调节阀范文10篇

时间:2023-04-01 07:47:38

调节阀范文篇1

我厂共有237台气动薄膜调节阀,特别是在全厂的核心岗位重碱车间使用尤为广泛,其中碳化的三气流量调节全部使用气动薄膜调节阀。

在纯碱生产过程中,由于氨盐水有严重的腐蚀性,碳酸氢铵在摄氏25℃以下易结晶的性质,使调节阀在运行中因阀体内壁结疤、结晶、结垢导致阀卡、不动作或动作迟钝,使系统不能进行自动调节的现象比较普遍,占调节阀故障总数的50%,给生产造成的影响较大;由调节阀填料老化、变硬导致阀动作迟钝或从阀杆处泄漏等故障达15%;由于膜片损坏漏气或硬芯碎裂导致阀不能调节的现象达12%;由于定位器、减压阀、执行机构等腐蚀导致阀门故障的现象占10%;其它原因导致调节阀故障的概率占13%.

2故障原因分析

根据多年来纯碱生产现场使用的气动薄膜调节阀的故障分析,可归纳出常见故障及其原因如下:

2.1阀不动作

1)因调节器故障,使调节阀无电信号。

2)因气源总管泄漏,使阀门定位器无气源或气源压力不足。

3)定位器波纹管漏气,使定位器无气源输出。

4)调节阀膜片损坏。

5)由于定位器中放大器的恒节流孔堵塞、压缩空气含水并于放大器球阀处集积导致定位器有气源但无输出。

6)由于下列问题使调节阀虽有信号、有气源但阀仍不动作:①阀芯与衬套或阀座卡死;②阀芯脱落(销子断了);③阀杆弯曲或折断;④执行机构故障:⑤反作用式执行机构密封圈漏气;⑥阀内有异物阻滞。

2.2阀的动作不稳定

1)因过滤减压阀故障,使气源压力经常变化。

2)定位器中放大器球阀受微粒或垃圾磨损,使球阀关不严,耗气量特别增大时会产生输出振荡。

3)定位器中放大器的喷嘴挡板不平行,挡板盖不住喷嘴。

4)输出管线漏气。

5)执行机构刚性太小,流体压力变化造成推力不足。

6)阀杆磨损力大。

7)管路振荡或周围有振源。

2.3阀的动作迟钝

1)阀杆往复行程时动作迟钝:①阀体内有泥浆或粘性大的介质,使阀堵塞或结垢;②聚四氟乙烯填料变质硬化,或石墨石棉盘根的润滑油已干燥。

2)阀杆单方向动作时动作迟钝:①膜片泄漏和破损;②执行机构中"O"形密封圈泄漏。

2.4阀全闭时泄漏大

1)阀芯被腐蚀、磨损。

2)阀座外圈的螺纹被腐蚀。

2.5阀达不到全闭位置

1)介质压差很大,执行机构刚性太小。

2)阀体内有异物。

3)衬套烧焦。

2.6填料部分及阀体密封部分的渗漏

1)填料盖没压紧、没压平。

2)用石墨石棉盘根处润滑油干燥。

3)采用聚四氟乙烯作填料时,聚四氟乙烯老化变质。

4)密封垫被腐蚀。

3建立阀的预检修机制

在日常的生产过程中,对调节阀的维护仅局限于对阀的故障处理,很少进行定期调校与定期检修,在企业的计量管理规程中对此也没有严格要求,事实上,阀的故障源于若干不稳定因素的积累,积累到一定程度就形成故障,因此,在阀的故障形成之前就把这些不稳定因素排除在萌芽状态,不仅可以延长阀的使用寿命,还可以避免因阀的故障给生产带来的严重影响。这就需要建立阀的预检修机制或者说是定期检修机制。以重碱碳化岗位三气流量调节阀为例,预检修机制建立之前,由于纯碱工艺介质存在易结晶、易结垢、结疤的特点,造成阀体可动部件阻力增大,导致执行机构动作不灵活、呆滞,直至调节阀的阀芯与衬套或阀座卡死不能动作,问题发生后,一方面需要停塔对阀进行解体检修,影响生产是不可避免的,一方面需要准备备品、备件,因临时找不到备件采取应急措施的现象时有发生,致使故障不能彻底解决。建立预检修机制以后,可以有充足的时间准备好备品、备件,并可根据阀的使用状况对阀进行全面的维护保养,从而提高阀的使用性能及使用寿命。

调节阀范文篇2

1现状调查

我厂共有237台气动薄膜调节阀,特别是在全厂的核心岗位重碱车间使用尤为广泛,其中碳化的三气流量调节全部使用气动薄膜调节阀。

在纯碱生产过程中,由于氨盐水有严重的腐蚀性,碳酸氢铵在摄氏25℃以下易结晶的性质,使调节阀在运行中因阀体内壁结疤、结晶、结垢导致阀卡、不动作或动作迟钝,使系统不能进行自动调节的现象比较普遍,占调节阀故障总数的50%,给生产造成的影响较大;由调节阀填料老化、变硬导致阀动作迟钝或从阀杆处泄漏等故障达15%;由于膜片损坏漏气或硬芯碎裂导致阀不能调节的现象达12%;由于定位器、减压阀、执行机构等腐蚀导致阀门故障的现象占10%;其它原因导致调节阀故障的概率占13%.

2故障原因分析

根据多年来纯碱生产现场使用的气动薄膜调节阀的故障分析,可归纳出常见故障及其原因如下:

2.1阀不动作

1)因调节器故障,使调节阀无电信号。

2)因气源总管泄漏,使阀门定位器无气源或气源压力不足。

3)定位器波纹管漏气,使定位器无气源输出。

4)调节阀膜片损坏。

5)由于定位器中放大器的恒节流孔堵塞、压缩空气含水并于放大器球阀处集积导致定位器有气源但无输出。

6)由于下列问题使调节阀虽有信号、有气源但阀仍不动作:①阀芯与衬套或阀座卡死;②阀芯脱落(销子断了);③阀杆弯曲或折断;④执行机构故障:⑤反作用式执行机构密封圈漏气;⑥阀内有异物阻滞。

2.2阀的动作不稳定

1)因过滤减压阀故障,使气源压力经常变化。

2)定位器中放大器球阀受微粒或垃圾磨损,使球阀关不严,耗气量特别增大时会产生输出振荡。

3)定位器中放大器的喷嘴挡板不平行,挡板盖不住喷嘴。

4)输出管线漏气。

5)执行机构刚性太小,流体压力变化造成推力不足。

6)阀杆磨损力大。

7)管路振荡或周围有振源。

2.3阀的动作迟钝

1)阀杆往复行程时动作迟钝:①阀体内有泥浆或粘性大的介质,使阀堵塞或结垢;②聚四氟乙烯填料变质硬化,或石墨石棉盘根的润滑油已干燥。

2)阀杆单方向动作时动作迟钝:①膜片泄漏和破损;②执行机构中"O"形密封圈泄漏。

2.4阀全闭时泄漏大

1)阀芯被腐蚀、磨损。

2)阀座外圈的螺纹被腐蚀。

2.5阀达不到全闭位置

1)介质压差很大,执行机构刚性太小。

2)阀体内有异物。

3)衬套烧焦。

2.6填料部分及阀体密封部分的渗漏

1)填料盖没压紧、没压平。

2)用石墨石棉盘根处润滑油干燥。

3)采用聚四氟乙烯作填料时,聚四氟乙烯老化变质。

4)密封垫被腐蚀。

3建立阀的预检修机制

在日常的生产过程中,对调节阀的维护仅局限于对阀的故障处理,很少进行定期调校与定期检修,在企业的计量管理规程中对此也没有严格要求,事实上,阀的故障源于若干不稳定因素的积累,积累到一定程度就形成故障,因此,在阀的故障形成之前就把这些不稳定因素排除在萌芽状态,不仅可以延长阀的使用寿命,还可以避免因阀的故障给生产带来的严重影响。这就需要建立阀的预检修机制或者说是定期检修机制。以重碱碳化岗位三气流量调节阀为例,预检修机制建立之前,由于纯碱工艺介质存在易结晶、易结垢、结疤的特点,造成阀体可动部件阻力增大,导致执行机构动作不灵活、呆滞,直至调节阀的阀芯与衬套或阀座卡死不能动作,问题发生后,一方面需要停塔对阀进行解体检修,影响生产是不可避免的,一方面需要准备备品、备件,因临时找不到备件采取应急措施的现象时有发生,致使故障不能彻底解决。建立预检修机制以后,可以有充足的时间准备好备品、备件,并可根据阀的使用状况对阀进行全面的维护保养,从而提高阀的使用性能及使用寿命。

调节阀范文篇3

此阀外接口有三个,一个接汽车真空泵,负责提供真空度,一个接执行器即EGR阀,还有一个通大气。一般的电磁阀都是通过控制动阀芯和进气口之间气隙的大小来控制真空度,为了保证产品能够输出稳定的气压,施加电压时需要有一定频率的脉冲,使动阀芯或膜片在一定位置上微小快速地振动,从而精确控制输出的真空值。

2结构设计

产品设计结构分为前盖组件、主体总成、动阀芯组件、调整螺柱组件和过滤器组件等几大部分,如图1所示。前盖组件由前盖和管嘴组成,管嘴过盈配合压入前盖,主要起到气体通道的作用。主体总成由导磁架组件、导向套、绕线骨架组件等组成,是整个产品的骨架,其中导向套内壁涂覆自润滑材料,可以提高产品的使用寿命。动阀芯组件主要由动阀芯、铝档、弹簧、膜片等组成,是电磁阀中唯一动作的部件,也是整个产品中非常关键的部件。调整螺柱组件主要由两个调整螺柱组成,在产品装配后,调整这两个螺柱可以改变产品的特性曲线,一个是粗调,另一个是微调。调整特性曲线达到要求后,将这两个调整螺柱与导磁架组件焊接,防止由于振动而导致曲线变化。过滤器组件由过滤器体、过滤器外壳和过滤器盖组成,主要起到过滤灰尘的作用。其它零件还有后盖、橡胶膜片等辅助零部件。

3工作原理

产品的输出真空度特性曲线是该产品的重要参数,如图2所示。真空调节阀的端子有两个接线端子,一个接ECU的信号端,另一个接电源的正极。在ECU未给电时前盖组件的内部端口被膜片堵住,A口的真空度传递不到B口,EGR阀不动作。随着占空比(即正脉冲的持续时间与脉冲总周期的比值)的不断增加,磁力逐渐增大,克服了真空吸力和橡胶膜片的弹力,是膜片离开内部端口一个距离,即为气隙,此气隙大小决定了流量的大小,流量越大,传递给B口的真空度越大。由于EGR阀是一个密闭的腔体,为了保证A口、B口通气后膜片不被吸死,需要在动阀芯组件上开一个小孔,向腔内补气,以平衡A口与B口之间的气压。

4开发过程中的重点

在开发过程中,最重要的除了结构和原理外,就是零件材料的选择。在主体组件中,导磁架起到导磁的作用,使磁路形成环路。要求材料导磁性好,矫顽力低,导磁率高。因此选择电工纯铁DT4C做为导磁架的材料,其化学成分主要是铁,含量在99.50%~99.90%,铁中含碳量在0.4%以下,此材料广泛用于电磁产品。由于真空电磁阀安装在汽车发动机舱内,工作温度较高,所以如果不采取措施,随着温度的提高,特性曲线会出现下降的趋势。为了解决这一问题,在线圈组件中串联一个热敏电阻,并绕若干匝反向线圈与热敏电阻并联,可以使温度影响的程度降低到一定范围内,从而提高输出真空度的精度。

5总结

调节阀范文篇4

【关键词】调节阀,特种设备锅炉

1卡堵

调节阀经常出现的问题是卡堵,常出现在新投运系统和大修投运初期,由于特种设备锅炉内焊渣、铁锈等在节流口、导向部位造成堵塞使介质流通不畅,或调节阀检修中填料过紧,造成摩擦力增大,导致小信号不动作大信号动作过头的现象。

故障处理:可迅速开、关副线或调节阀,让脏物从副线或调节阀处被介质冲跑。另一办法用管钳夹紧阀杆,在外加信号压力情况下,正反用力旋动阀杆,让阀芯闪过卡处。若不能则增加气源压力增加驱动功率反复上下移动几次,即可解决问题。如若仍不动作,则需解体处理。

2泄漏

2.1阀内漏,阀杆长短不适

气开阀,阀杆太长阀杆向上的(或向下)的距离不够,造成阀芯和阀座之间有空隙,不能充分接触,导致关不严而内漏。同样气关阀阀杆太短,导致阀芯和阀座之间有空隙,不能充分接触,导致关不严而内漏。

解决办法:应缩短(或延长)调节阀阀杆使调节阀长度合适,使其不再内漏。

2.2填料泄漏

填料装入填料函以后,经压盖对其施加轴向压力。由于填料的塑性,使其产生径向力,并与阀杆紧密接触,但这种接触是并不是非常均匀的。有些部位接触的松,有些部位接触的紧,甚至有些部位没有接触上。调节阀在使用过程中,阀杆同填料之间存在着相对运动,这个运动叫轴向运动。在使用过程中,随着高温、高压和渗透性强的流体介质的影响,调节阀填料函也是发生泄漏现象较多的部位。造成填料泄漏的主要原因是界面泄漏,对于纺织填料还会出现渗漏(压力介质沿着填料纤维之间的微小缝隙向外泄漏)。阀杆与填料间的界面泄漏是由于填料接触压力的逐渐衰减,填料自身老化等原因引起的,这时压力介质就会沿着填料与阀杆之间的接触间隙向外泄漏。

解决对策:为使填料装入方便,在填料函顶端倒角,在填料函底部放置耐冲蚀的间隙较小的金属保护环(与填料的接触面不能为斜面),以防止填料被介质压力推出。填料函各部与填料接触部分的金属表面要精加工,以提高表面光洁度,减少填料磨损。填料选用柔性石墨,因其具有气密性好,摩擦力小,长期使用后变化小,磨损的烧损小,维修容易,压盖螺栓重新拧紧后摩擦力不发生变化,耐压性和耐热性良好,不受内部介质的侵蚀,与阀杆和填料函内部接触的金属不发生点蚀或腐蚀。这样,有效地保护了阀杆填料函的密封,保证了填料的密封的可靠性和长期性。

2.3阀芯、阀座变形泄漏

阀芯、阀座泄漏的主要原因是由于调节阀生产过程中的铸造或锻造缺陷可导致腐蚀的加强。而腐蚀介质的通过,流体介质的冲刷也可造成调节阀的泄漏。腐蚀主要以侵蚀或气蚀的形式存在。当腐蚀性介质在通过调节阀时,便会产生对阀芯、阀座材料的侵蚀和冲击使阀芯、阀座成椭圆形或其他形状,随着时间的推移,导致阀芯、阀座不配套,存在间隙,关不严发生泄漏。

解决方法:关键把好阀芯、阀座的材质的选型关、质量关。选择耐腐蚀材料,对麻点、沙眼等缺陷的产品坚决剔除。若阀芯、阀座变形不太严重,可经过细砂纸研磨,消除痕迹,提高密封光洁度,以提高密封性能。若损坏严重,则应重新更换新阀。

3振荡

调节阀的弹簧刚度不足,调节阀输出信号不稳定而急剧变动易引起调节阀振荡。还有说选阀的频率与系统频率相同或管道、基座剧烈振动,使调节阀随之振动。选型不当,调节阀工作在小开度存在着急剧的流阻、流速、压力的变化,当超过阀刚度,稳定性变差,严重时产生振荡。

解决对策:由于产生振荡的原因是多方面的,因此具体问题具体分析。对振动轻微的振动,可增加刚度来消除。如选用大刚度弹簧,改用活塞执行结构。管道、基座剧烈震动通过增加支撑消除振动干扰;选阀的频率与系统频率相同,则更换不同结构的阀;工作在小开度造成的振荡,则是选型不当流通能力C值选大,必须重新选型流通能力C值较小的或采用分程控制或子母阀以克服调节阀工作在小开度。

4阀门定位器故障

4.1普通定位器采用机械式力平衡原理工作,即喷嘴挡板技术,主要存在以下故障类型:

1)因采用机械式力平衡原理工作,其可动部件较多,容易受温度,振动的影响,造成调节阀的波动;

2)采用喷嘴挡板技术,由于喷嘴孔很小,易被灰尘或不干净的气源堵住,是定位器不能正常工作;

3)采用力的平衡原理,弹簧的弹性系数在恶劣现场下发生改变,造成调节阀非线性导致控制质量下降。

4.2智能定位器由微处理器(cpu)、A/D,D/A转换器及等部件组成,其工作原理与普通定位器截然不同。给定值和实际值的比较纯是电动信号,不再是力平衡。因此能够克服常规定位器的力平衡的缺点。但在用于紧急停车场合时,如紧急切断阀、紧急放空阀等。这些阀门要求静止在某一位置,只有紧急情况出现时,才需要可靠地动作。长时间停留在某一位置容易使电气转换器失控造成小信号不动作的危险情况。此外用于阀门的位置传感电位器由于工作在现场,电阻值易发生变化造成小信号不动作,大信号全开的危险情况。因此为了确保智能定位器的可靠性和可利用性,必须对它们进行频繁的测试。

调节阀范文篇5

关键字:冷冻水压差控制器旁通调节阀

前言

为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。

一、压差调节装置的工作原理

压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。

二、选择调节阀应考虑的因素

调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加了工程造价。

通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于10%。

另外,安装调节阀时还要考虑其阀门能力PV(即调节阀全开时阀门上的压差占管段总压差的比例),从调节阀压降情况来分析,选择调节阀时必须结合调节阀的前后配管情况,当PV值小于0.3时,线性流量特性的调节阀的流量特性曲线会严重偏离理想流量特性,近似快开特性,不适宜阀门的调节。

三、调节阀的选择计算

调节阀的尺寸由其流通能力所决定,流通能力是指当调节阀全开时,阀两端压力降为105Pa,流体密度为1g/cm3时,每小时流经调节阀的流体的立方米数。进口调节阀流通能力的表示方式通常有cv和kv两种,其中kv=c,而cv是指当调节阀全开时,流通60oF的清水,阀两端压力降为1b/in2时每分钟流过阀门的流量,cv=1.167kv。

压差旁通调节装置示意图如下:

(1)确定调节阀压差值(⊿P)

如上图所示,作用在调节阀上的压差值就是E和F之间的压差值,由于C-D旁通管路与经过末端用户的D-U-C管路的阻力相当,所以E-F之间的压差值应等于D-U-C管路压差(指末端用户最不利环路压差)减去C-E管段和F-D管段的压差值。

(2)计算调节阀需要旁通的最大和最小流量

对于单机组空调机系统,根据末端用户实际使用的最低负荷就可以确定最小负荷所需的流量,从而确定最大旁通流量,其公式为:

G=(Q-Qmin)*3.6/CP*⊿T(1)

公式中,G为流量单位为(m3/h),Q为冷水机组的制冷量(KW),Qmin空调系统最小负荷(KW),CP为水的比热,CP=4.187kJ/kg.oC,⊿T为冷冻水供回水温差,一般为5oC

根据实际可调比RS=10(PV)1/2(2)

即可算出调节阀的旁通最小流量

(3)计算压差调节阀所需的流通能力C

C=316G*(⊿P/ρ)-1/2(3)

公式中,ρ为密度,单位为(g/cm3),G为流量,单位为(m3/h),⊿P为调节阀两端压差,单位为(Pa)。根据计算出的C值选择调节阀使其流通能力大于且最接近计算值。

(4)调节阀的开度以及可调比的验算。根据所选调节阀的C值计算当调节阀处于最小开度以及最大开度情况下其可调比是否满足要求,根据计算出的可调比求出最大流量和最小流量与调节阀在最小开度及最大开度下的流量进行比较,反复验算,直至合格为止。

某写字楼共十二层,建筑面积约为11000平米,层高3.6米,采用一台约克螺杆冷水机组,制冷量为1122KW。

(1)压差的确定

经水力计算,系统在最小负荷(旁通管处于最大负荷)情况下总阻力损失H约为235KPa在系统冷冻水供回水主干管处设置压差旁通控制装置,旁通管处冷源侧水管道阻力损失为80KPa,末端最不利环路阻力损失为155KPa。

(2)通调节阀水量计算:

经过计算知,该空调系统在其最小支路循环时,其负荷为最小负荷,约为总负荷的35%,利用公式(1)G=(Q-Qmin)*3.6/CP*⊿T,算得所需旁通得最大流量为125.4m3/h,再由最不利环路压差155KPa。

(3)流通能力的计算

根据公式(2)C=316G*(⊿P/ρ)-1/2算得C=100.6

(4)调节阀选型

下表为上海恒星泵阀制造有限公司的ZDLN型电子式电动直通双座调节阀的技术参数表,由公式(2)算得C=100.6,该调节阀的固有流量特性为直线型和等百分比特性,按照等百分比特性选择最接近的C值,得到管径为DN80,C值为110,符合选型要求。

公称通径DN(mm)

25

32

40

50

65

80

100

125

150

200

250

300

400

额定流量系数

Kv

直线

12.1

19.4

30.3

48.3

75.9

121

193.6

302.5

484

759

1210

1936

2920

等百分比

11

17.6

27.5

44

69.3

110

176

275

440

693

1100

1760

2700

额定行程L(mm)

16

25

40

60

120

公称压力PN(MPa)

1.6、4.0、6.4

固有流量特性

直线、等百分比

固有可调比R

50:1

信号范围(mA.DC)

0~10、4~20

电源电压

220V、50Hz

作用方式

故障时:全开、全闭、自锁位

允许泄漏(1/h)

10-3×阀额定容量

工作温度

t(℃)

常温型

-20~200、-40~250、-60~250

散热型

-40~450、-60~450

高温型

450~650

低温型

-60~-100、-100~-200、-200~250

(5)调节阀的开度及可调比验算

旁通管段总长为6m,查上表当C=110时,由公式(4)⊿P=ρ(316G/C)2得到⊿P=129.8KPa,当旁通管道采用与调节阀相同的管径时,当旁通管道最大水量为125.4m3/h,经过水力计算,总沿程损失为42.8KPa,总局部损失为23KPa,调节阀两端压差为129.8-42.8-23=64KPa<129.8KPa,阀门能力PV=64/129.8=0.49,这时调节阀的流量特征曲线为等百分比特性,此时处理的实际最大旁通水量为88.1m3/h<125.4m3/h,其流量只有系统要求的最大旁通流量的70%,由公式(2)可以求得实际可调比Rs=7,即实际最小流量为88.1/7=12.6m3/h,最大流量与最小流量显然均不能满足实际要求,所以旁通管的管径选择DN80不合适。

按照上述计算方法,继续试算,当选用DN125的旁通管时,计算得调节阀两端压差为123.2KPa,PV=0.95,此时处理的最大旁通水量为122.1m3/h,相对开度为90%,相对流量为97.3%,由公式(2)可以求得实际可调比Rs=9.7,即最小旁通水量为122.1/9.7=12.6m3/h与调节阀工作在10%的开度下的流量12.21m3/h相比已非常接近。此时调节阀的流量特性已接近理想流量特性曲线,已能满足系统需要。

五、结论

通过以上分析,可以得出如下结论:

(1)调节阀流通能力C的确定是选择调节阀至关重要的一步,只有流通能力C计算正确,调节阀才有可能满足工艺要求。

(2)调节阀的阀门能力PV也是选择调节阀的重要指标之一,原则上要尽可能选择大的Pv值。

(3)调节阀的实际可调比Rs是决定调节阀能否满足工艺要求的参数之一。实际可调比往往远远小于理想可调比,但是在选择调节阀时要尽可能使实际可调比接近最大值。

(4)调节阀所能通过的最大流量与最小流量是选择计算的关键环节,这两个数值应该由实际可调比与工艺要求共同决定。

调节阀范文篇6

1引言

自力式调节阀是一个新的自力式调节阀种类。相对于手动调节阀,它的优点是能够自动调节;相对于电动调节阀,它的优点是不需要外部动力。应用实践证明,在闭式水循环系统(如热水供暖系统、空调冷冻水系统)中,正确使用这种阀门,可以很方便地实现系统的流量分配;可以实现系统的动态平衡;可以大大简化系统的调试工作;可以稳定泵的工作状态等。因此,自力式调节阀在供热空调工程中有着广阔的应用前景。由于这种阀门在我国出现时间不长,所以对其适用条件还研究不够,本文试作一些分析,算作参加对这个问题的讨论。

按照自力式调节阀的控制参量可以分为四类:①控制网路中某个部分的流量;②控制网路中某个部分的压差;③控制热交换装置的出水温度;④控制供暖或空调房间的温度。本文以前两种自力式调节阀为讨论对象。

2验自力式调节阀的结构和工作原理

2.1自力式流量控制阀

自力式流量控制阀的作用是在阀的进出口压差变化的情况下,维持通过阀门的流量恒定,从而维持与之串联的被控对象(如一个环路、一个用户、一台设备等,下同)的流量恒定。自力式流量控制阀的名称较多,如自力式流量平衡阀、定流量阀、自平衡阀、动态流量简称阀等。各种类型的自力式流量控制阀,结构各有相异,但工作原理相似。这里以ZL47型自力式流量控制阀为例,介绍其结构和工作原理。

图1ZL47自力式流量控制结构示意图阀

ZL47型自力式流量控制阀从结构上说,是一个双阀组合,即由一个手动调节阀组和自动平衡阀组组成,如图1所示。手动调节阀组的作用于设定流量,自动平衡阀的作用是维持流量恒定。

对于手动调节阀组来说,流量,式中KV为手动调节阀阀口的流量系数,P2-P3为手动调节阀阀口两侧的压差。KV的大小取决于开度,开度固定,KV即为常数,那么只要不变,则流量G不变。而P2-P3的恒定是由自动平衡阀组控制的。比如进出口压差P1-P3增大,则通过感压膜和弹簧的作用使自动平衡阀组关小,使P1-P2增大,从而维持P2-P3的恒定;反之P1-P3减小,则自动平衡阀组开大,使P1-P2减小,维持P2-P3的恒定。

手动调节阀组的每一个开度对应一个流量,开度和流量的关系由试验台试验标定,并配有开度的显示和锁定装置。

2.2自力式压差控制阀

自力式压差控制阀的作用是维持施加在被控对象上的压差恒定。这里介绍ZY47型自力式压差控制阀的结构和工作原理。

ZY47型自力式压差控制阀按照安装在供水管还是回水管上,分为供水式结构和回水式结构,二者不可互换使用。这种阀门由阀体、双节流阀座、阀瓣、感压膜、弹簧及压差调整装置组成。图2a为回水式结构示意图,图2b为其安装位置示意图。

(a)

(b)

图2ZY47型自力式压差控制阀回水式结构及安装示意图

当网路的供回水压差P1-P3增大,则感压膜带动阀瓣下移,使得P2-P3增大,从而维持P1-P2(施加于被控环路的压差)恒定;反之,P1-P3减小,则阀瓣上移,P2-P3减小,使P1-P2不变。

若P1-P3不变,而图2b所示的环路内部阻力发生变化,比如某一支路判断,则环路的总阻力增大,在这个瞬间P2减小,

P1-P2增大;但随之感压膜的受力平衡被打破,阀瓣下移,压差控制阀的阻力增大,而使P2又回升到原来的大小,即P1-P2不

变。可见,无论是网路压力出现波动,还是被控对象内部阻力发生变化,自力式压差控制阀均可维持施加于被控对象的压差恒定。

3系统的运行调节方式与自力式调节阀的选择

(1)当系统的运行调节采用热源主动进行的集中量调节(比如随室外温度的变化而改变流量)时,不能采用自力式调节阀。因为这种调节是通过改变水量实现的,因而调节时改变了系统的水力工况,所以若采用自力式调节阀,势必造成有的阀能正常工作,但被控对象流量过大(超过此时的热负荷所对应的流量),有的阀全开仍达不到流量要求,有的阀因两端压差达不到启动压差而不能正常工作,即再现流量分配的混乱。显然,由于自力式调节阀的存在而造成了系统集中调节的不能实现。

这里若采用手动调节阀(比如平衡阀),则系统总流量增减时,各支路、各用户的流量可以同比例增减,即系统的集中调节可以传达至每一个末端装置。

(2)当系统的运行调节为抽调节时,可以采用自力式流量控制代和自力式压差控制阀,因为这种调节方式只改变供水温度,而与系统的水力工况无关,即在不改变系统的水力工况的情况下,把调节传达到每个用户和设备,采用自力式流量控制阀,可以吸收网路的压力波动,维持被控负荷载的流量恒定。采用自力式压差控制阀可以吸收网路的压力波动,以及克服内扰(被控环路内部的阻力变化),以维持施加于被控环路上的压差恒定。

(3)当系统采用分阶段改变流量的质调节时,虽然每个阶段流量不变,但若采用自力式调节阀,每个流量阶段要对控制流量或控制压差进行设定,给运行管理带来很大不便,所以不宜采用。

4点被控对象的内部调节与自力式调节阀的选择

4.1有内部调节

如图3所示,在一个环路入口处装设自力式流量控制阀,则环路流量恒定,那么环路中的一个支路进行流量调节,其调节量必然全部转移到其他支路上去。比如支路2关闭,则支路1和支路3的流量增大,两支路的流量增量即原支路2的流量。显然,装设自力式流量控制阀使各支路间出现较大的调节干扰;环路的水力稳定性很差。

图3自力式压差控制阀与电动二通阀的配合使用

而若如图2b所示,在环路入口处装设自力式压差控制阀,由于可以保持环路的压差(即P1-P2)恒定,将大大减弱各支路间的调节干扰。如果环路中干管的阻力相对于支路的阻力可以略不计,则可把干管视为静压箱,各支路的调节互不干扰,即一个支路的流量调节对另外支路的流量不产生影响。实际上,由于干管阻力的存在,例得各支路间的调节干扰不可避免,比如一个支路关小,其它支路的流量均将程度不同的有所增加。但在设计合理的情况下一步,这种干扰是微弱的。系统设计时对于被控环路的干管采用相对较大的管径,且在干管上不再装设其它阀门尽可能减小干管的阻力,可以使各支路间的调节干所降到最低程度,使环路具有较好的水力稳定性。

对于分户热计量的供暖系统,强调用热调节的自主性,而又必须从设计上考虑尽可能减轻各用户是的调节干扰,所以家采用自力式压差控制阀。

4.2无内部调节

在被控制对象无内部调节时,因为内部阻力不变,所以压差恒定必然流量恒定,因而装设自力式压差控制阀和装设自力式流量控制阀,具有同样的效果,都可以起到吸收网路的压力波动,保持被控对象流量恒定的作用。这种情况下,二者可以互

换。

对于采用集中质调节的供暖系统,一个支路上连接多个用户,无疑在支路入口处可以装设自力式压差控制阀。但如果各用户的调节是不经常的、无规律的以及相对于支路的总流量来说调节所产生的影响是轻微的,则也可以把支路的流量视为恒定,采用自力式流量控制阀。

对于二者均可采用的场合,推荐采用为自力式流量控制阀,因为流量控制阀可以直接设定和显示流量,且无需连接导压

管。

5自力式压差控制阀与电动二通调节阀的配合使用

电动二通调节阀的选型应遵循两个原则:①系统为设计工况时,阀门全开的流量稍大于设计流量(有的文献[1]认为应在开度90%时为设计流量);②阀权度足够大,文献(1)认为不能小于0.3,文献(2)认为不能小于0.5。对于第①个条件往往难以满足,因为同一种电动阀相邻两种口径的流通能力(即全开时的流量系数)大约相关60%,所以往往找不到流通能力恰好符合要求的口径,而只好选偏大的口径。那么对于口径偏大的电动阀,一是可能造成较多的时间阀在较小开度甚至接近于关闭的状态下工作,使阀的控制不稳定和不精确;二是全开状态不可避免(比如系统启动时,以及大的扰动出现时),而全开将使被控环路出现过流,同时使其他环路流量不足。

对于这种情况,一个简单的解决办法是与电动阀串联一个平衡阀,消耗一部分压差,从而使电动阀在接近全开时流量为设计流量。但这样处理又可能使阀权度过小,即不符合第②个要求。如图4a所示,负载(可以是一个环路,一个用户,一台设备等)入口压差为80Kpa,设计流量为8.5T/h,设计工况下负荷的阻力损失为40Kpa。则所选电动阀在设计工况下的压降应为40Kpa,流通能力应为

图4自力式压差控制阀与电动二通阀的配合使用

根据文献[1]中给出的ZAP型电动阀的参数表,ZAP-32B的流通能力为12,ZAP-40B的流通能力为20,所以只能选ZAP-40B,流量特性按线性考虑,则设计流量对应的开度只有68%。如图4b所示,串联一个平衡阀,使二通电动阀在全开时达到设计流量(为了分析和计算的方便,这里姑且以全开时达到设计流量考虑),则由可算得,此时电动阀门压降为ΔP=18Kpa,平衡阀的压降为80-40-18=28Kpa,电动阀的阀权度为显然阀权度太小。阀权度过小将导致阀工作时的压差变动范围较大,阀的工作特性严重偏离理论特性,使控制的精确度变差。此时可如图4c所示,与电动阀串联装设一个自力式压差控制阀(此图是ZY47型压差控制阀供水式结构的连接方法)。压差控制阀既可以代替平衡阀的作用,使电动阀在接近全开时达到设计流量,又可以保证电动阀上的压恒定,即阀权度接近于1,阀的工作特性与理论特性基本吻合,使电动阀工作稳定,控制精确。本例中仍按电动阀全开达到设计流量考虑,电动阀的设定压差应为18Kpa。压差控制阀可以保证电动阀始终在这个压差下工作,剩余压差、网络的压力波动及负载的压和变化,均由压差控制阀吸收。

6平衡阀与自力式调节阀的配合使用

一般而言,装设了自力式调节阀的地方,不需再装设手动平衡阀,但在如下两种情况可以考虑二者串联装设,配合使用。(1)每一种自力式调节阀都有其可以正常工作的压差范围,超出这个范围,就不能很好发挥应有的功能,甚至不能工作所以当作用于自力式调节阀的压差过大时,可串联一个平衡阀,吸收一部分压差,以保障自力式调节阀的正常工作。

(2)手动平衡阀一个很重要的功能就是可以进行流量的测定(实际上是测压差结合阀的特性算流量),所以手动平衡阀可以说是一个"诊断"工具。因而对流量的精确程度要求较高的系统,为了监测被控对象的流量,监测自力式调节阀的工作是否正常,从而做出相应的调整,可以与自力式调节阀串联一个平衡阀。并且,平衡阀的判断和泄水功能也是自力式调节阀所不具有的。

7结论

(1)对于质调节系统可根据恒定流量和恒定压差的需要,选用自力式流量控制阀和自力式压差控制阀。

(2)对于热源处主动进行集中量调节的系统,因运行调节时改变了系统的水力式工况,所以不能采用自力式调节阀。这时,若采用手动平衡阀,系统总流量变化时,各支路、各用户、各末端装置的流量同比例变化,即系统的集中调节可以传达至每一个末端装置。

(3)当被控对象有内部调节时,装设自力式流量控制阀,将使被控对象内部的各支路间出现较大的调节干扰。而装设自力式压差控制阀,既可吸收网路的压力波动、又可以使被控对象内部各支路音质调节干扰大大减弱。因而被控对象有内部调节时,可装设自力式压差控制阀,不可装设自力式流量控制阀。对于分户热计量的持调节供暖系统,在一个向多户供暖的支路入口处,宜装设自力式压差控制阀。

(4)被控对象无内部调节时,装设自力式流量控制阀和自力式压差控制阀,具有相同的效果,二者可以互换。当二者均可采用时,推荐采用自力式流量控制阀。

(5)自力式压差控制阀可与电动阀配合使用,以维持电动阀上的压差恒定,从而使电动阀工作稳定,控制精确。

(6)有时平衡阀与自力式调节阀可串联装设,配合使用。

参考文献

调节阀范文篇7

关键字:定风量阀排风系统变风量空调系统

定风量阀,是一种机械式自力装置,适用于需要定风量的通风空调系统中。定风量阀风量控制不需要外加动力,它依靠风管内气流力来定位控制阀门的位置,从而在整个压力差范围内将气流保持在预先设定的流量上。

(一)在新风系统中的应用

目前,在国内,风机盘管加新风系统的空调方式还是较普遍,尤其是宾馆客房部分,大部分写字楼、办公楼都采用这种方式。通常做法是每层设新风机组,走道敷设新风干管,几十根支管分别从总管上接入各房间。以宾馆客房为例,每间客房新风量一般为100m3/h,如何做到各支管的风量一致呢?一般来说,设计师往往会在新风支管上加设一只风量调节阀,期望通过后期调试手段来完成风量分配。由于新风系统一般情况下均为干管长,支管短,而风量调节阀调节既不直观,调节精度又不理想,况且每间客房新风量只有100m3/h,风量很小,这样的调试几乎是无法完成的。施工单位只能做到测一下新风干管的总送风量,保证各送风支管有风感这样的地步。为了能保证各房间所送新风量能达到设计值,也无需施工单位再去一个房间一个房间的平衡,我们只需在每支新风支管上加设一只定风量阀,以上问题就迎刃而解。

在高层建筑内居住、办公的人常常抱忧新风量不足,而设计师往往感到很委屈。因为从图纸上看,新风量标准的取值并不低,但我们往往忽略了一个问题,如何从设计角度来保证实际效果,而定风量阀在新风系统中的应用,就是一个有力的措施。

因目前定风量阀主要还是依靠进口,价格较贵,笔者建议在四、五星级宾馆,高档写字楼运用比较合适。

(二)在排风系统中的应用

一个好的空调系统设计,它的排风系统必须很合理,而这一点往往得不到重视。在民用建筑特别是在高层建筑里,围护结构的气密性很好,只需较少的风量就可以维护房间的正压值。大约新风量的85~90%必须通过有组织的排风排出室外,这样才能保证送风、排风的风量平衡,否则再多的新风量也无法送进房间。在民用建筑里,排风一般通过卫生间、开水间等辅助用房排出室外。除此之外,有时还应再增加一套排风系统,才能保证送、排风平衡。对于卫生间排风,通常做法是每间卫生间设一、二只卫生间通风器,与排风竖井上的排风机联锁。我们知道,高层建筑内新风系统应该是一年四季都运行的,相应排风系统也应该是一年四季都运行的。也就是说,使用卫生间的人不可以去控制卫生间通风器的开启,设卫生间通风器的必要性就没有了。况且一个大风机带几十个小风机这样的排风系统运行既难匹配,又不经济。排风量为400m3/h的卫生间通风器噪音就有40dB左右,使卫生间失去宁静。大量的卫生间通风器也给维护带来很大的麻烦。为解决这个问题,我们可以取消卫生间通风器,在排风竖井每层支管上加设一只定风量阀,竖井顶部设一只排风机。这样的排风系统,能保证各层所排风量大致相等,而系统控制简单,运行可靠,卫生间可以很宁静。

(三)在变风量空调系统中的应用

在变风量空调系统中,一般外区采用变风量方式,内区采用定风量方式,在一个风量、风压不断变化的送风系统中,内区定风量设计是离不开定风量阀的。

(四)在净化空调系统中的应用

在净化空调系统中维持洁净房间的正压值至关重要,在排风或送排风系统中加设定风量阀,就能有效保证洁净房间的正压值。

洁净手术室手术进行时与不进行时均需保持手术室正压,手术进行时新风量为保证正压所需的新风量加人员所需新风量,手术不进行时新风量为只保证正压所需的新风量,所以新风管上需要设双位定风量阀。

(五)在风管管路平衡上的应用

在全空气系统中,由于受建筑条件的影响,各支管之间阻力肯定不均衡,一般采用三通调节阀或对开多叶调节阀来完成风量分配。为保证重要房间或主要支管上的风量不致于过大或过小,减少调试的盲目性,可适当加设定风量阀来取代三通调节阀或对开多叶调节阀。

(六)定风量使用上的特点

定风量阀是自动机械机构,无需外部动力,可另加电动执行器通过遥控信号改变流量设定。定风量阀在送、排风系统中均可应用,工作温度一般为10~50℃,压差范围为50~1000Pa,即阀前阀后至少应用50Pa压差,否则定风量阀不能工作。这点应注意,因为新风系统新风机组的风压值一般都不大。定风量阀安装时不受位置限制,但阀片轴应保证水平,一般要求有阀门长边1.5倍距离的直线入口风管及0.5倍距离的直线出口风管。定风量阀控制精度高,有外部指针显示流量刻度,调节精度约为±4%,限流机构无需维护,为与系统配套,定风量阀矩形、圆形、保温、消声型均可选择。

调节阀范文篇8

关键词:智能燃气;天然气厂站;智能调压调流;电动调节阀

1概述

智慧燃气的建设,不仅是一个综合的信息化软件体系提升过程,也是一个基础的硬件设施提升过程,智能燃气设备的应用是智慧燃气建设过程中非常重要的一环,也是智慧燃气建设的基础。智能燃气管网主要包括更透彻感知各项运行参数、更高效畅通的通信、管网的完整性管理、更精准的调控、对生产各个环节的逻辑分析以及智慧的决策等。城市天然气厂站作为城市燃气输配的重要节点,承担着承接上游气源,调节和分输给下游管网、用户的重要功能,其智能化建设必然是城市智慧燃气的重要一环。通过对某高压A调压站的智能化设计思路的解析,剖析城市天然气厂站工艺设计中对智能设备的设计和应用思路,以研究现阶段厂站设计智能化需求及可实现的功能,为城市燃气基础设施的智能化设计和燃气输配系统的智能化发展提供参考。

2现阶段智能设备的应用

自2013年,北京某燃气企业根据实际情况启动了各压力级制调压站的远程调控改造。经过设备调试和运行,获得大量的运行数据,调度部门通过对这些数据的分析总结,认为智能化远程调控设备主要实现了以下4方面。①在调压模式下对供气压力可较准确控制,满足对供气压力要求严格的用户需求;②在调流模式下实现负荷集中区域的调压站按设定流量运行,解决超流问题,避免造成调压、计量设备损坏,在多气源和多气质条件下,实现调压站及时、合理的流量调配;③通过单路调压器、调节阀独立调控方式,探索多路调压器流量均衡控制的可行性;④通过低流模式的实际运行,初步实现夏季贸易计量站在低峰时段的流量准确计量。目前的远程调压调流只是实现了一定程度的单体、局部的有限智能控制,要实现全网的智能调节还有很长的路要走,智能管网集中了调度人员长期以来经过优化的调控和应急处置工作经验,据此需要建立一个大型分析计算软件,从而根据不同的工况乃至突发事件选择最优调度方案,并迅捷实施。参考国内某大型能源企业对于智能调压的建设方案,可知其调压装置在初期仅考虑了调压功能。但随着下游用户的增加,对流量控制的需求逐渐明显,调压调流模式应运而生。目前,大多数长输管道分输站或末站实现压力流量控制的方案有两种,分别为安全切断阀+监控调压器+电动调节阀、双切断(2个安全切断阀串联)+电动调节阀。这两种方案都是利用电动调节阀及相应的控制环节,通过调节阀门的开度来控制流量的变化进而控制流体的压力和流速等参数。

3调压站智能调压、调流设备的工艺设计

根据现有设备水平和应用经验,设置电动调节阀是现阶段实现智能调压、调流的主要手段。调压系统的安全设备的设置可参考GB50251—2015《输气管道工程设计规范》第8.4.3条第2款:当上游最大操作压力大于下游最大操作压力1.6MPa以上,以及上游最大操作压力大于下游管道和设备强度试验压力时,单个的(第一级)压力安全设备还应同时加上第二个安全设备。根据以上条款,现阶段以电动调节阀为主的调压、调流工艺流程根据上下游压差可分为以下两种[1]。①安全切断阀+监控调压器+电动调节阀此工艺适用于上下游压差>1.6MPa的工况。该压力流量控制系统包括:安全切断阀、监控调压器、电动调节阀、专用压力流量控制器、压力变送器、压力表及相关设备、异径管、管路附件等。安全切断阀、监控调压器、电动调节阀为相互独立的设备,按照从上游至下游的顺序,串联在一起组成安全监控式控制系统。该系统采用以PLC(带PID调节模块)为基础组成独立的压力流量控制器,对厂站出站压力、流量进行控制。其中,安全切断阀和监控调压器的压力检测点均独立设在电动调节阀的下游且与电动调节阀的压力检测点邻近布置。a.供气流量低于流量上限设定值当供气流量低于流量上限设定值时,安全切断阀和监控调压器处于全开位置。专用压力流量控制器和电动调节阀处于压力调节状态。此时,专用压力流量控制器和电动调节阀的作用是控制下游的供气压力在规定的范围内。b.供气流量接近或超过流量上限值当供气流量接近或超过流量上限值时,安全切断阀和监控调压器处于全开位置,专用压力流量控制器和电动调节阀处于流量控制状态。专用压力流量控制器输出控制信号,减小调节阀开度,控制供气流量不超过流量上限值。c.电动调节阀出现故障电动调节阀出现故障导致下游供气压力超过压力上限值达到一定范围时,监控调压器(第一级安全设备)自动投入工作,以维持下游供气压力在一个安全、合理范围。此时,系统处于自力式压力调节状态,不能控制供气流量。故障时电动调节阀的阀位状态可根据需要选择,全开或维持故障前阀位。d.电动调节阀、监控调压器均出现故障电动调节阀出现故障后,监控调压器也出现故障,不能控制下游压力时,安全切断阀(第二级安全设备)自动切断该回路气源,并由站控系统开启备用回路,关闭故障回路,以确保连续供气及下游管道、设备的安全。②监控调压器+电动调节阀此工艺适用于上下游压差≤1.6MPa的工况。当调压系统进出口压力变化不大时,可采用监控调压器(或安全切断阀)+电动调节阀的一级安全设备的模式。对于以上两种方式,均要求电动调节阀的压力流量控制系统应能向站控系统传递本系统的各种运行状态参数,如压力、阀门开度等状态信息。其控制器应具有就地显示功能,能够显示压力流量控制系统实时的工作状态、故障信息(如:调节阀开度、压力信号错误、设备故障等),并能显示设定值。控制器能够预先设定压力上限值、一定时间内流量上限值(即限制流量曲线),并根据预设流量上限值对流量进行控制,保持实际供气流量不超过流量上限值。控制器有良好的调节特性输出,能够控制出口压力,限制最大流量。压力和流量控制的切换过程要求十分平稳,不能使被调节对象出现大的扰动。电动调节阀的智能控制精度,对其所在支路的流量信号反馈十分敏感,为了更好地发挥电动调节阀自我调节的智能化功能,应将流量计的流量信号直接反馈至电动调节阀,以供电动调节阀实时精确地调节燃气的流量、压力[2]。因此在设计调压流程中,应将流量计串联在有电动调节阀的调压支路中,以达到流量信号与电动调节阀一一对应的效果。这样设置,不但实现了调压站对于上、下游管网负荷的实时反应和主动调整,同时也可解决传统工作调压器多支路流量不均导致的“偏流”问题。这一效果已得到运行试验的初步证明。在流量计与电动调节阀串联设置的设计中,还应该注意燃气流态对流量计的影响。由于电动调节阀的调节需要流量数据反馈信息,进而使燃气流量在极大的范围内调节。所以流量计的计量精度与范围,对于实现精确的实时调压调流具有重要意义。现阶段计量精度较高、计量范围较大的流量计多为超声波形式。超声波流量计是通过检测流体流动时对超声束(或超声脉冲)的作用来测量流量的,其测量精度对流体的流态较敏感。另一方面,流量计所在支路串联的电动调节阀在工作时对于流量信号会实时作出反馈动作,这必然会对支路内的燃气流态产生干扰,在实际应用中应对这一现象采取措施,稳定流态以提高超声波流量计的计量精度。

4某高压A调压站的智能化设计思路

调节阀范文篇9

1.1推杆动作迟钝或不动作

执行器长期工作在生产现场,直接与各种工艺介质接触,在检查维护、测试及运行过程中经常出现执行机构中的推杆动作迟钝或无法动作的故障,须认真检查执行机构中滚动膜片,垫片是否老化、破裂,因为膜片的老化或破裂会导致标准压力信号的泄气,使与其相连接的推杆动作迟缓或不动作。

1.2测试运行过程中回差比较大

执行器的回差是指在同一输入信号上所测得的正、反行程的最大差值。回差一般情况下是由于仪表本身机械零部件松动或执行机械中推杆弯曲引起的,这时需要认真检查与推杆相连接的压缩弹簧有无损伤,同时观测推杆是否变形弯曲、划伤,上、下阀座连接螺栓有无异常现象,是否对称,特别是用缠绕热片密封的调节阀更应该注意这些方面的问题,有时回差过大也与密封填料压得太紧有关,应及时作相应的调整。

1.3流体泄漏

1.3.1阀杆长短选择不合适泄漏气开阀是指有压力信号时阀开的执行器。反之为气关阀。它们是由执行机构的正、反作用和调节阀的正、反作用组合而成。气开阀如图1中的(a)、(b),气关阀如图1中的(c)、(d)所示。

当执行机构中的膜片接受到标准气压信号时如果阀杆太长或太短,阀杆向上(或向下)移动距离不够,就造成了阀芯和阀座之间的间隙,使其不能很充分接触,导致调节阀关不严而发生内漏现象。

1.3.2填料泄漏在执行器内部存在有多处密封

装置,密封面的损伤,阀杆连接处弹簧被腐蚀或失去弹性以及阀座与阀体连接螺纹松动,都是造成泄漏的主要因素,填料装入填料函后,经压盖对其施加轴向压力,由于填料的可塑性,使其产生径向的压力与阀杆紧密接触。调节阀在使用过程中,阀杆与填料之间存在着频繁轴向运动,同时伴随着高温、高压和渗透性强的流体介质及填料自身老化等因素的影响,就会使填料界面发生泄漏,对于纺织填料还会出现渗漏现象(即压力介质沿着填料纤维之间的微小缝隙向外泄漏的现象)。

1.3.3阀芯、阀座变形泄漏阀芯、阀座泄漏的主要原因是由于调节阀生产过程中铸造、锻造缺陷造少戊的,细小的砂眼、局部的磨损都会导致冲刷腐蚀速度的加快。在调节阀中腐蚀主要以浸蚀和气蚀为主,它们都是由于流体介质在阀体内的流动所引起。当强酸、强碱等腐蚀性介质在通过阀体时,会对阀芯,阀座产生冲刷腐蚀,导致阀芯变形与阀座不配套,产生间隙而发生泄漏。

1.4卡堵

执行器的调节机构发生卡堵,主要是由于管道中的硬渣在节流口、阀芯与阀座之间的导向面部位、下阀盖平衡孔内造成堵塞,使阀芯动作迟钝或只能上不能下,导致不能动作或动作过头的现象,常发生于新投运系统和大修后投运初期。

1.5振荡和噪声

当调节阀的流通能力选取值过大时,造成调节阀前后压力比较大,当调节阀的弹簧钢度不足时,就产生阀体的振荡。当流体流经调节阀,如前后压差过大就会产生针对阀芯、阀座等零部件的气蚀现象,使流体产生噪声。这些现象的产生都会影响执行器平稳运行。

2执行器故障的处理方法

从以上执行器出现的故障原因分析来看,对于气动执行器在运行过程中或检修时应重点检查下列部位:阀芯、阀杆、阀座、阀体、内壁、膜片和弹簧、密封填料,针对这些部位出现的各种问题采用适当的方法予以处理。

(1)阀芯长期受介质冲蚀,可能会出现腐蚀、磨损损坏严重时应进行更换。

(2)检查阀杆表面有无刻痕,是否光滑、弯曲,若损坏过多或直径过细应及时更换。

(3)检查阀座锥形密合面的损坏程度,然后检查阀座的螺纹内表面有无因受腐蚀而使阀座松动,损坏程度较轻可经修理后继续使用,否则应更换。

(4)在高压差和腐蚀介质的情况下,阀体内壁出现缺陷或剥损时,应及时补焊修理。

(5)检查膜片和密封圈有无老化、破裂、压缩弹簧有无损伤,如果发现问题要及时更换。

(6)采用石棉绳填料的,应检查有无干涸,要常注润滑油;采用聚四氟乙烯填料时,应检查有无老化和接触面损坏,如发现问题应及时更换,为了有效地保护阀杆填料函的密封,保证填料密封的可靠性和长期性,填料可以选用气密性好、摩擦力小的柔性石墨。

(7)对振荡和噪声可以通过调整弹簧钢度,更换节流元件,减小阀内可动零件导向间隙,改变流动方向,限制阀座前后压差,合理选用阀体结构来消除。

3结语

通过对执行器常见故障的分析,有针对性地采取合适的维修方法,将会大大延长执行器的使用寿命,降低自动化仪表的故障率,有效提高调节系统的质量水平,确保自动调节装置长周期、高效率的运行。

参考文献

[1]陈荣.模拟调节仪表IMI.化学工业出版社,1994.

[2]梁雪萍.调节阀故障原因分析及处理方法[J].化工自动化及不义表,2000,27(5):63-64.

[3]厉玉鸣.化工仪表及自动化[M].北京:化学工业出版社,1998

调节阀范文篇10

1.1推杆动作迟钝或不动作

执行器长期工作在生产现场,直接与各种工艺介质接触,在检查维护、测试及运行过程中经常出现执行机构中的推杆动作迟钝或无法动作的故障,须认真检查执行机构中滚动膜片,垫片是否老化、破裂,因为膜片的老化或破裂会导致标准压力信号的泄气,使与其相连接的推杆动作迟缓或不动作。

1.2测试运行过程中回差比较大

执行器的回差是指在同一输入信号上所测得的正、反行程的最大差值。回差一般情况下是由于仪表本身机械零部件松动或执行机械中推杆弯曲引起的,这时需要认真检查与推杆相连接的压缩弹簧有无损伤,同时观测推杆是否变形弯曲、划伤,上、下阀座连接螺栓有无异常现象,是否对称,特别是用缠绕热片密封的调节阀更应该注意这些方面的问题,有时回差过大也与密封填料压得太紧有关,应及时作相应的调整。

1.3流体泄漏

1.3.1阀杆长短选择不合适泄漏气开阀是指有压力信号时阀开的执行器。反之为气关阀。它们是由执行机构的正、反作用和调节阀的正、反作用组合而成。气开阀如图1中的(a)、(b),气关阀如图1中的(c)、(d)所示。

当执行机构中的膜片接受到标准气压信号时如果阀杆太长或太短,阀杆向上(或向下)移动距离不够,就造成了阀芯和阀座之间的间隙,使其不能很充分接触,导致调节阀关不严而发生内漏现象。

1.3.2填料泄漏在执行器内部存在有多处密封

装置,密封面的损伤,阀杆连接处弹簧被腐蚀或失去弹性以及阀座与阀体连接螺纹松动,都是造成泄漏的主要因素,填料装入填料函后,经压盖对其施加轴向压力,由于填料的可塑性,使其产生径向的压力与阀杆紧密接触。调节阀在使用过程中,阀杆与填料之间存在着频繁轴向运动,同时伴随着高温、高压和渗透性强的流体介质及填料自身老化等因素的影响,就会使填料界面发生泄漏,对于纺织填料还会出现渗漏现象(即压力介质沿着填料纤维之间的微小缝隙向外泄漏的现象)。

1.3.3阀芯、阀座变形泄漏阀芯、阀座泄漏的主要原因是由于调节阀生产过程中铸造、锻造缺陷造少戊的,细小的砂眼、局部的磨损都会导致冲刷腐蚀速度的加快。在调节阀中腐蚀主要以浸蚀和气蚀为主,它们都是由于流体介质在阀体内的流动所引起。当强酸、强碱等腐蚀性介质在通过阀体时,会对阀芯,阀座产生冲刷腐蚀,导致阀芯变形与阀座不配套,产生间隙而发生泄漏。

1.4卡堵

执行器的调节机构发生卡堵,主要是由于管道中的硬渣在节流口、阀芯与阀座之间的导向面部位、下阀盖平衡孔内造成堵塞,使阀芯动作迟钝或只能上不能下,导致不能动作或动作过头的现象,常发生于新投运系统和大修后投运初期。

1.5振荡和噪声

当调节阀的流通能力选取值过大时,造成调节阀前后压力比较大,当调节阀的弹簧钢度不足时,就产生阀体的振荡。当流体流经调节阀,如前后压差过大就会产生针对阀芯、阀座等零部件的气蚀现象,使流体产生噪声。这些现象的产生都会影响执行器平稳运行。

2执行器故障的处理方法

从以上执行器出现的故障原因分析来看,对于气动执行器在运行过程中或检修时应重点检查下列部位:阀芯、阀杆、阀座、阀体、内壁、膜片和弹簧、密封填料,针对这些部位出现的各种问题采用适当的方法予以处理。

(1)阀芯长期受介质冲蚀,可能会出现腐蚀、磨损损坏严重时应进行更换。

(2)检查阀杆表面有无刻痕,是否光滑、弯曲,若损坏过多或直径过细应及时更换。

(3)检查阀座锥形密合面的损坏程度,然后检查阀座的螺纹内表面有无因受腐蚀而使阀座松动,损坏程度较轻可经修理后继续使用,否则应更换。

(4)在高压差和腐蚀介质的情况下,阀体内壁出现缺陷或剥损时,应及时补焊修理。

(5)检查膜片和密封圈有无老化、破裂、压缩弹簧有无损伤,如果发现问题要及时更换。

(6)采用石棉绳填料的,应检查有无干涸,要常注润滑油;采用聚四氟乙烯填料时,应检查有无老化和接触面损坏,如发现问题应及时更换,为了有效地保护阀杆填料函的密封,保证填料密封的可靠性和长期性,填料可以选用气密性好、摩擦力小的柔性石墨。

(7)对振荡和噪声可以通过调整弹簧钢度,更换节流元件,减小阀内可动零件导向间隙,改变流动方向,限制阀座前后压差,合理选用阀体结构来消除。

3结语

通过对执行器常见故障的分析,有针对性地采取合适的维修方法,将会大大延长执行器的使用寿命,降低自动化仪表的故障率,有效提高调节系统的质量水平,确保自动调节装置长周期、高效率的运行。

参考文献

[1]陈荣.模拟调节仪表IMI.化学工业出版社,1994.

[2]梁雪萍.调节阀故障原因分析及处理方法[J].化工自动化及不义表,2000,27(5):63-64.

[3]厉玉鸣.化工仪表及自动化[M].北京:化学工业出版社,1998