电力电子器件范文10篇

时间:2023-04-08 07:46:22

电力电子器件

电力电子器件范文篇1

关键词:电力电子器件;热管理;热失效

电子器件由于受到热应力积累效应、其他化学反应等影响易导致器件失效,其中造成电子器件失效的主要原因是温度过高。通过对电力电子器件的科学管理,在故障发生前管理防范对任务有影响的模式,从而有效提升电力电子器件的热可靠性能。

1电力电子器件热故障管理及措施

1.1热故障机理与现状。要科学合理得进行热故障管理,需要分析热功能原理,并在分析过程中找出产生热失效的原因和导致的严重后果。电力电子器件无论是静态休息还是动态运行中都存在能量损耗情况,导致该零件的热量与其他部位的芯片零件产生一定的温度差,从而使温度差转化成热量。这种热量通常以辐射或者传导的方式进行传递。因为许多热故障都是隐形故障,所以在失效调查时很难发现,产生此种现象的主要原因是间歇性失效。由于不能查找出具体原因,所以出现故障时不能及时进行维修,即便重新安装也会导致系统无法正常运转,从而可能引发一系列问题,并因找不出故障的具体原因而付出高昂的反复维修费用[1]。1.2热失效与温度的关系。运行过程中,器件温度过高与失效率呈指数形式不断增长,而这种增长形式只是一种较为相近的关系。除了器件高温之外,还有其他模式造成器件不能使用。许多热值失效对设置中的一些物理化学成分造成一系列结构变化,且这种变化由于温度的上升而不断加剧,使其在高温下失效。反言之,当器件温度同室内温度环境相似时,工作温度失效率也随之降低。这是因为器件在工作运转过程中与室内的温度产生加大的温度差时,会对化学变化速度减少不利影响,使其失效速度随之快速下降。因为器件材料不同,器件收缩程度不同,从而对器件的热度有所增加。同时,这会令器件中凝结的水发生腐蚀或者短路现象,所以在很低的温度下器件的失效率同样会增加。综合所述,工作环境是电力电子器件热管理的主要成因[2]。1.3热管理常用措施。在保持电力电子器件原始设计的同时,要预防器件发生任何故障,需要利用电子设备进行热设计管理。通过漏热热阻、传导电阻以及辐射散热等相关路径防止热致失效,提升器件的可靠性,降低经济损失。另外,设计过程中,应注意定型后改进热设计的成本要比事先热设计的成本高。为此,要想有效改进热设计,应该减少多个影响电力电子致热的因素。

2常见热失效模式管理

体内玷污、封装问题以及机械问题等,都是造成可控硅失效的主要原因。优化的失效管理模式,不但在生产过程中对参数和设计机理有着很好的预防效果,还会在器件失效的过程进行准确判断。通过观察热点发生情况,同分析器件的失效原因进行对比得出结论,从而为电力电子器件的热失效诊断提供良好的科学数据[3]。2.1电流上升过快造成失效。通电后,电流上升速度过快会使器件存在一定的危险,这种危险产生的热点多是由低阻值、电容放电、电路不良等诸多因素触发的。所以,出现烧坏点是经常发生的事情。依据观察可以发现,当前如果因触发相关因素产生任何不适,会出现如同针眼般细小的烧坏点。但是,出现高控制触发会把电力电子器件烧成弧形,甚至会把电力电子器件熔烧透。遇到这种问题时,技术人员应该根据具体情况选择合适的控制触发器。其中,中心触发控制极可以提升电流上升率。因为这种中心触发器可以增加环形面积。同中心触发器件相比,边缘触发器件需要根据硅片直径进行[4]。2.2过电压与瞬间过压造成失效。过电压能够对可控硅造成多种损坏,也就是说在电压失效时,通常是因为器件热点过热才会烧坏针眼大小的范围,当电力电子器件体内漏电过多时也会增大烧坏面积。这需要采用优良合理的科学设计,寻找合适的参数与电路与之相匹配,防止抑制系统出现问题。假如阳极与阴极之间的两端产生很陡的电压,那么在电容器会有电流经过。该电流与控制极电流的作用相似,这时电力电气器件不再受任何控制,很大程度上造成严重烧毁,所以需采用科学合理的对应措施,以抑制器件两端存在的电压。2.3热设计不合理造成失效。半导体使用过程中,不能超过半导体预设的温度定额。如果器件温度过高,会造成器件损坏。当半导体功率到达预定电压时,会造成漏电现象,使其电力电气器件发热,从而产生严重的漏电现象,增加器件的消耗令器件温度过高,长此以往造成电力电子器件损坏。在半导体接近设置温度时,技术人员必须确保电力电子器件产生的功率值小于等于功率消散数值。当电力电子器件大于功率消散值时,会出现热电击穿现象。这是因为漏电会产生一定的热度,为此当电力电子器件温度过高时,会令功率无法消散。为了有效防止产生过高的温度,技术人员要采用科学合理的应对方法,选择适合的参数值进行散热,使其拥有良好的散热渠道[5]。2.4模块浪涌电流冲击导致失效。在额定结温正常工作运行状态下,电力电子器件能够承受较大的浪涌电流冲击,且不会造成损坏。在浪涌电流出现时,结温值会在极短的时间内上升或超过设定的温度。电力电子器件的热值稳定,导致产生的热量不会轻易散去。当器件重复失效时,器件将无法在自身冷却后到达额定温度范围。如果浪涌电流超过预期数值,会造成没有散热的区域受到影响。

3电力电子器件热管理可靠性的设计评审

3.1设计评审提升电力电子器件热管理效率。技术人员要建立评审团队,且该评审团队中必须有电子系统设计师。此外,团队中还要有其他技术领域设计师加入,对供应商以及忠实顾客等设计的指标进行鼓励确认。在设计评审过程中,评审人员必须对其产品的使用、维修等诸多环节进行详细评估,并在评估时充分考虑产品的使用性能和安全因素,同时要考虑热承受最大值和变化率因素。另外,环境中气温变化、空气中携带的腐蚀性以及相对潮湿的环境,也需要在评审时考虑。3.2加大电力电子器件热管理的设计评审。硬件在接受环境试验时,只要超出预定的载荷数值就会导致失效。在全面分析可靠性能时,技术人员要准确掌握载荷出现的概率值。即便这种特殊极端的概率事件不现实,只要从失效记录中找取相关数值,依然能摸索出数据值。3.3电力电子器件热管理需要加强设计评审。设计评审过程中,技术设计师需要提供正式报告以及相关数据设计说明,并对该设计进行简短产品介绍,介绍完毕后对其质疑性问题进行详细解答。当设计评审通过团队的方式进行评审时,需要对评审结果进行研究讨论,才能确保设计评审时公开公平公正。另外,在正式评审前,技术人员要提前准备好热设计的详细资料,避免在设计评审过程中发生临时修改的事件,还要确保设计资料提供的是最新可靠数据值,尽量避免出现模棱两可的问题[6]。

4结论

以热失效的角度对电力电子器件中常见的热失效原因进行分析,在分析探索中寻找科学合理的解决方法。笔者认为,技术人员应从其设计质量以及诸多管理方面实施把控,从而有效解决热失效存在的问题。此外,要在数据实验中寻找热失效的最终核心依据,通过数据实验探究寻找,使其能够科学合理地优化电力电子器件中的热设计,从而使电力电子器件中的热失效能够达到良好的防范效果。

参考文献:

[1]刘卫明,刘梦恒.电力电子器件的热失效及其管理研究[J].电子技术,2018,47(12):30-33.

[2]詹娟娟.电力电子器件及其应用的现状和发展[J].电脑迷,2018,(11):278.

[3]邢烜玮.电力电子器件常用散热方式及实效[J].电子技术与软件工程,2018,(19):237.

[4]王兰心.微电子封装器件热失效分析与优化研究[J].电子制作,2018,(17):99-100,98.

[5]郭怀新,孔月婵,韩平,等.GaN功率器件芯片级热管理技术研究进展[J].固体电子学研究与进展,2018,38(5):316-323.

电力电子器件范文篇2

关键词:电力电子器件;应用现状;发展趋势

随着科学技术的不断进步,电力电子器件装置当今得到了广泛的应用,主要涉及到交通运输业、先进装备制造业、航天航空和坦克飞机等现代化装备中。得益于电子技术的应用优势,全球电子产品产业得到了快速的发展,给全球的经济、文化、军事等各领域带来了实质性的影响。电子技术可以划分为两类:一种是电子信息技术,电力电子元件在电子信息技术上的应用可以实现信息的传送、储存和控制等目的;第二种就是保证电能正常安全的进行传输,同时将能源和信息有效的结合起来。在社会的不断发展中,各行各业对于优质优量的电能都是迫切需要的,而随着一次次电力电子技术的改革,电力电子器件的应用范围也更加广泛,成为了工业生产中不可或缺的重要元件。电力电子技术的发展为人类的环保和生活都做出了重要的贡献,成为了将弱电与强电、信息与电子、传统产业与现代产业完美结合的媒介。所以电力电子器件的研究成为了电力电子行业的重要课题。

1.电力电子器件的应用与发展历程

上世纪50年代开始,全球第一支晶闸管诞生,这就标志着现代电气传动中的电力电子技术登上历史的舞台,基于晶闸管研发的可控硅整流装置成为了电气传动行业的一次变革,开启了以电力电子技术控制和变换电能的变流器时代,至此电力电子技术产生。到70年代时晶闸管已经研发出来可以承受高压大电流的产品,这一代的半控型器材被称之为第一代电力电子器件。但是晶闸管的缺点就是不能自关断,随着电力电子理论和工艺的不断进步,随后研发出了GTR.GTO和MOSFET等自关断的全控型,这一类产品被称之为第二代电力电子器件。之后出现了第三代电力电子器件,主要以绝缘栅双极晶体管为代表,第三代电力电子器件具有频率快、反映速度快和能耗较低的特点。在近些年的研究中,人们开始将微电子技术与电力电子技术进行融合,从而制造出了具有多功能、智能化、高效率的全控性能集成器件。电力电子器件中使用最多,构造简单的就是整流管,当前整流管可以分为普通型、快恢复型和肖特基型三种。在改善电力电子性能、减少电路能源损耗和提升电流效率等方面,电力整流管发挥着重要的作用。美国通用电气公司于1958年研发出了第一个用于工业的普通晶闸管,为今后的工艺调整和新器件的研发打下了基础,随后的十年中各式各样的晶闸管面世,例如双向、逆向逆导和非对称等,到现如今这些晶闸管还一直在被使用。为了解决晶闸管的不可自关断问题,美国于1964年研发了0.5kV/0.01kA的可关断晶闸管,到今天发展成为9kV/2.5kA/0.8kHZ和6kV/6kA/1kHZ。可关断晶闸管具有容量大和低频率的特点,在大功率牵引驱动中发挥着极大的作用。随后到70年代,GTR产品成功面世,其额定值已经达到了1.8kV/0.8kA/2kHZ和0.6kV/0.003kA/100kHZ,GTR产品具有极大的灵活性,有着开关能源消耗低和时间短的优点,在中等容量和频率电路中发挥着主要作用。而第三代的绝缘栅型双极性晶体管,对电压能够进行控制,有着输入阻率抗性大和驱动功率小等特点,有着巨大的发展潜力。

2电力电子器件的应用

2.1晶闸管

从1960年开始到1980年,这二十年间使用最多的就是晶闸管,相比由电动发电机和水银整流器组合而成的传统晶闸管,有着功率大、高效率和体积小等优势,在变流技术中占据着重要的地位。其中直流斩波器广泛的应用于国内外的城市电车中。但是这类晶闸管存在着不可关断和低工作频率的缺点,为了解决这一问题,门极可关断晶闸管被研制出来,在日本和欧洲等国家人们开始研制以高电压和高功率的可关断晶闸管为基础的用于城市轨道交通电动车组的变频器。

2.2绝缘栅双级晶体管

随着可关断晶闸管的广泛应用,人们发现可关断晶闸管的关断增益还是比较低,并且在进行关断时所消耗的能源比较多,关于可关断晶闸管的应用出现广泛的争议。随着绝缘栅双级晶体管的研发成功,人们发现相比可关断晶闸管,绝缘栅双级晶体管具有更多的优点,于是开始将绝缘栅双级晶体管广泛用于电动车的开发上。

2.3智能功率模块

智能功率模块是在绝缘栅双级晶体管基础上结合了故障检测保护电路所研制成的电力电子模块,在近年来在很多国家得到了推广。相比以前的功率器件,智能功率模块有着以下特点:首先具备电流传感功能,能够持续监测功率器件电流;具有温度传感功能;此外还具备高电压和电流,能有效的降低通态和开关的能源损耗,无需另外设计驱动电路,应用起来了更加便捷。

3结语

在电力电子器件的初期发展阶段,人们将之称之为功率半导体器件,其功率远远大于传统的控制用半导体器件和通信用半导体器件,随着科技水平的发展,电力电子器件逐步的更新换代。除了传统的双向晶闸管、快速晶闸管、逆导晶闸管之外,大量新型电力电子器件出现,开始朝着纵深的发展趋势发展,给电力电子器件产业的发展带带了新的生机。

作者:易跃镕 单位:湖南省长沙市广益实验中学

参考文献:

[1]盛况,郭清.碳化硅电力电子器件在电网中的应用展望[J].南方电网技术.2016(03)

[2]赵争鸣,袁立强,鲁挺,贺凡波.我国大容量电力电子技术与应用发展综述[J].电气工程学报.2015(04)

电力电子器件范文篇3

上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。

许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。

高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。

二、变频技术的发展过程

变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换

技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。

VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。

矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。

三、变频技术与家用电器

20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。

20世纪末期期,家用电器则依托变频技术,主要瞄准高功能和省电。

首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。

在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。

四、电力电子装置带来的危害及对策

电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。

另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。

(一)谐波与电磁干扰的对策

1、谐波抑制

为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。

传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。

电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。

大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。

2、电磁干扰抑制

解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:

(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;

(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;

(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。

目前较常用的软件开关技术有部分谐振PWM和无损耗缓冲电路。

(二)功率因数补偿

早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。

另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。

随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。

五、结束语

我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。

参考文献:

[1]周明宝.电力电子技术[M].北京:机制工业出版社,1985.

[2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.

[3]王兆安黄俊.电力电子技术[M].北京:机械工业出版社,2003.

[4]陈国呈,周勤利.变频技术研究[J].上海大学自动化学院学报,1995(6):23-26.

电力电子器件范文篇4

关键词:电力电子器件;应用;发展现状

随着我国社会经济的快速发展,我国的电力电子器件已经得到了极为广泛的运用,甚至已经渗透到了能源、环境、航空航天等各个领域,尤其是还涉及到了现代化国防武器装备等方面。由此可见,我国电力电子器件与电力电子技术的快速发展对于社会上的很多重要领域都产生重要的影响。电力电子器件及其应用的现状和发展的研究可以帮助工作人员加深对于现代电子技术的了解,发挥出信息电子技术在工业生产中的信息传输、处理、存储等作用。除此之外,电力电子技术也可以在很大程度上保障电能安全高效,实现内部资源的合理配置,为我国的工业生产提供能量和承担执行的功能。

1.电力电子器件的发展现状

1.1电力电子器件的基本概况

随着社会经济的快速发展,我国的电力电子器件的发展前景越来越光明,早在上世纪,我国的电子技术就已经逐渐发展起来。首先电子技术涉及到信息电子技术和电力电子技术两大方面的内容,现代科技的飞速发展促进了信息电子技术的发展,与此同时电力电子技术也在电能的传输、处理、存储和控制等各个方面发挥出了自身独特的作用。对于当今我国工业发展来说,电力电子器件的应用和发展是极为必要的,因为我国的很多工厂和技术设备都与电力电子器件有着密切的联系。为了能够在最大范围内加快生产的速度和工作的效率,对电力电子技术这种比较先进的技术的开发是极为必要的,这主要是因为传统的电力电子器件的应用和发展已经远远落后于时代的发展速度,不适应我国工业生产的模式。

1.2电力电子器件中存在的问题

索然我国的电子技术的发展极为迅速,但是我们依旧可以发现现代人民群众随着生活水平的快速提高,逐渐对于工业生产的速度也提出了更高的要求。一旦我国的电子技术的发展无法满足现代人的需要,就难免会面临着被时代所淘汰的风险。因此,我国的电力电子器件必须要保证自身的创新度,工作人员也必须以制造出满足工业生产需求的电力电子器件为目标,积极寻找符合电力电子器件制造的原材料。除此之外,电力电子器件的制造需要耗费大量的人力物力财力,只有经过精密的实验才有可能制造出完善的电力电子器件,而且器件一旦制造出来就必须要及时接受大量实验,这些过程都离不开金钱和原材料的支持。只有好的原材料才是制造品质优良的电力电子器件的前提,而且我国电子电子器件的应用及发展也面临着资源短缺的风险。甚至某些研究人员和专家学者会受到资金、时间等各方面的限制,在进行电力电子器件的研发过程中会出现半途而废的状况。

2.电力电子器件的具体应用

首先太阳能光伏发电对于电力电子器件的发展来说是比较重要的,光伏建筑一体化应用对于电力电子器件的完善也发挥了独特的作用。光伏电池发电和建筑物外电池存在很多问题,虽然这类电池原件的成本比较低,但是总的来说这类电池和电子元件适合低日照水平,电池转换效率高,原材料比较易得。但是某些电力电子器件的转换效率一般,淘汰的产品还会污染环境。电力电子器件的开发和利用促进了光伏建筑一体化的进程,土地成本过高和二氧化碳的排放量过高等问题都可以得到有效解决,而且我国最新研发出的电力电子器件可以节省光伏电池支撑结构,节省光伏电池的具体安装成本,帮助相关建筑工作人员实现土地资源的合理利用。与此同时,电力电子器件可以将太阳能和建筑物进行有效结合,帮助相关工作人员解决电能供给的难题,而且也丰富了电力电子器件的原材料。首先我们可以发现,在进行电力电子器件的研究与开发时候,运用碳化硅制造的电子器件已经成为主要的研究方向。这主要是因为碳化硅电力电子器件的高压和高温的特性与我国传统的电力电子器件相比,具有很大优越性,完全可以保障新型电力电子器件的成本和质量。尤其是碳化硅的耐高压和高温,足以帮助相关工作人员展开对于新型电力电子器件的研究。

3.结束语

综上所述,电力电子技术的开发与运用对于我国工业领域的快速发展产生了明显的影响,尤其是大大提高了工人们的工作效率,在很大程度上也促进了社会经济的发展,增加了企业和工厂的经济效益。在对电力电子器件及其应用的现状的研究过程中,我们不难发现现阶段我国的电力电子器件在应用中依旧存在很多问题,针对这些问题,需要相关工作人员展开研究,积极寻找应对策略,促进电力电子器件的可持续发展。

参考文献:

[1]钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2017-10-15.

[2]龚仲华.新型电力电子器件应用与拓扑结构改进——变频器的发展与展望系列之二[J].机床电器,2016-10-12.

电力电子器件范文篇5

1电力电子器件的一般特征

(1)处理电功率的能力大

(2)工作在开关状态

(3)需要由信息电子电路来控制

(4)需要安装散热器

2电力电子器件的分类

2.1按器件被控程度分类

按照器件控制信号的控制程度,电力电子器件可分为以下三类:

(1)不可控器件。这类器件一般为两端器件,一端是阳极,另一端是阴极。与电子电路中的二极管一样,具有单向导电性。其开关操作仅取决于其在主电路中施加在阳、阴极间的电压和流过它的电流,正向电压使其导通,负向电压使其关断,流过它的电流是单方向的。不可控器件不能用控制信号来控制电流的通断,因此不需要驱动电路。这类器件就是功率二极管(PowerDiode)。

(2)半控型器件。这类器件是三端器件,除阳极和阴极外,还增加了一个控制门极。半控型器件也具有单向导电性,但开通不仅需在其阳、阴极间施加正向电压,而且还必须在门极和阴极间施加正向控制电压。门极和阴极间的控制电压仅控制其开通而不能控制其关断,器件的关断是由其在主电路中承受的电压和电流决定的。这类半控型器件是指晶闸管(Thyris-tor)及其大部分派生器件。

(3)全控型器件。这类器件也是带有控制端的三端器件,其控制端不仅可以控制其开通,还能控制其关断。这类器件很多,包括门极关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(功率MOS-FET)、绝缘栅双极晶体管(IGBT)。目前常用的是功率MOSFET和IGBT。

2.2按控制信号的性质分类

按照控制信号的性质,电力电子器件可分为以下两类:

(1)电流驱动型器件。驱动信号加在器件控制端和公共端之间,通过从控制端注入或抽出电流来实现器件的导通或者关断的控制,这类电力电子器件称为电流驱动型器件或称为电流控制型器件。

(2)电压驱动型器件。通过施加在控制端和公共端之间的电压信号来实现器件的导通或者关断的控制,这类电力电子器件称为电压驱动型器件或称为电压控制型器件。

2.3按参与导电的情况分类按照器件内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为三类:

(1)由一种载流子参与导电的器件称为单极型器件;

(2)由电子和空穴两种载流子参与导电的器件称为双极型器件;

(3)由单极型器件和双极型器件集成混合而成的器件称为复合型器件。典型电力电子器件的分类和用途见表1。

3电力电子器件的发展历程

电力电子器件的发展,可分为以下四个阶段:

第一阶段是以整流管、晶闸管为代表的发展阶段。这一阶段的电力电子器件在低频、大功率变流领域中的应用占有优势,取代了早先的汞弧整流器。1947年美国著名的贝尔实验室发明了晶体管,功率二极管开始应用于电力领域,1956年贝尔实验室又发明了晶闸管,1957年美国通用电气公司开发出世界上第一只晶闸管器件,开创了传统的电力电子器件应用技术阶段,实现了弱电对强电的控制,在工业界引起了一场技术革命。晶闸管的迅速发展使得中大功率的各种变流装置和电动机传动系统得到了快速发展。但关断这些器件的控制电路存在体积大、效率低、可靠性差、工作频率低以及电网侧和负载上谐波严重等缺点。

第二阶段是20世纪70年代后期以GTO、GTR和功率MOSFET等全控型器件为代表的发展阶段。这一阶段的电力电子器件开关速度高于晶闸管,它们的应用使变流器的高频化得以实现。

第三阶段是20世纪80年代后期以IGBT复合型器件为代表的发展阶段。IGBT是功率MOSFET和GTR的复合。功率MOSFET的特点是驱动功率小、开关速度快;GTR的特点是通态压降小、载流能力大。IGBT的优越性能使之成为电力电子器件应用技术的主导器件。

第四阶段是以PIC、HVIC等功率集成电路为代表的发展阶段。高速、全控型、大电流、集成化和多功能的电力电子器件先后问世,开创了现代电力电子集成器件的新阶段。这一阶段,所使用的电力电子器件是将全控型电力电子器件与驱动电路、控制电路、传感电路、保护电路、逻辑电路等集成在一起的高度智能化PIC,它实现了器件与电路、强电与弱电、功率流与信息流的集成,成为机和电之间的智能化接口、机电一体化的基础单元。国内外电力电子器件的最新研制水平见表2。

4电力电子器件的应用与展望

电力电子器件的应用是电力电子技术的一部分。电力电子器件的应用技术称为变流技术,它包括用电力电子器件构成各种电力电子电路和对这些电路进行控制的技术,以及由这些电路构成电力电子装置和电力电子系统的技术。

4.1变流技术的分类

(1)AC/DC变换。把交流电压变换成固定或可调的直流电压称为整流。这类变换装置通常称为整流器。

(2)DC/AC变换。把直流电变换成频率固定或可调的交流电称为逆变。这类变换装置通常称为逆变器。按电源性质可分为电压型逆变和电流型逆变,按控制方式可分为方波逆变、PWM型逆变和谐振型(软开关)逆变,按换相性质可分为靠电网换相的有源逆变和自关断的无源逆变。

(3)AC/AC变换。把一种形式的交流电变换成频率、电压可调或固定的另一种形式的交流电,只对电压、电流或对电路的通断进行控制而不改变频率的称为电力控制,改变频率的称为变频控制。

(4)DC/DC变换。把固定的直流电压(或电流)变换成可调或恒定的另一种直流电压(或电流),称为斩波。DC/DC变换广泛应用于计算机电源、各类仪器仪表、直流电动机调速及金属焊接等。谐振型软开关技术是DC/DC变换的发展方向,该技术可减小变换器体积、质量,提高可靠性,并有效解决开关损耗问题。

4.2电力电子器件的应用

近年来,由于电力电子变流技术的迅猛发展,已经成为其他工业技术发展的重要基础。电力电子器件不仅应用于电力系统,也广泛应用于工业、交通运输、通信系统、计算机系统、新能源系统;还应用于照明、空调等家用电器中,可概括为以下几个领域:

(1)电力系统。为了控制和改善供电质量,发电厂发出的交流电必须经过电力电子装置的处理后送到用户端,没有电力电子器件的应用,就没有电力系统的现代化。从技术层面来讲,电力市场的引入将产生对电力品质的改善装置,如不间断电源(UPS)、静止无功补偿装置(SVC)、静止无功发生器(SVG)、动态电压恢复器(DVR)、电力有源滤波器(APF)、限流器、电力储能装置、微型燃气发电机(MicroCasTurbo)等新需求;再生能源、环保发电技术等分散发电将需要交直流变流装置。

(2)新能源利用与环境保护。电力电子器件装置还用于太阳能发电、风力发电装置与电力系统的联网,以及太阳能发电与风力发电电能的改善。现代社会对环境造成了严重的污染,温室气体的排放引起了国际社会的关注。我国改革开放以来能源消费量急剧上升,二氧化碳排放量也有较大增加。我国十分重视再生能源的开发,2006年我国实施了《再生能源法》。光伏、风力、燃料电池等新能源发电技术推动电力电子技术的应用,并形成电力电子技术的巨大市场。(3)混合动力汽车。由于电力电子器件应用技术的迅速发展,交流电动机的调速性能可以和直流电动机相媲美。在工业电动机的控制中,交流调速、直流调速以及节能和软起动都是通过电力电子器件实现的,其驱动结构如图1所示。

(4)交通运输。铁道电气化、电力机车控制、磁悬浮列车的使用都离不开电力电子器件,高级汽车中许多电机的控制是靠变频或斩波实现的。电动汽车的电动机控制和蓄电池充电也是靠电力电子装置实现,飞机、船舶、电梯等都离不开电力电子装置。

(5)电源。不间断电源、电解电源、电镀电源、开关电源、微机及仪器仪表电源、航空电源、通信电源、交流电子稳压电源、脉冲功率电源、动力牵引及传动控制用电源都是靠变流技术实现的。

电力电子器件范文篇6

一、关于碳化硅电力电子器件

1.定义电力电子器件(PowerElectronicDevice)又称为功率半导体器件,主要指用于电力设备电能变换和控制电路方面的大功率电子器件。碳化硅(SiC)电力电子器件是指采用第三代半导体材料SiC制造的一种宽禁带电力电子器件,具有耐高温、高频、高效的特性。按照器件工作形式,SiC电力电子器件主要包括功率二极管和功率开关管。功率二极管包括结势垒肖特基(JBS)二极管、PiN二极管和超结二极管;功率开关管主要包括金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、双极型开关管(BJT)、绝缘栅双极型晶体管(IGBT)、门极可关断晶闸管(GTO)和发射极可关断晶闸管(ETO)等。2.技术优势与硅基电力电子器件必须采用硅单晶制造一样,SiC电力电子器件是采用微电子工艺方法在SiC晶圆材料上加工出来的,目前常用的是4H-SiC型单晶衬底材料,以及在衬底上生长出来的外延材料。是硅的三倍,临界击穿电场比硅材料高一个数量级,相同结构下,其阻断能力比硅器件高好多倍,相同的击穿电压下,SiC器件的漂移区可以更薄,可保证其拥有更小的导通电阻。一般硅器件最高到200℃就会因热击穿造成失效,而SiC具有的宽禁带特性,保证了SiC器件可以在500℃以上高温环境工作,且具有极好抗辐射性能。SiC电力电子器件的开关频率高于同结构硅器件,可大幅降低开关损耗,大大提高系统效率;在应用于功率集成系统时,SiC器件无反向恢复、散热性好的突出特点,可使相关电路得到优化,从而在整体上缩减系统尺寸,减轻系统重量,节约系统成本。SiC电力电子器件重要系统优势在于其高压(达数万伏)、高温(大于500℃)特性,突破了硅器件电压(数kV)和温度(小于200℃)限制所导致的严重系统局限性。3.应用SiC电力电子器件率先在低压领域实现产业化,目前商业产品电压等级在600~1700V,已开始替代传统硅器件。高压SiC电力电子器件目前已研发出27kVPiN二极管、10~15kV/≥10AMOSFET、20kVGTO、22kVETO和27kV的N型IGBT等。当前SiC电力电子器件的成熟度和可靠性不断提高,正在逐步成为保障电子装备现代化的必要技术。

二、国际发展现状与趋势

1.科技政策与战略规划20世纪80年代以来,美、日、欧等发达国家为保持航天、军事和技术强国地位,始终将宽禁带半导体技术放在极其重要的战略地位,投入巨资实施了多项旨在提升装备系统能力和减小模块组件体积的技术开发计划,取得了良好效果。(1)美国。早在1997年制定的“国防与科学计划”中,美国就明确了宽禁带半导体的发展目标。2014年,奥巴马总统亲自主导成立了以SiC为代表的第三代宽禁带半导体产业联盟,全力支持宽禁带半导体技术,以引领下一代电力电子制造业的技术创新。该联盟目前已获得联邦和地方政府总计1.4亿美元支持,计划在未来5年里,使宽禁带半导体技术在成本上具有与当前硅基电力电子技术竞争的能力,成为下一代节能、高效大功率电力电子芯片和器件,引领包括消费类电子、工业设备、通讯、清洁能源等在内的,多个全球最大规模、最快增长速度的产业市场,全面提升国际竞争力并创造高薪就业机会。2016年,美国陆军资助通用电气公司(GE)2.1亿美元,用一年时间,采用新型SiCMOSFET器件与GaN器件,实现15kW、28V/600V的DC-DC双向整流装置,预期使现有硅基电力电子装备尺寸减小50%、功率能力提升2倍,以提升陆军坦克在高温下的作战能力。(2)日本。从1998年开始,日本政府持续资助宽禁带半导体技术研究。2013年,日本将SiC材料体系纳入“首相战略”,认为未来50%的节能要通过SiC器件来实现,以便创造清洁能源的新时代。近几年,日本新能源产业技术综合开发机构(NEDO)制定了一系列关于SiC材料与器件的国家计划,如“国家硬电子计划”,主要发展高能、高速、高功率开关器件,用于空间、原子能、存储及信息通讯。2015年NEDO启动了SiC电力电子器件相关的研究计划,重点针对SiC功率模块在铁路机车电路系统、多样性电力交换系统、发电电动一体涡轮增压机废热回收系统、尖端医疗设备和加速器小型化等领域的应用进行研究,以实现节能、增效的目标。(3)欧盟。2014年,欧盟启动为期3年(2014—2017年)的,应用于高效电力系统的SiC电力技术研究计划(SPEED),总投入达1858万欧元,7个国家的12家研究机构和企业参与了该计划。该计划目标是通过汇集世界领先的制造商和研究人员来联合攻克SiC电力电子器件技术,突破SiC电力电子器件全产业链的技术瓶颈,实现在可再生能源领域的广泛应用。2015年,德国联邦研究部资助卡尔斯鲁厄理工学院和工业界合作伙伴(资助金额80万欧元),开展基于SiC开关器件提升高频电源能效的研究,以提升工业生产中电源的能效,降低能源消耗和减少CO2排放。2.技术进展随着SiC外延材料技术不断进步,主要发达国家竞相发展SiC电力电子器件技术。近年来,多家国际大公司快速向6英寸SiC电力电子器件制造工艺转移,SiC器件产品也在向高压端和大容量端扩展。目前JBS二极管、PiN二极管、MOSFET、IGBT、GTO开关管等SiC器件已实现10kV以上电压等级的样品,其中单管器件最高电压达到27kV以上。SiC电力电子器件的产业化主要以德国英飞凌、美国Cree公司、GE和日本罗姆公司、丰田公司等为代表。SiC电力电子器件首先由英飞凌于2000年前后在JBS二极管上取得突破,打开市场化的僵局,目前SiCJBS二极管已广泛应用于高端电源市场。Cree、英飞凌、罗姆等公司逐步推出SiCMOSFET、JFET等产品,丰田公司则把SiCMOSFET器件应用到电动汽车中。2015年,CREE公司推出全球首款全碳化硅功率模块产品CAS300M17BM2,该产品有能力完全取代现有额定电流为400A或更高的硅基IGBT模块,非常适用于高功率电机驱动开关和并网逆变器等应用。

三、我国发展现状与水平

1.SiC单晶材料技术我国SiC单晶生长研究起步较晚,但在材料制备方面已取得较大突破。国内SiC单晶的研发始于2000年,主要研究单位有中科院物理研究所、山东大学、中科院上海硅酸盐研究所、中电集团46所等,均采用PVT法生长SiC单晶材料。产业化公司主要有北京天科合达、山东天岳、河北同光等。在国家支持下,我国SiC单晶技术发展迅速,已建立了从生长、切割、研磨到化学机械抛光的完整SiC单晶衬底材料生产线。SiC单晶直径已达6英寸,微管密度与国际产品相当,可提供N型、半绝缘等不同类型的衬底材料;特别是用于电力电子器件的N型SiC衬底材料,已实现电阻率<20mΩ•cm、可用面积超过90%的指标,一定程度上满足国内电力电子器件制备的需求。我国SiC单晶衬底质量相对国际先进水平还有较大差距,特别是尺寸更大(6~8英寸)、微管和位错密度更低的SiC衬底材料方面,仍有较多基本科学问题有待深入研究。2.SiC外延材料技术我国SiC外延材料研发工作始于“九五”计划,材料生长技术及器件研究均取得较大进展。主要研究单位有中科院半导体研究所、中电集团13所和55所、西安电子科技大学等,产业化公司主要是东莞天域和厦门瀚天天成。目前我国已研制成功6英寸SiC外延晶片,且基本实现商业化。我国已经能够提供成熟的N型SiC外延层材料产品,可提供各种器件结构材料,满足3.3kV及以下电压等级SiC电力电子器件的研制。但是用于研制10kV及以上电压等级器件的N型厚外延材料和用于研制双极型器件的P型外延材料方面,尚有一些基础问题需要攻克。3.SiC器件技术国内SiC器件研制起步较晚,2000年以来国内多家科研院所开展了相关研发工作。2014年,浙江大学研制出6000VJBS芯片,北京泰科天润研发出3300V/10AJBS芯片,中电集团55所研制成功10kVJBS芯片。浙江大学联合中电集团55所和山东大学等单位,成功研制4500V/100AJBS功率模块、4500V/50AJFET功率模块和10kV/200A串联功率模块,缩小了我国与国际领先水平的差距。MOSFET方面,西安电子科技大学、中科院微电子研究所、中电集团55所相继研制出900V、1200V、1700V和3300V样品。

四、我国进一步发展重点及对策建议

电力电子器件范文篇7

关键词:电力电子技术;电源技术;电力电子产业

电力电子技术,就是运用电力半导体器件以及电子技术对电气设备的电功率进行控制的一种技术。它把电力半导体器件、电子技术、自动控制技术与电力变换技术等多种技术相结合,是一门交叉学科。经过几代人孜孜不倦的努力,我国的电力电子产业发展的比较快速。自从第一个可控硅的出现,电力电子器件及其应用技术的发展已经持续了将近50年。电力电子器件的发展历经了不控器件和半控器件,电流、电压全控器件和功率集成电路等几个时期,器件的体积在不断地减小,而且,功率损耗较大的开关时间也大大降低,工作频率大幅度的增加,而且在电力电子技术上的新突破变为实际应用的时间也缩短。它涉足领域广泛,在电力、机械、通讯、交通等领域发挥着重要作用,是如今高新技术不可或缺的一部分。

1电力电子器件的发展

由于电力电子器件不断发展,电力电子技术也取得了较大进步。电力电子技术的发展可分为以下几个阶段,第一阶段为1950~1960年,在这一阶段,半导体器件中重要的技术得到了完善;第二个阶段从1970到1980年底,关键的电力电子器件包括场效应晶体管、绝缘栅双极型晶体管、可关断晶闸管的发展,使功率变换的要求得以实现;第三个阶段是从1990年始一直到现在,电力电子技术已经基本成熟,电压全控型的电力电子器件与智能型集成功率模块技术实现了飞跃式的发展。到目前为止,电力电子器件的水平基本上稳定在109~1010W/Hz的水平。为了超越器件的极限,可以向两个方向发展:一是更换更新的器件构造,二是应用宽能带间隙的半导体器件,如SiC器件和GaN器件。

2对电力电子产业现状的分析

毋庸置疑的是,电力电子的应用技术对我国国民经济的发展起着很大的促进作用。为了大力发展电力电子技术,政府将电力电子技术列入国家“九五”科技发展规划和国家关键新技术发展计划。尽管电力电子产业得到了较快发展,但同时也面临着一些挑战,研究与调查表明当前我国电力电子产业发展的同时存在着有利因素与不利因素。2.1有利因素。我国电力电子技术的发展在如下方面取得很大的成功:由于Si材料的发展与运用,技术的不断成熟等,大功率相控晶闸管与大功率快速晶闸管在部分地区已经有较大地发展,市场份额在逐步加大;功耗很低的中功率可控硅在国外市场所占份额较大;电力电子的集成化与数字化技术得到较大的发展;在东南部地区,成本较低的中低功率模块,价格相对低廉的普通二极管与晶闸管芯片在国内市场比重较大,因此可以不用进口,节约了成本。2.2不利因素。我国的工业化进程还处于一个不发达阶段,在工业化进程中依然要面对一系列问题。在电力电子领域内主要面临以下问题:科技发展的基础相对于其他发达国家较为薄弱,再加上这个领域发展速度太快,我国在这个领域的发展滞后于国际步伐;我国生产的大部分电力电子器件仍然局限于可控硅,很多研发出来的高科技产品依然依赖于国外产品的组装集成;产品研发的效率还不是太高,新能源技术还不成熟。

3电力电子产业发展的目标以及建议

为了应对国内外市场紧迫的竞争形势,尽快改变我国电力电子技术的落后现状,应尽快采取有力的措施。我国政府可以采取以下的发展战略:(1)朝着大容量、智能化的方向发展电力电子器件,尤其注重发展中小功率半导体器件的高功率化、模块化、数字化、快速化,发展创新型科技。(2)着力提高电子产品的效率与电能,尽量消除或者降低电力公害,减少电磁干扰。因此研究的重点内容就是更好地提高电能变换效率,让待机损耗降到最低。(3)运用新型半导体材料制造新型功率器件,加强对新一代碳化硅、砷化镓功率器件的开发。(4)大力发展智能化的电路集成系统产品,把这个复杂系统模块化,从而可以达到标准化、生产自动化、批量化生产,降低成本。

4结论

电力电子技术的发展,为逐渐改造传统产业和开拓新的产业奠定了一定的基础,而且在科技发展中所起的作用越来越关键,在如今的高新技术中扮演着不可缺少的角色。总而言之,电力电子产业在未来的应用前景越来越广阔,必然会成为21世纪电子产业的一个重要的组成部分。

作者:姜雪菲 任宝森 单位:青岛大学

参考文献:

[1]王兆安,杨旭.王晓宝.电力电子集成技术的现状及发展方向[J].电力电子技术,2003,37(5):90-94.

电力电子器件范文篇8

论文摘要:介绍了电力电子器件和变频技术的发展过程,以及变频技术在家用电器的应用,分析了变频技术的应用也带来了谐波、电磁干扰和电源系统功率因数下降等问题。提出了相关的谐波抑制方法及提高电源系统功率因数的措施。

引言

随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。专家预言,在21世纪高度发展的自动控制领域内,计算机技术与电力电子技术是两项最重要的技术。

一、电力电子器件的发展过程

上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。

许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。

高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。

二、变频技术的发展过程

变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换

技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。

VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。

矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。

三、变频技术与家用电器

20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。

20世纪末期期,家用电器则依托变频技术,主要瞄准高功能和省电。

首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。

在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。

四、电力电子装置带来的危害及对策

电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。

另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。

(一)谐波与电磁干扰的对策

1、谐波抑制

为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。

传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。

电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。

大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。

2、电磁干扰抑制

解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:

(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;

(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;

(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。

目前较常用的软件开关技术有部分谐振PWM和无损耗缓冲电路。

(二)功率因数补偿

早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。

另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。

随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。

五、结束语

我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。

参考文献:

[1]周明宝.电力电子技术[M].北京:机制工业出版社,1985.

[2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.

[3]王兆安黄俊.电力电子技术[M].北京:机械工业出版社,2003.

电力电子器件范文篇9

1.1电力电子技术在电力系统中的应用

电力电子技术在电力系统通向现代化进程的道路上有着不可磨灭的功劳,我们都知道,在高电压输电的工程中,由电厂发出电之后,把电流通过变压器进行变电之后再输送,这样做的目的是因为在电流一定的情况下,电压越高电流也就越小,在输送的过程中损耗也就越小,可以节省大量的电流,因为电力电子技术的变流特性,尤其是在特高压的输送技术发展中,利用电力电子技术,将直流输送电端的整流和受端电流都应用了晶闸管变流装置,这就在一定程度上解决了长距离、大容量的输送电流导致的电流损耗过大的问题,这一举措为中国的电力行业做出了极大的贡献,使中国电力系统迈出了至关重要的一步。同时在同步发电机励磁系统和交流电动机的变频调速以及新能源发电和智能电网的应用等方面也得到了广泛应用。

1.2电气节能的应用

节能已经成为了当前社会发展的必然趋势,因为电在人们日常生活中的重要作用,因此电气节能也就显得尤为重要。电气节能目前主要包括变频节能、电能质量控制、有源滤波等三个方面,在当前阶段,变频节能在这三个方面中又是重要的一点,人们所熟知的变频冰箱、变频空调等,它们已经开始为人们的生活提供服务。在未来的发展时期中,电机变频调速行业还要进行快速的发展,这主要是因为它的以下三个重要发展因素:一是因为变频器产品越来越成熟,而且应用广泛,现代电器产品都开始进入变频时代,又由于它的技术越来越新,企业投资产品的成本也越来越低,这就更为变频器产品的发展和应用提供了绝好的机会。二是因为变频调速节能非常明显的效果,为社会提供了广泛的效益,也为企业提供了较高的利益,所以越来越多的企业对变频调速节能产生了兴趣。三是国家也开始在这方面出台一些措施,对重点耗能企业进行严格控制,鼓励督促他们发展电气节能,不仅可以降低企业能源的消耗,同时也减少了资源浪费,为社会创造了巨大财富。

1.3电力电子技术在家用电器中的应用

电力电子技术在家用电器中的应用我们都深有感触,如日常生活中应用到的“节能灯”,就是电力电子技术发展的直接产物,它以其体积小、发光率高等的绝对优势已经取代传统的白炽灯和日光灯。同时变频空调、变频冰箱、电视机、音响设备、计算机等电子设备也是利用电力电子产品,它们已经进入到了我们的日常生活中,并为我们生活质量的提高做出了巨大的贡献。

2电力电子技术的发展

2.1电力电子技术的发展阶段

电力电子器件的发展分为两个阶段,一是传统电力电子器件,它是以电力二极管和晶闸管(SCR)为代表的第一代电力电子器件,自1957年生产第一只晶闸管以来,它以其体积小、功率低等优势首先在大功率整流电路中迅速取代了老式的汞弧整流器,并衍生出快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等多种品种。虽然此类器件通过门极只能控制开通而不能控制关断,而且它立足于分立元件结构,工作频率难以提高,大大限制了它的应用范围,但是因为它价格低廉,所以在大电流、高电压的发展空间依旧很多,目前以晶闸管为核心的设备在许多场合仍然被广泛使用。二是现代电力电子器件,它是将微电子技术和电力电子技术相结合,研制出的一种全新的高频、全控型器件。现代电力电子器件的主要产品有功率晶闸管、可关断晶闸管、功率场控晶体管、绝缘栅双极晶体管、MOS门极晶闸管等。这些产品当中,由于绝缘栅双极晶体管和MOS门极晶闸管两个为场控复合器件,所以也成为了最有发展前途的两种。

2.2电力电子技术的发展方向

器件是电力电子技术的基础,也是电力电子技术发展的动力,电力电子器件的发展方向也就决定了电力电子技术的发展方向。电力电子技术作为自动化、智能化及机电一体化的一个重要技术,未来电力电子器件可能在以下几个方面发展:(1)大容量化。利用微电子技术,提高单个器件的电压、电流容量,从而达到满足高压大电流的需要;(2)易驱动。由电流驱动发展为电压驱动,大力发展复合器件,还可专门研制专用集成模块,以便更适合中小功率的控制;(3)模块化。采用新技术和新工艺,将几个电力电子器件集中到一起,不仅缩小其体积减少连线,同时还可减低企业的生产成本;(4)功率集成化。充分利用集成电路工艺,将集成电路的功能与电力电子器件集成于一块芯片,实现集成电路功率化和功率器件集成化,并逐步向智能化方向发展;(5)高频化。采用新材料、新工艺,在一定的开关损耗下尽可能的提高器件的开关速度,使装置可以在更高的频率上运行(。6)降低导通压降。研制出比二极管压降还低的器件来提高交流效率、节省电能。

2.3电力电子技术的未来发展前景

电力电子技术已经进入到千家万户,它在人们的生活中扮演着各种各样重要的角色,在未来有着非常大的发展前景,这可以在以下几个方面体现出来:新材料的更新。现今社会经济飞速发展,人们的生活水平也越来越高,对于新产品新材料的要求也越来越高,这就要求我们需要在技术和材料上有新的更新。因为电力电子技术在人们日常生活中的应用越来越广泛,所以材料的更新更是显得尤为重要。在频率、功率等方面的研究可以有效降低器件的温度,减少器件体积,也可使成本大大降低,改进系统性能,扩大应用范围,使越来越多的领域可以从电力电子技术中受益。改进装置封装形式。在未来的发展前景中,电力电子技术将会对器件的装置形式进行不断改进,全面实现电力电子器件的模块化和集成化,这样不仅可以减少生产成本,同时可以获得更高的可靠性。发展新型的全半导体交流系统。随着社会经济的发展,人们生活水平的提高,对电子产品的要求也越来越高,经济使用并且体积娇小外形美观的电子产品越来越成为人们的钟爱,因此,电力电子技术的发展便可在体积小、重量轻、损耗小、无功率等方面做文章,加大设计力度和创新手法,以此来满足人们日益增长的物质文化需要。

3总结

电力电子器件范文篇10

关键词:发展趋势技术创新器件开发应用推广

1概述

自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR.GTO,功率MOSFET等自关断全控型第二代电力电子器件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。

2电力电子器发展回顾

整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。

1964年在美国第一次试制成功了0.5kV/0.01kA的可关断的GTO至今,目前以达到9kV/0.25kA/0.8kHz的可关断的GTO至今,目前以达到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在当前各种自关断器件中GTO容量量最大,但其工作频率最低,但其在大功率电力牵引驱动中有明显的优势,因此它在中压、大客量领域中占有一席之地。70年代研制出GTR系列产品,其额定值已达1.8kV/0.8kA/2kHZ,0.6kV/0.003kA/100kHZ,它具有组成的电路灵活成熟,开关损耗小、开关时间短等特点,在中等容量、中等频率的电路中应用广泛,而作为高性能,大容量的第三代绝缘栅型双极性晶体管IGBT,因其具有电压型控制,输入阻抗大、驱动功率小,开关损耗低及工作频率高等特点,其有着广阔的发展前景。而IGCT是最近发展起来的新型器件,它是在GTO基础上发展起来的器件,称为集成门极换流晶闸管,也有人称之为发射极关断晶闸管,它的瞬时开关频率可达20kHZ,关断时间为1μs,dildt4kA/ms,du/dt10-20kV/ms,交流阻断电压6kV,直流阻断电压3.9kV,开关时间<2ks,导通压降3600A时,2.8V,开关频率>1000Hz。

3电力电子器件发展趋势

进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说,当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。故电力电子器件的高频化是今后电力电子技术创新的主导方向,而硬件结构的标准模块是器件发展的必然趋势,目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内及驱动保护电路多个单元,并都以标准化和生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。日本新电元公司的IPM智能化功率模块的主要特点是:

3.1它内部集成了功率芯片,检测电路及驱动电路,使主电路的结构为最简。

3.2其功率芯片采用的是开关速度高,驱动电流小的IGBT,且自带电流传感器,可以高效地检测出过电流和短路电流,给功率芯片以安全的保护。

3.3在内部配线上将电源电路和驱动电路的配线长度控制到最短,从而很好地解决了浪涌电压及噪声影响误动作等问题。

3.4自带可靠的安全保护措施,当故障发生时能及时关断功率器件并发出故障信号,对芯片实施双重保护,以保证其运行的可靠性。

4电力电子技术创新