可靠度理论论文十篇

时间:2023-03-15 14:30:22

可靠度理论论文

可靠度理论论文篇1

关键词:工程结构 可靠度 综述

中图分类号: N945 文献标识码: A 文章编号:

一、结构可靠性理论研究历史

1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标;二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%;1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。1952年成立的“电子设备可靠性咨询组”,简称AGREE(Advisory Groupon Reliability of Electronic Equipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到其他多个部门。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利的卡钦奇提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用。因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ 68-84)也是以该方法作为可靠性校准的基础。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,对桥梁结构可靠性研究非常必要和迫切。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并出版了许多专著。概括而言,如下几方面是结构可靠度理论研究的热点:

4.1结构系统的可靠度分析。如结构可靠度分析的一阶矩概念及荷载为Ferry Borges Castanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

4.2对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极限状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

4.3目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.4人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

4.5在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。

4.6模糊随机可靠度的研究。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。五、结语桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1] 王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

可靠度理论论文篇2

关键词 机械;可靠性设计;可靠性设计内涵;现代可靠性设计

中图分类号 TH122 文献标识码 A 文章编号 1673-9671-(2012)102-0170-01

1 机械可靠性设计的内涵

机械可靠性的研究实际上源自于上世纪50年代对于电子产品的可靠性研究,其在各国率先开展的领域无一例外都是军工或航空航天领域。随着经济社会的不断发展,可靠性设计早已进入民用领域,并成为经济竞争的一大焦点。与常规的基于强度的机械设计相比,可靠性设计着重考虑了机械产品或零件的尺寸、材料以及其所承受的载荷的分散性和随机性,将原本基于强度理论的两个极端标准:载荷超出材料强度即不安全、载荷未超过材料强度即安全,转变为“安全的概率有多大”、“达到预期寿命的可能性有多大”,这种基于概率的可靠性设计思想和方法,是机械设计的一大进步。

所谓的机械可靠性,指的是机械系统或产品在规定的使用条件下、规定的时间内完成规定功能的能力,是衡量一种机电产品质量的重要指标。根据目前公认的定义,其内涵可以从4个层面进一步解释:机械系统或产品是可靠性设计的对象,其含义是广义的,既可以指整套的机械系统,也可以指单个设备、零件或是子系统;规定的时间是可靠性设计的核心,因为可靠性是产品的时间质量指标,是产品质量能够维系多长时间的标准,一般而言产品的可靠性会随着时间的增加而减小;规定的使用条件是可靠性设计的前提,不同的使用条件其可靠性设计就肯定不同,离开了规定的条件,谈论可靠性就毫无意义;规定功能是可靠性设计的实质,可靠性设计是在保证机械系统的使用功能的前提下,尽量延长其使用功能的存在时间。

2 机械可靠性设计的特点和基本理论

通常来讲,机械可靠性的设计具有以下几个特点:

2.1 机械产品种类繁多,可靠性要求不一

机械产品根据用途的不同千差万别,其组成结构和运行原理也各不相同,有的机械产品还需要特殊的零件。对于不同的使用要求,不同的零件,不同的机械结构等,可靠性设计的要求肯定也不相同,其计算方法或适用的理论也不同。

2.2 使用条件复杂,基本载荷确定困难

机械产品在使用过程中各个系统、零件所承受的载荷类型和载荷大小在很多情况下会随着工况的变化而发生变化,其载荷谱的确定需要经过长期反复的实验来确定,而实际中不可能对每一个系统或零件进行长期的载荷变化实验,因此对于机械产品的载荷谱确定存在一定的困难,对进一步的可靠性设计造成障碍。

2.3 可靠性设计受外部因素影响大

机械产品的可靠性不仅受设计因素的影响,还受到使用环境因素、产品的制造过程、制造工艺水准或稳定性的影响,这些不确定因素的存在也给可靠性设计带来了困难,在进行最初的可靠性设计中需要将这些外部因素的影响考虑在内。

2.4 机械零件连接状态变化

机械产品一般都是由许多功能不同的零件组成的,这些零件通过螺栓、键、铆等连接形式相互连接起来。在机械可靠性设计中,这些连接形式都被当作是一个虚拟的零件,这个虚拟的零件对机械系统的可靠性影响很大,也是机械可靠性设计的重要内容之一。但是这些连接方式的连接状态是根据装配工艺水平、装配工人的熟练程度、装配方法等的不同而不断变化的,连接状态的变化会影响到连接质量的优劣,这也是机械可靠性设计需要特别注意的一点。

我们知道,机械可靠性的设计理论是机械产品可靠性的基础,是进行准确有效可靠性设计的关键及保证。针对不同的机械产品和使用功能,可以采用不同适用的可靠性设计理论与方法。机械可靠性设计中最基本的理论是应力-强度相干理论,这个理论确立了机械零件所受载荷与其可靠性之间的基本关系;为解决应力-强度相干理论在实际应用的困难,在其基础上陆续发展出了广义可靠性概率理论、矩方法和以矩方法为基础的可靠性理论、R-F理论等等,具体的可靠性设计方法包括响应面法、支持向量机法、最大熵方法、随机有限元法和非概率分析方法等,内容涉及静强度设计,疲劳强度设计,有限寿命设计等,对象关联结构系统、机构系统、振动系统等多方面的机械产品可靠性设计。

3 现代可靠性设计方法

随着现代科学技术的发展和进步,机械产品设计中使用到的新知识、新方法、新理论、新材料、新工艺等越来越多,机械产品的更新换代周期也越来越短,结合先进的数学理论和计算机辅助技术,近年来出现了许多现代机械可靠性设计方法,成为解决复杂的机械设计问题的一种有效工具。

3.1 基于灵敏度的可靠性设计方法

在现代的机械产品可靠性优化设计,灵敏度分析与重分析和再设计已成为一种实用的设计方法。所谓的灵敏度分析,指的是在进行复杂机械产品结构系统的设计时,由于牵扯到诸多不同的物理和几何参数,如果对设计方案进行了一次修改,那么设计人员总是会希望了解修改哪些参数对产品特性影响较大,即机械产品的特性对哪些参数的敏感程度较大,对于这种机械产品特性对设计参数敏感程度的分析,就是灵敏度分析。

通过进行灵敏度分析,若研究发现某因素对产品失效有较大的影响,则在设计制造过程中就要严格加以控制,使其变化较小以保证产品有足够的安全可靠性;反之,如果某因素的变异性对产品可靠性的影响不显著,则在进行可靠性设计时,就可以把它当作确定量值处理以降低分析的复杂程度。这种基于灵敏度的机械可靠性设计,能够明确产品随参数变化的改变量,然后再有针对性地进行设计,可以大大提高机械可靠性设计的效果和准确性,达到优化产品的性能特性,延长其使用寿命的目的。

3.2 基于稳健性的可靠性设计方法

在上述基于灵敏度的可靠性设计方法基础上,我们可以递进得到一种通过极小化灵敏度的基于稳健性的可靠性设计方法。这种设计方法的基本思路是:减少尽可能多的对产品使用特性灵敏度大的因素,尽量设计出允许更大容差的产品而同时具有较低的成本,即使所设计的产品具有对设计参数变化的强不敏感性,即稳健性。上述的基于稳健型的可靠性设计在最大程度上避免了以往改动设计方案就要重新投入人力、物力和财力进行测试试验分析的不必要损失,减少了可靠性设计中的盲目性。

参考文献

[1]潘爽.浅谈机械产品可靠性设计[J].电子机械工程,2006,1.

可靠度理论论文篇3

关键词:体育测量;可靠性;统计推断;误差模型

中图分类号:G804.49文献标识码:A文章编 号:1007-3612(2007)05-0651-03

经典测量理论的基础是误差模型,体育测量科学性的基本理论(非参数方法除外)是建立 在误差模型基础之上的统计推断理论,深刻理解测量“三性”的误差模型、掌握其统计推断 原理和方法是学习和正确运用体育测量理论的关键。本文拟针对体育测量的可 靠性理论,通过对各类误差模型的具体分析,讨论其统计推断的原理和方法。

1总体误差模型与可靠性定义

对任意一个个体,设其真值为T,测量值为X,测量误差为e,则误差模型[3]为 :

模型假定:e与T是独立的,即测量误差大小与个体无关。

模型(1)是测量理论中最基本的误差模型,是测量理论的基础,建立在此基础之上的可 靠性定义具有最一般性。定义可靠性系数[2]为:

其中σX2是测量值的方差,σT2是真值方差,σ2为测量误差方差。

模型(1)是最一般的误差模型,对于不同类型的测验(尤其是对于重复测量),误差模型 的形式也不一样。

2测验的误差模型与可靠性度量

关于测验的总体,测验的频数等概念在文献[3]中已有具体阐述,我们按测验的两 种基本类型分别讨论其误差模型及可靠性的度量。

2.1频数等于1的测验 如果测验的频数等于1,即测验本身只有1次测量,但在检验测验可靠性时,需要进行若 干次重复测量,我们根据重复测量次数的不同,分“两次重复测量”和“多次重复测量”两 部分讨论。

2.1.1两次重复测量对于测验总体内的任意一个个体,真值为T ,两次测量值分别为X和X′,则两次测量的误差模型为其中e和e′为测量误差,并且与T独立。

记X与X′之间的相关系数为ρ,可以证明[5]

(4)式说明,对于频数等于1的测验,两次重复测验值之间的相关系数即为测验的可靠性 系数。 2.1.2多次重复测量设重复测量次数为m(m≥3),则m次重复测 量的误差模型为

其中ei(i=1, 2, …, m)的均值为0,方差为σ2,并且ei与T独立。因此Var(Xi)=σT2+σ2i=1, 2, …, m (6)即σX2=σT2+σ2投稿日期:2005-06-03基金项目:安徽省教育厅人文社科项目(2001JW118)。作者简介:魏登云(1963-),男,安徽肥东人,硕士,教授,硕士 研究生导师,研究方向体育计量学的理论与实践。可见,可靠性系数依然为:R0=1-σ2σX2=1-σ2σT2+σ2(7)

其中σX2是一次测量值的方差。

(7)式说明,对于频数为1的测验,可靠性系数是一次测量的可靠性系数(总体可靠性系 数)。

2.2频数大于1的测验 设测验的频数为k(k>1),并且假定测验值是k次重复测量值的均值。类似于模型(5),有从而其中。

易见e与T独立,并且e的均值为0,方差为σ2k, 则σ2X=σT2+σ2k( 9)X为测验值,因此(8)式即为频数为k的测验的误差模型,可靠性系数为公式(10)给出了在误差模型(8)之下,频数为k的测验的可靠性系数的度量方法。

公式(4)、(7)、(10)给出的均为总体可靠性系数,应用中需要借助样本对总体可靠性系 数进行估计,即可靠性检验。

3随机样本的误差模型与可靠性检验

3.1随机样本的误差模型 设有来自测验总体的n个个体,个体真值为Ti(i =1, 2, …, n),每个个体均有m次重 复测量值则便是 来自测验总体的一个样本,误差模型为m(11)其中误差eij与真值Ti独立,且,)的均 值为0,方差为σ的方差为。令,则由模型(11)还可以看出

3.2有关参数的估计样本数据列于表1。

为了检验可靠性,需要对误差方差σ2和真值方差σ2T作出估计。

根据误差模型(11)可知,是的无偏估计,即由公式(14)得从而即E(MS内)=σ2(15)公式(15)说明,组内方差MS内是误差方差σ2的一个无偏估计量。

根据公式(13)可以看出,是的一个无偏估计量,即结合公式(15)和(16),可以得到σT2的一个无偏估计量σ^T2=1mMS间-1mMS 内(17)

3.3可靠性的检验 有了σ2的估σT2计量之后,我们来考虑对总体可靠性系数的估计,估计方法与原始 数据中重复测量次数有关。以下按重复测量次数分两种情况。

3.3.1两次重复测量 如果原始数据来自对n个个体的“测量――再测量”,则根据(4)式,对于频数等于1的 测验,可用样本相关系数r估计总体可靠性系数[2],即R0^=r(18)

对于频数为k(k>1)的测验,可用斯皮尔曼―布朗公式预测可靠性系数[6]

3.3.2多次重复测量 若原始数据来自于对n个个体的m(m>2)次重复测量,测量数据如表1。设测验的频数为k( k≥1)。根据公式(10)、(15)和(17),得可靠性系数的估计量内

由上式不难看出,若测验的频数等于1,即k=1,则R^0=MS间-MS内MS间+(m-1)MS内

若测验的频数等于m,则R^0=MS间-MS内MS间=1-MS 内MS间(

值得注意的是:在不少文献中,频数等于1的测验,可靠性系数估计量用如下公式R=1-MS内MS总 (23)在文献[2]中已经证明了上式估计量是总体可靠性系数的一个相合估计,即在大样 本情况下,公式(23)才可以作为总体可靠性系数的估计量。对于小样本,公式(23)是不合适 的。事实上,MS总=n(m-1)nm-1MS内+n-1nm-1MS间

由公式(15)和(16)知即MS总是σX2的有偏估计,而且是偏小。因此,(23)式给出的估计量是总体可靠性系 数的一个有偏估计,而且重复测量次数m越大,估计的偏差越大。只有在样本含量n很大时, 偏差才较小。

4结论

可靠度理论论文篇4

【关键词】建筑结构;设计;安全度;理论;建议

【 abstract 】 this paper puts forward the structure design of the concept of the safety degree, and expounds the structure design of the safety degree design theory, this paper discusses the sex also puts forward improvement structure design of the safety degree Suggestions.

【 key words 】 building structure; Design; The safety degree; Theory; suggest

中图分类号:TU3文献标识码: A 文章编号:

前言

安全度是建筑结构设计中最重要的基本问题。从结构设计角度而言,平面形状是三角形的结构迎风面较大,在水平风力作用下,它抗弯曲变形和抗侧移的能力比圆形、椭圆形、正方形、正多边形、十字形、工字形、口字形等平面形式的高层建筑要弱很多,而使得建筑物安全性较差。因此,要保证建筑物的安全,首先要保证建筑结构的安全性。结构设计的首要任务就是选用经济合理的结构方案,其次是结构分析与构件和连接的设计,并取用规范规定的安全系数或可靠指标以保证结构的安全性。

概述

从事建筑结构设计的基本目的, 就是在一定的经济条件下, 赋予结构以适当的安全度,使结构在预定的使用期限内,能满足所预期的各种功能要求,一般来说,建筑结构必须满足的功能要求是:1.1 能承受在正常施工和使用时可能出现的各种作用,且在偶发事件中,仍能保持必须的整体稳定性, 即建筑结构需具有的安全性。1.2 在正常时具有良好的工作性能,即建筑结构需具有的适用性。1.3 在正常维护下具有足够的耐久性。上述安全性、适用性和耐久性是建筑结构可靠(或安全)与否的标志,总称为结构的可靠性,对这些性能的度量,即结构在规定的时间内,在规定的条件下,完成预定功能的概率,称为结构的可靠度(或称安全度)。

2 可靠度设计理论是分析结构安全性的一种有效手段

我国已颁布统一标准, 要求结构设计规范按可靠度理论设计。20 世纪 70 年代的我国混凝土结构、木结构和钢结构设计规范分别采用不同的设计方法体系, 在安全度的表达形式上互不相同, 给设计或教学都造成不便,20 世纪 80 年代用可靠度理论率先加以统一。但是,对规范采用可靠度理论,以及这一理论能否将各种结构的安全度都统一在同一体系中,专家们持不同意见:

2.1 认为我国规范采用了先进的可靠度理论,用失效概率度量结构的可靠性,通过将抗力和作用效应相互独立。将随机过程化为随机变量并以经验为校准点, 成功地将这一理论用于建筑结构设计规范中, 这是我国规范先进性的一种表现。工程设计采用可靠度理论为国际标准组织(ISO)所提倡,是国际上大势所趋; 多次国际安全度会议也倾向于采纳ISO 提出的在设计规范中采用可靠度理论的原则。可靠度理论一样重视经验,可靠度取值用校准法确定。

2.2 认为可靠度理论是分析和度量结构安全性的一种先进手段, 但在应用上还有其局限性, 理论本身也有一些方面未能突破,比如结构可靠度分析的三个约束条件: 将抗力与作用效应分离, 将随机过程变为随机变量,以及将截面承载力的安全指标 β 作为结构的可靠指标,随着认识的发展都值得质疑。用概率可靠度理论需要进行大量数据统计, 但不论荷载统计或抗力统计都还存在一些问题,规范安全度还需考虑将来可能出现的荷载变化。概率可靠度理论会有意或无意地简化、忽略本应考虑但又无法用这一理论处理的因素,如一定程度的人为误以及社会、经济因素等。可靠度理论强调三个正常, 即正常设计。正常施工和正常使用,但正常和不正常有时不易界定。匆忙地将可靠度理论推广于各种规范,会带来一些不必要麻烦,比如地基基础规范中, 地基承载力强度的设计值竟比标准值还高, 抗震设计规范中不得不引入调整系数。又如地下结构的荷载与其作用效应高度耦合, 其不确定性远大于荷载本身的不确

定性、结构构件尺寸的不确定性。以及材料强度不确定性的总和,而前者又难以估计,这时

勉强采用可靠度设计往往徒有形式而无实效。有的专家指出,水工结构的大坝设计目前只有苏联用可靠度理论, 其它国家都用安全系数 k 大坝在不同工作条件下的温度。渗透压力很难用统计确定, 影响坝基稳定的地基软弱夹层及其分布也很难凭少数钻孔取样确定其统计特性, 所以用可靠度理论估计不了坝体的安全度。将可靠度理论用于铁路工程结构规范要确定火车的荷载谱, 现在花了很大力气已取得上万条荷载谱,统计出了 50 年最大可能荷载, 可是今后铁路上的火车荷载及其变化, 更多地由铁路部门指令所确定,与那些统计多不相关。

2.3 认为分项多安全系数设计方法要比可靠度方法更为灵活实用。在确定安全系数时, 同可以利用可靠度理论一起作分析,最后选定合适的系数值。鉴于现行建筑结构设计规范已经采用了可靠度理论, 不足之处可继续改进, 而其设计公式的表达形式又与分项多安全系数基本相似, 所以也不必再回到老路上去。现行可靠度设计规范中的分项系数,其含义可以模糊些,考虑更多的经验因素,这在可靠度理论中也是说得过去的。规范采用可靠度理论应采取实事求是的态度, 能用的尽量用,尚不成熟的将来再用,不宜用行政手段一刀切去追求“统一”。

3 提高建筑结构设计安全度的建议

3.1 当前的建筑物安全事故,与结构设计安全度无关

20 世纪 50 年代的结构设计方法,与现在近似,当时所用的混凝土强度很低,只有110140 号,比现在的 C15 还低。20 世纪50 年代初期施工手段也很落后, 混凝土用体积配合比,人工搅拌,没有振捣器……而当时施工发生安全事故的较少。有一些建筑物,如王府井百货大楼、北京饭店等,使用至今已逾45 年,而且经过了唐山地震影响的考验。因此可以说,现在的安全事故,与结构设计安全度是没有连带关系的。

3.2 结构设计,仍宜提倡节约

关于节约钢材的问题。作为一个结构设计工程师,重要职责之一, 就是以较少的材料去完成建筑物各种功能的要求。如果将构件截面任意加大,材料用量任意增多,这个工作,建筑师也能做。在发达国家, 节约材料也是工程师所追求的。1998 年美国《商业周刊》登载由美国建筑师学会(AIA)举办的最佳建筑设计竞赛“,节省材料”是该次竞赛的主题之一。纽约时报新印刷厂的设计, 因采用规则的矩形平面和常规材料,节约五千万美元而获奖:又如香港中

国银行(贝聿铭设计)因其结构方案布置得当,比同样高度的其他结构大量节约钢材, 所以若干个杂志上都发表文章加以表扬。

3.3 我国规范中的构造规定,并非都比别国低

我国规范规定的是最低用钢量,设计者一般根据结构重要性,予以适当提高,所以下能以此来判定我们在工程中的材料用量,更不能以我们的最低值来与人家比。我国规范规定的柱子最小含钢量力 0.4%, 是不考虑抗地震时的数量, 我们大多数城市设计时都考虑抗震,高层建筑更是都要考虑,这时柱子的最小含钢量就是 0.5%~1.0%。而且设计单位在设计高层建筑的柱子时, 用钢量常比规范要求的还大,因此与国外相比,实际用钢量并不太小。我们有些构造要求,已与国外持平,如剪力墙的最小配筋率为 0.25%,与美国相同。至于墙的暗柱配筋量, 在许多方面已是世界领先。

3.4 规范要根据国家政策而定

一个国家的规范,不仅仅是技术性的,还有很强的政策性等许多方面, 是一个国家经济条件的直接反映。因此,我国规范的材料用量,当然应该比发达国家低,也即安全度应该低一些。这方面我们完全可以理直气壮地说, 我们过去的设计标准,是符合我国国情的,是安全的。当然某些局部有不足,要不断修改。国外的规范也不是十全十美,也在不断的修改。我们过去的

结构成功地经受了几十年的考验, 那就是说,我们的规范基本是正确的, 安全度基本是能

满足要求的。

3.5 转变设计思想,全面提高安全度水平

3.5.1 建筑结构作为特殊商品,确定其设计安全度的高低不再是纯政府行为, 目前至

少会有房屋开发商、保险业和用户参与。开发商应该对其出售建筑物的安全质量负责,在

影响售价不多的情况下应尽可能提高安全度, 更高的安全性能应作为房屋开发商促销

和竞争的一个热点。

3.5.2 我国现行结构设计标准的低安全度原则已不能适用当前的国情, 提高我国建筑结构的安全度水平将有利于生产、生活水准的改善有利于国民经济发展,也符合建筑物业主的利益和要求。

3.5.3 从提高结构安全度出发,为了改善结构物的安全性, 要提倡合理地多用钢材,而不再是挖空心思地节约钢材

【参考文献】

[1]金伟良,钟小平.可持续发展工程结构全寿命周期设计理论体系研究[J].中国工程科学. 2012(03):100-107.

[2]袁鲁峰.回弹法检测混凝土抗压强度的几个问题分析[J].中小企业管理与科技(上旬刊). 2009(03):001-006.

[3]陆雪梅.浅析建筑结构设计中的几个问题[J].中小企业管理与科技(下旬刊).2009(05):212-213.

可靠度理论论文篇5

行了分析。

关键词:有限元;可视化;可靠性

中图分类号:TU74文献标识码: A 文章编号:

随着现代产品的结构日趋复杂,功能日臻完善,对可靠性的要求也越来越高,达到高可靠性的难度也大大增加,因此产品的可靠性评定等问题,已受到各产业部门的重视。为了保证机械产品的可靠性,人们往往采用基于工程经验的安全系数法进行设计,有可能导致可靠性不足或过于保守。为了使设计更符合实际,应该在常规方法的基础上进行概率设计。

目前国内许多用户在进行可靠性分析时,都是用人工处理有限元程序的计算结果文件,这样做不仅工作量大,而且相当繁琐,计算结果也不易直观观察. 针对这一情况,有效地开发出一种以有限元软件为平台的可靠性可视化分析系统,

自动处理有限元的分析结果,计算出结构各个构成单元和体系的可靠度数值,方便设计人员及时发现并改进结构的局部缺陷,提高可靠性。

因此在最新的理论方法基础上,开发一个结构可靠性分析及仿真软件,能计算常用产品的可靠性,并将分析结果可视化输出将具有十分重要的意义。

1 结构可靠性分析基本原理

1.1 结构可靠性分析的基本概念

结构的可靠度是产品在规定时间内和规定条件下,完成规定功能的概率。

设为影响结构功能的n个随机变量,R(t)为可靠度函数,则结构的可靠度可表示为:

(1)

如果把失效概率记做F(t),显然有:

(2)

可靠性计算以概率理论为基础,考虑到直接应用数值积分方法计算结构失效概率的困难性,工程中多采用近似方法,为此引入了结构可靠指标的概念。对于 Z服从正态分布的情况,可靠指标的表达式为:

(3)

1.2结构可靠性常规计算方法

随着结构可靠性理论研究和工程结构设计方法的发展,近似概率设计方法已进入实用阶段。目前,通常采用一次二阶矩法、JC法、响应面法、梯度优化法及蒙特卡罗法等近似方法来计算结构的可靠度。其中一次二阶矩法、JC法需要较多的迭代求解且计算精度很差,响应面法随使可靠度计算得到简化,计算精度有所提高,但对于大型问题及随机因素较多的情况,效率较低。蒙特卡罗法为得到较高的计算精度需数万次的循环求解,耗时过多。

随机有限元法是进行结构可靠性计算的另一种思路,它是随机分析理论和确定性有限元法结合的产物。随机有限元法可分为两类: 一类是统计的方法,如蒙特卡洛法。另一类是分析的方法,就是以数学、力学分析作为工具,找出结构系统的响应与输入信号之间的关系,并据此得到结构内力、应力或位移的统计规律,及失效概率或可靠性。这一类随机有限元方法常见的有摄动随机有限元法、纽曼随机有限元法和验算点展开随机有限元法,本文采用计算效率较高的可靠性指标优化算法计算结构的可靠度。其基本原理如下:

根据结构可靠性指标的几何含义,可靠性指标的获得就是在功能函数面G(Y)上寻找一个点使该点与坐标原点的距离最短,由此可以得到可靠性指标计算的优化模型如下:

(4)

求解这一优化问题的方法很多,其中较为简便且高效的一种方法是梯度优化算法.其采用如下的显式迭代计算格式计算得到验算点:

(5)

式中: 表示第j次迭代计算的验算点;是的梯度向量;是沿负梯度方向的单位向量。经过几个循环的迭代,序列逐渐收敛于极限状态面上距离最近的点,即设计验算点,再根据公式得到结构的可靠性指标。本文即采用这种方法计算结构的可靠度。

2 结构可靠性可视化技术实现

2.1 图形用户界面有限元软件

现在数值模拟技术在上程中得到了广泛的应用,一批国际著名的有限元软件,如ANSYS,ABQUS等,已成为解决现代工程问题必不可少的上具。这些软件将有限元分析、计算机图形学等技术紧密结合,使用方便,计算精度高,并具有如下特点:

a.通用的数据接口。可与AutoCAD、Pro/ E等知名的CAD/ CA E软件共享数据。

b.友好的图形用户界面。用户通过这些界面可以方便地交互访问程序的各种功能、命令;建立或修改模型及计算结果等。

c.开放的二次开发功能。通过系统提供的语言编程可对有限元模型中相关的参量(如应力、应变等)实现定义参数、数学运算等操作。系统甚至还允许用户利用高级语言(如Fortran语言)编写子程序,与系统连接,以增加程序的灵活性。

由于目前知名的通用有限元软件大都具有如上特点,因此使用这些有限元软件对产品结构进行应力分析后,再结合随机有限元理论及有限元软件的二次开发功能,便可确定出模型上各单元的失效概率,并可视化显示。

可见,有限元软件为实现结构的可靠性可视化技术提供了有力的平台。

2.2结构可靠性可视化实现方法

如图1所示,结构可靠性可视化实现方法可分为如下几个步骤。

a 把CAD/ CAE系统下生成的几何模型传入有限元分析软件,并对其进行应力分析。

b根据应力计算结果,结合模型材料、尺寸数据及其概率分布,采用可靠度优化算法,利用ANSYS开放的二次开发功能编写求解可靠度的程序求出模型下各节点的可靠度及其概率分布。

C,二次开发ANSYS界面,使可靠度计算结果以云图的形式显示出来。

图1可靠性迭代程序框图

3结构可靠性可视化技术应用实例

采用上述的可靠性可视化技术,用VC开发了以ANSYS为平台的可靠性分析可视化分析模块。用户利用ANSYS对模型进行应力分析后,调用该模块便可以计算模型上的各节点的可靠度及其概率分布,并将计算结果以云图的形式显示出来。

图2(a)为用ANSYS对某汽车后桥进行静力分析的结果。图2(b)为利用本文开发的可视化模块计算的后桥失效概率分布云图。文中汽车后桥的材料为8mm厚的09SiVL钢板; 汽车的名义装载量m1=4.0t,满载时后桥负荷m2=6.0t,载荷作用于弹簧座处。

(a) 应力分布(b) 失效概率分布

图3某汽车后桥应力、失效概率分布

从图2不仅可以全面地获得该后桥的可靠度分布信息,而且还可以直观地了解结构“全场”的各项可靠性指标。根据这些计算结果,设计师可对该后桥的安

全性进行全面的评估及优化设计。

4 结论

介绍了图形用户界面有限元、结构可靠性理论及可视化实现方法。开发了基于ANSYS软件的可视化分析系统,对汽车后桥进行了可靠性可视化分析。本文的工作对工程中的结构可靠性可视化设计具有现实意义。

参考文献:

1.吴世伟.结构可靠度分析[M],北京:人民交通出版社,1988

2.武清玺.结构可靠性分析及随机有限元法[M],北京:机械工业出版社,2005

可靠度理论论文篇6

关键词:可靠性理论;计算机通信网络分析;多目标优化;遗传算法

现如今有很多学者都加入到了计算机通信网络可靠性的研究之中,以期望能够为计算机技术的应用提供帮助。但是要想提高其可靠性,重要的手段就是优化设计目标。传统设计中,设计人员所使用的设计方法主要有动态规划以及梯度法等,但是这两种方法都具有一定的局限性性,现阶段设计人员更多的是使用神经网络方法以及遗传算法来进行目标优化设计。这两种方法都具有相应的优势,都能够降低用户应用计算机的成本,因此制定的尝试。

1 计算机通信网络的可靠性理论分析

1.1 计算机通信网络的可靠性体现

计算机通信网络的可靠性理论主要是工程科学体系中重要的内容之一,经过多年的发展,有价值的研究越来越多,整个研究理论体系已经初步建立健全。通常情况下,学者主要从四个方面来表现计算机通信网络,一是连通性,这是计算机网络中最为重要也是最为基础的表现,可以说,如果计算机通信网络的连通性比较强,其可靠性基本上都有保证,因为连通性高,计算机也就能够顺利为用户提供通畅的网络链路,正是由于网络链路的存在,计算机网络中存在的节点才得以有效的运行,所以,本研究的重点应该是重视计算机的连通性。其余方面主要有生存型、抗破性以及有效性等。

1.2 计算机通信网络的可靠性概念

所谓计算机可靠性,就是指计算机网络能够在一定的操作要求条件、维修方式条件、温湿度条件、负载条件以及辐射条件下,保证在规定的时间内一直能够处于正常运行状态修下,即保持网络通信系统的连通性,并且可以完成基本的网络通信需求。在计算机网络规划设计和运行设计中,计算机网络可靠性是反应计算机网络拓扑结构是否良好的关键判定参数,对于保证计算机网络的正常稳定运行有着重要意义。另外,在计算机网络的规划设计中,往往还需要用到可靠度的概念,所谓计算机网络可靠度,就是指可靠性的实际完成概率。记为R(t),其中R(t)=P{T>r}。一般认为计算机网络可靠度有三种类型,即2-终端可靠度、γ-终端可靠度和全终端可靠度。其中若γ=2时,γ-终端可靠度就是2-终端可靠度,而当γ=n时,其就是全终端可靠度。也就是说,2-终端可靠度与全终端可靠度都是γ-终端可靠度的特例。

2 多目标优化理论分析

2.1 多目标优化概念

多目标优化(Mufti-criterion Optimization)问题也叫多指标优化问题或向量优化问题,它是指在一组约束条件下,极小化(或极大化)多个不同的目标函数。多目标优化问题的意义在于找到问题的一个或多个解,使设计者能接受所有的目标值。因此,可以认为单目标优化问题是多目标优化问题中的一个特例。在工程技术、生产管理以及国防建设等社会中的各个部门,所遇到的问题大多数是多目标优化问题。比如,在设计计算机通信网络主干网时,一般要考虑如何使费用、时延尽可能小,可靠性和生存性要尽可能大等,这是三个指标的优化问题。可以说,多目标优化问题在实际生活中是大量存在的,甚至无处不在。

2.2 多目标优化特点

与单目标优化问题比较,多目标优化问题具有以下特点:

(1)要求在给定条件下,多个目标都尽可能地好。

(2)各个目标并不总是独立存在,往往相互之间存在着耦合或矛盾,一些目标的性能改善往往会引起另一些目标的性能变坏。因此,各个目标的最优解之间的矛盾难以兼顾而无法同时达到最优。

(3)各个目标一般没有共同的衡量标准,很难进行量的比较,或者目标函数与约束条件之间存在着模糊性。

由于多目标优化问题存在以上的特点,因此,在某种意义上满足设计者要求的解具有一定的“满意度”。在求解过程中,传统的多目标优化问题的求解基于单目标优化问题的最优思想,大多数的求解方法始终坚持寻求问题的最优解。

3 基于可靠性理论的计算机通信网络分析与多目标优化

为更好的了解可靠性地下的计算机通信网络与目标优化,本文提出了一个优化案例。其节点服务中心的可靠性为0.95,工作站的可靠性为0.9,服务中心之间链路的可靠性为0.9,服务中心与工作站之间链路的可靠性为0.85,Rmin=0.9。并且提出了采用遗传算法进行优化设计的算法,该遗传算法是在matlab环境下运行的,遗传算法的参数为:种群大小POPX7.E=100最大迭代次数MAXGEN=500,交叉率pc=0.3,变异率pm=0.7程序迭代次数为32次,每次运行都随机生成小同的种群,然后取这20次得到的最好结果进行比较。

由于在初始化和变异的过程中,可以不考虑可靠性,将不满足可靠性约束的解去掉,然后将网络费用、平均时延放在同等重要的位置,则在计算综合满意度时三个性能指标的权值分别取Wc=Wd=0.5.Wr=0。结果表明中心结点为:1,2,转化成树结构有三条边,分别为(3,1),(1,2),(2,4),工作站端为3,1,3,3,4,4,4,2。

如果网络费用比平均时延稍微重要,则We=0.8,Wd=0.2,Wr-0。结果显示中心结点为:1,2,转化成树结构有三条边,分别为(3,1),(1,2),(2,4),工作站3,1,3,3,1,2,2,2,2。

通过分析可见,在这些不同权重的可靠度条件下,均能得到较好的满意度。可以说将多目标优化和遗传算法结合后,能够在最短的时间内找到令人满意的解,能成功解决高可靠性和低成本的NP-hard问题,快速实现并解决计算机通信网络的拓扑优化问题。

结束语

综上所述,可知对计算机网络可靠性理论进行研究以及分析十分必要,其是对计算机通信网络设计重要的前提条件,只有计算机通信网络具备了可靠性的性能,其才能安全稳定的进行运行,为用户提供稳定的服务。对其进行多目标优化,具有很多的优势也有很多要求,比如设计人员需要在特定的条件下,将所有的目标性能都进行优化,以使每个目标都能够完成制定的任务,另外,设计人员还要清楚,各个目标之前并没有完全的独立,彼此之间也有很多的联系,以及矛盾之处。

参考文献

[1]刘晓娥,唐涛,万丽军,黄樟灿.基于链路可靠性的网络拓扑结构设计[J].武汉理工大学学报(信息与管理工程版),2002(3).

[2]虞红芳,詹柔莹,李乐民.一种启发式的计算机局域网拓扑优化设计方法[J].通信技术,2002(3).

[3]符军.基于遗传算法的计算机通信网络可靠性分析及优化[J].才智,2009(12).

可靠度理论论文篇7

关键词:水工结构;可靠度;设计;运用;管理

在水工结构设计过程中,运用可靠度设计方法,必须要注重对抗力要素、材料性质要素、荷载作用等诸多设计要素实施数理统计和分析,尤其是要对近些年积累的设计资料实施统计和分析。与此同时,还要分析已经建成工程大量原型结构观测资料,以及已有实验研究成果的分析。从本质上做好设计推广的工作,使水工结构的设计人员可以接受和理解结构可靠度理论。下面,笔者就对结构可靠度在水工结构设计中的应用进行浅谈。

一、工程结构可靠度理论及其演变

在工程设计过程中,最重要的问题就是工程结构的安全性问题。原因在于,结构工程建设的耗资十分巨大,一旦其工程失效,不仅会威胁人民群众的生命安全,更会造成难以估量的损失和次生灾害。在人们对于结构工程不确定性进行认识的过程中,结构可靠性理论得以形成。在1911年,便有人用统计数学对荷载以及材料强度进行计算。1928年和1935年,相关学者相继发表了这方面的文章。在1946年,《结构的安全》这一研究论文得以发表,该文章对结构安全度等问题进行了重点探讨。通过这样反复的研究和发展,人们可靠度理论得以产生,人们也纷纷对可靠度理论的基本概念和应用进行探讨。

对结构可靠度产生影响的因素多种多样,从工程背景的角度来看,其影响因素主要包括:荷载、材料参数、几何尺寸、初始条件、边界条件、计算模型等。人们将影响结构可靠度的因素称之为随机变量,所有的参数都可以作为随机变量,或者还可以将当量作为随机变量。但是,为了给计算带来便利,人们将可以当做常量的量看作常量。

二、水工结构可靠度设计的常用方法

(一)运用分项系数极限状态表达式

在水工结构设计的过程中,将分项系数表达极限状态作为设计方法,不仅得到了广泛的运用,成为当前水工结构可靠度设计的过程中所普遍运用的设计方法,更与确定性方法相适用。明确作用分项系数以及材料性能分项系数的物理概念,对可能会产生的不确定性和不确定因素进行反映,具有很强的降强概念和超载概念,而且其与结构类型无关。因此,从作用本身变异性来对作用分项系数进行准确地确定,运用材料试件变异性来对材料性能分项系数进行确定。在《统一标准》中,已经明确规定,水工结构结构系数主要对各种结构抗力计算不确定性进行综合考虑,还要对作用分项系数和材料性能分项系数中没有考虑的其他分项系数进行综合考虑,比如几何尺寸不确定性等。这些不确定性与水工结构的形式具有重要的关系,结构系数与结构构件的可靠度具有直接关系,结构安全等级的不同,导致其目标可靠指标也并不相同。所以,在《统一标准》里已经明确规定,将安全等级是II级结构作为前提和基础,对其他等级结构,结构系数将II级结构系数乘以对应重要性系数便可以得到。

(二)确定目标可靠指标

在水工结构可靠度的设计过程中,目标可靠指标是水工结构设计重要的根据,目标可靠指标与工程的使用维护费用、投资风险、造价、人民生活、财产等因素息息相关,目标可靠指标对水工结构经济性和安全性平衡进行体现,可以说,目标可靠指标代表水工结构设计所预期的结构可靠度。因此,对目标可靠指标值进行合理的明确,不仅要依靠设计人员水工结构可靠度的设计水平,还要依靠科技发展和社会经济,正因如此,目标可靠指标是一项需要对国家综合性技术和经济政策进行充分考虑的指标。通常情况下,人们通过经验校准法、经济优化法、事故类比法这三种方法来确定目标可靠指标。在确定目标可靠指标的过程中,不仅要对理论结果进行综合考虑,还要对水工结构设计的情况进行综合考虑,将旧规范和新规范衔接起来。在实际运用的过程中,如果采用经验校准法来确定目标可靠指标。要通过对现行的设计规范安全度进行校核,通过反演计算,将根据原规范设计在水工结构里隐含相应的可靠指标值找出来,通过对其进行分析和调整,进而对目标可靠指标进行制定,通过这样的方法和流程得出的目标可靠指标,是基于概率分析之上,属于可靠性设计目标可靠指标。

(三)计算水工结构可靠度

水工结构可靠度计算的常用方法多种多样,例如Monte Carlo抽样法、一次二阶矩方法、高次高阶矩方法、遗传算法。作为一个将适应度的函数作为根本的算法,遗传算法主要通过对各种群个体实施遗传操作,进而实现种群内个体结构重组。在这样的过程中,种群个体逐代得以优化,并且逐渐与最优解逼近。遗传算法属于智能搜索的算法,变异、交叉和选择是遗传算法所依赖的基本操作。遗传算法的流程如下图所示,遗传算法具有很强的全局最优性、自适应性、鲁棒性等特征,这些特性是其它算法缺少的。

遗传算法流程图

通过运用遗传算法,能够规避传统算法的缺点,将决策变量编码作为运算的开展对象,遗传算法将决策变量某一种形式编码作为预算对象,这样能够为我们提供便利,我们便可以更好地运用遗传操作算子。此外,遗传算法还将目标函数值作为根本的搜索信息,对搜索范围和方向进行确定,遗传算法还适用于多个搜索点信息的搜索,其概率搜索技术得以广泛运用。

结语

当前形势下,工程结构越来越复杂,人们对于事物认知程度越来越深,正因如此,工程结构设计已经逐渐从确定性的设计方法转变成为概率设计方法。传统的水工结构设计方法,不能够真正保证水工结构的安全和可靠,也不利于深入理解设计安全性的内涵。因此,在水工结构的设计过程中,要将结构可靠度理论作为前提和基础,运用概率极限状态的设计方法,能够从本质上对水工结构设计过程中不定性的因素实施量化分析。

参考文献:

[1]陈锐林,唐世江,高瑞宏,曹素功,肖新强,唐璋,胡洪波. 深水库区施工专用工程浮箱的设计理论――综合设计法[J]. 湘潭大学自然科学学报,2014,02:36-41.

[2]蒋友宝,廖国宇,谢铭武. 钢筋混凝土框架柱和轻钢拱结构失效方程复杂特性与设计可靠度[J]. 建筑结构学报,2014,04:192-198.

可靠度理论论文篇8

关键词:地基承载力;抗剪强度指标;模糊可靠度

中图分类号:TU431

文献标识码:B

文章编号:1008-0422(2008)02-00132-02

1引言

在建筑地基基础设计中,现有方法主要是利用地基容许承载力进行地基基础设计的,其所采用的地基容许承载力是根据地基极限承载力除以定值安全系数得到的,即所谓的定值安全系数法。该方法在计算极限承载力时是采用传统的定值分析模式,没有考虑各个计算参数的变异性对极限承载力的影响,即便在计算时取用安全系数来考虑包括参数变异在内所有不利因素的影响也缺乏一定的科学依据,本质上仍属于定值分析的范畴[1~2]。事实上,由于地基极限承载力影响因素的复杂性和不确定性,导致岩土参数具有随机不确定性是不可避免,所以考虑影响地基稳定性的各随机变量的变异性与模糊性,用模糊概率来度量地基承载力的安全度,并采用可靠度理论对地基稳定性进行分析则更加符合工程实际。

概率分析是针对随机事件发生的可能性而言,但事件本身的含义明确;而当事件本身具有模糊性时,对事件发生的可能性进行描述则用模糊概率分析方法[3]。就地基的稳定性而言,失稳和稳定本身就是具有一定模糊性的事件,在二者之间存在一个模糊过渡区。因此,本文将视地基失稳为一模糊概率事件,利用概率理论与模糊数学理论建立分析地基失稳的方法,并通过建立相应的隶属函数对影响参数变异性及荷载效应与模糊可靠度之间的关系作进一步的分析。

2模糊概率的基本概念及模糊可靠度

工程问题的数学模型通常可分为三种:(1)背景对象具有确定性或固定性,且对象之间又具有必然联系的确定性模型;(2)背景对象具有或然性或随机性的随机性模型;(3)背景对象及其关系均具有模糊性的模糊数学模型。工程中传统的分析方法属于确定性模型,它以定值参数及定值安全系数来衡量工程的可靠度。而工程中目前使用较多的概率分析法则属于第二类方法,即随机数学模型,其以可靠度作为工程安全的评价标准,由于考虑了参数的随机性从而比定值安全系数法合理。但是参数本身不仅具有随机性而且还具有模糊性,理想的方法应该同时反映这些性质,模糊可靠度分析则能很好的体现此特性,因此,本文采用模糊可靠度分析方法对地基极限承载力进行分析。

由模糊数学理论[4]可知,如果模糊事件A在区域X上的隶属函数为u(x),则该模糊事件的概率[5]可表示为

式中,f(x)为X的概率密度函数。

则模糊可靠度为:

3地基失稳的模糊性及隶属函数确定

进行地基模糊可靠度分析,首先要建立地基稳定的极限状态方程。以综合随机变量表示的极限状态方程为:

(3)

式中,fu为地基的极限承载力,s为作用于基础底面的点荷载效应,等于恒载sG与活载sQ之和,即为:

(4)

地基极限承载力的计算公式较多,一般采用汉森公式[6],可写为:

式中,Nr,Nc,Nq为承载力系数,按Vesic公式有:

按传统的非此即彼的思维方法,可知M<0,地基失效;M>0地基稳定。实际上地基失效是一个过程,而不是由某一个点的状态决定,是一模糊事件。若用uA表示失效程度,则当uA接近0时,表示失效的可能性很小;当uA=0.5时,处于失效与非失效的模糊状态,可看作传统分析的极限平衡状态;当uA=1时,失效的可能性最大,因此公式(3)中的M为随机变量,其数字特征值为:

由于M同时具有模糊性,在此设M的失效程度隶属函数uA采用降半梯型分布[7],即

4安全系数下地基稳定的模糊可靠度计算

安全系数下地基承载力的实用设计表达式写为:

式中,sG为恒载效应均值,sQ为活载效应均值, 为c、φ均值代入式(6)所计算的结果。

考虑荷载效应比值,代入(13)可以确定sG,sQ为:

式(15)、(16)代入(9)得到:

按《建筑结构设计统一标准》的规定,恒载效应的变异系数为0.07,活载效应的变异系数取为0.29,所以有:

不考虑fu,s之间的相关性,即cov(fu,s)=0,则由式(10)可得:

本文视几何尺寸B、D,土性指标γ,γ0为常量,仅把抗剪指标c、φ作为随机正态变量,简化假设fu,s也服从正态分布,则z近似服从正态分布,分布密度函数为

将(11)、(16)、(19)、(20)代入(1)得到地基失效的模糊概率为

地基失效的模糊可靠度为:

5算例分析

已知某条形基础,基底宽度3.5m,埋深2.5m,各随机变量均服从正态分布,其均值和变异系数如表1所示,取安全系数为2,荷载效应比值为0.5,试求地基的模糊可靠度。

5.1 将各基本随机变量代入公式(22)、(23)可以计算得到:

Pf=23.16%,此时模糊可靠度β=0.75。

5.2 基本随机变量对模糊可靠度的影响 为了分析不同随机变量的变异对模糊失效概率的敏感程度,特对某一随机变量的变异系数进行了单独调整,并分析计算结果的变化,见表2。

从表中结果可知c、φ值的敏感性大,而γ的敏感性小,为简化计算,γB、γD可视为常量。

5.3 荷载效应ρ与模糊可靠度的关系

表3给出了安全系数为2时荷载效应与模糊可靠度的关系,由分析结果可知,当荷载效应系数增大时,活荷载的比重相应增加,由于其变异性比恒载大,故模糊失效概率增加。

6结论

地基承载力的模糊失效概率值,不仅考虑了基本随机变量的随机变异性,同时考虑了变量及判别模式的模糊性,因此,计算分析结果更为合理、全面。通过研究分析可得如下结论:

6.1地基承载力的模糊概率分析的主要影响因素为强度参数c、φ的变异性,而γ的变异性可以不计,计算中按常量考虑;

6.2随着荷载效应系数的增大,地基承载力的模糊失效概率增加。

参考文献:

[1] 高大钊.土力学可靠性原理[M].北京: 中国建筑工业出版社,1989.

[2] 倪红,刘新宇,秦玉.土性参数概率特性对地基承载力可靠度的影响[J].理工大学学报(自然科学版),2004,5(3):67~69.

[3] 郭书祥,吕震宙.概率模型含模糊分布参数时的模糊失效概率计算方法[J].机械强度,2003,25(5): 527~529.

[4] 彭祖赠,孙韫玉.模糊(Fuzzy)数学几其应用[M].武汉:武汉大学出版社,2002,3.

[5] 吕震宙,冯元生.考虑随机模糊性时结构广义可靠度计算方法[J].固体力学学报,1997,18(1): 80~85.

[6] 熊启东,高大钊.用汉森公式确定地基承载力的可靠度分析[J].岩土工程学报,1998,20(3): 79~81.

可靠度理论论文篇9

关键词 城市轨道交通,安全性,可靠性

虽然城市轨道交通的安全性与可靠性要远高于其他交通方式[1],但由于城市轨道交通系统的运营工作牵涉到城市千百万乘客安全正点出行,对建设和谐社会的影响重大,所以必须不断地研究和提高整个系统的安全性与可靠性水平。城市轨道交通系统是人-机-环境三方面相互作用的包含多种专业设备(设施)的结构非常复杂的客运系统,它的安全性与可靠性不仅要在规划、设计、建造时给予充分考虑,并且在运营管理中也要不断研究、改进和提高;不仅要考虑单个设施(设备)的安全性与可靠性,还需要从系统的角度整体研究其安全性与可靠性问题,发现各种潜在的不安全因素和故障模式,为整个系统的安全运营管理工作和设施(设备)改造计划提供理论依据。

对于我国城市轨道交通系统的安全性与可靠性研究,目前无论是理论研究还是应用实践层面,均尚未形成完整的体系[2]。本文采用系统工程的观点,阐述城市轨道交通系统安全性与可靠性的概念,探索整体研究轨道交通系统安全性与可靠性的方法,构建城市轨道交通系统安全性与可靠性工程框架以及管理组织结构和信息流程框架。

1 城市轨道交通系统安全性与可靠性概念

1.1 安全性与可靠性及其相互关系

安全性与可靠性是两个不同但又有密切联系的概念。在理论研究或应用研究领域,安全性与可靠性一般是分开来进行研究的,虽然它们的有些研究方法是一样的,但并没有统一的定义标准。一般来讲,“安全”表示系统的“完整”与“稳定”状态,安全性是指系统保持这种状态的能力。安全状态被破坏是因为意外事件的发生,即通常讲的“事故”发生,其特征指标是人员伤亡、设备财产损失或环境危害的程度。“可靠”表示系统性能的“保证”与“可信赖”,可靠性是指系统性能“保证”与“可信赖”的能力。可靠状态被破坏是因为自身某些能力的下降或消失,即通常讲的出现“故障”,其特征指标是系统某些性能下降或丧失的程度。

当某个系统的可靠性出现下降,则容易出现故障;当故障出现后,不仅造成系统性能的下降,而且可能会导致事故的发生,即系统安全性下降。反之,当有事故发生时,系统性能会下降或无法运转,此时的事故从可靠性角度讲就是故障。所以有时人们将“事故”与“故障”混用,但一般在安全性研究中用“事故”来描述事件,在可靠性研究中用“故障”来描述事件。

1.2城市轨道交通系统的安全性与可靠性

对于城市轨道交通系统,安全性指在系统运营过程中,保障“乘客和员工不受伤害以及设备(设施)不遭破坏”的能力;可靠性指在系统运营过程中,保障“乘客准时到达目的地”的能力。通常所讲的“保障乘客安全正点旅行”即包含了系统安全性与可靠性两方面的概念。

保障“乘客和员工不受伤害以及设备(设施)不遭破坏”的能力包含了两个方面,即不发生意外的安全(safety)和免遭破坏的安全(security);对应的事故也有两种,即意外发生的事故(accident)和故意造成的事件(incident)。

保障“乘客准时到达目的地”的能力也包含了两个方面:一是运输容量能力,二是列车按计划正点运行能力。因乘车人多造成拥挤而导致无法登乘、列车无法准时出发,以及由此引发的后续列车运行延误和车底周转延误属于前者;因技术或管理原因造成的运营中断、列车延误,以及由此引发的后续列车运行延误和车底周转延误,或维修延误造成的列车运行延误等属于后者。

另外,城市轨道交通系统的可靠性也可用保障“乘客方便舒适地旅行”的能力来表示。如车站的乘客引导系统、自动售票机、兑币机、残疾人电梯、车箱内饰设施等,这些设备发生故障可能并不影响列车的正点运行,但会给乘客带来不便或不舒服。此项能力可作为更高一级的可靠性能力,即正点运营可靠性基础上的服务质量可靠性。

1.3 城市轨道交通系统安全性与可靠性指标

系统安全性指标可以用整个系统或某条线路的人员伤亡率和设备(设施)损失率来反映保障“乘客和员工不受伤害以及设备(设施)不遭破坏”的能力。

系统可靠性指标可以用整个系统或某条线路的运营可靠度、运营恢复度及运营利用率等来表示保障“乘客准时到达目的地”的能力(具体定义与计算另文阐述)。

2 城市轨道交通系统的安全性工程框架

安全性工程也可称为安全系统工程或安全保障体系,内容包括了安全生产、安全管理、安全技术、劳动保护、事故应急与调查处理以及安全性研究等各个方面。对这些工作制定的一系列计划、安排、实施、检查等措施方案或规章制度统称为安全性工程大纲[2]。与这些安全工作相关的理论或应用研究都可以称为系统安全性研究。所有针对人不安全行为和物不安全状态的分析、发现、评价、监控、预防, 以及变为事故后的应急、救援、调查、处理等,都是安全性研究的内容。

城市轨道交通系统有许多保障安全运营的技术和管理措施。如上海地铁运营有限公司管辖的轨道交通系统,技术层面上采用了大量的监视与控制系统(ats,atp,fas,scada,bas等)及各种维修(维护)措施;管理层面有分级安全管理组织、安全管理制度、运营质量管理体系、设备维护管理系统、管理信息系统、应急预案等机制。这些技术和管理措施以及对它们的研究工作应该按照系统工程的原则建立一个统一的体系。本文针对城市轨道交通系统的结构与运转特点,构建了城市轨道交通系统安全性工程框架,如图1所示。

2.1 安全技术体系

安全技术体系包含了各种安全保障或事故预防的技术措施,一般在线路设计建造时实现,也可在既有线改造时实施,主要有设备(设施)的固有可靠性提高、冗余、监控、检测、维护、维修、保护等技术措施;按专业可分为车辆、线路、通号、供电、客运等的安全技术措施;按区域可分为控制中心、列车运行、车站、隧道、桥梁、变电站、车辆段、通号基地等的安全技术措施。

2.2 安全管理体系

安全管理体系包含了安全管理组织结构、各种安全活动计划、安全制度等内容。本文根据城市轨道交通系统管理组织结构的现状,提出了轨道交通系统安全性与可靠性管理组织的结构框架(见图2)。图中的安全组织结构为三级安全组织管理体制:公司决策层有分管安全性与可靠性的负责人;中间管理层有专门负责安全性与可靠性的职能部门;各专业分公司操作层有专职安全性与可靠性的责任小组。职能部门负责安全性与可靠性管理制度的制订及实施情况监督、安全性与可靠性信息管理系统的管理、安全性与可靠性分析评估及预警系统的管理等工作。责任小组负责事故与故障信息的录入、相关制度执行情况监督等工作。通过安全性与可靠性综合信息平台实现安全性与可靠性的动态管理。

2.3 事故应急体系

事故应急体系由应急技术与应急管理(应急预案)组成,主要有应急救援、应急运营、应急装备、事故处理等方面的内容。由于事故应急的重要性以及必须具备快速响应和联动调度的机制[3],所以列为单独的一个体系。

2.4 安全性研究体系

对于城市轨道交通系统,安全性研究体系主要有五个方面的内容:安全技术研究;安全管理研究;事故应急机制及预案研究;事故调查分析;系统安全性分析与评价。安全性研究的核心是发现、分析和评价系统中存在的不安全因素[4],研究和开发各种针对高危险状态的监控系统、检测技术、事故预防和应急措施,制定防止不安全因素转化为事故发生和事故发生后减少损失的安全管理规章制度,以及对这些规章制度的实施、检查及评价等。

在安全性研究的所有内容中,最基本的是安全性分析和安全性评估[4]。目前国内外研究及应用得较成熟的安全性分析和评估方法或理论主要有初步危害分析、事故树分析、事件树分析、因果分析图法、安全检查表法、事故致因理论、安全行为论、综合安全评价、安全管理体系评估法等。这些理论或方法主要可归纳为两大类:一类为分析类,即发现隐患,识别危险性,寻找原因;另一类为评价类,即确定危险程度或安全程度。而评价又可分为两类:一类是系统内部各危险行为或状态的分析评价,确定出各种不安全行为或状态的危险程度高低,给安全管理工作提供参考;另一类是比较评价,即确定影响系统安全性各个因素的重要程度和好坏程度,用于安全性评比。

3 城市轨道交通系统的可靠性工程框架

可靠性工程包括了可靠性与维修性两方面。可靠性工程是指依靠相关的可靠性理论,对具体系统进行的可靠性与维修性设计、分析、试验、评估、改进、提高等工作。对这些工作制定的一系列计划、安排、实施、检查等方案或规章制度统称为可靠性与维修性工程大纲。对这些工作进行的理论或应用研究统称为可靠性研究。可靠性理论的研究主要有可靠性数学、可靠性与维修性模型、可靠性与维修性分析、可靠性与维修性预测与增长、可靠性与维修性试验、可靠性与维修性管理等。而可靠性应用研究是指依靠相关的可靠性理论,对具体系统进行的可靠性设计、分析、试验、评估、改进、提高等。

对于城市轨道交通系统,在设计建造时为了提高各种设备(设施)的可靠性,尤其是列车运行的可靠性,采用了大量的冗余技术和监控系统,在使用时制定有严格的定期或状态维修(维护)制度,以保障设备(设施)的使用可靠性。本文针对城市轨道交通系统的特点,构建了城市轨道交通系统可靠性工程框架,如图3所示。

3.1 可靠性技术体系

可靠性技术体系包含了设备(设施)的固有可靠性提高,诊断(检测、监测),可靠性试验(验证)等技术措施。固有可靠性技术包含了冗余、备份等技术措施。城市轨道交通系统按专业可分为车辆设备、线路(车站)设施、通号系统、供电系统、列车自动控制系统等可靠性技术措施。

3.2 可靠性管理体系

可靠性管理是系统可靠性工程的一个重要组成部分。城市轨道交通系统的可靠性管理体系主要包含可靠性管理组织结构,设备(设施)的验收、维修、维护制度,故障统计、分析、汇报制度等方面。可靠性管理体系的组织结构和信息流程通道可以与安全性的共享(见图2)。

3.3维修性技术体系

维修性技术体系包含了设备(设施)的维修策略,故障的检测、诊断、隔离、维修技术措施,以及维修性验证等内容。城市轨道交通系统按专业可分为车辆、线路、供电、通号、车站等的维修(维护)措施。

3.4 可靠性研究体系

城市轨道交通系统的可靠性研究体系主要包括对设备(设施)的可靠性设计、分析、试验、验证、评估、改进,以及对整个系统或各子系统的可靠性分析、评估,维修性试验、验证,建立可靠性模型等内容。

在可靠性研究的所有内容中,最基本的是可靠性分析和可靠性评估[6]。目前国内外研究及应用得较成熟的可靠性分析和评估方法或理论主要有故障模式影响及危害性分析、事故树分析、潜在状态分析、共因故障分析、维修性分析等。

4 结语

城市轨道交通系统是一个牵涉到多种技术领域,由多种设备、多种硬软件、多种设施组成的复杂系统。根据国外经验,大型系统全面和完善的安全性、可靠性研究与应用,需要有数十年的经验积累,并且有专门的工作部门专项负责安全性或可靠性的研究与措施的落实。我国在大力建设城市轨道交通系统的同时,必须不断地研究和提高整个系统的安全性与可靠性。本文构建的城市轨道交通安全性与可靠性工程框架,旨在给出一种系统思想,为今后在我国城市轨道交通的建设和运营管理中研究、解决安全性与可靠性问题提供参考。

参考文献

[1]孙 章,何宗华,徐金祥.城市轨道交通概论[m].北京:中国铁道出版社,2000.

[2]陈 铁,管旭日,孙力彤.城市轨道交通综合安全管理体系研究[j].城市轨道交通研究,2004(1):16.

[3]张殿业,金 键,杨京帅.城市轨道交通安全研究体系[j].都市快轨交通,2004(4):1.

[4]崔艳萍,唐祯敏,武 旭.地铁行车安全保障系统的研究[j].城市轨道交通研究,2004(5):23.

可靠度理论论文篇10

关键词:建筑结构设计;可靠度;影响因素;对比

建筑的可靠度不但会影响到建筑的正常使用,而且还会影响到人们的人身财产安全,因此必须要采取有效措施充分保证建筑的可靠性与安全性。当前在我国建筑工程中常常会发生坍塌事故,这也使得建筑的质量可靠性引起了人们的充分重视广泛关注。所以,建筑结构设计的可靠度也显得非常重要,只有在充分确保建筑结构设计可靠度的基础上,才可以有效地保证建筑结构的安全性与可靠性,保证建筑的正常使用,从而有效地保障人们的生命财产安全。

1建筑结构设计可靠度的基本理论

1.1建筑结构体系的可靠度

所谓的结构可靠度即为在具体应用的过程中,把随机过程逐渐转变为运用随机变量进行表示的效用方程,然后再充分发挥经验校准的辅助作用,并且利用失效概率作度量手段。截止到目前为止,我国已经对可靠性设计的相关理论展开了深入研究,而且也获得了一些研究成果。然而,假如要把这些理论内容运用到实际结构设计规范要求当中,那么就会产生一些设计方面的问题。因此,结构设计人员必须要有效优化可靠度理论当中所包含的基本点。不仅如此,还要纠正在正常以及非正常结构设计体系彼此间界限比较模糊的问题,只有这样才能有效地确保可靠性理论可以在结构设计中得到广泛、合理的应用。

1.2结构设计的规范

对于我国建筑行业而言,结构设计规范存在着一个非常重要的特点,即为强制性。其中我们谈到的规范也就是我国制定的有关的法律法规。那么,结构的设计人员必须要充分遵守相关的法律规定,仅仅是在这一前提下,当其设计成果发生问题,那么设计人员才能够不用担负法律责任。目前,在我国当前实行的规范当中,对含钢量规定的是最小数值,这一指标也是可靠度的一个非常关键的指标。然而,目前在具体的建筑设计过程中,设计人员往往会根据具体的情况,将此指标作出一定的调整。因此,这会使得设计编制工作面临着更高的要求。所以,设计人员要根据工程的实际情况,对规范设计进行灵活应用,以此来保证工程质量,保障建筑结构设计的可靠度。

2建筑结构设计可靠度的影响因素分析

2.1抗力因素

根据相关研究调查表明,目前对建筑结构设计的可靠度具有影响作用的抗力因素主要包括以下几种:第一种是载荷作用,根据相关研究调查发现,在通常状况下对建筑结构所产生的载荷作用主要体现在两种形式上:一是会对建筑结构的安全性与可靠性产生直接的影响,在建筑结构服役的安全时期范围内,一旦某个阶段的负荷会超出设计安全载荷范围,那么将会造成结构失效现象的发生。而且刺激为在低载荷长时间的作用影响下,会造成累积损伤的发生。其中也主要包括静态及动态两种累积损伤作用类型;二是各建筑材料老化作用产生的影响。随着建筑材料使用时间的不断增长,会导致结构材料出现老化现象。这样也会在一定程度上降低材料的力学性能以及强度,这样也会对结构的可靠度产生一定的影响。第二种是结构服役环境产生的影响。在一般状况下,自然环境产生的作用往往指的是腐蚀介质会对建筑结构所产生的腐蚀作用,其中包括混凝土的碳化现象等,而这现象的主要原理即为蕴含在地下水或者空气当中的CO2逐步进入到混凝土内部,然后再和其中的氢氧化钙进行有机结合,最终产生许多的絮状沉淀物,这样就会造成钢筋表面钝化膜发生破裂,而且也会在一定程度上降低混凝土碱性,从而降低建筑结构抗力,影响到建筑结构的可靠度。

2.2外加荷载

因素根据我国出台的《建筑结构设计统一标准》中明确规定,为了能够准确地衡量结构可靠度所受到的影响,那么往往会应用目标可靠指标来作为衡量标准,这一指标主要指的是借助于给定的抗力及载荷概率分布,然后对之前的规范安全系数进行校准。假如在这指标保持不变的情况下,外界载荷大小不一样,那么也会造成结构可靠度水平产生不同的结果。在一般状况下,可变载荷是一个主要的载荷影响因素,主要包括自然环境载荷以及楼面活载荷两种。

3建筑结构设计可靠度对比分析

3.1建筑结构设计规范的对比分析

在通常状况下,我们所说的可靠度即为在充分确保建筑结构各项功能可以正常运行的前提下,要充分保障人们的生命财产安全不受侵犯。不仅如此,结构可靠度设计还必须要充分确保项目获得的建筑结构要有能够被修复的巨大功能。随着我国建筑行业的飞速发展,而且也开始逐渐进入到国际市场当中。与此同时,我国对可靠度理论的研究也逐渐深入,通过对我国与国外可靠度相关理论的对比研究可知,我国目前建筑设计规范可靠度要远远地低于欧美国家,数值大概为20%-40%。然而在建筑梁受压钢筋配比概率方面,我国和美国之间的结构设计规范水平基本可以达到同一标准,而且我国设定的配筋量的最小量也与国际相关的标准规范保持一致。所以,为了可以充分确保建筑物功能的安全可靠性,那么设计人员就要结合建筑不同结构的功能与作用合理地调整最低用钢量。

3.2政策方针合理性比较分析

当前,我国都是根据可靠性基本原则来制定建筑结构设计规范标准内容,所以这也是与我国的基本国情相符的。不仅如此,我国在结构设计规范标准设计方面也充分符合技术上的合理性,而且也在方针政策方面具有较强的合理性与科学性。这样就可以更好地符合我国的经济发展状况,然而尽管如此,与欧美发达国家相比,我国目前实施的规范标准还是有着一定差距的。当然,我国的规范标确是最符合我国政治经济发展需求的。除此以外,我国现有的建筑结构设计标准还在政治方面存在了一定的缺陷,因此,今后必须要对其进行及时的改正与优化,然而从大方向进行分析,只要还是具备一定的科学性与可靠性。总而言之,我国对建筑结构设计可靠性的相关理论研究越来越深入,对其的应用也日益广泛,然而很多因素都会影响到建筑结构设计的可靠度。

因此,为了能够有效地确保建筑结构的安全性与可靠性,那么就必须要对影响因素展开深入的分析,并且进行对比研究,以此来有效地确保建筑结构设计的安全、可行性,保证建筑结构的质量,进而有效地推动我国建筑行业未来的良好发展。

参考文献

[1]刘玲.建筑结构设计可靠度影响因素与比较分析[J].低碳世界,2016(10):89-90.

[2]王杰华.刍议建筑结构设计可靠度的影响因素与对比[J].城市建设理论研究:电子版,2013,01(29):94-95.