电力线范文10篇

时间:2023-03-27 14:45:54

电力线

电力线范文篇1

摘要:简要介绍了电力线通信技术,分析了对利用电力线通信技术实现智能家居网络的载波技术、网络控制技术等组网关键问题,介绍了一种基于LonWorks技术的电力线智能家居网络解决方案。

基于电力线通信技术的智能家居网络系统,利用电力线通信技术通过电源插座完成家庭联网,并为家庭网络提供互联网接入和多媒体音视频业务,通过家庭服务器对接入家庭网络的信息家电、安全系统实行监控和管理。

一、电力线通信技术概述

电力线通信技术(PLC)是把载有信息的高频加载于电流,用电力线传输,通过调制解调器将高频信号从电流中分离出来,传送到计算机或其他信息家电,以实现信息传递的一种通信方式。目前PLC技术已经形成宽带接入型与家庭网络型两种发展模式,家庭网络型是指通过电力线在用户家中组建高速LAN。这种模式的PLC只提供家庭内部联网,即通过家庭的内部的普通电力线,进行组网连接家庭内部局域网。电力线通信技术有以下优点:信息家电可以通过电力线进行通信,无需另外布线,利用电源线实现智能家居网络成本较低;电力网是覆盖范围最广的网络,PLC技术可以轻松地渗透到每个家庭,其应用范围广泛;网络的接入点是电源插座,电源插座随处可见,数目较多且接插方便;不需要拨号,接入电源插座即接入网络;电力线载波通信较容易实现自动抄表、家居监控等功能。利用电力线载波通信技术实现智能家居网络最方便。

二、电力线智能家居网络的关键问题

2.1载波技术1)正交频分多路复用技术。低压电力线载波信道的传输特性的特点是具有时变性,衰减较大,而且各种干扰噪声复杂。为提高电力线网络的传输质量,电力线通信大都采用正交频分多路复用技术(OFDM)进行调制。即将串行数据转化为N个并行数据分配给N个不同的正交子载波,实现并行数据传输。这样既可得到很高的数据传送速率,又能够有效地抑制码间干扰。应用OFDM技术于电力线通信中具有明显的优越性。OFDM频带不仅利用率高,而且抗干扰性强,可以克服电力线上固有的高噪声、多径效应和频率衰减等现象,有效利用现有低压电力线实现高速数字通信。2)扩展频谱调制技术。这一技术的抗干扰和抗多径效应也较强。因此,也有一些厂家采用这种技术开发电力通信产品。扩展频谱调制技术在相对较宽的频带上扩展了信号频谱,降低了信号的功率谱密度,降低了电磁辐射,削弱了对其他通信系统的干扰。而且接收端通过窄带滤波技术提取有用信号,信号的信噪比很高,抗干扰性增强。另外,扩频通信可以实现码分多址。对于1Mbps左右的系统,应用扩频技术就可以完全满足传输容量的要求,且其设备简单,扩频调制方式较为经济。当传输速率要求在10Mbps及以上时,扩频技术实现起来较困难。在10Mbps及以上传输速率宜采用OFDM调制技术。

2.2网络控制技术目前,家庭自动化网络标准有许多种,较为成熟的有X210、CEBus和LonWorks等。1)X210是最早应用于家庭设备自动控制系统的。X210的控制模式为主从控制模式,信息是单向传输的,从控点只能接收主控点发来的信息,不能反馈。X210的系统信息的传输较慢(传送一个指令需时0.883s),抗干扰性能差,可用节点数为256个,只能用于普通家庭中的简单控制和专项控制。但其价格十分低廉,而且安装使用较方便,如仅组建一个简单的家居智能网络,可以考虑X210技术。2)CEBus是一个较完整的开放系统,美国电子工业协会(EIA)于1992年正式推出,并定为IS260/EIA2600标准。它定义了在几乎所有传送媒体(Medium)中信号的传输标准,并要求控制信号在所有的媒体中都要以相同的传送速度(10Kbps)传送,从而有效地避免信号传输中可能出现的“瓶颈”问题。CEBus的抗干扰能力比X210强,控制功能亦十分丰富。但接口技术比较复杂,价钱较贵,在中国的应用不多见。3)LonWorks是由美国Echelon公司于1990年12月开发成功的全分布式智能控制网络技术。1997年8月,被EIA的集成家庭系统技术委员会定为家庭网络(HomeNetworking)的标准。Lon2Works完全支持OSI的7成协议,具有良好的开放性、互操作性,其网络系统组成以分布控制为控制模式。对于网络家电来说,只需要将已定义的的网络家电之间信息传递的语法和语义标准在应用层实现后,就能够实现不同厂商之间产品的相互兼容。LonWorks的分布式架构使其具有独立性,部分节点的故障不会造成系统瘫痪。LonWorks最基本的部件是同时具有通信与控制功能的神经元芯片,具有很强的通信能力和一定的数据处理能力。其抗干扰能力很强,其可靠度是这三种网络控制技术最高的(约99.8%),并具有完善的开发系统和工具。LonWorks的分布式架构,每一个控制装置都可以有随插即用的功能,减免了二次拉线造成的成本,并避免了重新布线的不便。LonWorks可扩展性强,在将来对系统升级时,可充分利用原有资源,降低升级的复杂性及成本。上述三类家庭自动化网络技术都是各有其特点,组网时可根据实际情况进行选择。但如果要组建一个统一的、操作性强、功能完善、可靠性高、可扩展性强的家居智能网络,采用LonWorks技术是一个明智的选择。

三、电力线智能家居网络的组成

本文以LonWorks技术为基础,采用电力线载波技术来构建家居智能网络。该网络以分布控制、集中管理为控制模式,其网络系统可依靠网络节点完成自治的控制功能,通信媒体采用电力线。主控节点与家用电脑相连,可控制从节点的功能配置并监控从节点的状况,并且还负责与Internet的通信。通过主控节点可查看电表、水表、煤气表的读数,实现三表的集抄。从节点可接收从电力线传来的控制信息,完成自治的控制功能,同时反馈家电的一些状态信息。从节点由电力线网关、信息家用电器组成。在这个网络系统中,电力网关是一个重要的部件,它用于对网络信息的发送与接收。电力网关由基于LonWorks网络系统的LonTalk网络协议和神经芯片、电力线载波模块和耦合电路组成。公务员之家

电力线范文篇2

摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。

同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

一、电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。公务员之家

二、电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

电力线范文篇3

关键词:CPLDFSKMODEM

1国内电力线载波的应用

在电力系统中,由于电力线载波使用坚固可靠的高压电力线作为信号的传输媒介,可节省大量的通道建设投资,再加上电力线载波信息传输稳定可靠、路由合理、安全保密以及能够同时复用远动信号等特点,使得这种电力系统独有的通信方式在数字微波、一点多址、光纤、特高频等通信方式相继出现的今天仍得到持续的发展。

由于数据信号的信噪比决定传输距离的远近,因此电力线载波通信的关键就是设计出一个功能强大的电力线载波专用MODEM芯片。国外在电力线载波通信技术方面发展较早,多家国外公司陆续推出了自己的电力线载波MODEM芯片,并制定了电力线载波适用频率范围的标准。由于国外电力线载波MODEM芯片是针对本地区电网特性和结构的,且一般是针对家庭内部自动化而设计,因此在国内使用都难尽如人意。

图1FSKMODEM系统组成

电力线载波MODEM芯片虽然容易使用,但它的中心频率和频偏比较固定,对特殊的应用场合就难以发挥作用。因此有根据特殊应用来开发电力线载波MODEM的必要。以下讨论的就是一个应用于100kV的高压电力线FSKMODEM的设计。

2实现电力线载波通信的难点

由于电力线是给用电设备传送电能的,而不是用来传送数据的,所以电力线对数据传输有许多限制,因此电力线通信具有以下特点。

①配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送。

②三相电力线间有很大信号损失(10dB~30dB)。通信距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输。

③不同信号耦合方式对电力载波信号损失不同,耦合方式有线-地耦合和线-中线耦合。与线-中线耦合方式相比,线-地耦合方式电力载波信号损失十几dB,但线-地耦合方式不是所有地区电力系统都适用。

图2RS232-TTL转换及缓冲电路

④电力线存在脉冲干扰。目前国内使用的交流电频率为50Hz,周期为20ms。在每一交流周期中,出现两次峰值。两次峰值会带来两次脉冲干扰,因此电力线上存在固定的100Hz脉冲干扰,干扰时间约2ms。为了保证数据传输的可靠性,必须加以处理。有一种利用波形过零点的短时间内进行数据传输的方法,但由于过零点时间短,实际应用与交流波形同步不好控制,现场通信数据帧又比较长,所以难以应用。

⑤电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1Ω以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几km。但当电力线上负荷很重时,只能传输几十m。因此,只有通过进一步提高载波信号功率来满足数据传输的要求。提高载波信号功率会增加产品成本和体积。

因此电力线上的高削减、高噪声、高变形,使电力线成为一个不理想的通信媒介;但由于现代通信技术的发展,使电力线载波通信已成为可能。

3系统组成及工作原理

如图1所示,系统主要由两部分组成:调制部分和解调部分。

待解调的二进制数据流通过输入缓冲器后进入调制模块。调制模块输出的FSK方波经过输出滤波器和输出放大器后,变成FSK正弦波耦合到线路上。

待解调的FSK正弦波通过输入放大器,波形变换电路变换成为FSK方波,在输入到解调模块解频之后,经过输出缓冲器就可以得到二进制数据流。

在下面我们将对这两部分作详细进行说明。

3.1调制部分

调制方式为FSK,数据为''''1''''时,输出在2860~3260Hz之间正弦波;数据为''''0''''时,输出在2460~2860Hz之间的正弦波。

输入的二进制数据流经过缓冲隔离后,由CPLD采样来判断当前输入电平的高低,并在FSK信号输出端产生相应频率的方波。表1为二进制数据对应的方波频率表。

表1调制规则表

逻辑电平值方波频率值

H2860Hz<x<3260Hz

L2460Hz<x<2860Hz

随着二进制数据的跳变,在FSK信号输出端产生不同频率的方波,从而形成了FSK调制波形(方波)。

由于方波是由无穷个逐次倍频的正弦波组成的,如下式所示

ω0=2πf,f为基频,就是方波的频率。

所以我们可以在CPLD的FSK信号输出端后,加入一个低通滤波器来滤除方波的高频谐波分量,滤波器输出的则是对应于方波的同频率的正弦信号,经过缓冲放大后即可输出FSK信号。

3.2解调部分

FSK信号是通过波形变换电路(由比较电路及缓冲放大电路组成)变换成为同频同相的方波。CPLD对方波进行频率识别,并在数据输出端输出解频后的数据流。

3.3技术指标

载波上限频率—3260Hz。

载波下限频率—2460Hz。

载波中心频率—2860Hz。

波特率—300bps,600bps,1200bps。

调制方式—FSK。数据为''''1''''时,输出在2860~3260Hz之间的正弦波;数据为''''0''''时,输出在2460~2860Hz之间的正弦波。

图4过零检测电路

4硬件设计

4.1输入缓冲及输出缓冲

计算机一般是通过串口传输数据,所以要用RS232TTL转换芯片MAX232来进行电平转换,同时通过缓冲器CD4050来隔离并驱动后级,如图2所示。

4.2输出滤波器,输出放大器

因为需要滤掉载波下限频率的三次倍频7380Hz(2460Hz×3)以上的频率,因此该滤波器的截至频率设计为4000Hz(>3260Hz)。为了减小体积,这里采用了Maxim公司的开关电容(switchedcapacitor)滤波器MAX7411。MAX7411是一个五阶低通椭圆开关电容滤波器,具有非常快的下降度且电路十分简洁。图3是由MAX7411构成的滤波器。

INPUT为输入频率fIN,OUTPUT为输出频率fout''''CLOCK为截至频率fc。该滤波器的效果如表2所列。

由表2可见,在1.25fc处信号衰减达到-38.5dB,已经可以忽略了。

表2MAX7411的滤波参数

参数条件最小典型最大单位

插入增益fIN=0.38fc-0.4-0.20.4dB

fIN=0.68fc-0.40.20.4

fIN=0.87fc-0.4-0.20.4

fIN=0.97fc-0.40.20.4

fIN=fc-0.7-0.20.2

fIN=1.25fc-38.5-34

fIN=1.43fc-37.2-35

fIN=3.25fc-37.2-35

我们的截止频率是4000Hz,即4000=1.25×fC。所以fc=3200Hz。该频率由CPLD产生。

为了能够推动后级设备,必须在滤波器之后加上输出放大器,这里采用FC411。电路为普通的反相放大器电路。

4.3输入放大器和波形变换电路

如图4所示,输入的FSK和正弦信号经过运放TLE2037放大后,输入比较器LM311进行过零点检测。由于在接地处有较强的噪音,因此必须在电路设计上考虑抗干扰的问题,如采取隔离、浮地等措施。LM311是一款高速比较器,比较速度最在为165ns,它的输出兼容TTL和MOS电路。LM311通过过零检测,把FSK波形转换成方波输入CPLD,由CPLD进行频率分析,从而实现解频的目的。

5软件设计

该系统软件最主要的部分就是调制和解调软件的设计,还有一部分是滤波器的时钟产生及工作状态指示与工作模式选择。

此系统可以选择300bps、600bps、1200bps三种波特率,由外部的跳线决定。

工作指示用来指示波特率及系统是否繁忙。如果需要还可以输出同步的时钟信号。

5.1调制部分

如图5所示,在时钟的上升沿检测数据输入引脚的状态,如果状态变化,则检测当前的波形是否完整(为了保证相位的稳定,要求必须在最靠近波形零点的地址切换频率),如是则切换输出频率。

5.2解调部分

如图6所示,在时钟的上升沿检测FSK信号的频率,并切换输出的数据。

电力线范文篇4

关键词:家庭网络电力线载波通讯以太网PowerPacket

随着科技的进步,网络已经开始涉及人们生活的方方面面。将网络延伸到家庭,实现家庭网络化、家用电器的上网和家庭的智能化等,越来越受到国内外众多公司和开发商的关注并已成为网络技术发展、竞争的又一新目标。家庭电器、各种家庭设备和计算机之间互联,实现Internet的接入是未来家庭网络的发展趋势。

1家庭网络的实现技术

家庭网络的提出已有多年。目前国际上比较成熟和流行的有几种解决方案都基于不同的物理媒介,实现家庭内部的网络互联,具有各自的特点和不足之处。

(1)NoNewWire:电话线、电力线。

(2)NewWires:以太网、光纤、USB、IEEE1394。

(3)Wireless:家庭射频、蓝牙技术、无线以太网(IEEE802.11)。

电话线和电力线技术,在构建家庭网络中,因安装方便、维护简单、成本低等特点被许多家庭网络设备制造商看好。但是由于电话线、电力线不是专门为信号传输设计的,传输质量无法保证,容量受到其他信号的干扰,带宽有限,网络的安全问题很难保证。

以太网、不纤技术是非常成熟的技术。将它引入到家庭网络中,可以保证信号传输的质量。光纤有很高的带宽,对于实现未来家庭网络的多媒体应用有非常大的潜力。但是一般家庭不会在设计时预先辅助设以太网线或是光纤,所以必须在构建网络时重新布线,而且对于需要接入家庭网络的设备,必须要安装在铺设好的信号线附近,安装比较复杂。

无线家庭网络也是目前一种比较好的解决方案,它不需要重新架线,但是带宽和成本的比率很低。

为使家庭网络能真正走进普通家庭,必须在考虑通讯质量的同时。兼顾成本。因此,可以考虑将各种解决方案融合,建立基于不同媒介的家庭网络系统。

目前宽带进入家庭有两种接入方式:ADSL和Ethernet。而Ethernet接入与ADSL相比有更好的扩展性、更高的带宽。目前,中国网通公司就是运用此技术提供宽带服务的。家庭中,如何将Ethernet最便捷和高效地延伸到各个角落是家庭网络要解决的主要问题。在家庭环境下,将电力线作为近距离高速数据传输的媒介来解决这个问题有很大的优势。首先,它在家庭的分布最广、接入容易。在家庭各个房间都安装有电源插座,可以作为网络的接入点。对于需要接入网络的设备放置没特殊要求,凡是需要电源的网络设备就可以通过它的电源插座接入家庭网络。而实现这些只需要在电源插头上接上一个信号的中继装置。其次,成本低、安装方便正是家庭网络所追求的。通过电力线传输信号,不必再辅设额外的通讯线,这点对于刚装修好的家庭尤为重要。最后,它适应多种接口的接入。将接入家庭的Ethernet信号。通过特殊的中断装置传送到电力线上,在家庭网络设备端,通过同样的中继装置再将电力线上的信号还原成Ethernet信号,或是通过建有其它接口的中继装置(如USB接口)将来自电力线的数据从特定接口传给家庭设备(如上网家电),实现家庭设备的互联。此技术中,最为关键的就是不同媒介之间的中继装置。

2网络中继装置的实现

2.1基于电力线的高速信号传输技术

使用Intellon公司的PowerPacket技术,可以实现在电力线上的传输带宽达到14Mbps,而这种技术将来可以在电力线上实现100Mbps的传输速率。这为未来家庭网络向多媒体应用方向发展提供了支持。为实现基于电力线的高速信号传输,Intellon公司采用了其新的专利技术——正交频分多路调制(OFDM)技术。它可以自适应地调整载波频率,避开受干扰严重的频率;多载波同时传输,实现高速的数据传输。Intellon公司新推出的INT5130和INT1000就是采用这种技术的专用于低压电力线信号高速传输的芯片。

2.2实现方案及工作过程

家庭网络组网如图1所示。网络接入服务营运商将10Mbps以太网接到每个家庭,实现宽带到户即Ethernet1段。中继器实现以太网数据包的检测、缓冲和转发,实现两边所连接的不同段的网络状态的传播。通过中继器可以实现用电力线子网将两个以太网段相连接,在任一网段之间实现数据包的透明传输。当Ethernet1上的数据由中继器的以太网端口接收后,中继器将做出判断,缓冲接收到的数据,再从电力线端口发送出去。同时,以太网端口和电力线端口都符合CSMA/CD规范。

中继装置的电力线端有MAC控制,但有别于以太网的MAC。它是一个比以太网MAC更低层次的MAC,如图2所示。它将以太网的MAC包视为数据包,再对它进行一次封装,将电力线MAC的信息封装到新的数据包中,然后在电力线上传输。电力线端口的INT5130中内建有RISC,可以实现以太网数据包的Bridge功能,它使用一种源识别交换(source-awarebridging)技术。当一个节点需要发送以太网包,可以确定这个包的目标点是否在电力线上。如果不在本电力线段,而是需要中继装置进行转发,它会以中继器的地址为目标地址进行发送。在中断装置收到这个包后,会自动判断是否需要处理SA和DA。中继器的INT5130芯片内部有一个地址列表,提供BDA(BridgedDestinationAddress)信息。它把从MII口收到的以太网包的SA和自己的地址(BA)比较,如果不相同,则说明这个包是从其他节点发送的。在图1中可以认为是从Ethernet1段上的节点A发送的,它的SA为SA1,INT5130自动将这个SA1加入到BDA表中然后通过ChannelEstimationResponse数据帧,将它的地址BA和它的BDA表发送给电力线上的其他节点。这样其他节点就知道如果要发送DA=SA1的包就需要向地址为BA的中继装置发送。而在发送前先对这个数据包进行修改,在保留原来SA和DA的基础上,封装进新的DA=BA、SA=本节点地址。这样在中继装置收到后,去掉由电力线上发送节点添加的信息,还原成原来的数据包,再从以太网端口发送到以太风上去。

由于将电力线作为传输媒介,因此每个连接到电力线上的网络设备都可以将收到其他设备发出信号。为解决网络的安全问题,INT5130会将信号加密发送,在接收端再解密。收发双方有相同的密码钥匙才可以互相通讯。而且,一个设备可以有多个密码钥匙,可以通过网络配置这些密码。可以实现同时与不同设备的通讯,而互不干扰。

有了这些技术。INT5130可以实现通过家庭电力线以带宽共计方式接入Internet、Internet应用、PC文件和应用共享、打印机共享、网络游戏等。

2.3中继装置原理与构成

整个中继装置分为三个主要模块:以太网接口模块、电力线接口模块和中央控制模块。以太网接口模块的主要功能是检测以太网段的状态,接收从以太网上传来的数据包并发送从中内控制模块传来的数据。电力线接口功能是检测电力线状态,对于要发送的数据进行加密、调制、放大后发送到电力线上;在接收数据时将根据收到信号的强度自动调节前端放大的增益,自动适应电力线上的环境变化;然后将经过解调和解密,将还原的数据传给中央控制模块。中央控制模块是实现数据交换控制,控制数据键路状态的中心。

中继装置的组成如图3所示。在以太网端,采用一般通用的以太网物理收发器,实现以太网信号的收发。这里可以考虑采用DAVICOM的DM9161,10MB/100MB自适应收发器,完全兼容IEEE802.3MII接口。

在电力线端,采用Intellon公司的INT5130和INT1000套片。它实现电力线上以太网数据帧的传输,内建PowerPacket电力线MAC和电力线收发器、802.3MII接口和其他的算法控制模块。

中继装置的中央控制模块由FPGA实现。这样既可以便于对将来新接口的兼容升级,也考虑到家庭网络的发展迅速,以太家庭网络对于可扩展性的高要求。将中央控制模块放在FPGA中实现,可以实现多种家庭网络通信。如Ethernet-Power-line-Ethernet;Ethernet-Power-line-USB;Ethernet-Power-line-WirelessNet等。

FPGA可以采用Altera公司的ACEX系列或是Xilinx的SpartanII。这两个系列的FPGA容量大、价格低,适合应用在家庭网络产品中。FPGA中需要实现与两个接口模块交互的控制接口,这可以由两个接口状态机实现。由于的接口芯片都采用了MII接口,所以必须在FPGA中实现MII使其与接口芯片实现数据传输和接口控制。中心控制由另一个状态机实现,它接收来自两个接口状态机的输入信号,作出状态判断,然后对相应的接口状态机发送控制信号。它需要实现输入的以太网数据的缓存,然后在判断出是一个有效的以太网帧后,开始向其它端口发送这个数据帧。在发送和接收的同时必须监视接口的状态,如果发生冲突,必须暂停所有的发送,然后开始发送以太网协议中规定的JAM帧,实现冲突的传播,保证在网络上同一个时间只有一个发送者拥有网络。为保证网络的自适应性,可以考虑在接收端发生冲突的概率P>设定值时,将这个端口暂时封闭。这样可以避免另一端的网络受到影响而冲突频繁。在延迟一定时间后,再将这个端口开启。在设计中还需注意数据包不能在中继装置中造成很大的延时,所以中央控制模块要尽可能快地将数据包发送出去。所以当检测到一个有效的以太网数据帧头,就可以开始发送数据。

电力线范文篇5

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

衰减问题。与以太网接入或者ADSL接入不同,尽管PLC接入可以选择家庭内任意电力插座联接到Internet,但是就目前而言,由于衰减因素仍然存在,不同接入点的带宽是不一样的,如果家庭比较大,那么在最远处接入,带宽衰减将非常明显。其次大部分情况下,PLC数据需要通过电表传输,带宽往往在这里产生非常大的衰减,这成为PLC的技术瓶颈之一,有专家表示主要问题在于电表的设计,而不是PLC自身的技术因素,但由于电表是既有产品,不可能对其大规模换用,所以只能通过PLC产品自身技术来克服PLC衰减问题。

目前我国在沈阳及北京多个小区开通了多个PLC接入试验网络,主要以2M和14M带宽接入为主。由于法律、服务、技术指标等影响,还没有大规模的商用PLC系统投入使用。随着科技的进一步发展,相关技术将逐步得到有效解决。最近国电科技推出的200Mb/sPLC接入方案具有布线简单,电磁辐射低,价格便宜等优点,在接入带宽及稳定性方面有了重大突破,具有强大的市场竞争力和广泛的市场前景。电力线通信技术毕将得到广泛应用发展。

电力线范文篇6

论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

电力线范文篇7

关键词:低压载波抄表

1前言

北京昌平供电局在改造回龙观龙华园居民小区的过程中,因为是旧楼,表箱不能满足卡式表的安装尺寸。经过考察和技术论证,采用了一种用长寿命机械表加远方载波抄表的技术方案,较好的解决了改造难题,收到了良好的效果。

为了更好地为广大居民客户服务,降低电费支出,昌平供电局决定对此小区进行"一户一表"改造,由供电局提供合格的表计到各个居民客户,并结算抄表到户。经过一系列的调研和分析,北京某公司的远方载波抄表系统,并于2002年1月份开始现场安装和调试,至今达到了预期目的,收到了良好的效果。

2低压配电线路载波抄表系统介绍

2.1系统简介

该载波抄表系统是采用窄带扩频技术,较好的解决了数据复杂的低压线路上的传输难题,有较高的抗干扰性和系统可靠性。扩频通信是指用来传输信息的信号带宽远远大于信息本身带宽的一种通信方式。其解调过程是由接收信号和一个发端扩频码同步的信号进行相关处理来完成的。根据信息论(香农公式),扩频通信的好处在于:可用较大的带宽换取较小的信噪比,即较小的信号功率。这时,系统表现出较好的抗干扰性,从而使强噪声环境下的通信质量得以改善。这种"用带宽换功率"的措施特别适合电力线载波通信。扩频系统还具有抗衰减能力强的特点,由于信号频带很宽,当由于某种原因引起衰减时,只会使一小部分频谱衰减,而不会使整个信号产生严重畸变。其核心器件载波(扩频)调制/解调芯片-PL2000解决了在强衰减、高背景噪声、负荷特性连续变化的恶劣条件下,电表数据的准确采集和即时传输问题,是专门为适应我国民用低压配电网载波抄表而设计的,适合机械/电子全系列电表。

低压载波抄表系统是通过电力线汇集配变下所有终端电表的数据,与每一终端电表进行数据通讯,并对这些数据进行分析处理,同时可以使用相应通讯设备将所抄录的数据发送到供用电管理部门的数据服务器中。中心控制软件分析处理存储在数据服务器中的数据将结果以各种统计报表、图示报告给用电管理部门。并能自动计算电费,生成报表,如与银行微机系统联网可方便实现电费银行自动划拨。低压配电网载波抄表系统是集电表数据采集、载波传输、数据存储、数据通信、数据处理及断电控制等功能于一体的自动化系统;低压载波通信设备可以使供电部门及时掌握用户用电情况,监测有无窃电行为;根据需要进行供电控制(如用户长时间欠费后断电);通过远程抄表,节省抄表的人力物力。

低压载波抄表系统由上位系统管理软件、台区载波集中器、电表端载波RU(包括单表RU、多路脉冲采集RU)、载波测试设备组成。

集中器是载波通信的中央设备,安装在低压配电变压器的低压侧(附近或任何方便的地方),通过电力线汇集该配变下所有终端电表的数据。集中器负责主动与每一终端电表进行数据通信(抄表)并存储数据。这些定时或实时数据可通过电话线(工业Modem)、中压载波(RS232)485总线或红外手持抄表器(PDA)直接传回到供用电管理部门的数据服务器中,并对这些数据分析处理。将结果以各种统计报表、图示等形式报告给用电管理部门。能自动计算电费,生成报表,如与银行微机系统联网,可实现电费银行自动划拨。

断电控制器与多路脉冲采集载波终端配合使用,可接收多路主控模块的继电器控制指令,实现对用户断电、送电控制。

载波电能表是低压电网载波集中抄表系统的智能终端,它具有计量、记录、控制和载波通信功能,与载波集中器、上位机软件构成集抄系统,可实现"一户一表、集中抄表、银行联网"。

2.2载波抄表系统功能特点

(1)核心器件采用PL2000系列电力线载波扩频通信芯片。

(2)电力线载波表与集中器及管理中心计算机管理软件构成自动抄表系统。

(3)载波通信模块安装在表内,全部通信通过电力线完成,不改变外接线,安装方便。

(4)可靠性高,体积小,抄表准确。

(5)每个模块具有独立的CPU,能自动按设置对电量进行计数、处理、记录保存;

(6)配合上位管理软件,实时监测用户用电情况,方便用电管理、窃电稽查;

(7)随时可对欠费用户断电;

(8)断电后数据可保存9年;

(9)载波抄表率100%;

(10)具有优良的电磁兼容特性,符合IEEC61000-4-4Level4标准。

芯片系列采用了DPSK窄带直序扩频技术、数字信号处理、直接数字频率合成等新技术,并采用数字/模拟混合0.5靘CMOS工艺制作的电力线载波通信的调制/解调专用集成电路。

2.3软件功能

(1)实时监控电表状态。

(2)定时抄表:集中器每隔1、2、…小时抄一个轮回。

(3)冻结抄表(每月抄表日)。

(4)零点抄表和实时点抄。

(5)电表数据的统计,如计算线损,报表生成。

(6)设置集中器的自动抄表周期和系统校时。

(7)用户负荷监控和电量异常报警。

(8)可提供公共数据库接口,供电费核算、用电管理等信息系统取用(ODBC或其它)。

2.4方案说明

(1)全电子表或改造后的机械载波表分散安装。

(2)数据集中器:按照配变的不同,同一变台下每1024块单表配置1台电话型数据集中器。

下行与本台区内的单表通讯并进行控制,上行通过公共电话网与集中抄表中心通讯。

(3)采集终端:如用户的电表分散安装,则采用单表集抄终端方式,即每一块单表单独与相应的集中器通讯。该方案的优势在于结构先进,扩充方便,可靠性高。单表利用表中的载波通讯芯片通过电力线与数据集中器通讯。

(4)控制功能:①加装在电子表尾的载波模块采用一体化设计,模块可包含控制继电器,可通过集抄中心或现场测试仪器实现控制功能;②机械表改装模块中可包含控制继电器,可通过集抄中心或现场测试议器实现控制功能。

3前景设想

通过对实现龙华园小区1524块用户电表的远方自动抄收和控制的实践,为用电管理提供了一个新的模式,为电力市场化运营提供了一个新的手段,使我们供电企业的自动化水平又上了一个新台阶。系统不仅在对居民实施"一户一表"中的机械表减少每月的现场抄表的人力浪费,为提高工作效率而找到一个可靠的途径,而且系统本身还具备实时监控居民客户是否有窃电嫌疑,并在此小区准确发现并得以制止。

远方载波抄表系统是居民用电营业系统中的一个子系统,和供电企业的管理人员的管理手段和素质以及居民客户的文化素质和接受新事物的程度有关,同时也和居民所用的电能表计的型式有关。采用预付费卡式表可以最大限度地减少欠费,减少抄表人员的劳动。但也存在着许多问题,比如到银行购电不方便,在所购的电量快要用完表计提醒时,但居民客户大多不大注意,而会造成突然断电,如果是晚上还无法去银行购电,造成很大的不便;还容易遭到黑客的攻击,使供电企业造成很大的损失;对每个线路的分路线损统计的准确性造成一定的困难;故障率高,使供电企业的运行成本加大;采用普通的机械表,存在着抄表和收费工作量大的问题,也许会造成欠费。

电力线范文篇8

通信网正向着IP化、宽带化方向发展。通信网由传输网、交换网和接入网三部分组成。目前,我国传输网已经基本实现数字化和光纤化;交换网也实现了程控化和数字化;而接入网仍然是通过双绞线与局端相连,只能达到56kb/s的传输速率,不能满足人们对多媒体信息的迫切需求。对接入网进行大规模改造,以升级到FTTC(光纤到路边)甚至FTTH(光纤到户),需要高昂的成本,短期内难以实现。XDSL技术实现了电话线上数据的高速传输,但是大多数家庭电话线路不多,限制了可连接上网的电脑数,而且在各房间铺设传输电缆极为不便。最为经济有效而且方便的基础设备就是电源线,把电源线作为传输介质,在家庭内部不必进行新的线路施工,成本低。电力线作为通信信道,几乎不需要维护或维护量极小,而且可以灵活地实现即插即用。此外,由于不必交电话费,月租费便宜。

电力线高速数据传输使电力线做为通信媒介已成为可能。铺设有电力线的地方,通过电力线路传输各种互联网的数据,就可以实现数据通信,连成局域网或接入互联网。通过电源线路传输各种互联网数据,可以大大推进互联网的普及。此项技术还可以使家用电脑及电器结合为可以互相沟通的网络,形成新型的智能化家电网,用户在任何地方通过Internet实现家用电器的监控和管理;可以直接实现电力抄表及电网自动化中遥信、遥测、遥控、遥调的各项功能,而不必另外铺设通信信道。因此,研究电力

线通信是十分必要的。

1OFDM基本原理

正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplexing)是一种正交多载波调制MCM方式。在传统的数字通信系统中,符号序列调制在一个载波上进行串行传输,每个符号的频率可以占有信道的全部可用带宽。OFDM是一种并行数据传输系统,采用频率上等间隔的N个子载波构成。它们分别调制一路独立的数据信息,调制之后N个子载波的信号相加同时发送。因此,每个符号的频谱只占用信道全部带宽的一部分。在OFDM系统中,通过选择载波间隔,使这些子载波在整个符号周期上保持频谱的正交特性,各子载波上的信号在频谱上互相重叠,而接收端利用载波之间的正交特性,可以无失真地恢复发送信息,从而提高系统的频谱利用率。图1给出了正交频分复用OFDM的基本原理。考虑一个周期内传送的符号序列(do,d1,…,dn-1)每个符号di是经过基带调制后复信号di=ai+jbi,串行符号序列的间隔为△t=l/fs,其中fs是系统的符号传输速率。串并转换之后,它们分别调制N个子载波(fo,f1,…,fn-1),这N个子载波频分复用整个信道带宽,相邻子载波之间的频率间隔为1/T,符号周期T从△t增加到N△t。合成的传输信号D(t)可以用其低通复包络D(t)表示。

其中ωi=-2π·△f·i,△f=1/T=1/N△t。在符号周期[O,T]内,传输的信号为D(t)=Re{D(t)exp(j2πfot)},0≤t≤T。

若以符号传输速率fs为采样速率对D(t)进行采样,在一个周期之内,共有N个采样值。令t=m△t,采样序列D(m)可以用符号序列(do,d1,…,dn-1)的离散付氏逆变换表示。即

因此,OFDM系统的调制和解调过程等效于离散付氏逆变换和离散付氏变换处理。其核心技术是离散付氏变换,若采用数字信号处理(DSP)技术和FFT快速算法,无需束状滤波器组,实现比较简单。

2电力线数传设备硬件构成

电力线数据传输设备的硬件框图如图2所示。

2.1数字信号处理单元TMS320VC5402

用数字信号处理的手段实现MODEM需要极高的运算能力和极高的运算速度,在高速DSP出现之前,数字信号处理只能采用普通的微处理器。由于速度的限制,所实现的MODEM最高速度一般在2400b/s。自20世纪70年代末,Intel公司推出第一代DSP芯片Intel2920以来,近20年来涌现出一大批高速DSP芯片,从而使话带高速DSPMCODEM的实现成为可能。

TMS320系列性价比高,国内现有开发手段齐全,自TI公司20世纪80年代初第一代产品TMS32010问世以来,正以每2年更新一代的速度,相继推出TMS32020、TMS320C25、TMS320C30、TMS320C40以及第五代产品TMS320C54X。

根据OFDM调制解调器实现所需要的信号处理能力,本文选择以TMS320VC5402作为数据泵完成FFT等各种算法,充分利用其软件、硬件资源,实现具有高性价比的OFDM高速电力线数传设备。

TMS320C54X是TI公司针对通信应用推出的中高档16位定点DSP系列器件。该系列器件功能强大、灵活,较之前几代DSP,具有以下突出优点:

◇速度更快(40~100MIPS);

◇指令集更为丰富;

◇更多的寻址方式选择;

◇2个40位的累加器;

◇硬件堆栈指针;

◇支持块重复和环型缓冲区管理。

2.2高频信号处理单元

主要实现对高频信号的放大、高频开关和线路滤波等功能,并最终经小型加工结合设备送往配电线路。信号的放大包括发送方向的可控增益放大(前向功率控制),接收方向AGC的低噪声放大部分。其中高频开关完成收发高频信号的转换,实现双工通信。同时使收发共用一个线路滤波器,这样可以节省系统成本。

2.3RS一232接口单元

用户数据接口采用RS一232标准串行口。串口的数据中断采用边沿触发中断,串口中断程序完成用户数据的发送与接收。将接收到的用户数据暂存到CPU的发送缓冲区中,等到满一个突发包时就发送到DSP进行处理。

3参数设计

3.1保护时间的选择

根据OFDM信号设计准则,首先选择适当的保护时间,△=20μs,这能够充分满足在电力系统环境下,OFDM信号消除多径时延扩展的目的。

3.2符号周期的选择

T>200μs,相应子信道间隔,f<5kHz,这样在25kHz带宽内至少要划分出5个子信道。另外子信道数不能太多,增加子信道数虽然可以提高频谱传输效率,但是DSP器件的复杂度也将增加,成本上升,同时还将受到信道时间选择性衰落的严重影响。因此,考虑在25kHz的带宽内采用7个子信道。

3.3子信道数的计算

子信道间隔:

各子信道的符号周期:T=250μs

考虑保护时间:△=20μs,则有Ts=T+△=270μs

各子信道实际的符号率:

总的比特率:3.71kbps×25子信道×2b/symbol=185.5kb/s

系统的频谱效率:β=185.5kbps/100kHz=1.855bps/Hz<2bps/Hz

可以看出,这时系统已经具有较高的频谱效率。25路话音信号总的速率与经串并变换和4PSK映射后的各子信道上有用信息的符号率相比,每个子信道还可以插入冗余信息用于同步、载波参数、帧保护和用户信息等。需要指出的是:

①由于OFDM信号时频正交性的限制条件,在此设计中尽管采用了25个子载波并行传输也只能传25路语音。如果要传8路语音,经串并转换和16QAM映射后,各个子信道上有用信息的符号率为1.855bps/Hz,最多还可以插入的冗余信息为O.145bps/Hz,在实际传输中这是很难保证的传输质量的,因此该设计相对于M-16QAM采用4个子载波传输6路话音并不矛盾。

②在此设计中,为冗余信息预留了较多的位,其冗余信息与有用信息的比值为0.59,大于iDEN系统的0.44。这是考虑到OFDM信号对于载波相位偏差和定时偏差都较为敏感,这样就可以插入较多的参考信号以快速实现载波相位的锁定、跟踪及位同步;另一方面对引导符号间隔的选择也较为灵活,在设计中选择引导符号间隔L=10。

③OFDM信号调制解调的核心是DFT/IDFT算法。目前,普遍采用DSP芯片完成DFT/IDFT,因此有必要对设计所需的DSP性能进行估计。根据设计要求,至少要能在250μs内完成32个复数点的FFT运算。我们知道,N个复数点的FFT共需要2Nlog2N次实数乘法和3Nl0g2N次实数加法。假设实数乘法和实数加法都是单周期指令,以32个复数点为例,这样共需要800个指令周期,即20μs,因此采用TMS320VC5402能够满足设计要求(TMS320VC5402的单指令周期为10ns)。

综上所述,OFDM数传设备参数如表l所列。

4软件构成

上面确定了OFDM数传设备的主要参数及算法,下面说明用TMS320VC5402实现的软件设计及流程,如图3所示。

4.1调制部分的软件设计

此程序作为子程序被调用之前,要发送的数据已经被装入数据存储器,并将数据区的首地址及长度作为入口参数传递给子程序。程序执行时,首先清发送存储器,然后配置AD9708的采样速率,之后允许串行口发送中断产生,使中断服务程序自动依次读取发送存储器中的内容,送入AD9708变换成模拟信号。之后程序从数据存储器读取一帧数据,经编码,并行放入IFFT工作区的相应位置,插入导频符号并将不用的点补零。随后进行IFFT,IFFT算法采用常用的时域抽点算法DIT,蝶形运算所需的WN可查N=512字的定点三角函数表得到。由于TMS320VC5402的数值计算为16位字长定点运算方式,所以IFFT采用成组定点法,既提高了运算精度又保证了运算速度。然后对IFFT变换后的结果扩展加窗,并将本帧信号的前扩展部分同上帧信号的后扩展部分相加,加窗所需窗函数可查表得到。窗函数存放在窗函数表中,是事先利用C语言浮点运算并将结果转换为定点数存放在表中的。

经实测,从读取串行数据到加窗工作完成最多占用75个抽样周期(75×125μs)的时间,而发送一帧信号需512+32=544个抽样周期(544×125μs)。这说明C5402的运算速度足够满足需要。

当上一帧信号发送完毕,程序立即将以处理好的本帧信号送入发送存储器继续发送,并通过入口参数判断数据是否发送完毕。

4.2解调部分的软件设计

用TMS320VC5402实现的流程分同步捕捉及解调两个阶段。同步捕捉阶段执行时,首先清接收存储器,配置AD9057的采样速率,然后开串行口接收中断,使接收中断服务程序接收来自AD9057的采样数据并依次自动存入接收存储器。

每得到一个新的样点,程序先用DFT的递推算法解调出25路导频符号,并对导频均衡。之后分别同参考导频符号矢量600h+j600h进行点积,这里用导频符号矢量的实部与虚部的和代替点积,即可反映相关函数的规律,以简化运算。求得25路导频与参考导频的相关值后暂时保存,并分别与前一个样点所保存的各导频相关值比较(相减),用一个字节保存比较结果的正负号(每路导频占1bit)。在处理前一个样点的过程中,也用一个字节保存它同其前一样点的导频相关值比较的正负号。对这两个字节进行简单的逻辑运算,即可判断出各导频是否在前一个样点处出现峰值。倘若25路导频中有20个以上的导频同时出现峰值,则认为该样点以前的N=512个样点即为捕捉到的一帧信号,程序进入解调阶段;否则等待接收新的采样点继续进行同步捕捉。

解调阶段首先对捕捉到的帧信号进行实信号的FFT变换,仍然采用成组定点法,之后进行均衡。然后利用导频算出本地抽样时钟的延迟τ,在计算中应尽量避免出现除法,可将常数分母取倒数后提前算出,作为乘法的系数。为了保证其后二维AGC的精度,计算中τ精确到O.1μs。接下来根据τ调整抽样时钟,程序将调整量通知串行口发送中断服务程序后,继续执行二维AGC,而由中断服务程序在每次中断响应时间命令,每次可以调整下一采样时刻提前(或落后)1μs。

二维AGC分两步进行。首先根据τ对均衡后的调制矢量进行相位校正,这里需要利用FFT变换所使用的512字的三角函数表,用一个指针指向三角函数表的表头,根据τ及三角函数表角度间隔算出多少路子信道才需要将指针下移一格,通过这种查表的方法可以简洁地确定各子信道的校正量。经相位校正后,即可利用导频进行幅度校正。

接下来经判决,并/串变换及解码即可解调出本帧数据。然后对均衡器的权值采用LMS算法进行调节。程序通过对这部分信号进行简单的幅值门限分析,很容易判断出是否收到了信号。若有则继续接收;否则结束返回。

电力线范文篇9

论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

电力线范文篇10

论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。