防震设计论文十篇

时间:2023-04-11 10:08:01

防震设计论文

防震设计论文篇1

桥梁的总体布置

1立交匝道桥的特点

互通立交的匝道桥,受地形、地物和占地面积等影响,其总体布局跟其它桥梁相比,有以下特点:

(1)由于互通立交区匝道的最小平曲线半径可达30m,如果桥梁刚好位于小半径平曲线上,则该桥就可能做成曲线梁桥,且往往超高值较大,故桥梁的横坡较大。

(2)由于要在短距离内实现高差,匝道桥往往纵坡较大。

(3)桥面较窄。

(4)匝道桥有时候需要跨越主线或其他匝道,以及非机动车道,因此匝道桥的单跨跨径受到限制,不能减小。

由于匝道桥具有斜、弯、坡、异形等特点,属于不规则桥梁,在地震作用下的响应相对比较特殊,其抗震设计将更复杂,不仅要满足常规桥梁所规定的构造,而且在某些方面需要提出更高的要求。震害表明,曲线梁桥具有较高的地震易损性,薄弱环节较多,因此其抗震概念设计就显得尤为重要。

2上部结构

由于匝道桥很多是弯、窄桥,其在荷载作用下,包括静力荷载和动力作用,上部结构的扭矩较大,上部结构受力处于弯扭耦合状态,故需要采用抗扭刚度较大的截面,且桥梁上部结构的整体性要好。因此,对于匝道桥,特别是在小半径曲线上的匝道桥,宜采用箱形截面(跨度相对较大时)或者实心截面(跨度相对较小时)。也正是因为如此,为增加刚度和稳定性,上部结构宜采用结构连续。所以,对于匝道桥,上部结构采用连续箱梁或者连续实心板,将有效地提高其抗震性能。

3下部结构

3.1桥墩的形式

匝道桥一般相对较窄,桥墩一般采用双柱墩或者独柱墩,桥墩的刚度相对较小。在地震作用下,墩身的弯矩和剪力一般不大,但是位移相对较大,如有较好的限位措施,对于抗震来说,未必是不利的。而对于小半径匝道桥来说,地震作用下,可能会导致桥墩产生较大的扭矩,故桥墩的墩身宜采用抗扭刚度相对较大且整体性较好的结构,如独柱实心墩或者空心墩。如采用双柱式墩,应对其进行全桥空间地震响应分析,对关键部位进行加强。

3.2桥墩的刚度

对于连续梁桥,同一联内各桥墩的高度不同而导致其抗推刚度相差较大,则水平地震力在各墩间的分配不均衡,刚度大的墩将承受较大的水平地震力,严重时可能导致刚度较大的桥墩发生破坏,从而导致全桥的损毁。如果刚度扭转中心和质量中心偏离,上部结构还将伴随产生水平转动,又可能导致落梁或者上部结构的碰撞。而匝道桥恰好容易符合这两个条件:纵坡较大,桥墩高差将会比较大;在小半径曲线上,地震作用下可能会出现上部结构的水平转动。

虽然匝道桥的桥墩高度相差较大,可以通过改变桥墩截面的形式或大小来对其抗推刚度进行调节。对于相对较高的桥墩,可以采用刚度较大的截面形式,或者增加其截面尺寸。如此一来,可以使得地震作用下各桥墩的水平地震相应达到均衡。

如桥梁位于小半径曲线上,地震来临时,桥墩承受的水平力方向是不确定的,且有扭矩的存在。因此,桥墩截面的刚度在各个方向大致相同将会是比较好的处理方法,如采用独柱墩或者空心薄壁墩。

3.3桥墩的配筋方式

近年来,桥梁结构的稳健性(robustness)越来越受到重视。稳健性的意思,即当参数摄动时,仍能保持整体稳固性的能力,故亦称为“参数摄动不敏感性”。对于工程结构,则指意外作用下的结构的整体牢固性,或者说结构破坏的后果与原因的不对应(不相称)时的牢固性。桥梁的抗震设计,除遵守通常规范的承载力准则外,还需力求避免意外的次生损毁、再次垮塌,缩小损毁范围以及损坏的可修复、快修复性。匝道桥一般相对较窄,其桥墩要么是独柱墩,要么是双柱墩,没有“冗余约束”,从结构本身来看,其稳健性相对较差。故需通过配筋来提高其在地震作用下的稳健性。

提高桥墩的延性,是提高其稳健性的有效方法之一。配置数量足够的、锚固合理的横向钢筋,对于墩柱来说,可以起到3个方面的作用:约束塑性铰区域内的混凝土,提高混凝土的抗压强度和延性;提高抗剪能力;防止纵向钢筋压曲。因此,箍筋或螺旋筋的间距小一些。各国抗震设计规范对塑性铰区横向钢筋的最小配筋率都进行了具体的规定。对于尺寸较大的墩柱,除须配置间距足够小的箍筋或螺旋筋外,还应配置横向加劲钢筋甚至是双层箍筋,以满足其对核心混凝土的套箍作用(如图1所示),以提高桥墩的延性,从而提高其地震作用下的稳健性。

其他构造

1支座

为保证桥梁刚度均衡,设计时应优先考虑采用等跨径、等墩高、等桥面宽度的结构形式。如不能满足,也可通过调整墩的截面形式和尺寸,或者调整支座等方法来改善桥墩的刚度均衡情况。其中,调整支座可能是最简单易行的办法,效果也很显著。当采用橡胶支座后,由墩和支座构成的串联体系的组合抗推刚度为:式中:kt是墩和支座的组合抗推刚度,kz和kp分别为橡胶支座的剪切刚度和桥墩的水平刚度。如地震作用下,桥墩仍处于弹性状态,其水平地震力就是按墩的组合抗推刚度的比例分配的,从上式可以看出,调整支座的刚度可以有效地改善桥的刚度均衡状况。

另外,如果地震设防烈度较高(超过8度),须考虑将支座设计成抗震支座,以达到减、隔震的目的。

2墩梁连接方式

一般情况下,桥墩跟上部结构之间,采用支座连接。但是,有些情况下,可以将抗推刚度较小的桥墩和上部结构固结来考虑,刚度较大的桥墩与上部结构之间通过支座连接。如此,一方面可以增加桥梁的整体稳定性,另一方面,也可以让桥墩之间的抗推刚度均衡。

3限位装置

对于桥墩刚度较小的情况,由于地震作用下的墩顶水平位移较大,限位装置是不可或缺的。横桥向的限位措施主要有剪力键和防震锚栓,纵向限位措施包括剪力键、防震锚栓、链索式和拉杆式限位器等(如图2所示)。限位装置应允许梁体在小范围内自由移动,该自由移动范围的大小一般以不影响支座的正常变形为宜。为减小碰撞力和碰撞损伤,限位器常在梁间和主梁与剪力键间设置橡胶等缓冲材料。

工程实例

1工程概况

云南某高速公路的互通立交区桥梁,位于平曲线半径42m的匝道上,超高0.08,最大纵坡5%,桥宽7.75m,设计采用3~20m现浇箱梁,下部结构采用桩径1.4m独柱墩,①号桥墩墩高8m,②号墩高13m。其立面图如图2所示。

原设计未进行概念设计。桥墩高度不同,而截面相同;未设限位装置。现将原设计做局部修改,增加防震销,桥墩截面随高度增加,使其抗推刚度接近一致。对该桥的原设计方案和按照本文前述内容进行修正后的方案进行地震响应分析,比较其地震响应的区别。

2有限元模型

取全桥为分析模型,主要分析纵桥向的地震响应。墩底为完全固结。根据桥址的场地土条特性,选用El-Centro波作为非线性时程分析地震输入,因该桥抗震设防烈度为8度,故将El-Centro波水平地震加速度峰值调至0.2g。计算模型如图3所示。3.3地震响应分析本文对优化前后的桥梁地震响应进行分析和比较。

设置限位装置之后的墩顶位移与原设计墩顶位移对比分析:①号墩仅有微小的变化,②号墩位移相比原来小了14.27%,抗震性能提高明显。可见,限位装置效果的体现对较高的柔性墩有明显的影响。

(2)统一桥墩抗推刚度后的影响(见表2)②号墩直径加大,使其刚度与①号墩一致,计算结果分析对比:桥墩底的内力均有不同程度的改善,其中②号墩改善最显著,墩底内力与墩顶位移均有大幅度的提高。

①号墩也有相对②号墩较小的变化。可见,让各墩的刚度尽量相等,对整座桥桥墩的内力和位移都有影响,优化之后的①、②号墩刚度趋向于一致,使全桥的内力分配更均匀,从而提高的桥梁的抗震性能。

防震设计论文篇2

关键词:高层建筑;抗震;结构设计;理论

中图分类号:[TU208.3] 文献标识码:A

1 我国的高层建筑发展历程

上世纪80年代,我国高层建筑在设计计算机施工技术等领域快速发展,100m左右及以上的将建筑快速发展,多以钢筋为主要材料,在层数与高度增加的同时,功能与类型也日益增多。各大城市几乎都建立了具有各自特色的建筑,以上海锦江饭店为代表:高度达到153.52m,全部采用的钢结构体系;而深圳的发展中心大厦有43层,高度达到165.3m,算上天线高度达到185.3m,是我国第一幢大型的高层钢结构建筑。到了90年代,我国的高层建筑结构从设计到施工进入到一个新的阶段,除了体系与材料的多样化,高度上也有了质的飞跃。在1995年完工的深圳地王大厦,共有81层,高度达到385.95m,居世界第四高。

2 建筑抗震的理论

2.1 建筑结构的抗震规范

一般的抗震规范都是各国结合具体的情况进行的经验总结,是指导抗震设计的法定文件,及反应国家经济与建设的发展水平,也反映了各个国家的抗震经验。尽管抗震理论不断完善,技术水平也在不断地提高,但是必须要有实践的指导,要将建筑工程的安全性放在首要位置,容不得任何的大意与疏忽。基于这一认识,现代建筑部分条文被列为强制条文,使用了“严禁、不得”等绝对性的字眼,同时也有不同条文有较大的自由空间。

2.2 建筑抗震设计的理论

当前建筑抗震设计的理论主要分为拟静力理论、反应谱理论及动力理论。拟静力理论起源于20世纪10~40年代出现的理论,在估测地震对结构的影响时,假设结构为刚性,地震水平作用在结构或构件的质量中心,地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论是在上世纪40-60年展起来的,以强地震动加速度观测记录的增多与对地震地面运动特性的进一步了解,及结构动力反应特性的研究为基础,是加理工学院的学者对地震加速度记录的特性进行分析后获得的成果。

动力理论是上世纪70-80年代的应用较为广泛的地震动力理论,是在60年代以来电子计算机技术与试验技术的发展为基础,人们对各类结构在地震作用下的线性与非线性的反应过程也有了较多的了解,随着强震观测台的增加,各种受损结构的地震反应记录也在不断地增加。进一步动力理论也称地震时程分析理论,它将地震作为一个时间过程,选择具有代表性的地震加速度时过程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,完成设计工作。

3 高层建筑的抗震结构设计

3.1 必要的抗震对策

在高层建筑结构的抗震设计中国,出了要考虑到概念的设计,还要进行验算,结合地震的情况,要在高度允许的范围内建造,增加结构的延性。在当前的抗震设计中,抗震验算及构造与措施等角度入手进行分析,提高结构的抗震性与消震性能。建立地震力与结构延性互相影响的双重设计指标,直到达到预期的抗震效果。当前强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计思想

在《建筑抗震规范》中有明文规定,建筑的抗震设防要符合“三水准、两阶段”的要求。所谓的“三水准”就是指“小震不坏,中震可修,大震不倒”。当遇到第一设防烈度地震即低于本地区抗震设防烈度的地震时,结构处于弹性变形阶段,建筑物可以正常使用。一般情况下,建筑物不会被损害,也不需要修理即可使用。所以,高层建筑结构的抗震设计要满足地震频发下的承载力极限,要求建筑的弹性变形不超过规定的弹性变形限值。当遇到第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物结构会发生损害,但是不经修理或者简单修理就可以继续使用。所以,建筑结构必须要有足够的延性能力,不会出现脆性破坏。当发生第三设防烈度地震的情况下,就是遇到本地区地震极限外的情况,结构会受到非常严重的损害,但是结构的非弹性变形距离倒塌仍有一段距离,不致产生危及生命的损害,保障了居住人员的安全。所以在进行高层建筑结构设计的过程中,要保证建筑的足够变形能力,其弹塑变形要在规范的数值之内,保证结构良好的抗震性能。三个水准烈度的地震作用水平是根据不同超越概率进行区分的,一般情况下是:

多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

从高层建筑的抗震水准来看,设防的要求是通过“两个阶段”设计来实现的,具体方法如下:第一环节,第一步采用与第一水准烈度相应的地震动参数,提前计算出高层建筑结构在弹性状态下的地震作用效应,与风力、重力荷载进行高效组合。同时引入承载力抗震调整系数,进行构件截面的准确射击,进而达到第一水准的强度要求;然后是运用同一地震参数计算出结构的层间位移角,使其可以在抗震规范设定的限值之内;同时采用相应的抗震构造对策,确保结构可以有足够的延性、变形能力与塑形耗能,进而达到第二水准的变形目的。而第二阶段则是运用与第三水准对应的地震动参数,算出结构的弹塑性层间位移角,使其在抗震规范的限值之内,然后进行必要的抗震构造对策,进而实现第三水准的防倒塌目的。

3.3 现代高层建筑结构的抗震设计方法

在《建筑抗震设计规范》中对各类的建筑结构的抗震计算应该采用的方法都有明确的规定:高度要在40m之内,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

结语

地震是威胁较大的天灾之一,必须要加强防御,从上文的分析中我们可以看到,高层建筑的抗震结构设计必须要在要求的限值之内,保证结构的良好性能,提高建筑的使用性能。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.

[2]李彬.对于高层建筑结构的抗震设计探讨[J].中国新技术新产品.2012(02).

防震设计论文篇3

关键词:民用建筑;结构抗震;理念

中图分类号:TU24文献标识码: A

引言

随着当前我国社会主义现代化建设以及城市化进程的逐渐向前推进,建设用地变得紧张,不断地促进了建筑功能变得多样化,民用建筑获得了加大的发展。

1、建筑抗震的理论探讨

1.1、建筑结构抗震规范

建筑结构抗震规范主要是各个国家的建筑抗震经验具备权威性的总结,同时也是指导建筑抗震设计的法定性文件。可以在一定程度之上反映出每一个国家经济以及建设的时代水平,也可以反映出每个国家的具体抗震实践经验。其收到了抗震相关科学理论的引导,逐渐转向了技术经济合理性的方向,然而其具备着坚定的工程实践基础,将建筑工程的安全性置于首位,不能出现顶点冒险以及不实。正是因为此种认识,现代规范之中的条文一些被列为强制性条文,一些条文之中使用了“严禁,不得,不许,不宜”等等表现出不同程度限制性以及“必须,应该,宜于,可以”则体现出了不同程度灵活性的用词。

1.2、抗震设计理论发展历程

1.2.1、拟静力理论

拟静力理论主要是在上个世纪的40年展起来的一种理论,其在估计地震对于结构的作用之时,仅仅假定结构是钢性,地震力水平只是作用在结构或构件的质量中心之上。

1.2.2、反应谱理论。

反应谱理论主要是在上个世纪的40~60年展起来的,其可以不断加强地震动加速度观测记录的增多以及对于地震地面运动特性的作出进一步的了解,将结构动力反应特性的研究作为基础,也是理工学院的一些研究学者对于地震动加速度记录的特性,进行分析之后得到的一个成果。

1.2.3、动力理论

动力理论则是在20世纪的70-80年代之中被广泛使用的地震动力理论。其发除过了基于60年代之后,电子计算机技术以及试验技术的发展之外,人们对于种种结构在地震作用之下的线性以及非线性反应过程具备较多的了解,也可以随着强震观测台站的逐渐的增多,种种受损结构的地震反应记录也在逐渐提升。进一步动力理论同时也可以被称之为地震时程分析理论,其将地震看成是一个时间过程,挑选具备代表性的地震动加速度时程当做地震动输入,建筑物简化成为多自由度体系,计算获得每一时刻建筑物的地震反应,这样就可以完成抗震设计工作。

2、高层建筑结构中抗震设计特点

2.1、控制建筑物的侧移是重要的指标在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。

2.2、地震荷载中的水平荷载是决定因素水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的增加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。

2.3、要重视建筑结构的延性设计高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。

3、建筑抗震的主要影响因素

3.1、抗震设计标准

现阶段,我国在各个地区设置的基本设防烈度,主要是根据该地区以及具体建筑在一定时间段内遭受的地震及其强度的概率而定的。若是一般性的建筑,就根据基本烈度设防,若是较重要的建筑物,就相应的提高设防烈度,同时造价也会随着建筑物烈度的提升而升高。

3.2、建筑结构形式

为了切实的保证建筑物“小震不坏,大震不倒”,在最新的设计规范中,砖混内框架结构被严格的取消了。目前,主要采用的是剪力墙结构、框架结构等。虽然单纯的框架结构造价相对较低,但是,它们的抗震性能差,所以,它们普遍适用于一些地震发生的概率较低、级别较小的地区。

3.3、抗震措施

抗震措施主要是依据建筑物的重要性来说的。在确定建筑物等级以及其场地的类型的基础上,把先进的抗震理念和系统的分析计算纳入到抗震设计中,这样就可以改善建筑抗震设计,同时也可提高建筑抗震效果。

4、民用建筑结构抗震相关措施

4.1、合理布局地震外力能量的传递吸收途径

作为提升建筑结构抗震能力的第一步,通过这样的合理布局,可以确保支柱、墙以及梁的轴线在同一平面之内,这样就会使得构件双向抗侧力体系形成。使用这样的布局,当地震发生之时,支柱、墙以及梁呈弯剪破坏,塑性屈服尽量在墙的底部产生。同时,当地震发生的之时,连梁应该在梁端塑性屈服,需要具有充足的变形能力。通过这样的结构以及布局,当地震发生之时,在墙段可以充分发挥其的抗震作用,依照强墙弱梁的原则不断提升墙肢的承载力,那么就会使得墙肢的剪切应力破坏,这样就可以使得建筑结构的抗震能力获得提升。

4.2、选择合理的建筑结构体系

一般而言,选择合理的建筑结构体系是结构设计的项重点内容,而且结构方案选择的合理与否,会直接影响到建筑的安全性以及经济性。通常情况下,建筑结构体系的选择要满足以下要求;第一,建筑结构体系要最大限度避免由于部分机构问题所影响整个机构抗展能力。抗震设计应该遵循的原则就是具有一定的内力重分配,这样如果地震中部分的构建停止工作,也不会影响其他构件负荷承载力,最大限度防止整体结构的失灵;第二,建筑结构体系应该具备良好的变形能力、一定的承载能力以及消耗地震量的能力。由于钢筋混凝土具有较强的塑性内力重分布能力,这样就能够更好地耗散地艇能量;第三,建筑结构体系的设计应该具有较明确的计算图以及科学的地震作用传递途径.在这个环节中,布置竖向结构要选择竖向构件在垂直重力荷载状况下的压应力水平趋向均匀;布置楼屋盖梁系时,要将数值重力负荷通过最短的路径来传输到竖向的构件墙;布置转换结构,要促使上部的结构竖向构件传输的垂直重力荷载进行转换;最后,建筑结构体系具备一定的强度和刚度也是很有必要的。应该有科学的强度及刚度的分布,最大限度防止由于局部变形所产生的变形集中。而且框架结构的设计也应该保证节点不被破坏,底层柱底的塑性通常较晚形成,这样塑性胶就应该相互分散,对于明显的薄弱部分,要采取措施切实提高抗震能力。在我国建筑结构中,所说的结构对称性是指达到抗侧力主体结构的对称。通常结构的规则性体现在:第一,建筑主体抗侧力的结构两个主轴方向的刚度以及变形特性都应该相似;第二,建筑主体抗侧力的机构往往是竖向断面非常均匀,防止突变;第三,建筑主体抗侧力的结构进行平面布置时,要体现出同一个主轴的方向各片抗侧力的刚度要尽可能均匀。

4.3、房屋建筑的地基设计

首先,在建造房屋建筑期间,同一个房屋建筑不允许建造在性质不同的地基上。并且在地基应用上,尽量全然应用天然地基或是桩基,尽可能避免出现两种地基各一半的状况。从而增强房屋建筑的整体刚性,提高房屋建筑的抗震性能。其次,在埋置房屋建筑的基础时,需注意其埋置深度的控制。若基础埋置深度过浅,将会减少房屋建筑的嵌固作用,增强房屋建筑在地震期间的振幅,提高震害发生几率。因此在设计房屋建筑的基础埋置深度时,应尽量增加其埋置深度。并认真做好基槽回填工作以及夯实工作,确保回填土可基础侧面的紧密接触,提高房屋建筑地基稳定性。最后,房屋建筑是由上部建筑、基础两个部分所构成的一个整体。因此在建筑室外地坪下,不应应用内外交圈基础圈梁,以免影响上部建筑和基础的整体性。此外,应将上部结构构造柱钢筋嵌入基础圈梁内,从而加强上部建筑和基础的连接牢固性。若建筑建造地段的土质刚度较弱,则还需设置圈梁在基底底部。

4.4、房屋建筑结构设计的规则性

4.4.1、合理处理房屋建筑的防震缝若房屋建筑结构不规则,需处理好建筑的防震缝。设置防震缝期间,应将房屋建筑划分为相互独立且规则的结构。防震缝两边需具备足够宽度,彻底分开防震缝两边的上部建构。并顺着建筑高度,在防震缝两侧布置墙体。

4.4.2、合理布置房屋建筑的纵横墙墙体属于房屋建筑的主要承重构件,由于房屋建筑的刚度大小主要取决于墙体数量,若承重墙体上,将会加大墙体间隔,进而降低房屋建筑的刚度以及抗震能力。因此在设计期间,需均匀分布房屋建筑的横墙以及纵墙,从而确保房屋建筑的整体抗震性能。5.合理布置构造柱以及圈梁构造柱、圈梁等均属于提高房屋建筑抗震性能的重要组成部分。其中构造体有利于增强建筑墙体的抗剪性能,并优化建筑结构变形能力,从而使建筑结构在外力作用不大的影响下仅发生变形,不对建筑结构整体的稳定性产生影响。因此,在布置构造柱时,需以《抗震规范》作为布置依据,在墙体交叉处均设置构造柱,促使墙体材料由脆性演变为延性。另外,圈梁有利于缓解地震对于建筑的损害,提高墙体之间的连接牢固性,对于增强房屋稳固性、整体性等可起到明显的促进作用。在一定情况下,还可抑制墙体产生裂缝。

4.5、设置多道抗震防线

为了提升建筑结构抗震能力,那么应该设置多道抗震防线。而这也是在一个抗震结构体系之中,如果地震发生之时,在地震作用之下,一部分延性比较好的构件第一达到屈服,可以担负起第一道抗震防线的作用。而其他的构件同样起着抗震防护的作用。并且,只有当第一道抗震防线屈服后,其他的抗震防线才会依次屈服。设置多道抗震防线,形成第一道、第二道、第三道甚至更多的抗震防线,当一道抗震防线失去作用后另外的抗震防线便可以发挥作用。这种结构对提高建筑结构抗震能力具有非常重要的作用。

4.6、结构抗震概念设计

4.6.1、结构设计的内涵

结构设计由两部分组成:概念设计和理论设计。概念设计指的是设计过程中不需要经过较精细的、较理性的分析,也不需要处理规范中难以界定的问题,只需要根据从结构体系整体与部分间的力学关系、工作经验、地震灾害以及实验现象中总结的设计原则和理念,从而确定建筑结构的设计和细部的设计构造过程。而理论设计则是工程人员对设计好的结构模型进行计算和应力假定前提下,依据设计规范和计算原理计算出结果,再根据结果进行合理的设计。

4.6.2、结构概念设计的应用

通过运用概念设计的思想和抗震措施,减少了对结构设计的局限,拓宽了思路。由于传统结构设计配筋量不合理,所使用的混凝土等级太高,造成其造价超出正常范围。这是由于传统结构设计中,结构合计和计算理论大致注重如何增强结构抗力。之所以出现肥梁、胖柱、深基础随处可见,是因为结构工程师往往只注意到不超过最大的配筋率。而结构概念设计是保证结构具有优良抗震性能的一种方法。概念设计包含极为广泛的内容,选择对抗震有利的结构方案和布置,采取减少扭转以及不断加强抗扭刚度的措施,设计延性结构以及延性结构构件,同时分析了结构薄弱部位,使用与之相应的措施,这样就可以避免薄弱层过早破坏,制止局部破坏导致的连锁效应,也可以避免设计静定结构,使用二道防线措施等等。应该说,从方案、布置、计算到构件设计、构造措施每个设计步骤之中都应该贯穿了抗震概念设计的内容。

4.7、合理的结构体系及构件的延性

对于整个建筑结构来讲,设计合理的结构体系并保证构件的延性相当重要,在设计过程中要遵循以下几项原则:

4.7.1、在进行结构计算时,要有明确的计算简图和说明,而且要保证建筑结构在地震作用时有合理的传力路径。

4.7.2、保证结构有足够的强度和变形能力。在地震作用时,有大量的能量瞬间传递到建筑结构构件中,如果结构构件有较好的变形能力,就可以吸收大量的地震能量,避免结构损坏。因此,在抗震设计时,要尽可能采用延性较好的构件。

4.7.3、保证结构强度和刚度合理分布。在设计时,尽可能使结构强度分布均匀,刚度在竖直方向上分布均匀,这样可以避免在地震作用时,结构物局部出现应力集中,从而造成结构物整体损坏。

5、结语

本文主要从抗震的方面进行粗略探求,在时展的推动之下,不断出现新的抗震理念,比如说在工程的结构之中使用隔震减振的措施来进行“隔”震的中心思想获得了广泛的关注。为了逐渐提升建筑物抗震的性能,我们应该确保民用建筑依照规定的抗震进行设防,同时不断进行研究以及发展新抗震设计的方法,实现较为的科学的防灾减灾。

参考文献:

[1]卢伟峰.浅谈民用建筑结构抗震理念设计[J].中华民居(下旬刊),2013,08:59-60.

[2]赵剑.基于抗震理念的民用建筑结构设计探究[J].科技与企业,2013,11:243.

防震设计论文篇4

Abstract: In oder to make construction projects really be able to reduce or even avoid the earthquake disaster, a good grasp of the relevant seismic design is a fundamental measure to mitigate earthquake disasters. Based on the summary of experience and relevant information, this articles studied and discussed the seismic design issues of reinforced concrete high-rise housing.

关键词:高层建筑;混凝土房屋;抗震设计;抗震设防

Key words: high-rise building;concrete housing;seismic design;seismic fortification

中图分类号:TU3文献标识码:A文章编号:1006-4311(2011)05-0084-02

0引言

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。据统计,历史上各种自然灾害曾毁灭了世界各地52个城市,其中因地震而毁灭的城市有27个。地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为25座。因此,地震占灾害总数的52%。可见地震灾害确系“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。

1建筑抗震的理论分析

1.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2高层建筑结构抗震设计

2.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2.2 抗震设计理念 我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合。并引入承载力抗震调整系数。进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.3 抗震设计方法我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3结语

在建筑工程项目建设中,设计阶段是整个工程最为关键的一个环节,在设计中要考虑到多方面的因素。本文结合工作实践对高层建筑结构抗震设计进行理论上的研究,从设计理念、设计原则到设计方法进行了探讨,虽然有些粗浅,希望对同行们有一定的参考作用。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

防震设计论文篇5

本文探讨了目前钢结构抗震设计中存在的两个主要问题:其一是钢结构地震作用,由于多层和高层钢结构房屋被列入“建筑抗震设计规范”(GB9001-2001)中。没有考虑钢结构塑性好和弹性阶段阻尼比较小的特性,使得钢结构地震作用较大,偏高用钢量;其二是钢结构承载力抗震调整系数对梁和焊缝的规定与母材强度低于焊缝强度的实际而不符,本文对现在抗震规范作用的相关要求、“抗震动态与建筑工程理论设计原则”和UBC关于美国规范的地震波动作用进行了比较和分析,按照钢结构的承受能力将体系化分为四大类,在上述理论将体系调整系数引入,对结构的抗震作用,提出恰当意见,对梁柱刚性连接体系,从抗震设计角度分析,对设防烈度区分别建议了适合采用的连接形式,并给出了小震和大震下的设计验算公式。

关键词:

钢结构;地震作用;梁柱刚性连接;门式刚架抗震设计

我国每年有超万亿吨之多的钢产量,加快我国的钢产业政策由长久采取的“节约钢材”变为“合理用钢”、“鼓励用钢”,所以钢结构的用量有良好的前景。我国为地震区的城市有很多,因此应该按照规范进行抗震分析和设计。

1钢结构抗震分析

1.1钢结构跃层加层动力分析概述古今中外,地震灾害造成的损失是难以估量的,在地震灾害中,我们付出的代价是惨重的,与此同时也取得了大量而宝贵的经验和知识。通过对震后的调查和研究表明,造成震害的主要原因之一是建筑立面与平面不规则。竖向抗侧力构件不连续是跃层加层房屋加固和改造形式的特点,从竖向看,抗侧力较小,在加层标高处,刚度易形成突变,因此从建筑立面规则性方面思考,此结构根本对抗震设计无用。所以为了避免抗震造成的不利影响,应采用有良好抗震性能的钢结构,能在一定程度上弥补跃层加层技术布置的不合理。钢材是匀质材料且各项同性,有延性好、质量轻、强度高的特点,为达到建筑抗震的要求,钢结构是使用的材料之一。当地震作用时,钢结构框架由于钢材强度高和均匀的材质,因而结构的稳定性和可靠性较大;钢结构房屋的自重轻,因为钢材的强度大和质量轻,从而地震波动作用对结构的作用会减小;因为钢结构延性性能较好,所以钢结构具的变形能力很大,房屋在很大的变形下也不会倒塌,从而结构的抗震安全性得以保证。

1.2抗震性能的特点良好的抗震性能是钢结构的特点,概括起来主要包括以下方面:(1)钢材材质均匀,受力性能各项同性,有韧性好、强度高、质量轻等优点,在震波的受力作用下,由于钢材的材质均匀,整体受力,质量轻,强度可靠,因而钢结构的房屋可靠性和稳定性大;(2)由于刚架结构自重轻和整体性好,较能承受地震的波动,使地震作用变小;(3)因为采用压型钢板,使墙面和屋面具有很好的蒙皮作用,使地震作用减少;(4)钢结构形式建筑的房屋,较低矮,亦使房屋能够承受地震波动;(5)采用端板半刚性连接梁一梁和梁一柱的刚架,当地震作用,外力很大,超过设计荷载时,弹塑性变形增大,弯矩增大,降低了受弯承载力,变形增大,具有良好的延性。

1.3结构地震反应理论分析方法从古至今,地震很难预测,预防措施是减少地震灾害最主要的方法,临时性的地震预报可减少经济的损失和人员的伤亡,但这是不可能的。结构抗震最好的预防措施是采取可行有效的设计方法,使结构抗震能力提高,避免结构的大裂缝和倒塌,避免经济损失和人员伤亡。随着科技进步、经济的发展、人们抗震理念的深入,建筑的抗震设计随着抗震理论的加深而成熟,抗震设计的科学领域已经形成且庞大。目前正在发展中的概率弹塑性理论和静力理论、反应谱理论、直接动力分析理论是结构抗震设计理论发展经历的4个阶段。结构地震反应分析方法的理论基础是根据结构抗震设计理论而定的,时程分析法、振型分解反应谱法和底部剪力法是地震作用分析方法的三个基本方法。

2钢结构抗震设计

2.1梁柱刚性连接抗震设计钢结构梁柱刚性连接脆性断裂是造成日本阪神地震和美国北岭地震人员伤亡和经济损失的直接原因。此后许多专家做了大量的实验,根据实验结论,提出了防止断裂的方法和预防措施,可以降低构件脆性,提高构件延性,防止节点处脆性破坏的发生,现行规范没有纳入这些成果。目前我国常用钢结构连接形式是栓焊混合连接梁柱刚性连接,它具有节省钢材、构造简单、节约工期等优点。但这种形式的节点不用于美国北岭,严重的脆性断裂是这次地震中房屋倒塌的主要原因,为此经专家分析发现,有效地提高节点塑性转动能力的方式就是在抗剪板和梁腹板之间补焊,为了避免现场焊接的梁柱连接缺陷也可以采用梁一梁拼接型式。

2.2门式刚架抗震设计门式刚架与传统的单层房屋有差距,因为自重相对较轻,采用轻型墙面和屋面。因此《抗规》规定,普通钢厂房的抗震规定对单层轻型的钢厂房不适用。《门规》对此做了如下规定:(1)从设计方面出发,单层轻型门式房屋钢结构的质量较轻,对7度以下抗震烈度设防地区,抗震验算不用进行,当抗震设防烈度大于s度时,结构的纵向和横向框架应该进行相关的抗震验算和分析以便于居住。(2)当由地震控制设计由效应组合作用时,在构造上,采取相应的抗震措施来针对轻型钢结构的特点。比如,按屈服强度的1.2倍来设计支撑连接处的承载力;宜加腋来提高斜梁下翼缘和刚架柱连接点处的承载力,应减小该处翼缘受压区域内的宽厚比;适当的用强度高的螺栓对构件进行加固和连接;把抗剪键设置造柱脚底板,要增强高锚栓的抗剪力和抗拔力应采取必要措施;适当的提高抗拔承载力和抗剪承载力和抗扭矩承载力。(3)低矮是单层轻型门式刚架钢结构房屋的特点(一般不超过18m,高度小于40m),且质量集中在上部,主要的受力形式是剪切受力,近似于单质点体系的结构,符合《抗规》第5.1.2条规定,进行抗震计算分析的方法可用底部剪力法;根据《抗规》第9.2.5条,结构阻尼比取0.045-0.050。应按照附录H.2和《抗规》9.2节来进行抗震设计单层及多层钢结构工业厂房(单层轻型钢结构厂房除外)。

3结语

在对美国UBC规范的地震作用、“建筑工程抗震性态设计通则”和现行抗震规范比较分析的基础上,从抗震设计原则出发,针对刚性连接的梁柱,对于结构,我国采用“小震不坏,中震可修,大震不倒”的设计理念,按大震验算和小震设计的方法来落实到设计规范上。线弹性和塑性是结构的特点,振型耦合的叠加原理可以来反应地震波动。结构的基础与土层之间无直接相互作用,所以全部支座处的地震波动相同,最大的地震反应是结构的最不利地震反应。

参考文献

[1]渡边邦夫.钢结构设计与施工.北京:中国建筑工业出版社,2006.

[2]王国周,瞿履谦.钢结构—原理与设计—.北京:清华大学出版社,2005.

防震设计论文篇6

Abstract: High-rise building work has always been the focus of building design and construction, the development of the high-rise buildings, analysis the necessary theory for seismic design of buildings, in order to explore the design concept, the method of high-rise buildings, and seismic measures must be take. In order to avoid the brittle failure of short columns in high-rise buildings, first of all to the judgment of short column, and then take some structural measures and treatment of short column, improving the ductility and seismic performance of short columns.

Key words: high-rise building; seismic design;

中图分类号:TU2

0 引言

结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。

1 高层建筑抗震结构设计的基本原则

1.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。

1.2 尽可能设置多道抗震防线①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架―剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

1.3 对可能出现的薄弱部位,应采取措施提高其抗震能力①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。④在抗震设计中有意识、有目的地控制薄弱层,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

2 建筑抗震的理论分析

2.1建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2抗震设计的理论

2.2.1 拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2 反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3 动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:①第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。②采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法

防震设计论文篇7

二、凡列入《关于印发须进行地震安全性评价的建设工程范围的通知》所规定的工程项目),必须按规定进行地震安全性评价工作,并按照经过审定的评价报告结论,进行工程抗震设防。

三、凡列入《关于确定我省位于地震动参数区划分区界线两侧各4公里区域的建制乡、镇和街道的通知》所确定的区域范围的建设工程,必须按照《建设工程抗震设防要求管理规定》(中国地震局第7号令)第九条之规定进行地震动参数复核,并按照复核结果,进行工程抗震设防。

四、区国土局、发改局、住建局(地震局)、规划局、行政服务中心等部门要加强协作,密切配合,依据法律法规共同做好我区抗震设防管理工作。

1.在土地出让、发改立项、规划许可文本中应当告知建设业主:新建、扩建、改建建设工程,应到住建局(地震局)进行建设工程抗震设防要求审核或建设工程地震安全性评价认定工作。一般工程必须按照有关规定进行抗震设防;重大建设工程和可能发生严重次生灾害的建设工程,应当进行地震安全性评价,并按照经过审定的评价报告结论,进行工程抗震设防。

2.“建设工程抗震设防要求审核”行政许可项目管理纳入基本建设管理程序,在区行政服务中心住建局窗口服务,办理抗震设防要求审核手续,不得收取任何费用。

一般建设工程抗震设防要求审核为即办件;

重大建设工程和可能发生严重次生灾害的建设工程抗震设防要求审核为承诺件,承诺时限为2个工作日;

对地震监测设施和地震观测环境造成危害的建设工程审批为承诺件,承诺时限为4个工作日。

3.建筑设计单位必须严格按照国家有关规定,根据区住建局(地震局)审核的抗震设防要求意见或签发的建设工程地震安全性评价认定证和建筑抗震设计规范进行抗震设计。

4.在办理“建设工程施工图设计审查”时,审图中心应当查验住建局(地震局)审核的抗震设防要求审核意见或建设工程地震安全性评价认定证,并按照审核的抗震设防要求或认定的建设工程地震安全性评价结果进行抗震设计审查,否则不予开展相关工作。

防震设计论文篇8

关键词:建筑;抗震;设计

为了贯彻执行国家有关建筑工程、防震减灾的法律法规并实行以预防为主的方针,使建筑经抗震设防后,减轻建筑的地震破坏,避免人员伤亡,减少经济损失,从而制定了《建筑抗震设计规范》,在最新修订规范中,在第三章第10节中提出了建筑抗震性能化设计,本文主要针对这一内容进行探讨。

一、建筑抗震性能化设计的提出

建筑抗震性能化设计在本质上应该采用反映谱理论以及结构能力设计的原则,既是用三个不同概率水准,两个阶段设计来体现出遇到小型地震不坏、遇到中型地震可以维修、遇到大型地震可以不倒塌的基本设防目标。但是这种设计方法依旧存在着许多的不足,因为地震是一个不能确定的地壳活动,就现在世界的科技手段还不能够准确的预测地震的发生时间和规律。地震具有强大的能量,破坏力超强,由于地震的不稳定性,使我们很难准确的了解建筑结构的抗震需求,然而采用反映谱理论的方法,有效的降低了地震作用计算的结构内力。

上个世纪七十年代,人们在总结了地震灾害经验中发现,建筑抗震设计对建筑的重要性,1990年1月份开始施行《建筑抗震设计规范》GBJ11-89中所列出的设计理念,在实际建筑工程设计中提高结构抗震能力方面发挥了重要的作用。在这一阶段,将设计理念应用于实际工程中取得了良好的效果,同时随着建筑行业的发展,发现早期建筑规范的内容还不够全面,所以在2002年1月对《建筑抗震设计规范》进行了更新,使得规范更加的全面,并增加了“建筑抗震性能化设计”。

在上个世纪九十年代,国外和国内工程界开始研究基于性能的抗震设计理念,其特点是:抗震设计从宏观定性的目标向具体量化的多重目标过渡,并由业主选择性能目标,对结构的抗震性能水准进行深入的分析,通过专家论证,反复进行修改,从而确定抗震设计。

现如今的抗震设计,一般都是按照现行《建筑抗震设计规范》所编制的条款进行的设计,比如结构的选型、地震作用的计算、房屋高度的限制、抗震等级选择等等。

二、建筑抗震性能化设计的计算要求

如上图所示,通过地震水准的三种情况,分析在情况发生过程中其性能所体现出来的程度,并根据这种程度的整体状态进行分析模拟。

1、模型分析

正确合理的反映地震作用的传递途径,建筑在不同地震动水准下是否整体或分块处于弹性工作状态。

2、弹性分析模拟

采用线性方法,弹塑性分析可根据性能目标所预期的结构弹塑性状态,分别采用增加阻尼的等效线性化方法以及静力或者动力非线性分析方法。

3、结构非线性分析模拟

结构非线性分析模拟与弹性分析模拟相对比较可以进行简化,但是二者在多遇地震的线性分析结构应该基本相同。

通过两个途径可以改善建筑物的抗震性能:一是针对结构平面布置的不规则性,调整局部构建的截面抗弯刚度,实现结构整体刚度内在的规则分布;二是采用被动耗能减震技术,通过设置阻尼器,为结构提供附加阻尼。

三、建筑抗震性能化设计的基本要求

1、选定地震动水准

对设计使用年限50年的结构,可以选用规范的多遇地震、设防地震和罕遇地震的地震作用。其中,设防地震的加速度应该按照《建筑抗震设计规范》中的抗震设防烈度和设计基本地震加速度值的对应关系进行设计,如图所示:

对设计使用年限超过50年的结构,应该考虑其实际效用,并经过专门的研究后对地震作用做出适当的调整。

2、选定性能目标

建筑抗震性能目标的选定是对于不同地震动水准的预期损坏状态或者使用功能,不低于抗震设防的基本目标。即当遭受低于本地区抗震设防烈度的多遇地震影响时,主体结构不受损坏或者不需要进行修理就能够继续使用;当遭受相当于本地区抗震设防烈度的设防地震影响时,有可能发生损坏,但是经过一般的修理仍然可以继续使用;当遭受高于本地区抗震设防烈度的罕遇地震影响时,不致倒塌或者危及生命。

3、选定性能设计指标

设计应选定分别提高结构或者关键部位的抗震承载力、变形能力或者同时提高抗震承载力和变形能力的具体指标,尚应计及不同水准地震作用取值的不确定性而留有余地。

总结:

总而言之,建筑抗震性能化设计,具有着很强的灵活性和针对性,当前我国建筑行业应用抗震技术主要还是在高层建筑方面或者是特别复杂的建筑,在一般的建筑工程设计上还没有得到广泛的应用,但是随着工程设计的不断创新,建筑抗震性能化设计最终会逐步的走向成熟。

参考文献:

[1] Anil K Chopera. Estimating Seismic Demands for Performance-Based Engineering of Buildings//13 thWorld Conference on Earthquake Engineering. Canada : 2004 : 5 007

[2] 汤保新, 叶列平, 陆新征. 丙类与乙类设防RC框架结构抗地震倒塌能力对比[J]. 建筑结构学报, 2011,(10)

[3] 姜有生. 中小学建筑抗震设计若干问题[J]. 青海师范大学学报(自然科学版), 2011,(03).

[4] 罗丹, 谷学东, 高夕良, 龙波. 《建筑抗震设计规范》设计方法相关问题的讨论[J]. 四川建筑, 2011,(04)

防震设计论文篇9

关键词:建筑结构设计;抗震措施

随着我国经济的快速进展,建筑物越来越多,也越来越高,在这种情况下必须做好抗震设计。抗震结构设计规范是设计人员在进行建筑结构设计过程中遵循的原则,使结构满足强度、刚度、延性及耗能能力等方面的要求,以而实现“小震不坏、中震可修、大震不倒”的目的,但是在实际设计中,却达不到看作效果。因此, 我们在对建筑物进行结构设计的时候,必须把建筑物的抗震问题放到非常重要的位置,并采取适当的措施,尽量避免地震对建筑物的损坏。1 建筑抗震结构设计的基本要素

1.1 在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

1.2 一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架——剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

1.3 构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

1.4 强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

1.5 要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

1.6 要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

2.2.1 拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2 反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3 动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 建筑结构设计的有利抗震措施

3.1 建筑物结构悬挂隔震,将建筑物的全部或者一部分悬挂起来以隔离地震,就是我们常说的悬挂结构,名字很恰当地表达了它的特点,同时,我们也能很直接的感受到它的缺点和局限,即耗费的成本太大,和并不适合于普遍的推广,虽然是一种非常行之有效的方法,但是执行起来却是值得商榷的。一般情况下,大型的钢结构会采用此种措施。大型钢结构一般分为主框架和子框架,在悬挂体系中,子框架通过索链或者吊杆悬挂于主框架上,地震来临时主体框架虽然受到冲击,但是其子框架以及其他零部件是用近似于双节棍的链接方式与主体相连的,那么主体受到的冲击力在传送给子框架时就会减小很多,有益于保护子体框架。

3.2 建筑物基础设置隔震装置减震,这这种减震措施与上文的不同之处在于是在建筑物中间加上辅助材料或者部分已达到减震目的,而前者则是在整体框架结构上的创新上入手,减震装置属于独立于建筑物自身的材料,使用得当最多可使震力减少三分之一左右,不过这种方法局限于非高层建筑,高层如果采取这种方法,反而会增加建筑物的质量,而使地震来临时,这些附属物的重量给生命和财产造成更大的伤害。

3.3 建筑物地基,用具有防震功能的材料,彻底从根源上稳固地基,将防震落实到最底部,从而到达减震的最终目的。传统的做法是在建筑物的基础部位用粘土和砂子结合固定,也可以直接设置粘土或砂子垫层。在我国建筑史上,曾经有人突发奇想以糯米为原材料,采其优良的粘着性,在建筑物底部形成防震的糯米垫层,减少震对建筑物的损害,不可谓不奇,当然现当今的材料学,尤其是建筑材料学已经发展的足够进步,我们可以不仿照古人的做法了,但是这种创新和探索的精神还是值得我们学习的。

3.4 层间隔震,层间隔离主要用于旧房改建的改建中对于防震的需求,在施工方面很简洁,专业性不强,居民可自行操作。当然于此对应的是低收益,也就是层间隔离的效果没有上述几种方法明显,这也是必然的,因为旧房改建,旧房的地基,基础结构是不能改变的,也是无法改变的,所以只能作为辅助结构使用,其作用原理与前面提到的在建筑物中增加辅助减震的原理基本相同,可以借鉴,也可以根据不同的具体情况选择使用。

4 结语

总之,建筑物的抗震问题是目前建筑结构设计界讨论比较多的话题之一, 也是涉及到人类生命财产安全的重要问题, 因此, 我们在对建筑物进行结构设计的时候, 必须把建筑物的抗震问题放到非常重要的位置, 并采取适当的措施, 尽量避免地震对建筑物的损坏。

参考文献

[1] 王艳.工民建结构抗震现状分析及研究[J].民营科技,2012(02).

防震设计论文篇10

关键词:桥梁工程 Midas有限元 抗震性能 结构分析

中图分类号:TU997文献标识码: A

实际工程中,桥梁震害以下部结构最为严重。根据以往桥梁震害类型分析,地震引起的破坏形式主要是下部结构尤其是桥墩的破坏。桥梁下部结构地震破坏形式有以下几种:

(1)弯曲破坏:受地震力作用,受拉钢筋屈服,混凝土保护层脱落,导致塑性铰范围扩大,钢筋压屈以致内部混凝土压碎、迸裂。

(2)剪切破坏:受地震力作用,桥墩产生水平弯曲裂缝,继而产生斜向剪切裂缝,箍筋屈服,剪切裂缝增长,产生脆性剪切破坏。

(3)落梁:由于桥梁下部结构地震动位移过大,引起的桥梁上部结构坠落。资料表明,顺桥向落梁情形远多于横桥向,它约占全部落梁总数的80%-90%。顺桥向落梁时,梁端撞击桥墩侧壁,这种冲击作用对下部结构会造成很大影响,因为落梁的能量比梁在墩顶发生振动时的能量具有压倒性优势。

(4)支座破坏:传递的上部结构惯性力超过支座的设计强度,桥梁支座是桥梁抗震的薄弱部位,震害极为普遍,破坏的主要形式为支座锚固螺栓拔出剪断,活动支座脱落及支座本身构造上的破坏

本文针对以上这些震害,以反应谱理论为基础,结合抗震细则,利用Midas大型有限元程序,对常规桥梁桥墩进行弹性和弹塑性分析计算。

1 抗震细则的修订

公路工程抗震设计规范(JTJ 004-89) 是单一水准强度抗震设计,仅仅使用烈度来描述地震作用强度,很多方面的规定过于笼统、模糊。例如,通过引入综合影响系数来折减地震力后采用弹性抗震设计,其隐含的意思是允许结构进入塑性,对结构的延性性能有相应的要求,但在设计上又没有进行必要的延性抗震设计,其延性能力能否满足要求是不确定的,这也是原规范存在的一个较大缺陷。

修订后的《公路桥梁抗震设计细则》修订了相应的设防标准和设防目标,采用了两水平设防、两阶段设计的抗震设计思想,由单一的强度抗震设计修改为强度和变形双重指标控制的抗震设计。并且,在构造方面,增加了桥梁延性抗震设计和能力保护原则的有关规定,增加了延性构造细节设计的有关规定。

2 工程实例

某城市高架桥设计为双向六车道Ⅰ级主干路,主线桥面总宽32.5m,双向8车道。桥梁设计荷载公路I级,地震基本烈度为VIII度,设计地震动加速度为0.2g,场地类别为II类,特征周期为0.4s。利用Midas建立结构的三维空间动力有限元分析模型,并考虑相邻联的影响和桩基础等因素的影响,正确反映结构的特点以及支座连接特点等耦合影响。

根据抗震细则,桥梁抗震性能研究必须要有明确的抗震性能目标,以便对结构进行合理的抗震检算。本桥采用两水平设防、两阶段设计的抗震思想。抗震设防水准为两级地震水准:第一水准相当于设计地震,对应于重现期约100年;第二水准相当于罕遇地震,对应重现期地震约2000年(100年5%)。依据《公路桥梁抗震设计细则》规定并综合考虑工程造价、结构遭遇的地震作用水平、紧急情况下维持应急交通能力的必要性和避免倒塌以及结构的耐久性和修复费用等因素,与这两级设防地震相应的抗震性能目标建议如表1所列。

设防水准 性能目标

E1地震作用 在该水准地震作用下,结构在基本弹性范围内工作,基本不损伤或轻微损伤;

E2地震作用 在该水准地震作用下,墩柱可发生损伤,产生弹塑性变形,但墩柱的塑性铰区域应具有足够的塑性变形能力。盖梁、主梁基本不发生损伤,桩基础满足极限状态要求。

表1

3 抗震分析

场地水平向设计反应谱的函数表达式,根据《公路桥梁抗震设计细则》(JTG/T B02-01-2008)给出,表达式如下:

参照抗震设防标准、抗震性能目标以及场地资料,根据《公路桥梁抗震设计细则》,确定如下图1所示的对应两水准的水平向设计加速度反应谱。

图1工程场址地表水平向设计加速度反应谱

根据设计图纸建立结构动力分析模型,对应的边界约束条件和计算的结构动力特性,采用反应谱法,取5%阻尼比反应谱,分别对50年超越概率10%(简称E1)和100年超越概率5%(简称E2)两种概率水准地震作用下的结构响应进行计算分析,地震输入方向为横桥向与纵桥向,采用Midas提供的Ritz法取前500阶进行反应谱分析计算,其中振型组合采用CQC法。选取36#桥墩为研究对象,得到如下结果(仅考虑横桥向地震力作用下墩底地震响应):

(1)各墩墩底地震响应

各桥墩墩底对应不同超越概率水准地震作用的地震响应见表2至3所示。

表2 墩底截面的内力最大值(E1横桥向输入)

截面位置(墩底) 动轴力 P(kN) 剪力 (kN) 扭矩 T(kN.m) 弯矩 (kN.m)

纵向 横向 横向 纵向

P36#墩 左侧 3067.673 69.786 1738.558 644.523 13247.758 484.048

右侧 3042.841 69.760 2326.226 182.019 14744.726 491.435

表3墩底截面的内力最大值(E2横桥向输入)

截面位置(墩底) 动轴力 P(kN) 剪力 (kN) 扭矩 T(kN.m) 弯矩 (kN.m)

纵向 横向 横向 纵向

P36#墩 左侧 9273.98 209.82 5258.69 1935.52 40068.13 1452.96

右侧 9197.03 209.75 7036.24 547.49 44596.09 1477.00

由此对比设计配筋,E1作用下配筋满足要求,E2作用下配筋不满足要求,需进行E2作用下的弹塑性位移计算。

(2)E2作用下的弹塑性位移计算

应用纤维单元进行墩柱M-φ 曲线计算,计算结果见图2。

从截面应力状态发展过程录像可以看出第136 步为规范中的受拉钢筋首次屈服特征点(φy’, My’) , My’= 12230KNm, φy’=0.001723 rad/ m。

可以求出混凝土开裂后用于全桥模型的塑性变形计算的墩柱等效刚度:

EIeff= My’/φy’= 12230/ 0.001723= 7098084.7 kN m2。

查抗震细则附录B 可依次求得φy, φu 以及体积配箍率ρs 等, 最后求出塑性铰长度Lp , 从而得到变形控制值 u。

由于水平地震力全部由中墩承担, 对于该桥可以按材料力学公式直接求得:

б= S /gxGxH 3/(3EIeff) =24.22cm

4 分析结论

通过在E1和E2两个水准地震反应谱分析和校核结果的结论如下:

桥墩墩身在E1水准地震作用下基本满足预期的抗震性能要求;但是在E2水准地震作用下,桥墩墩顶位移满足规范要求,但桥墩墩底弯矩需求大于墩身能力。因此在E2水准下应当进行减隔震设计。且为防止该桥结构在遭遇强震作用时,发生落梁等震害,应设置防落梁装置。

本设计采用拉索减隔震支座进行减隔震设计,支座自由程选取为0.07m,支座的布置方式采用在每联的过渡墩上设置拉索减隔震支座。在E2地震作用下,固定支座(设在每联的正中间墩上)的剪力销按照设计要求发生剪断,成为滑动支座。

5 结语

相对于原89《规范》, 新《公路桥梁抗震设计细则》在适用范围、设防目标和设防标准、设计和分析方法等方面均作了大量修订和改进, 特别是在设计理念和方法上有重大改进, 采用了2水平设防、2阶段设计的抗震设计思想, 引入了先进的延性抗震设计方法和能力保护设计原则, 实现了和国际先进水平的接轨。本文分别从桥梁抗震设防标准、桥梁延性抗震设计和减隔震设计等几个主要方面进行了简单地论述,希望对抗震设计能有所借鉴。

参考文献:

[1] JTJ004-89, 公路工程抗震设计规范[S] .