压降小于管道进口静压时,应将机组进口的管道静压减去机组出口压降,用其差值查声级表,所计算的噪声值将有所降低。盘管对辐射噪声的影响。通常不作考虑。

6.3系统压力

管道压力控制是保证噪声,较精确的流量调节和节能的最有效方法。使用不同的风机调节和节能的最有效方法。使用不同的风机调节技术,能保证一次风系统最佳的效率和运行。为了防止压力无关型控制器和风机系统之间的系统振荡,风机调节系统的响应时间应可调整。

要重视系统静压设定值的计算。如果设定值偏高,会使末端阀门处于一个开度较小的位置,导致末端噪声明显增大,影响系统节能。

传感器的设定位置是非常关键的,需考虑在满负荷和部分负荷时,风机的节能,系统的稳定性和每台VAV末端前有足够的静压,如果传感器设置在紧靠主风机的下游,主风机出口的静压。如果传感器设置在紧靠主风机的下游,主风机的出口的静压将基本保持定值,不随风量改变,但如把传感器设在保持一固定静压的下游某一点,主风机的静压将随着风量的减少而明显降低。设计风量下,传感器静压的下游某一点,主风机的静压将随着风量的减少而明显降低。

设计风量下,传感器静压控制点最好设置在离主风机出口处2/3处,或距系统末端1/3处的送风管段上,在多区系统中,传感器应设置在各区中的VAV末端前的最小静压处,这对提高VAV末端的运行性能,减少喘振是十分有利的。

最小压力需求对并联风机机级组和单管道机组是相似的,如果风机和一次风同时使用,最小压力需求将增加,其值正压于出口管道的风机诱导压。

并联风机的运行将会影响进口压,应把风机的压力与下游侧压力相加。当并联风机运行时,机组最小应有50Pa的压力。

6.4加热选择

VAV末端有许多加热方式,其中最主要的是电加热和热水加热。选择加热方式时,要注意在安装加热器后,其顶棚的气流分布必须保证居住都舒适。为了避免气流的分层现象,美国ASHRAE手册推荐,机组的出风温度与房间温度之差应小于8.4°C.这意味着选择加热方式时应注意其加热量的输出在全负荷时,是否会使加热量的输出在全负荷时,是否会使加热温差超出这一推荐值。

7、VAV末端发展前景

30年代前,美国空调界认识到,与传统的定风量系统相比,变风量冷却和加热系统提供了许多优点,VAV空调系统不仅导致了空调房间的舒适,低噪声,机组保养的方便,而且增加了有效空间,降低了建筑的空调成本,使初投资明显减少。

风机盘管范文篇6

关键词:水源热泵散热器风机盘管初投资运行费用经济分析

0.前言

水源热泵进行供暖的工作原理为:冬季从水源中提取能量,也就是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低温低位热能资源,采用热泵原理,通过空气和水作为载冷剂提升温度后送到建筑物中。由于西藏地区缺煤少油,常规能源非常缺乏,一直困扰着西藏的经济发展,严重的电力不足制约着拉萨及周围地区的工农业发展。但西藏却有丰富的水力、地热、太阳能和风能等资源,其地下水比较丰富,它与河湖等地表径流的关系十分密切,全区地表径流约有30%系由地下水补给,因此,文中选用水源热泵的水源为地下水,并进行回灌。普通供热末端装置一般为风机盘管和散热器两种形式,本文将对这两种装置的优缺点进行分析并对这两种系统进行经济性分析,从而得出哪一种方式更适合西藏地区的供暖需要。

1.末端装置的类型及其特点

1.1风机盘管

1.1.1风机盘管的优点

①风机盘管空调系统由于布置灵活,节省建筑空间,对于不同建筑平面的布置形式都可以适应。

②在温度控制方面,分散分布的风机盘管有利于不同朝向的房间就地控制,从而使不同负荷房间的温度基本平衡,各空调房间可独立地通过风量、水量(或水温)的调节,改变室内温湿度,当房间无人时可关闭风机盘管机组而不会影响其它房间,节省运行费用。

③风机盘管出风有一定风速,所以室内气流分布均匀,流动较快,热交换充分,可以使房间在短时间内完成预热。

1.1.2风机盘管的缺点:

①风机盘管送回风口必须装空气过滤器,否则用了一二年以后表冷器就积满灰尘,影响表冷器的传热效果,而且过滤器要定期清理,否则室内空气品质要下降。

②西藏地区由于其特有的地理环境及技术经济的相对落后,将给与风机盘管产品相配套的售后产品维护和维修带来较大的困难。

1.2散热器

1.2.1散热器的优点

①散热器作为供热末端装置,其运行费用很低,因为风机盘管运行时风机要消耗电能来使风机转动,而散热器不需要,节省了很多运行费用。

②散热器相对价格比较低廉,且安装简单,维修方便。

1.2.2散热器的缺点:

①散热器供暖靠辐射对流,室内气流分布不太均匀,热交换不是很充分,所以相对风机盘管来说,其预热时间较长,如果房间为间断供暖,由于其预热时间长,所以一般散热器为全天供暖,造成能量的浪费。

②由于水源热泵提供热水,所以供水温度不太高,散热器的供回水温差不能取太大,这样使散热器传热效果下降。

2.末端装置的选型

2.1风机盘管的选型

2.1.1选型方法

风机盘管有两个主要的性能指标,即风量和热交换量。风量由风机选型确定;热交换量则与盘管的传热面积、冷(热)媒的温度和流量以及经过盘管的空气温度和流速等因素有关。一般厂家样本上都会给出风机在高中低三档下的在标况下的名义风量和名义制冷、制热量。我国行业标准JB/T4283-91《风机盘管机组》中规定:名义风量须在盘管不通水,空气进口静压差为零的条件下进行测定。但是风机盘管的使用条件显然不同于测试条件:实际情况往往是风机盘管需加装进、出口短管,回风格栅需加装过滤器,使实际应用系统风的阻力增大,导致名义风量下降,从而造成供冷供热不足。所以,风机盘管实际风量和冷量热量是低于名义值的。对于仅供热使用的风机盘管,一般进水温度为50℃~60℃,尽管整个系统为软水,仍有一定的积垢、积尘影响,还需要进行污垢修正。为了保证实际风量,在选用风机盘管机组时,必须具备一定的机外静压,用来克服空调系统的阻力,一般取机外静压大于20Pa。

这样根据风量修正、污垢修正,一般取总的修正系数为1.3,求得盘管实际工况下的冷(热)量。当其大于等于计算冷(热)负荷时,则满足要求;当其小于计算冷(热)负荷时需增大盘管继续复核。

当提供三档速度控制开关或可调速电机时,一些设计师根据中档转速的额定冷量来选择风机盘管。这种方法既保证机组在室内运行起来较安静,而且在速度提高时能增大机组容量。但同时应该看到,由于大机小用,不仅加大了系统容量,提高了工程造价,而且使冷水机组长期处于大流量小温差的不良状态下运行,这会导致系统效率低下,能耗加大,所以按中速档参数选用风机盘管,并非合理作法,仅能作为目前的权宜之计。

2.1.2选型参数

根据上述的选型方法,本文进行风机盘管选型时,取机外静压大于20Pa,总制热量的修正系数为1.3。

2.2散热器的选型

2.2.1选型方法

现在使用的散热器主要有铸铁散热器,钢制散热器,铝制散热器。灰铸铁散热器虽然价格低廉,耐腐蚀,使用寿命长,但是生铁消耗太大,能源消耗太大,在供暖热量相同时,灰铸铁散热器的重量要比钢制散热器的重量约高出两倍。现今,已经向新型铸铁散热器发展,采用新技术向轻型化,美观化发展。钢制散热器是发展方向。因为钢制散热器具有很多特点:重量轻、承压高,热工性能好,节材节能;装饰性强;安装和维护方便,生产条件好,易机械化、自动化,产品质量稳定,不污染环境。钢制散热器已列为国家重点推广计划,到2010年时,将达到“以钢为主”。铝制及复合陶瓷板式散热器,此类散热器适应潮流,价虽高,但K值也高,金属耗量低,耐腐蚀性强,美观寿命长,一般只使用装修标准高的房间。

2.2.2选型结果

由《西藏地区供暖用水源热泵和散热器的初投资经济性分析》可知,对不同类型的散热器,在满足水阻力损失的要求下,应优先选用闭式钢串片和高频焊翅片管,而且工业企业及民用适应性极强,尤其适应高湿、腐蚀及恶劣条件下的化工企业,其K值虽不高,但金属热强度高,经结合比较,其价格性能比最佳,且工程造价也较低。经计算选用闭式钢串片GCB120-1型。

3.系统形式

3.1热泵

水源热泵机组的制热系数随着出水温度的升高而降低,出水温度每升高1℃,制热系数降低1.5%。因此,水源热泵机组出水温度越高,要获取相同的热量,机组的功率就会增加,容量增大,热泵的初投资就会提高;而且,随着出水温度的增加,获取相同的热量,热泵的耗电量将会相应增加,因此,运行费用也要增多。

3.2风机盘管

供暖末端为风机盘管时,结合热泵和风机盘管的初投资,一般取热泵的出水温度为45℃。这样热泵的初投资较省,运行费用降低。而风机盘管的价格会高一些,不过相比水源热泵,风机盘管容易生产,价格较低。所以,综合考虑热泵与风机盘管的价格因数,取热泵的出水温度为45℃。

3.3散热器

根据《西藏地区供暖用水源热泵和散热器的初投资经济性分析》,可知供暖末端为散热器时,选用低温热泵和中高温热泵,其初投资均在出水温度为55℃时为最低。所以,末端为散热器时,取热泵的出水温度为55℃。

3.4系统形式分析

热泵的制热系数εh可表示为:εh=Qh/P。水源热泵出水温度为45℃时的制热系数εh为3.9,而出水温度为55℃时的制热系数εh为3.3369,可见使用风机盘管时水源热泵的制热系数比使用散热器时的高15%。且由《西藏地区供暖用水源热泵和散热器的初投资经济性分析》可知:水源热泵随着出水温度每升高/降低1℃,热泵单位热量价格升高/降低1.5%,可见使用风机盘管时水源热泵单位热量价格上比使用散热器时的低15%,即水源热泵的初投资上使用风机盘管时比使用散热器节省15%。热泵制热系数与其初投资成反比关系。

对于低温热泵,当Tc=45℃时,热泵的单位价格为0.56元/大卡;对于中高温热泵,当Tc=75℃时,热泵的单位价格为1.242元/大卡。可知:

使用低温热泵时r=0.482[1+(Tc-45)×1.5%]元/W

使用高温热泵时r=1.068[1-(75-Tc)×1.5%]元/W

使用低温热泵时,45℃出水时热泵的单位热量价格为0.482元/W,55℃出水时为0.554元/W。使用高温热泵时,45℃出水时热泵的单位热量价格为0.587元/W,55℃出水时为0.748元/W。

散热器选型为闭式钢串片GCB120-1型,其一片价格为160元,有效散热面积为5.72m2,K=1.29⊿T0.15W/m2.℃。取散热器的修正系数为1.2,则其单位热量价格为:

R=160×1.2/[5.72×1.29(Tc-20.5)1.15]元/W

可算得散热器供水温度为55℃,供回水温差为5℃时,闭式钢串片GCB120-1型散热器的单位制热量价格为0.4434元/W。

风机盘管的选型,假设每个房间的热负荷均为1500W,根据上述风机盘管的选型步骤,选择型号为MCW200C的卧式暗装风机盘管。机外静压为30Pa,水流量为0.24m³/h,45℃进水温度下的制热量为1970W(大于计算热负荷1500W×1.3=1950W),风机功率为42W,价格为850元,即风机盘管的单位制热量为0.5667元/W。

根据水源热泵的两种形式(低温与中高温热泵),将系统形式分为:低温水源热泵加风机盘管、低温水源热泵加散热器、中高温热泵加风机盘管和中高温水源热泵加散热器四种系统形式,要分别给予计算。

由以上分析可知,低温水源热泵加风机盘管的初投资为1.0388元/W,低温水源热泵加散热器为0.9974元/W,中高温热泵加风机盘管为1.1154元/W,中高温水源热泵加散热器为1.1191元/W。可见在初投资上使用散热器的系统稍微节省,大致价格相当。

运行费用上主要由热泵即风机盘管的电费和维修费用组成,假设每个房间的热负荷均为1500W,热泵45℃出水时其功率为385W,而55℃出水时其功率为449W,而风机盘管的功率仅为42W,可见风机盘管的功率远远小于水源热泵的功率,所以可知使用风机盘管的系统时功率为427W小于使用散热器的系统功率为449W,这样其运行费用应较节省.具体计算可由下面实例给出。

4.经济性分析

4.1初投资

西藏拉萨地区的冬季计算用采暖期室外平均温度为0.5℃,室内计算温度取18℃。例如,取某工程的总热负荷为1000KW,假设每个房间的热负荷均为1500W。

表1.系统初投资价格表低温水源热泵+

风机盘管

低温水源热泵+

散热器

中高温热泵+

风机盘管

中高温水源热泵+散热器

热泵价格(元)482000

末端价格(元)566950

总价格(元)1048950

554000

443400

997400

587000

566950

1153950

748000

443400

1191400

4.2运行费用

由于该工程中使用的地下水为自采自用,因此运行费用中的水费不予计算;另外,本文主要对供暖末端不同的系统进行分析,为了简化起见,运行费用中的人工费用不予计算,维修费按初投资的2.5%计算。

西藏拉萨地区冬季计算用采暖期为142天,进行12小时供暖,取拉萨地区电费为0.5元/千瓦时。

计算结果见下表。

表2.系统运行费用比较低温水源热泵+

风机盘管

低温水源热泵+

散热器

中高温热泵+

风机盘管

中高温水源热泵+散热器

热泵电费(元)218461

末端电费(元)23868

维修费(元)26224

运行费(元)268553

257013

/

24935

281948

218461

23868

28849

271178

257013

/

29785

286798

4.3年度总费用

年度费用,考虑现金流量的年度等值为年度费用,以A表示。计算公式为:

A=k*[i0(1+i0)j]/[(1+i0)j–1]+c

其中:k—初投资;

c—运行费用;

i—基准贴现率,i=12%;

j—回收年限,15年;

A—年度费用。

表3.系统的年度总费用比较

低温水源热泵+

风机盘管

低温水源热泵+

散热器

中高温热泵+

风机盘管

中高温水源热泵+散热器

年度总费用(元)422560

428390

440610

461720

由以上数据可以看出:

1.使用中高温热泵时,由于其价格高于低温热泵,所以年度费用上均高于低温热泵。

2.在运行费用上,热泵的耗电量占很大一部分,所以在保证系统初投资最低,满足热负荷需求的情况下,尽量使热泵的出水温度为最低限.

3.选用风机盘管作为供暖末端时,虽然其系统初投资要稍高于使用散热器的系统,而其运行费用要比使用散热器高出不少,所以年度总费用上低与使用散热器的系统,既使用风机盘管的系统节能,但没有明显高于使用散热器的系统.

4.使用高温热泵比低温热泵系统年度总费用要高,主要由于其初投资要比低温热泵高很多.

5.结论

通过上述计算可知,使用低温热泵加风机盘管的系统在经济性上最佳,但是其经济性没有明显高于使用散热器的系统,而我们的计算是考虑维修费用均为初投资的2.5%,而考虑西藏地区的实际情况,散热器的维修费用要明显低于风机盘管的维修费用,而且方便维修,配件方便,所以在西藏地区大型供暖工程建议使用热泵加散热器的形式.

参考文献:

1贺平孙刚编著供热工程(第三版)中国建筑工业出版社2000

2赵荣义范存养薛殿华钱以明编空气调节(第三版)中国建筑工业出版社2000

3萧日嵘牟灵泉董重成编著民用供暖散热器清华大学出版社1996

4建筑工程常用数据系列手册编写组暖通空调常用数据手册中国建筑工业出版社2002

风机盘管范文篇7

关键词:部分负荷变水温末端设备运行方案

0引言

在中央空调系统实际运行过程中,空调负荷随着室外气象条件等因素变化,多数时间远小于设计负荷。如果在空调负荷减少时,适当提高冷水供水温度,则可以提高冷水机组的运行效率,降低运行能耗,也不要增加任何设备。鉴于目前空调系统的全年运行过程中,冷水机组的出口水温调节的操作带有很大的随意性。有必要对此进行定量的研究。目前关于变水温调节的定量研究很少,文献[1]主要针对全空气系统中空调机组表冷器变水温性能分析,说明方案可行,并通过对某一冷水机组冷水温度变化时COP值的变化,讨论了节能的效果,但是没有涉及到风机盘管机组,文献[2]通过对某大型国际机场特定的空调系统,针对该机场的负荷特点和气象条件,给出了分阶段变水温运行的方案。但并没有对冷水变化对末端空气处理设备除湿能力下降做具体分析。

1中央空调系统变水温性能

1.1风机盘管变水温性能

在制定空调系统变水温运行方案时必须考虑末端空气处理设备的性能。文献[3]对风机盘管性能参数进行整理和分析,运用多元回归的数学方法得出风机盘管冷量回归方程(假定风机盘管的风量和水流量不变)。

(1)

(2)

(3)

式中下标t,s,l分别表示风机盘管的全热,显热和潜热;kW;

下标“0”表示在标准工况条件下,没有下标表示在使用工况条件下;

t1、ts1—表示空气进口干、湿球温度,℃;

tw1—表示冷水出口温度,℃。

现取某厂家生产的风机盘管FP-6.3型为例进行研究,标况下风机盘管进风干球温度27℃,湿球温度19.5℃,冷水供水温度7℃,温差为5℃。此型号盘管标况下的全热冷量和显热冷量分别为4.41KW和2.98KW。根据上面公式编制程序,运行得出下面的计算结果:

表1冷冻水温度变化对风机盘管性能的影响

7℃8℃9℃10℃11℃12℃13℃

Qt/Qt01.000.920.840.760.680.600.52

Qs/Qs01.000.950.900.850.800.750.70

Ql/Ql01.000.860.710.570.430.290.14

图1风机盘管的冷量随冷水温度变化曲线

随着风机盘管进口冷水温度的升高,风机盘管的制冷量逐渐下降,呈线性变化。当冷水温度由7℃改变为9℃时,风机盘管的制冷能力下降了16%;改变为12℃时,风机盘管的制冷能力下降了40%。从图1中三条曲线可以看到,冷水温度的升高导致制冷量下降,但冷冻水温度提高对全热冷量、显热冷量和潜热冷量的影响程度是不同的,其中对潜热冷量的影响最大,显热冷量影响最小,全热冷量介于其间。

1.2新风机组变水温性能

在冷水温度满足风机盘管的热湿处理能力的同时,还要保证在相同冷水温度下,新风机组的处理能力也满足要求。表冷器的热工性能受到以下几个因素的影响:①进口空气参数;②处理风量;③冷水温度;④冷水流量。为便于研究,选用JW30-4型6排通用型表冷器进行分析,处理风量16000kg/h,水流量23500kg/h,迎面风速2.5m/s,水流速1.6m/s。本文采用全热交换效率计算方法讨论处理风量和水流量不变,通过改变冷水温度和进出口空气参数来具体分析表冷器的热工性能。

空调负荷率可以认为与室外空气干球温度的线性关系。下面是根据ARI标准[4]计算出来得负荷率与室外干球温度的对应关系。

表2负荷率与室外空气干、湿球温度的关系负荷率/%1009590858075706560

室外干球温度/℃3533.932.831.730.629.428.327.226.1

室外湿球温度/℃2927.6326.2724.923.5322.1720.819.4318.07

编制表冷器计算程序,运行得到变工况下新风机组的热工性能。

表3部分负荷时新风机组的热工性能部分负荷率/%10090807060

冷水温度/℃78.29.410.611.8

室外新风干球温度/℃3532.830.528.326.1

室外新风湿球温度/℃2926.2723.5320.818.07

新风送风干球温度/℃15.715.415.11514.9

处理空气所需的的Eg0.6890.7070.7310.7510.783

表冷器实际能达到的Eg′0.6890.7110.7340.7590.788

从表3可以看到,在由于室外气象条件变化,空调负减少荷时,新风机组采取提高冷水温度做法,室外参对新风机组的影响超过了冷水温度提高对新风机组的影响,处理后的新风送风干球温度略有下降,说明在室外气象条件变化时,冷水温度提高对新风机组处理新风终状态影响不大,部分负荷时,相应提高冷水温度是可行的。

1.3冷水机组变水温性能

图2冷水出口温度对机组COP的影响

图2是某空调公司特定型号的三种类型(活塞式、螺杆式、离心式)冷水机组COP和冷水温度的关系,可以看出当冷却水供回水温度不变(32/37℃),冷水温度提高时,COP值变大,效率提高,冷水温度由7℃提高到10℃时,活塞式COP值提高了8.7%,螺杆式COP值提高了9.2%,离心式COP值提高了5.5%,节能潜力很大。

2变水温对室内温湿度的影响

根据上面的分析,当室外气象条件变化,空调系统处于部分负荷时,可以通过提高冷冻水供水温度,在满足室内负荷的同时,可以提高冷水机组的运行效率,以节约能耗。但变水温运行,冷水温度提高不仅会对风机盘管的热湿处理能力产生影响,还会影响到新风机组的处理能力,最终会对室内参数以及舒适度产生多大的影响,有必要对此进行定量的研究。本文采用室内热湿平衡方程来研究变水温对室内温湿度的影响,室内热湿平衡方程为:

(6)

(7)

式中:GF—风机盘管送风量,kg/s;

GW—室内新风量,kg/s;

i0—风机盘管送风焓值,kJ/kg;

i2—新风送风焓值,kJ/kg;

iN¹—室内实际计算焓值,kJ/kg;

d0—风机盘管送风含湿量,g/kg;

d2—室内新风的含湿量,g/kg;

dN¹—室内实际计算含湿量,g/kg;

Q—室内余热量,kW;

W—室内余湿量,g/s。

首先根据上面的分析,编制程序,程序设计流程图如下:

图3室内温湿度计算流程图

下面通过实例来说明部分负荷时冷水温度变化对室内参数的影响

某空调房间,室内总余热量Q=3.314kW,总余湿量W=0.264g/s,夏季室内计算参数为:tN=25℃,ФN=50%,当地大气压力为101325Pa。新风机组和风机盘管都是定型的。新风量L=90m3/h,新风比为0.15。讨论当由于室外气象条件引起室内余热总量变化,总余湿量不变时,负荷率与冷水温度以及新风送风干求温度的关系。

解:根据上述公式编制的程序,通过迭代运算,运行结果如下表:

表4部分负荷率时参数的变化负荷率/%10090807060

冷水温度/℃78.29.410.611.8

新风送风干球温度/℃16.215.915.615.515.4

FCU送风干球温度/℃室内干球温度/℃11.525.113.224.914.824.516.424.318.124.1

室内相对湿度/%49.852.85558.663

从表4可以看到:当室内处于部分负荷状态时,通过调节冷水供水温度,可以使室内温湿度在舒适标准范围之内。实际上随着室外干湿球温度的下降,室内余湿量也会有所降低,所以实际室内相对湿度会略有一定程度的降低。因此,对于舒适性空调系统采用变水温质调节是可以满足要求的。

3变水温运行方案

对南京某饭店实际运行情况调研分析,并根据当地气象条件的特点,制定了以下几个阶段的变水温运行方案。

表5某饭店变水温运行调节方案时间供水温度/℃运行机组台数

~5月上旬11.51

5月中旬~6月上旬101~2

6月中旬~7月上旬8.22

7月中旬~8月中旬72

8月下旬~9月中旬8.22

9月下旬~10月上旬101~2

10月中旬~11.51

根据对改饭店的现场测试结果,随着室外气象条件的变化,变水温运行对空调房间温湿度的影响不大,可以满足室内舒适度的要求。可见,该饭店采用变水温运行方案,是可行的。

4结语

1由于空调系统负荷在大部分时间里都在设计负荷以下,可以考虑采用质调节的方法达到既满足室内负荷要求,又能够节约能耗的目的。如当负荷率为70%时,采用10℃的冷水供水温度,与设计工况相比,离心式机组耗电量下降了5.5%,螺杆式机组耗电量下降了9.2%,节能效果明显。

2由于冷水温度的提高,使得末端空气处理设备的除湿能力下降,室内相对湿度变大,使得冷水温度不能提高很多,从上面的分析得出,当室内负荷为60%,采用11.8℃的冷水温度,室内相对湿度就达到了63%,所以,对舒适性空调系统,冷水温度的提高一般以不超过12℃为宜。

3分阶段变水温运行是针对过渡季节部分负荷条件下空调制冷系统节能运行调节而提出的,不需要增加任何设备,比变流量的节能方案更容易操作,只需考虑室外气象条件,负荷分布规律等影响因素,可以根据实际空调系统的动态空调负荷计算和空调制冷系统运行实践制定出更为细致的运行方案,使节能达到最优化。它对于一般舒适性空调系统来说,是一种简便可行的节能运行方案。

参考文献:

1刘金平,周登锦.空调系统变冷水温度调节的节能分析.暖通空调.2004,34(5):90~91

2陆琼文,刘传聚,曹静.浦东国际机场变空调供水温度节能运行方案分析.暖通空调.2003,33(2):123~125

3韩伟国,陆亚俊.风机盘管加新风空调系统ε值比较设计方法.暖通空调.2002,35(2):80~83

4ARI550590-1998标准

5张雅锐,袁东立.建筑空调冷水系统变水温运行的节能分析.暖通空调.1991,21(5):12~15

6林仁生.改变冷水出水温度对主机运行能耗及影响空气处理效果的分析.全国暖通空调制冷2000年学术会论文集.707~710

风机盘管范文篇8

本文就福建省妇幼保健院病房大楼各部分空调系统的形式及设计思路作分析讨论。

关键字:病房,手术室,产房,ICU、净化、气流组织

作为我省妇女儿童保健事业的核心力量,省妇幼保健医院为适应新世纪科技进步的需要,建设了新病房大楼。该工程建筑面积16500平方米,(不包括地下部分2500平方米)。其中一~九层为病房及医生办公用房;十层为手术室及其附属用房;十一层为产房及其附属用房;十二层为ICU及其附属用房。该大楼具有功能复杂,科技含量高的特点,因此对空调系统的要求也较高。本文将就各部分空调系统的形式及设计思路作分析讨论。

大楼各部分功能区设计参数如下:

房间夏季室温

(℃)冬季室温

(℃)新风量

(m3/h*人)系统形式运行时间

病房26~2720~2240风机盘管加新风系统全天连续运行

手术室23~2624~2660净化全空气空调系统随时需要运行

产房23~2624~2660风机盘管加净化新风系统随时需要运行

ICU23~2624~2640风机盘管加净化新风系统全天连续运行

办公室26~2720~2230风机盘管加新风系统白天连续运行

一、病房楼层空调系统

1.现状:目前病房空调大多按照旅馆建筑要求设计,采用风机盘管加独立的新风供给系统。风机盘管系统与病房要求的隔离性(各室回风不串通)、灵活性(随时开关)、可调性(病人可自行调节)和安全性(运行安全可靠相适应)。

2.缺点:变通的风机盘管系统并不理想。因为夏季风机盘管常处于湿工况运行,在病房中盘管的湿表面很容易滋生细菌,常常成为室内的细菌源、尘埃源和气味源(细菌的代谢物)。

3.解决思路:在送风口增设中效的空气过滤器予以除菌,可以解决以上问题。但目前国内现有的医疗专用净化风机盘管机组由于噪音及价格问题还不能普及。解决除菌问题的另一思路是在高静压的风机盘管送风口加中效空气过滤器。中效过滤器初阻力>80pa,这对高静压的风机盘管要求太高,目前还没有该产品。且若一味得提高风机盘管的静压也会带来噪声问题,故本设计仍采用普通型风机盘管。

4.设计中注意事项:

(1)气流组织:病房与旅馆建筑客房最大区别在于全天居住和室内细菌污染。如果仅送新风而无排风,则很难使室内空气通过门缝或窗缝稀释出去。为使病房保持通风顺畅,须在病房内设置排风装置。本设计在病房卫生间设置排气扇,设计排风量与新风量接近。并在走廊设新风口使其压力略高于病房,另在楼层菌尘最大的污物室及公共卫生间设排风系统使这些房间保持负压。选用的各排气扇均带止回阀以防止室外空气从排风口中倒灌。这样的气流组织可有效防止各病房及附属间的交叉感染,并保证将高品质的新风送入室内,相应就提高新风的稀释效应。这些措施是最有效的提高室内空气品质的措施之一。(压力分布及送排风设置如图A所示)

(2)风口设置:由于患者体弱,又长期紧闭在室内,对室内气流很敏感,特别在晚上要避免吹风感。因此最佳的送风方式为侧送。但由于本工程病房为全部平吊顶,风机盘管的送风形式只能为上送上回,为避免直吹病人设计将送风口设在房间的过道上。风机盘管配置3速开关,可让病人依据舒适程序选择适当的风速。同时由于病房的消毒灭菌要求高,送回风口均为铝合金风口以防止消毒药物的腐蚀,并避免滋菌。

二、手术室楼层空调系统

1.本工程10层手术室及其附属用房设置情况:十万级手术室4间;万级手术室4间(其中1间为隔离手术室);洁净区附属用房如下图。

图B空调净化系统风口布置图

2.系统划分:洁净区采有集中式净化空调系统,非洁净区仍采用普通风机盘管加新风系统。

净化空调系统根据各房间洁净度要求及其功能来划分整合为若干不同的系统。4间十万级手术室合设一套净化空调系统;4间万级手术室分3组,分设3套净化空调(其中易引起交叉感染的隔离手术室单独设一套净化空调系统)。洁净区附属用房洁净度过要求为十万级,设一套净化空调系统。共5套净化空调系统。(系统划分如图B,H为回风口;P为排风口;S高效送风口;CZ层流罩送风口)

3.气流组织:

(1)十万级手术室均采用顶部送风四角回风的乱流式气流组织方式,送风口为高效送风口,回风口为阻尼回风口,换气次数设计为20次/h。

(2)万级手术室采用顶部送风两侧回风的局部层流的气流组织方式,送风口为层流罩送风口,回风口也是阻尼风口。万级手术室的换气次数设计为35次/h。

(3)洁净区附属于用房均采用上送上回的气流组织形式,送风口为高效送风口,回风口为阻尼回风口,换气次数设计为20次/h。

(4)在各手术室均设置的排风装置,并在风机出口装设中效过滤器作为阻尼层,滤除病菌,并防止室外空气倒灌。为保证手术室维持20~30pa的正压,手术室新排风的差值应使手术室保持在2~3次/h的换气次数,并设置压差自动控制器以控制新风阀的开度。隔离手术室的排风量为其它手术室的2倍,可控制其维持一定的负压。

4.设计中注意事项:

(1)系统宜选择微穿孔的消声器,其它形式的消声器容易在器内积尘。

(2)合理设计管件和静压箱,尽量减少涡流,避免在涡流区积尘或形成高湿度,当相对湿度超过70%时,很容易产生真菌污染。

(3)安装在送风口处的末端过滤器不宜采用木框结构,以防滋菌。

三、产房及ICU楼层空调系统

由于建设资金有限,本工程原设计的产房及ICU均不设净化空调系统,采用风机盘管加新风空调系统。考虑到产房及ICU对洁净度有一定要求,设计采取以下措施来控制污染。

1.考虑到未经处理的新风是主要的室外污染源。将产房和ICU楼层所需新风集中处理,在新风处理机中增设高效过滤段。保证送到各房间的新风保持一定的洁净度。由于这些房间新风需要量大,并为避免二次污染,采取新风不与回风混合而直接送入室内的送风方式。

2.为这些房间配置专用移动式的无空调功能的局部空气净化设备(一种带高中效过滤器的空气循环设备)使这些用房在需要时达到准净化的标准。

3.各产房及ICU房间均设排风系统,保证通风顺畅。

四、冷热源配置

系统冷热源按灵活并有备量的原则配置。系统的灵活性主要表现在对医疗技术的变革和诊疗设备更新的适应能力。强调系统(包括冷、热源)灵活性并留有备量,在于适应医院建筑平面布置的更改、室内负荷变化,以及建筑的改建或扩建的需要。

考虑到扩建的需要,夏季设计选用两台1132Kw(974000Kcal/h)及一台250Kw(215000Kcal/h)水冷螺杆式冷水机组作为冷源。这样大小机配合使用,可以满足大楼各部门在不同季节及不同时段用冷的要求,使系统具有一定的灵活性。对于一次泵系统还有一定的节能效果。冬季以由锅炉提供的蒸汽为热源,经两台汽--水热交换器产生60℃循环热水供应大楼使用

五、讨论及改进

1.病房新风系统

方案A如图C所示:本设计夏季工况将新风处理至室内状态等焓线与95%等相对湿度线的交点L1后与室内回风混合至01经风机盘管处理至K1送出。这种处理过程中新风机负担新风冷负荷及新风大部分湿负荷,风机盘管则负担室内冷负荷及新风部分湿负荷。由此可见,风机盘管运行在湿工况,为减少细菌的滋生须保证排水顺畅,这对冷凝水系统的施工要求就较高。

方案B如图D所示:将新风处理机改为6或8排管,则夏季新风将被处理至L2后与室内回风混合至02经风机盘管处理至K2送出。这种处理过程中新风机负担新风冷负荷,湿负荷及室内湿负荷及部分室内冷负荷,风机盘管则只负担部分室内冷负荷。使风机盘管处于干工况运行,这样强化新风的除湿处理的做法,是一种减少室内病菌滋生的有效措施。

由以上的A、B方案比较可知,在防菌方面B方案优于A,但B方案也有许多局限性。首先,这种新风处理方式会大大加重新风机的负担,再考虑到满足冬夏转换需配备两套盘管的情况。使得新风机的选型较大。导致新风机布置不灵活,占用的较大新风机房等问题。由以上讨论可知,病房采用带高效过滤器的病房专用空调是最佳方案。

2.净化空调的运行管理

设计中将4间十万级手术室合设一套净化空调系统,这给运行管理带来困难。在只用一间手术室时可能会出现风量过大的问题。一方面浪费能源,另一方面简短过滤器使用寿命。

改进思路之一:细分系统或设多风机。

改进思路之二:循环风机的电机设变频顺,并在每个支系统设定风量调节器可使系统风量得以适应使用房间数量的变化。

3.在甲方解决资金问题后ICU增设了十万级的净化空调系统;产房增设了带高效过滤的吊顶式净化机组。

参考资料:

1.胡吉士著--洁净手术室空调设计

风机盘管范文篇9

关键词:标准工况非标准工况等价干工况

一.标准工况

现时的生产厂表明风机盘管的制冷能力都是在下列工况下给出的:

供水温度7℃;回水温度12℃

处理空气的初状态:干球温度27℃;湿球温度19.5℃

上述工况被认定为各生产厂提供风机盘管制冷能力的统一数据,称为标准工况,同时生产厂的样本中还提供了风机盘管的排数、迎风面积、使用压力等构造特性。

当空调房间要求的室内参数变化时,即风机盘管入口的空气状态发生变化,此时风机盘管的制冷能力为多少?如图1所示,a点为标准工况,经风机盘管处理后到达b点。若L为风机盘管的送风量,则风机盘管的制冷能力应为Q=1.2L(ia-ib),一般来说。这个数据是从生产厂试验台上得到的。现在的问题是,若处理的空气初状态变为1点,如何计算风机盘管的制冷能力?目前生产厂提供的产品样本确实载有几种不同空气初状态下的制冷能力,这些数据都是在一定的假设条件下采用表冷器传统繁琐的理论公式换算得到,或者各生产厂彼此参考借用得到,即使如此,也只限在一定范围。例如当前超高标准的实际工程中要求室内的干球温度为23℃甚至22℃(相对湿度φ=60%)时,就无法从样本上查到了。因此,设计工程师需要找出一种简便的方法来计算风机盘管在处理不同空气状态下的制冷能力。

二.一个假设

本文试图根据生产厂提供标准工况的已知资料计算非标准工况下风机盘管的制冷能力,遇到的一个关键问题是确定c点(见图1)的温度tc。《空气调节设计手册》将tc定义为表冷器外表面平均温度;而tc在《空气调节》教材中定义为表冷器在理想条件下工作时空气终状态的温度。c点位于i-d图的饱和曲线上,根据两个定义的一致性,从宏观上可以看成表冷器是由温度为tc饱和状态的空气包围着,由混合空气的理论知被处理的a状态空气,在通过表冷器后的状态b点必然落在ac的连线上,b点靠近c点的程度是由表冷器的换热能力和排数决定的,并由此可计算出处理空气状态变化的接触系数ε2。

tc与表冷器的进水温度tw1和回水温度tw2有关,若忽略铜管的热阻,迎风面肋基的温度tg=tw2,而后排的tg=tw1(逆交义流),用td表示肋端温度,根据传热学基础,近似地采用厚度相同的直肋,则其tg与td有以下关系:

°C

式中:αw─肋端的吸热系数,W/m2·°C,对于风机盘管的迎面风速一般在Vy=1.5m/s左右,可以查出αw=17.4W/m2·°C

λ—肋片的导热系数,W/m·°C,铝的λ=203.5W/m·°C

δ—肋片厚度,m,目前广泛应用的肋片厚度为δ=0.14×10-3m

l—肋片的平均高度,m,一般采用l=20×10-3~25×10-3m

风机盘管的表冷器为三排,采用数字平均法,根据tg和td先求出肋片的平均温度,然后再求前、后排的平均温度即可近似地求出tc,并整理成以下计算式:

令-(1)

则-(2)

对于标准工况(tw1=7°C,tw2=12°C)采用上述数据计算结果如下:

当取l=20×10-3m时,

ch(34.95x0.02)=1.255

△t=1.21°C

tc=10.71°C

当取l=25×10-3m时,

ch(34.95×0.025)=1.408

△t=1.94°C

tc=11.44°C。

笔者到生产厂向技术人员了解实验台实测的数据,tc大致在10.5~11.5°C之间。从式(1)可知,△t与冷水的初、终温和肋高l有关,为了简化计算,本文将△t假定为常数并取1.5°C,从此后的大量计算中可以看出这个假定与实测数据的最大误差不超过2%。同时,根据这个假定对各生产厂和各种型号的风机盘管计算的接触系数ε2约在0.65~0.75之间,对于表冷器三排的风机盘管,这些数据是处于合理的范围之内。

三.等价干工况

如图2所示,若标准工况ta、ia状态的参数沿ac线处理到tb、ib,经c点作等湿线cd,延长ia和ib与cd线交于A、B,则干工况A、B、c为a、b、c减湿冷却过程中的等价干工况,其特点是:

从传热能力上看湿工况的传热系数为:

W/m2·°C-(3)

当转变成等价干工况时,析湿系数ζ=1,其传热系数为:

W/m2·°C-(4)

式中:A、B、m、p、n—由实验得出的系数,为常数

Vy—迎面风速,m/s,对于结构特性和风量一定的风机盘管为不变值

w—在盘管内的水流速,m/s

由式(4)可知,对于一定型号的风机盘管,只要供水量W(kg/h)不变,其Kg为一常数,亦即Kg·F不变,F为已知型号风机盘管表冷器的传热面积。因而把用标准工况的已知数据,转变成等价干工况后求出的Kg·F,可用在任何非标准工况的等价干工况的计算中,这就避免了为求Ks的繁琐过程。

四.计算步骤

[例题]某生产厂样本中400型风机盘管的标准工况数据如下:风量Lo=810m3/h,水量Wo=12l/min,在ta=27°C,tsa=19.5°C,tw1=7°C时的制冷能力Qa=4500W,求非标准工况下t1=24°C,ts1=17°C时的制冷能力(见图3)。

[解]

1.计算标准工况转变为等价干工况的Kg·F值:

ia=2.9×19.5=56.55kJ/kg

ib=ia–4500x3.6/(810x1.2)=39.88kJ/kg

tw2=tw1+4500x3.6/(12x60x4.19)=12.37°C

°C

dc=6.21+0.485(11.19-7)=8.24g/kg(*)

°C

°C

°C

Kg·F=Qa/△tm

=4500/17.13=262.70W/°C

2.计算非标准工况的制冷能力Q

i1=2.9×17=49.30kJ/kg

第一次假设:tw2=tw1+3=7+3=10°C

°C

d3=6.21+0.485(10-7)=7.66g/kg

°C

qt=wox60x(tw2-tw1)x1.163

=12x60x(10-7)x1.163=2512.08W

°C

°C

qk=Kg·F·△t

=262.70x16.45=4321.42W

第二次假设:tw2=tw1+6=7+6=13°C

°C

d3=6.21+0.485(11.5-7)=8.39g/kg

°C

qt=wox60x(tw2-tw1)x1.163

=12x60x(13-7)x1.163=5024.16W

°C

°C

qk=Kg·F·△t

=262.70x8.28=2175.16W

由于qt、qk都是线性方程,在坐标纸上(见图4)连接qt~qt和qk~qk的交点即为所求答案,tw2=11.2°C,qt=qk=3480W。

以上计算△t采用的平均温差,若△t采用对数温差△tm,在计算机上算出的结果为qt≈qk=3473.08W。运用计算机可以连续地计算出多个不同型号的风机盘管在非标准状态下制冷能力的数据,供设计者选用甚是方便。计算程序的框图如下:

现根据某生产厂样本中所载入的数据与以上介绍的计算方法在计算机中计算出的制冷量数据对照列入表一,由表中可见,其最大误差不超过2%。

至于非标准工况下风机盘管制热能力的计算,由于换热在干工况下进行,无需转化,利用上述方法更加简便,勿须赘述。

*注:计算式通过平均斜率法整理而得

表一(W)型号风量水量数据来源DB22℃DB23℃DB24℃DB25℃DB26℃DB27℃DB28℃

CMHLPMWB16℃WB16.5℃WB17℃WB18℃WB19℃WB19.5℃WB21℃

3006106样本数据--21902440270028403240

程序结果1937.282067.12193.092448.682704.052833.533217.88

8样本数据--24702760306032103680

程序结果2185.812334.722478.42765.583057.723201.123636.16

10样本数据--26602980330034703990

程序结果2361.542520.012678.442988.53304.983456.513924.04

12样本数据--28303170351036904250

程序结果2513.552677.922842.233178.983507.243679.574171.42

4008108样本数据--29203260360037804320

程序结果2579.392746.882919.323258.963603.343770.384281.13

12样本数据--34603870429045005170

程序结果3065.633269.393473.083880.244279.064482.385091.89

16样本数据--37904240471049405680

程序结果3367.133588.023808.844250.274702.654923.125584.1

20样本数据--40304520502052706070

程序结果3589.463825.914062.284534.835007.125243.165965.69

600108010样本数据--38204260471049405650

程序结果3371.33592.773814.144262.9747054932.265600.63

15样本数据--44805000555058206680

程序结果3962.844224.764486.595019.755542.715804.046587.45

20样本数据--49105490610064107360

程序结果4362.514659.634934.045523.26102.996385.947247.83

25样本数据--51705790644067607790

程序结果4601.344912.535206.365811.046432.676726.077640.34

800141015样本数据--51105710632066307590

程序结果4526.144820.155123.045719.466315.396617.687514.82

20样本数据--56906360705074008490

程序结果5045.655376.875707.986382.017043.417373.938376.98

25样本数据--61306860761080009190

程序结果5455.635809.626163.486886.617609.37978.349053.33

30样本数据--64107180797083809640

程序结果5701.666078.66455.437208.797961.738357.129485.45

1000181020样本数据--680075908410883010110

程序结果6020.376423.656814.237619.998412.558814.8610008.26

25样本数据--739082609160962011040

程序结果6549.376995.027424.68299.199157.229585.9910887.29

30样本数据--7780870096501014011650

程序结果6906.587358.647829.628732.999654.841010611477.66

35样本数据--80809050100401055012140

程序结果7191.347653.078136.989082.0410026.5410509.7611936.21

1200215025样本数据--83509330103401085012440

程序结果7390.37894.388382.119356.961033110817.7112292.84

30样本数据--88309870109501150013200

程序结果7839.78351.528882.389905.0810946.2411456.9213026.3

35样本数据--921010300114301201013810

程序结果8180.728732.619266.3210351.1911435.3411977.1513601.49

40样本数据--952010650118301243014300

程序结果8475.289035.089594.7110713.4611831.5412390.3214065.64

DB-干球温度WB-湿球温度

参考文献

1.清华大学.空气调节.北京:中国建筑工业出版社,1981

2.F·C麦奎斯顿.采暖通风与空气调节.北京:中国建筑工业出版社,1981

风机盘管范文篇10

关键词:自动控制风机盘管变风量系统制冷装置新风机组恒温控制器电动阀

一、工程概况:

本空调工程全部采用吊顶暗装风机盘管加独立新风系统。室内风机盘管承担全部的室内冷负荷和湿负荷,新风机组把引入的室外新风处理到室内焓值,再按需求分配到各个房间。按舒适性空调设计,采用露点送风。系统冷热源选用风冷式空气源热泵,安置于天台上。空调水系统采用一次泵定水量系统,双管制,闭式循环。系统主机采用远程控制,各房间的风机盘管可单独控制调节。

二、空气房间温度自动控制是通过接通或断开电加热器,以增加或减少精加热器的热量,而改变送风温度来实现的。

空调温度自动控制系统常用的改变送风温度方法有:控制加热空气的电加热器,空气加热器(介质为热水或蒸汽)的加热量或改变一、二次回风比等。室温控制规律有位式、比例、比例积分、比例积分微分以及带补偿与否等几种。设计时应根据室温允许波动范围大小的要求,被控制的调节机构及设备形式,选配测温传感器、温度调节器及执行器,组成温度自动控制系统。

(1)控制电加热器的功率

控制电加热器的功率来控制室温的系统,其原理图及方框图见下

①是室温位式控制方案,由测温传感器TN,位式温度调节器TNC,及电接触器JS组成。当室温偏离设定值时,调节器TNC输出通断指令的电信号,使电接触器闭合或断开,以控制电加热器开或停,改变送风温度,达到控制室温的目的

②是室温PID控制方案,由测温传感器TN,PID温度调节器TNC及可控硅电压调整器ZK组成,可实现室温PID控制。

(2)控制空气加热器的热交换能力

控制进入空气加热器热媒流量的室温控制系统及其原理如下:

该方案是由测温传感器TN,温度调节器TNC,通断仪ZJ及直通或三通调节阀组成。当室温偏离设定值时,调节器输出偏差指令信号,控制调节阀开大或关小,改变进入空气热交换器的蒸汽量或热水量,从而改变送风温度,达到控制室温的目的。

(3)制进入空气加热器的热水温度

该温控方案组成与上面相同,不同的是控制三通阀来改变进入空气加热器的水温,改变热交换能力,达到控制室温的目的。

三、房间空气相对湿度自动控制的方法

空调房间温湿度控制:

空调房间温湿度的干扰因素的多样性,气候变化的多工况性以及房间存在的较大的热惯性等因素使得利用单回路直接控制房间温湿度的方法难以达到满意的调节效果。因此,应该另选有效的方法。针对空调房间的热特性,采用串级调节较适宜。其调节框图如图所示

室温调节器用于克服维护结构传热,室内热源散热引起的室温干扰。室温调节器根据房间内实际温度与设定温度的偏差调整送风温度的设定值。送风温度调节器则用来控制送风温度。这一环节主要克服在不同的季节,新风、回风混合比的变化引起的对换热器的出口状态干扰。使其在进入房间前受到一定的抑制,减少对室内状态的影响。采用串级调节后,还能改变对象的时间特性,提高系统的控制质量。

四、风机盘管空调系统的自动控制

(一)温控器

(1)风机盘管宜采用温控器控制电动水阀,手动控制风机三速的控制方式。风机启停与电动水阀连锁。

(2)冬夏季均运行的风机盘管,其温控器应有冬夏转换措施。一般以各温控器独自设置冬夏转换开关为好。

(二)节能钥匙

(1)房间设有节能钥匙系统时,风机盘管宜与其连锁以节能。

(2)当要求不高时,可采用插、拔钥匙使风机盘管启动或断电停转的方式。使用要求较高时,可增设一个温度开关。

(三)定流量水系统

风机盘管定流量水系统自控方式较简单易行,但节能效果没有变流量自控方式好。

五、风机盘管的定流量水系统自动控制

该工程使用定流量二管制,其风机盘管机组的控制通常采用两种方式。

(1)三速开关手控的二管制定流量系统

采用二管制水系统时,表面冷却器中的水是常通的。水量依靠阀门的一次性调整,而室温的高低是由手动选择风机的三档转速来实现的。

(2)温控器加三速开关的二管制定流量水系统

采用这种控制的水系统时,表面冷却器中的水是常通的,水量依靠阀门一次性调整。室内温度控制器控制风机启停,而手动三档开关调节风机的转速。

温控器选择AFT06*系列即可满足要求。该系列是带浸入式套管的。

六、变风量系统的监控

变风量系统的基本思想是当室内空调负荷改变以及室内空气参数设定值变化时,自动调节空调系统送入房间的送风量,使通过空气送入房间的负荷与房间的实际负荷相匹配,以满足室内人员的舒适要求或工艺生产要求。同时送风量的调节可以最大限度的减少风机的动力,节约运行能耗。

除了节能的优势外,VAV系统还有以下特点:(1)能实现局部区域的灵活控制,可根据负荷变化或个人舒适度要求调节。(2)由于能自动调节送入各房间的冷量,系统内各用户可以按实际需要配置冷量,考虑各房间的同时使用系数和负荷分布,系统冷源配置可以减少20%~30%左右,设备投资相应较大减少。(3)室内无过冷过热现象。

该系统采用单风管再加热VAV空调系统,其原理和控制系统图如下:

七、空调用制冷装置的自动控制

1、蒸发器的自动控制

空调用制冷装置系统的蒸发器和冷凝器温度的自动控制如图所示

空调负荷是经常变化的,因此,要求制冷装置的制冷量也要相应地变化。而制冷量的变化,就是循环的制冷剂流量的变化,所以需要对蒸发器的供液量进行调节,实现对载冷剂即被冷却物质的温度控制。空调用制冷装置的中常用的供液量自动控制的设备是热力膨胀阀。

热力膨胀阀的一种直接作用式调节阀,安装在蒸发器入口管上,感温包安装在蒸发器的出口管上。DV1和DV2是电磁阀,压缩机停时,电磁阀立即关闭,切断冷凝器至蒸发器的供液。

2、冷凝器的自动控制

在制冷装置上通常用冷却水量调节阀来调节冷凝温度。冷却水量调节阀是一种直接作用式调节阀,安装在冷凝器的冷却水进水管上,它的压力测量温包安装在压缩机的排气端,或冷凝器的制冷剂入口端,以感受Pl的变化。

3、制冷装置的自动保护

为了保证制冷装置的安全运行,在制冷系统中常有一些自动保护器件。制冷系统常用的自动保护包括排气压力保护、吸气压力保护、减压保护、断水保护、冷冻水防冻保护等。其系统图如下:

(一)排气与吸气压力自动保护

在制冷设备中设置了安全阀,还使用压力控制器来控制排气压力。当排气压力超过设定值时,压力控制器立即切断压缩机电动机电源,起高压保护作用;控制吸气压力的采用压力控制器PxS。它对吸气压力有保护作用。

(二)润滑油压的自动保护

在制冷压缩机运转过程中,它的运动部件会摩擦生热。为了防止部件因发热而变形而发生事故,必须不断供给一定压力的润滑油。油压控制器是一个压差控制器,用它可以实现制冷装置润滑油压的自动保护。

(三)断水自动保护

为了保证压缩机的安全,在压缩机水套出水口和冷凝器出水口,装设了断水保护装置。该装置是由测量冷凝器出水口水的电阻的两个电极,配以晶体管控制电路的水流控制器SLS及继电器所组成。

(四)冻水防冻自动保护

在制冷装置运行中,蒸发器中冷冻水温度过低,容易发生冻结影响压缩机的正常运行,因此设置了冷冻水防冻自动保护系统。该系统是在蒸发器出口端安装了温度控制器TfS,当冷冻水出口处温度降至较低时,温度控制器使中间继电器断开,压缩机也就停止运转;在压缩机停转后,若蒸发器冷冻水温度回升到某一温度时,温度控制器使中间继电器接通,冷冻水泵和冷却水泵就重新启动,而压缩机也恢复运转。

4、水量调节阀的选择:

根据系统水管管径尺寸为:DN25DN32DN50三种,选择相应阀门口径的电动调节阀。结果如下:(品牌:丹佛斯)

阀门口径KV值经过阀们的流量(m^3/h)

压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)

0.20.250.30.350.40.450.50.550.6

DN25104.475.005.485.926.326.717.077.427.75

DN32167.168.008.769.4710.1210.7311.3111.8712.39

DN504017.8920.0021.9123.6625.3026.8328.2829.6630.98

二通阀选择:DN25Kvs=10m^3/h编号:065Z3420法兰连接VL2(PN6)

065B1725法兰连接VF2(PN16)

065B1525法兰连接VFS2(PN25)

DN32Kvs=16m^3/h编号:065Z3421法兰连接VL2(PN6)

065B1732法兰连接VF2(PN16)

065B1532法兰连接VFS2(PN25)

DN50Kvs=40m^3/h编号:065Z3423法兰连接VL2(PN6)

065B1750法兰连接VF2(PN16)

065B1550法兰连接VFS2(PN25)

三通阀选择:DN25Kvs=10m^3/h编号:内螺纹:065B1425外螺纹:065B1325

法兰连接VF3,VL3

DN32Kvs=16m^3/h编号:内螺纹:065B1432外螺纹:065B1332

DN50Kvs=40m^3/h编号:内螺纹:065B1450外螺纹:065B1350

模拟量控制驱动器:AME15,AME16,AME25,AME35

AME电子驱动器用在DN50以下的VRB,VRG,VF,VL,VFS2,VEF2阀门。该驱动器自动适应行程到阀的终端位置以减少调试时间。电源电压:24V~。适配器编号:065Z7548,介质温度超过150℃。阀杆加热器,用于DN15~DN50的阀门,编号是065B2171。

手动平衡阀:MSV-C该阀用于平衡制冷、供热和生活用水系统的流量。其特点有:固定的测量孔板;带有2件针式测量接头;手轮具有关断功能,一圈360度均可读数;数字刻度指示,并具有锁定功能;固定孔板测量精度是+-5%,MSV-C为内螺纹。

八、风机盘管系统的监控

风机盘管系统的控制通常包括风机转速控制和室内温度控制两部分。

1、风机盘管系统的监控功能

(1)室内温度测量;(2)冷、热水阀开关控制;(3)风机变速及启停控制

其监控原理图如图

九、新风机组的监控

新风机组通常与风机盘管配合进行使用,主要是为各房间提供一定的新鲜空气,满足人员卫生要求。其基本监控功能有:(1)监测功能检查风机电机的工作状态,确定是处于开或关;检测风机电机的电流是否过载;测量风机出口处的空气温湿度,以了解机组是否已将新风处理到要求的状态;测量空气过滤器两侧的压差,以了解过滤器是否要求清洗;检查新风阀状态,确定是开还是关。(2)控制功能根据要求启停风机;控制水量调节阀的开度;控制干蒸汽加湿器调节阀的开度;换热器的冬季防冻保护(3)集中管理功能显示新风机组启停状态,送风温湿度,风阀,水阀状态。通过中央控制管理机启停机组,修改送风参数设定值

为实现上述功能,相应的硬件配置如下:

新风机组的新风阀配置开关式风阀控制器。这是因为新风机组的风量是根据工作区内人员数量计算出来的,一般不做调节,因此新风门只有开、闭两种状态。在风机开启时,风阀全开,停机时,风阀全关。风阀的控制通过一路DO通道完成。当输入为高电平时,风阀全开;低电平时,风阀全关。若要了解风阀的实际状态,还可以用一路DI接受风阀执行器的反馈信号。

十、电子机械房间恒温控制器RMTE

该控制器广泛应用于商业、工业和住宅建筑。适用于供热,制冷和全年空调系统的室温控制,特别是风机盘管和电加热器等。特点是:高度敏感,无基准振动问题,硬防火塑料底座和上盖,一体结构,易于安装,系统OFF位置,切断所有环路。RMTE-HC2适用于2管制供热/关断/制冷,温度范围是10~30℃。电源等级:230V+-10%50/60HZ电流等级:恒温控制器1A230V/AC风机6(2)A230V/AC

十一、区域电动阀ZV-2/3

该系列阀门与时间温度控制器一起用来控制家庭和商业的中央供热,热水及冷水系统中的水量。主要参数:适用于各种安装要求和偏好,适用于供热和供冷应用,性能可靠,使用寿命长,易于安装和接线,结构坚固。相关数据如下:

类型产品编号种类DN关闭压力KV螺纹(外)介质

ZV-215087N72402-通开/关152.5bar3.2G1/2”制冷/热水(+5/+90)

ZV-220087N7241202bar3.2G3/4”

ZV-225087N7242250.8bar6.8G1”

ZV-315087N72373-通分流器152.5bar4.3G1/2”

ZV-320087N7238201bar4.6G3/4”

ZV-325087N7239251bar5.7G1”

十二、SIEMENS3LD主控和急停开关

3LD1开关可用于控制主回路、辅助回路以及三相电机和其它负载。应用

它是手动隔离开关,符合IEC947-3/DINVDE0660第107部分(EN60947-3)标准,并且满足隔离要求。3LD1控制开关可以用于:起/停(ON/OFF)。控制该开关有三个相邻的主触头,在开关的任何一边都可以装第四个触头。这个触头可以是N触头或一个带1常开和1常闭触点的开关

SIEMENS3TH中间继电器

3TH系列中间继电器,适用于交流50Hz或60Hz,电压至660V和直流电压至600V的控制电路中,用来控制各种电磁线圈及作为电信号的放大和传递,符合IEC947,VDE0660,GB14048等标准。继电器动作机构灵活,手动检查方便,结构设计紧凑,可防止外界杂物及灰尘落入继电器的活动部位。接线端都有罩覆盖,人手不能直接接触带电部位,安全防护性很高;继电器电磁铁工作可靠、损耗小、噪音小、具有很高的机械强度,线圈的接线端装有电压规格标志牌,标志牌按电压等级著有特定的颜色,清晰醒目,接线方便,可避免因接错电压规格而导致线圈烧毁。

十三、压差控制器

根据阀门口径,选择以下几种:ASV-PVDN25ASV-PVDN32AIPDN50

ASV压差平衡阀可自动保证供热和制冷系统的水力平衡。该工程中采用的是定水量系统,压差控制器用在排气与吸气压力自动保护中。使用ASV阀门,可避免烦琐的调试过程,安装完阀门即可。在所有负荷下自动平衡系统,也有助于节能。安装时需安在回水管,且流向应与阀体上的箭头一致。

十四、参考文献

建筑环境与设备的自动化刘耀浩天津大学出版社

建筑设备自动化卿晓霞重庆大学出版社